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Abstract

In this paper we give conditions on the positive functionϕ2 under which every bounded solutionσ of the elliptic equation
∇ ·(ϕ2∇σ) = 0 in R

n must be constant. The case whenϕ2 only depends on one or two variables is discussed at length. More
the asymptotic behavior of possibly unbounded solutions is characterized, improving in such a waya Liouville theorem due to
Berestycki, Caffarelli and Nirenberg.
 2004 Elsevier SAS. All rights reserved.

Résumé

Dans ce papier nous donnons des conditions sur la fonction positiveϕ2 sous lesquelles toute solution de l’équation elliptiq
∇ · (ϕ2∇σ) = 0 enR

n doit être constante. Le cas oùϕ2 ne dépend que d’une ou deux variables est analysé en détail. En
le comportement asymptotique des solutions, éventuellementnon bornées est characterisé, en donnant ainsi une générali
d’un théorème de Liouville dû à Berestycki, Caffarelli et Nirenberg.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

We shall be concerned here with the elliptic equation∇ · (ϕ2∇σ) = 0 on the Euclidean spaceRn; theweight
functionϕ2 is chosen to beϕ2(x) > 0, x = (x1, . . . , xn) ∈ R

n, n � 1.
The symbol∇σ denotes the gradient vector( ∂σ

∂x1
, . . . , ∂σ

∂xn
) of the solutionσ = σ(x), and∇ · (ϕ2∇σ) stands for∑n

i=1
∂

∂xi
(ϕ2 ∂σ

∂xi
).

As usual we will say that the equation isuniformly elliptic if the functionϕ2 is strictly positive and bounded
that is 0< C � ϕ2 � C−1, for some constantC; on the other end the case in whichϕ2 decays to zero at infinity
will be referred to asdegenerate elliptic.

Liouville-type resultswill be understood to mean, as usual, assertions to the effect that the only bo
solutionsσ = σ(x) of the equation∇ · (ϕ2∇σ) = 0 in R

n are the constants.
Here we prove new Liouville theorems which are motivated by a famous symmetry question raised b

Giorgi. It concerns the one-dimensional characterof bounded monotone solutions of semilinear elliptic proble
in the wholen-dimensional space.

The main purpose of this paper is to establish conditions on the weightϕ2 under which a Liouville theorem
holds.

For instance in the uniformly elliptic case a Liouville theorem is known to hold onR
n for anyn (De Giorgi–

Nash–Moser, see [7,17,18]).
Things considerably change when one does not assume uniform ellipticity.
Whenn = 2 a Liouville-type result is known to apply to general (positive and) bounded weightsϕ2 (see [9,11]).

On the other hand in higher dimensions,n � 3, a counterexample, obtained in [2] by means of a probabil
approach, shows that a Liouville theorem does not a priori holds true under the sole boundedness assumptio
the positive functionϕ2.

Thus whenn � 3 a Liouville theorem may hold true only under some additional assumptions on the wei
functionϕ. In this direction in [16] a Liouville theorem is given under certain integrability conditions onϕ2 (see
[22,8]); more recently by means of a probabilistic approach a powerful result is given in [3]. Another dir
which has been widely investigated is the one of radial weight functions, thusϕ(x) := ϕ(‖x‖) (see [11,14,13
among others). Indeed whenϕ andσ are sufficiently smooth, the equation under investigation takes the follo
form: �σ +〈2∇ϕ

ϕ
,∇σ 〉 = 0, where〈 , 〉 denotes the standard scalar product inR

n. A Liouville-type theorem is then

known to apply when“lower order terms” 2∇ϕ
ϕ

, vanish at a sufficiently fast rate as‖x‖ → ∞, more precisely when
2∇ϕ
ϕ

= O(‖x‖−1) (see [11]). The O(‖x‖−1)-decay condition, which cannot be in general significantly relaxed (se

[14]), implies for example that a Liouville theorem applies to the radial weight functionsϕ2(x) = (1+ ‖x‖2)α , for
anyα ∈ R (see [13] for more general results in this setting). On the other hand, it should be remarked that
quite heavy condition. For instance it does not apply to the case when “lower order terms” are constant.

In this paper a Liouville theorem is proved in the case of bounded weight functionsϕ2(x) which only depend
on one or two variables, respectivelyϕ2(xn) andϕ2(xn−1, xn) (see Sections 2 and 3). Thus we consider here
case of functionsϕ2(x) which satisfy symmetry assumptions different from the radial symmetry. For instanc

weight functionϕ2(xn) := e−√
1+x2

n does not satisfy the O(|xn|−1)-decay condition on the “lower order term”2ϕ′
ϕ

,
moreover the integrability conditionson the weight function given in [16]do not hold either; yet a Liouville-typ
result can be proved in this setting (see Theorem 2.1).

Moreover making use of the technique of differential inequalities it is possible to state another type of Liouv
theorem, replacing the boundedness condition onσ by an assumption on the rate of divergence for itsL2 weighted
integrals, whereσ now denotes more generally an arbitrary solution of the inequalityσ∇ · (ϕ2∇σ) � 0 in R

n. In
this direction in Section 5, we improve a Liouville-type result which played a key role in the proof of a conj
of De Giorgi (see (3) [6, p. 175]):



L. Moschini / Ann. I. H. Poincaré – AN 22 (2005) 11–23 13

st

ed

d

linear
sing

nd
f

] (we

t

e weight
f of

the
of the

t which

nctions
ctions
tion 4,
f [3],
pe
ve
the
Conjecture [6]. Let us consider a solutionu ∈ C2(Rn) of

�u = u3 − u (1.1)

such that|u| � 1, ∂nu > 0 in the wholeRn. Is it true that, for everyλ ∈ R, the sets{u = λ} are hyperplanes, at lea
if n � 8?

Ghoussoub and Gui proved the conjecture in 1997 whenn = 2 (see [10] and [5]), Ambrosio and Cabré prov
it in 2000 whenn is 3 (see [1]).

The proofs forn = 2 and 3 use some techniques in the linear theorydeveloped by Berestycki, Caffarelli an
Nirenberg in [5].

That is, for every coordinatexi , i = 1, . . . , n − 1, consider the functionσi := ∂iu/∂nu, where∂iu = ∂u/∂xi .
The goal is to show that, for everyi, σi is constant (thenu is constant alongn − 1 directions, henceu is a function
of one variable only and the conjecture follows). This will be achieved using a Liouville-type result for the
degenerate elliptic equation satisfied byσi , which turns out to be of the type we are interested in. Indeed u
the fact that∂iu and∂nu satisfy the same linearized equation:�ω − (3u2 − 1)ω = 0, one can easily show thatσi

satisfies:∇ · (ϕ2∇σi) = 0 in R
n, whereϕ := ∂nu. This motivates the present work.

Some simple regularity results and bounds (see [1] for example) assure that|∇u| is bounded in the wholeRn,
thusϕσi is bounded inRn (since by definition it equals to∂iu); hence the assumption of Berestycki, Caffarelli a
Nirenberg Liouville theorem in [5] (which we recall in Remark 5.2) holds whenn = 2. This is essentially the proo
of Ghoussoub and Gui (see [10] and [5]).

On the other hand the assumption in the Liouville theorem given in [1], which improves the one in [5
recall it in Remark 5.2, for the convenience of the reader), could be verified when (and only when)n � 3, due to
the (optimal) energy estimate given in [1]; thus proving the conjecture whenn = 3.

Here in Theorem 5.1 we improve the Liouville-type results given in [1] and [5].
We notice that recently De Giorgi conjecture has been solved by Ovidiu Savin forn � 8, by means of a differen

approach (see [21]).
As a further motivation to the present work let us observe that the degenerate elliptic equations, whos

functions decay exponentially along somedirection, as we consider in Section 2, naturally arise in the proo
the one-dimensional character or symmetry of bounded monotone solutions to semilinear elliptic equations in
whole spaceRn. Indeed the explicit one-dimensional solution of Eq. (1.1) (which is unique up to translations
independent variable) is given byu(x) = tanh( a·x−c√

2
) (for somec ∈ R anda ∈ R

n with ‖a‖ = 1 andan > 0); hence
in order to prove the conjecture, following the above scheme, a useful tool would be a Liouville-type resul
applies to a degenerate elliptic equation whose weight functionϕ(x) could be∂nu = (an/

√
2)(cosh( a·x−c√

2
))

−2.

This motivates the results in Section 2.
The structure of the paper is as follows. In Section 2 we prove a Liouville theorem concerning weight fu

which only depend on one variable. Section 3 is devoted to the proof of a Liouville-type result for weight fun
ϕ2 which only depend on two variables. A new maximum principle for subsolutions is then proved in Sec
under some assumptions on the weightϕ2, which cannot be essentially sharpened. It generalizes a result o
which by the end was proved through a probabilistic approach. As an application we show that the Liouville-ty
result, given in Section 2, applies to solutionsσ which are not a priori bounded. Finally in Section 5 we impro
a Liouville-type result due to Berestycki, Caffarelli and Nirenberg. A classical counterexample shows that
asymptotic rate under which the Liouville theoremholds cannot be any more essentially sharpened whenn = 2;
some counterexamples are given forn � 9 too.

In the following we usually set‖x‖ = (
∑n

i=1(xi)
2)1/2, for any x ∈ R

n, |xn| = max{−xn, xn}, BR = {x ∈
R

n: ‖x‖ < R} and∂BR = {x ∈ R
n: ‖x‖ = R}.
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2. A Liouville theorem for one-dimensional weights

Let us state the first Liouville-type result we obtained through a gradient estimate following from the maximum
principle (see [19] for a general approach to the method).

Theorem 2.1. Letϕ be a positiveC1 function,ϕ(x) := ϕ(xn), such that:

(i) ϕ ∈ L∞(R),
(ii) (ϕ′(xn) · xn)

+ � Kϕ(xn) in R,∃K � 0.

Suppose thatσ ∈ L∞(Rn) ∩ C2(Rn) satisfies:

∇ · (ϕ2(xn)∇σ
) = 0 in R

n

in the classical sense,∀n � 1. Thenσ is constant.

Theorem 2.1 holds for anyn � 1 the interesting case, due to the above introduction, being the casen � 3.
Let us remark that under the above assumptions the operators under study arelocally uniformly ellipticones.

Remark 2.2. Let us notice that hypothesis (ii) in the theorem, when choosingK = 0 in it, simply stands for a
nonincreasing assumption onϕ as |xn| increases, with no asymptotic rate restriction. The possibility to choose
positiveK allows us to include the case of somewhere increasing weight functions.

Remark 2.3. Theorem 2.1 applies to equation∇ · (e−α
√

1+x2
n∇σ) = 0 in R

n, for anyα > 0. Let us observe tha

the “lower order coefficient”2ϕ′
ϕ

, corresponding to this choice ofϕ(xn) := e− α
2

√
1+x2

n , does not decay to zero a
|xn| → +∞.

Proof of the Theorem 2.1. Let us define the followingn − 1 new functions:

ψi(x) = c

R2
σ 2 + ξ2

R(∂iσ )2, for anyi = 1, . . . , n − 1,

where∂i = ∂
∂xi

, ξR(x) := ξ(‖x‖/R), ξ being aC2 function in[0,1] such that 0� ξ � 1, ξ ′ � 0 and

ξ(s) =
{

1 s ∈ [0, 1
2],

0 s � 1,

andc is some constant inR+, that will be fixed later on.

Claim. Lψi � 0 in R
n whereL := 1

ϕ2 ∇ · (ϕ2∇) = � + 2
ϕ
ϕ′∂n.

Due to the fact thatϕ is positive inR andϕ′ is bounded in each compact set ofR, sinceϕ ∈ C1(R), it follows that
ϕ′(xn)
ϕ(xn)

∈ L∞
loc(R). Thus a maximum principle on bounded domains holds forL (see [12]), saying us that∀R > 0:

max
BR

ψi � max
∂BR

ψi = c

R2
max
∂BR

σ 2 � c

R2
‖σ‖2

L∞(Rn).

On the other hand:

max
BR

ψi � max
B R

ψi � max
B R

(∂iσ )2 � (∂iσ )2(x), ∀x ∈ BR
2
.

2 2
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∣∣∂iσ (x)
∣∣ �

√
c

R
‖σ‖L∞(Rn) ∀x ∈ BR

2

letting R → +∞, it follows that (∂iσ )(x) = 0 ∀i = 1, . . . , n − 1. It implies that the functionσ , which a priori
depends onn variables, indeed only depends onxn, that isσ(x1, . . . , xn) = σ(xn). This is a symmetry result.

Coming back to our equation we easily find out that nowσ solves the following one-dimensional problem:

∂n

(
ϕ2(xn)∂nσ

) = 0 in R (2.1)

which equivalently implies:

∂nσ = C

ϕ2(xn)
in R

for some constantC. Integrating both sides of the previous inequality, we get:

σ(xn) =
xn∫

a

C

ϕ2(s)
ds + σ(a),

fixed arbitrarilya ∈ R. Making use of hypothesis (i) it follows that the previous functionσ is bounded inR if and
only if C = 0; thus the only bounded solutionsσ of (2.1) are the constants. This proves the theorem.

Indeed
∫ xn

a
ϕ−2(s)ds � (‖ϕ2‖L∞(R))

−1(xn − a), which is obviously unbounded for anya ∈ R. �
Proof of the Claim. Let us calculateLψi . SinceLΦ2 = 2(ΦLΦ + |∇Φ|2) it easily follows that:

Lψi = c

R2
Lσ 2 + L

([ξR∂iσ ]2) = 2c

R2
|∇σ |2 + 2

(
ξR∂iσL(ξR∂iσ ) + ∣∣∇(ξR∂iσ )

∣∣2). (2.2)

In any case:

L(ξR∂iσ ) = ξRL(∂iσ ) + (∂iσ )LξR + 2∇ξR∇∂iσ

sincei = 1, . . . , n − 1, andϕ is axn-weight, from the fact thatLσ = 0 it is true thatL(∂iσ ) = ∂i(L(σ)) = 0 in the
weak sense inRn. From (2.2) it follows that:

Lψi = 2c

R2
|∇σ |2 + 2ξR(∂iσ )2

(
�ξR + 2

ϕ′(xn)

ϕ(xn)
∂nξR

)
+ 4ξR∂iσ∇ξR∇∂iσ

+ 2
(|∇ξR|2(∂iσ )2 + |∇∂iσ |2ξ2

R + 2ξR∂iσ∇ξR∇∂iσ
)

= 2c

R2 |∇σ |2 + 2ξR(∂iσ )2�ξR + 4ξR(∂iσ )2ϕ′(xn)

ϕ(xn)
ξ ′ xn

R‖x‖
+ 8ξR∂iσ∇ξR∇∂iσ + 2|∇ξR|2(∂iσ )2 + 2|∇∂iσ |2ξ2

R

� 2c

R2
|∇σ |2 + 2ξR(∂iσ )2�ξR − 4ξR|ξ ′| (ϕ

′(xn) · xn)
+

ϕ(xn)

(∂iσ )2

R‖x‖ + 8ξR∂iσ∇ξR∇∂iσ + 2|∇∂iσ |2ξ2
R.

Making use of hypothesis (ii), sinceξ ′
R vanishes inBR

2
, one can in the last term estimate1‖x‖ from above by2

R
;

thus:

Lψi �
(

2c − c1 − c2K − c3

ε2

)
(∂iσ )2

R2
+ (

2− (8ε)2)|∇∂iσ |2ξ2
R,

wherec1, c2, c3 are constants that only depends onξ (and its derivatives up to the second order), and we make
of Young inequality in the third term. Choosingε small andc big enough, the Claim follows from the nonnegativ
of the right hand side. �
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Remark 2.4. Theorem 2.1 more generally applies to weight functionsϕ2 which instead of being bounded are su
thatϕ−1 /∈ L2((a,+∞)),∀a ∈ R; this is clear from the proof.

Remark 2.5. If condition (ii) holds only on{|xn|  1} the claim easily follows making use of a cylindrical, inste
of the previous radial,ξR (at least forR big enough):

ξR(x) := ξ

( |xn|
R

)
ξ

(‖x ′‖
R

)
,

whereξ is the same as before, and we denotex = (x ′, xn) ∈ R
n−1 × R, ‖x ′‖ = (

∑n−1
i=1 (xi)

2)1/2.

3. A Liouville theorem for two-dimensional weights

Arguing as in Theorem 2.1 a second Liouville-type result can be stated.

Theorem 3.1. Letϕ be a positiveC1 function,ϕ(x) := ϕ(xn−1, xn), such that:

(i) ϕ ∈ L∞(R2),
(ii) (∂n−1ϕ · xn−1 + ∂nϕ · xn)

+ � Kϕ(xn−1, xn) in R
2,∃K � 0.

Suppose thatσ ∈ L∞(Rn) ∩ C2(Rn) satisfies:

∇ · (ϕ2(xn−1, xn)∇σ
) = 0 in R

n

in the classical sense,∀n � 2. Thenσ is constant.

Once again Theorem 3.1 holds for anyn � 2 the interesting case, due to the above introduction, being the
n � 3.

Its proof goes as the one of Theorem 2.1. Making use only of the firstn−2 functionsψi , i = 1, . . . , n−2 (which
are defined exactly as in the proof of Theorem 2.1), one can now easily show thatσ , which a priori depends o
n variables, indeed only depends onxn−1 andxn, that isσ(x1, . . . , xn) = σ(xn−1, xn). This is a symmetry resul
Thusσ is a bounded solution of the following two-dimensional problem

n∑
i=n−1

∂

∂xi

(
ϕ2(xn−1, xn)

∂σ

∂xi

)
= 0 in R

2. (3.1)

Sinceϕ2 is by assumption positive and bounded, Finn Liouville-type result (see [9,11]) states thatσ must be
constant; this proves the theorem.

Remark 3.2. Let us notice that hypothesis (ii), when choosingK = 0 in it, simply stands for a nonincreasin
assumption onϕ as the “radius”

√
(xn−1)2 + (xn)2 increases, with no asymptotic rate restriction.

Remark 3.3. It should be notice that the preceding proof cannot bestraightforward generalized for example
three-dimensional weight functionsϕ2(xn−2, xn−1, xn). This is due to the fact that a Liouville theorem in dimens
n = 3 is not true under the sole boundedness assumption on the positive functionϕ2 (see [2]).

4. A maximum principle in unbounded domains

In this section we prove a new version of the maximum principle on unbounded domains for the degene
elliptic operators in divergence form under study. It makesuse of a result of the same kind (but for the uniform
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elliptic case) contained in one of Berestycki, Caffarelli and Nirenberg’s papers, concerned with the study o
tative properties of semilinear elliptic equations in various type of unbounded domains.

Let us first remind that result, denoted by Lemma 2.1 in [4]:

Theorem 4.1. LetD be a domain(open connected set) in R
n, possibly unbounded. Assume that�D is disjoint from

the closure of an infinite open connected cone. Suppose there is a functionz in C(�D) that is bounded above an
satisfies for some continuous functionc(x) � 0:{

�z + c(x)z � 0 in D,

z � 0 on∂D.

Thenz � 0 in D.

We suppose thatz ∈ W
2,n
loc (D). Let us remark that the same result holds ifc(x) is a measurable, not necessar

continuous function inD, as in the Alexandroff–Bakelman–Pucci estimate.
For the degenerate elliptic case the following holds:

Theorem 4.2. LetD be a domain(open connected set) in R
n, possibly unbounded. Assume that�D is disjoint from

the closure of an infinite open connected cone. Letϕ be a positive function inD, ϕ ∈ W
2,n
loc (D), that satisfies the

following:

(i) ϕ ∈ L∞(D),
(ii) �ϕ � 0 a.e. inD.

Suppose there is a functionσ , such thatϕσ ∈ C(�D) and is bounded above inD. Suppose moreover thatσ ∈ C2(D)

satisfies:{−∇ · (ϕ2∇σ) � 0 in D,

σ � 0 on∂D.

Thenσ � 0 in D.

Proof. Let us consider inD the auxiliary function

ω(x) = ϕ−1(x).

Sinceϕ is positive and bounded inD, the functionω is strictly positive inD. Moreover the function:

h(x) = σ(x)

ω(x)

satisfies inD the following problem:{
�h − �ϕ

ϕ
h � 0 in D,

h � 0 on∂D.

Thanks to the hypothesis made in the theorem, it is true thatc(x) := −�ϕ
ϕ

is a measurable nonpositive functio

a.e. inD, and that the functionh = ϕσ ∈ C(�D) ∩ W
2,n
loc (D), is bounded from above inD. From this we infer, by

Theorem 4.1, thath � 0 in D. Henceσ � 0 in D. �
Corollary 4.3. Under the same hypothesis onϕ andD, suppose there is a functionσ , such thatϕσ ∈ C(�D) and is
bounded below inD. Suppose moreover thatσ ∈ C2(D) satisfies:{−∇ · (ϕ2∇σ) � 0 in D,
σ � 0 on∂D.
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Thenσ � 0 in D.

Proof. It suffices to apply Theorem 4.2 to−σ . �
Let us note at the end that from the previous results one can easily prove now the following, already

in [3] (see Proposition 2.7), by means of a probabilisticapproach and under stronger assumptions on the weigϕ.

Theorem 4.4. Letϕ be a positive function inD, ϕ ∈ W
2,n
loc (D). Suppose that:

(i) ϕ � ε0 > 0 a.e. inR
n \ D,

(ii) ϕ ∈ L∞(D),
(iii) �ϕ � 0 a.e. inD;

whereD is any domain(open connected set) in R
n, possibly unbounded, such that�D is disjoint from the closure

of an infinite open connected cone. Ifσ ∈ C2(D) is a solution of∇ · (ϕ2∇σ) = 0 in R
n such thatϕσ ∈ L∞(Rn) ∩

C(�D) thenσ ∈ L∞(Rn).

Proof. Since by hypothesisϕ � ε0 > 0 a.e. outsideD, it easily follows thatσ ∈ L∞(Rn \ D). From this, making
use of Theorem 4.2 and Corollary 4.3, the claim easily follows.�
Remark 4.5. The hypothesis made in Theorem 4.2 are in some sense sharp, as it is shown by the example
ing:

Example 1. Let us in fact consider the functionσ(x ′, xn) = e−xn on the domainD = {x ∈ R
n: xn � 1}. On this

domain the function can be easily seen to satisfy, in the classical sense, the following problem:

∇ · (exn∇σ) = 0.

In any case:

0= inf
D

σ < inf
∂D

σ = e−1.

One can easily verify that in this caseϕ(xn) = exn/2 does not belong toL∞(D). On the contrary all the remainin
hypotheses, made in Corollary 4.3, onσ andϕ are satisfied (see Fig. 1).

The previous example shows the sharpness of the boundedness (from above) condition onϕ, on the other hand
the following one shows the sharpness of the one side boundedness condition onϕσ over the setD.

Fig. 1.ϕ /∈ L∞(D).
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Fig. 2.ϕσ /∈ L∞(D).

Example 2. Let us consider now the functionσ(x ′, xn) = exn on the same domainD = {x ∈ R
n: xn � 1}. On this

domain the function can be easily seen to satisfy, in the classical sense, the following problem:

∇ · (e−xn∇σ) = 0.

In any case:

+∞ = sup
D

σ > sup
∂D

σ = e.

One can easily verify that in this caseϕ(xn) = e−xn/2 so thatϕσ = exn/2 is not bounded above inD. On the
contrary once again all the remaininghypotheses, included in Theorem 4.2, onσ andϕ are satisfied (see Fig. 2).

An easy application of the above maximum principle leads us to improve in some cases Theorem 2.1 as follo

Theorem 4.6. Letϕ(x) := ϕ(xn) ∈ C2(R) be a positive function such that:

(i) ϕ ∈ L∞(R),
(ii) ϕ′′(xn) � 0 for |xn| big enough,
(iii) lim xn→±∞ ϕ′(xn) = 0.

Suppose thatϕσ ∈ L∞(Rn) andσ ∈ C2(Rn) satisfies:

∇ · (ϕ2(xn)∇σ
) = 0 in R

n

in the classical sense,∀n � 1. Thenσ is constant.

Proof. As in Theorem 4.4 one can prove thatσ ∈ L∞(Rn \ D) whereD = D1 ∪ D2 andD1 = {xn  1}, D2 =
{xn � −1}. Making use twice of Theorem 4.2 and Corollary 4.3 (once inD1 and then inD2), it follows that
σ ∈ L∞(Rn). To this end condition (ii) is needed. On the other hand assumptions (ii) and (iii) here implies
D, ϕ does not increase as|xn| increases. Due to Remarks 2.2 and 2.5,from Theorem 2.1 the thesis follows.�
Remark 4.7. The above theorem implies that not only every bounded solutionσ(x) of ∇ · (e−2

√
1+x2

n∇σ) = 0
in R

n, must be constant, to this end Theorem 2.1 will suffice (see Remark 2.3); yet the same holds true f
solutionσ(x) which diverge at most like e|xn| as|xn| → ∞, still being bounded in the firstn − 1 variables.

5. An improvement of a Berestycki–Caffarelli–Nirenberg Liouville theorem

Here we deal with the asymptotic behavior of solutions of the corresponding second-order partial diffe
inequalities inn independent variables.
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general
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ng result
To conveniently state our result, let us set

F =
{

F :R+ → R
+,F is nondecreasing and

∞∑
j=0

1

F(2j+1)
= +∞

}
.

ThusF includes such functions as log(1+ r), log(1+ r) · log(1+ log(1+ r)).

Theorem 5.1. Letϕ ∈ L∞
loc(R

n) be a positive function. Suppose thatσ ∈ H 1
loc(R

n) satisfies

σ∇ · (ϕ2∇σ) � 0 in R
n (5.1)

in the distributional sense,n � 1. Let this condition holds:

lim sup
R→+∞

1

R2F(R)

∫
BR

(ϕσ)2 dx = C (5.2)

for some finite constant C, and someF ∈ F . Thenσ is constant.

Remark 5.2. When choosingF(R) ≡ 1 in (5.2) we recover Proposition 2.1 of [1], which generalizes forn � 3, the
decay assumption onϕσ made in Berestycki, Caffarelli and Nirenberg Liouville property (see Theorem 1.8 in
showing that it is possible to carry out their proof evenunder this less restrictive hypothesis. Let us recall one o
consequences: any functionsσ such thatϕσ ∈ L∞(Rn), satisfying the differential inequality (5.1) whenn = 2 is
indeed constant (since the Euclidean measure of a ball of radiusR goes likeR2, in the Euclidean plane). Thus
particular Berestycki, Caffarelli and Nirenberg Liouvilleproperty recovers Finn Liouville-type result (see [9,11])

Corollary 5.3. Letϕ ∈ L∞
loc(R

n) be a positive function. Suppose thatσ ∈ H 1
loc(R

n) satisfies

σ∇ · (ϕ2∇σ) � 0 in R
n

in the distributional sense,n � 1. For everyR > 1, assume that:∫
BR

(ϕσ)2 dx � CR2 logR

for some constant C independent of R. Thenσ is constant.

The proofs of the above results make use of the method of differential inequalities (see [15] for a
approach to the method); hence they are different from theproof of Berestycki, Caffarelli and Nirenberg Liouvil
property, given in [5], which seems it cannot be improved to cover the present setting.

Remark 5.4. We discuss here a classical example (see [20]) bearing on the sharpness of the precedi
whenn = 2.

Let ϕ = 1. There exists at least a nonconstantσ such that:σ · �σ � 0 in R
2, in the classical sense, for which

lim sup
R→+∞

1

R2(logR)2

∫
BR

σ 2 dx = C

for some finite constantC. Simply take

σ(x) =
{

(logR0 − 3
4) + r2

R0
2 − r4

4R0
4 r < R0,
logr r � R0,
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wherer denotes as usual‖x‖, andR0 is chosen:R0 > e3/4.
This shows that the previous theorem cannot be, in general appreciably improved whenn = 2. It holds for

R2 logR, while it does not forR2(logR)2. On the other hand, in some special cases these rates can certa
improved.

Remark 5.5. An interesting open problem is either to prove or to give a counterexample to Theorem 5.1
F(R) = Rn−3, thusR2F(R) = Rn−1, and 4� n � 8; to this respect see [1].

Whenn � 9 a counterexample for this choice ofF can be easily obtained as in [10]. We give here only a sk
of its proof since it goes exactly as the one of Proposition 2.6 of [10].

Counterexample. Consider the bounded sign changing functionu(x) := (1 + ‖x‖2)−αx1 with α := n/4 −
(
√

n − 1)/2, n � 7. The goal is to show thatλ1(
−�u

u
) = 0, where we denote byλ1(

−�u
u

) := inf{(∫
Rn |∇η|2 +

�u
u

|η|2 dx)/(
∫
Rn |η|2 dx)};η ∈ C∞

0 (Rn). Indeed by means of the connection between Liouville property for op
tor ∇ · (ϕ2∇σ) and the spectrum of linear Schrödinger operators (see [5], see also [10]) this implies tha
exist a nonconstant functionσ and a positive functionϕ such that∇ · (ϕ2∇σ) = 0 in R

n and ϕσ = u, thus∫
BR

(ϕσ)2 dx = ∫
BR

u2 dx � CR2+2
√

n−1. Since 2+ 2
√

n − 1 � n − 1 if and only if n � 9, the claim is proved.

In order to show thatλ1(
−�u

u
) = 0, we consider the positive bounded functionψ(x) := (1 + ‖x‖2)−β , where

β := n−2
4 . By Proposition 2.3 and Lemma 2.1 in [10],λ1(

−�ψ
ψ

) = 0 andλ1(
−�u

u
) � 0. Since forn � 5 we have

−�u
u

� −�ψ
ψ

, it follows that: 0= λ1(
−�ψ

ψ
) � λ1(

−�u
u

) � 0; thus the claim is proved.

Remark 5.6. Let us recall on the other hand that a counterexample to Theorem 5.1 whenF(R) = Rn−2, thus
R2F(R) = Rn, can be found in [2] for anyn � 3. Whenn � 7 a different counterexample to this case was pr
ously given explicitly by Ghoussoub and Gui in [10] (see Proposition 2.8).

Proof of the Corollary 5.3. Let us chooseF(r) = logr for r > 1, such anF indeed belongs toF , then the claim
easily follows from the previous theorem.�
Proof of the Theorem 5.1. Let σ satisfiesσ∇ · (ϕ2∇σ) � 0, we then have

∇ · (σϕ2∇σ) = ϕ2|∇σ |2 + σ∇ · (ϕ2∇σ) � ϕ2|∇σ |2. (5.3)

On the other hand,

∫
∂BR

σϕ2(∇σ, ν)ds �
∫

∂BR

|σ |ϕ2|∇σ |ds �
( ∫

∂BR

ϕ2|∇σ |2 ds

) 1
2
( ∫

∂BR

(ϕσ)2 ds

) 1
2

, (5.4)

whereν denotes the outer unit normal vector on∂BR . Now let

D(R) =
∫
BR

ϕ2|∇σ |2 dx.

Integrating (5.3) overBR and using (5.4), we then have

D(R) � D′(R)
1
2

( ∫
(ϕσ)2 ds

) 1
2

. (5.5)
∂BR
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If σ �= constant, then there exists someR0 > 0 such thatD(R) > 0 for all R � R0 and we may deduce from (5.5
that

1

D(r1)
− 1

D(r2)
= −

r2∫
r1

d

dR

(
1

D(R)

)
dR �

( r2∫
r1

( ∫
∂BR

(ϕσ)2 ds

)−1

dR

)
(5.6)

for all r2 > r1 > R0.

Claim. There holds:

(r2 − r1)
2

( r2∫
r1

( ∫
∂BR

(ϕσ)2 ds

)
dR

)−1

�
( r2∫

r1

( ∫
∂BR

(ϕσ)2 ds

)−1

dR

)
.

Proof of the Claim. By means of Schwarz inequality for anyf :R → R one has:

( r2∫
r1

1 dR

)2

=
( r2∫

r1

f (R)
1
2 f (R)−

1
2 dR

)2

�
( r2∫

r1

f (R)−1 dR

)( r2∫
r1

f (R)dR

)
. (5.7)

Then from (5.7), the Claim easily follows, choosingf (R) = ∫
∂BR

(ϕσ)2 ds. �
It follows from (5.6), by means of the claim that

(r2 − r1)
2
( ∫

Br2\Br1

(ϕσ)2 dx

)−1

� 1

D(r1)
− 1

D(r2)
. (5.8)

Now let r2 = 2j+1r∗ andr1 = 2j r∗ for somer∗ > R0, for each 0� j � N − 1, from (5.8) it follows easily that

(2j+1r∗)2

4

( ∫
B2j+1r∗

(ϕσ)2 dx

)−1

� (2j r∗)2
( ∫

B2j+1r∗\B2j r∗

(ϕσ)2 dx

)−1

� 1

D(2j r∗)
− 1

D(2j+1r∗)
,

summing overj we find, taking into account hypothesis (5.2)

1

D(r∗)
� 1

D(r∗)
− 1

D(2Nr∗)
� 1

4C

N−1∑
j=0

1

F(2j+1r∗)
. (5.9)

SinceF belongs toF , it is true thatF(2j+1r∗) � F(2j+j0+1) if j0 is such thatr∗ � 2j0, thus the sum in (5.9
diverges asN → +∞ and this implies thatD(r∗) = 0 for all r∗ > R0; thusσ is constant. �
Remark 5.7. The key point is to study for such a degenerate elliptic inequality the question of the diverge∫
BR

(ϕσ)2 dx instead of that of
∫
BR

σ 2 dx, as was done on the contrary in Theorem C of [15]. The feature that m
possible the treatment of degenerate elliptic inequalities by this method is the use, initiated by Finn of in
D(R) based on the actual quadratic form defined byϕ2, rather then Dirichlet type integrals, as is customary w
dealing with uniformly elliptic ones (see [9]). The same kind of integral of a solutionσ , as the one in the hypothes
was considered in [5].
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