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Abstract

We consider the elliptic problem−�u − λu = a(x)up, with p > 1 anda(x) sign-changing. Under suitable conditions onp

anda(x), we extend the multiplicity, existenceand nonexistence results known to hold for this equation on a bounded doma
(with standard homogeneous boundary conditions) to the case that the bounded domain is replaced by the entire spaceRN .
More precisely, we show that there existsΛ > 0 such that this equation onRN has no positive solution forλ > Λ, at least two
positive solutions forλ ∈ (0,Λ), and at least one positive solution forλ ∈ (−∞,0] ∪ {Λ}.
 2004 Elsevier SAS. All rights reserved.

Résumé

On considère le problème elliptique−�u − λu = a(x)up , oùp > 1 eta(x) change le signe. Sous des conditions adéqu
sur p et a(x), nous étendons les résultats connus sur la multiplicité, l’existence et la non-existence de cette équation su
domaine borné (avec des conditions aux limites homogènes naturelles) où le domaine borné est remplacé par l’e
entier. Plus précisement, nous montrons qu’il existeΛ > 0 tel que cette équation dansRN n’a aucune solution positive pou
λ > Λ, au moins deux solutions positives pourλ ∈ (0,Λ), et au moins une solution positive pourλ ∈ (−∞,0] ∪ {Λ}.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The elliptic problem

−�u − λu = a(x)up, (1.1)
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with p > 1 and a(x) sign-changing, has attracted extensive studies recently. This is known as an indefin
superlinear problem. The fact thata(x) changes sign in the underlying domain of the differential equation p
extra difficulties from the well studied cases thata(x) is always negative (the sublinear case) anda(x) is always
positive (the superlinear case).

When (1.1) is considered on a bounded domainΩ ⊂ RN with standard homogeneous boundary conditions o
∂Ω , it follows from recent results (see, for example, [17,1,4,5,19,3]) that, under suitable conditions onp and on the
behaviour ofa(x) near its zero set, (1.1) has a positive solution forλ = λ1(Ω) (the first eigenvalue of the Laplacia
under the correspondingboundary conditions on∂Ω) if and only if∫

Ω

a(x)φp+1(x) dx < 0, (1.2)

where φ denotes the (normalized) positive eigenfunction corresponding toλ1(Ω). Moreover, when (1.2) is
satisfied, there existsΛ > 0 such that (1.1) has at least two positive solutions for everyλ ∈ (λ1(Ω),Λ), at least
one positive solution forλ = Λ and forλ = λ1(Ω), and no positive solution forλ > Λ. Under less restrictive
conditions, (1.1) has at least one positive solution for eachλ < λ1(Ω).

The purpose of this paper is to extend these results to the case thatΩ is replaced by the entire spaceRN .
As will become clear, such an extension involves two kinds of difficulties. One is due to the well-known l
compactness, the other is due to the fact thatλ1(Ω) is no longer a simple eigenvalue whenΩ is replaced byRN .

In a recent work of Costa and Tehrani [7], such an extension was partially achieved through a variatio
approach. To overcome these difficulties, [7] considered a problem onRN including (1.1) as a typical case, b
with λ replaced byλh(x), whereh is a nonnegative function belonging to the spaceLN/2(RN)∩Lα(RN) for some
α > N/2. This allows them to regain compactness for the variational approach. Moreover, the eigenvalue

−�u = λh(x)u, u ∈ D1,2(RN)

behaves similarly to the finite domain case, with a simple first eigenvalueλ1(h) > 0. Under conditions onp and
a(x) similar to those for the bounded domain case, and furthermore,

lim|x|→∞a(x) = a∞ < 0, (1.3)

it was shown in [7] that the entire space problem has at least one positive solution forλ � λ1(h), and at least two
positive solutions forλ in a small right neighbourhood ofλ1(h). The existence of a criticalΛ > 0 as in the finite
domain case was not considered in [7]. The introduction in [7] contains a fairly detailed account of other studies o
entire space problems, and we referto that and the references therein for the interested reader.

In this paper, to overcome the above mentioned difficulties, we use a bounded domain approximation appro
to study (1.1) onRN . This allows us to avoid replacingλ by λh(x) as in [7], but we have to carefully control th
behavior of the solutions as the domain enlarges toRN ; in particular, we need to obtain good a priori bounds
the solutions over bounded sets ofRN and good estimates of the solutions for large|x|. Under similar conditions
on p > 1 anda(x) as in the bounded domain case, and (1.3), we will obtain a complete extension of the b
domain result, namely, there existsΛ > 0 such that (1.1) onRN has no positive solution forλ > Λ, at least two
positive solutions forλ ∈ (0,Λ), and at least one positive solution forλ ∈ (−∞,0] ∪ {Λ}. Note that (1.3) implies
(1.2) for all “large” enoughΩ .

We would like to point out that a variational approach along the lines of [7] does not seem applicable to p
(1.1) onRN . In fact, by Lemma 4.3 in this paper, condition (1.3) implies that any positive solutionu(x) of (1.1)
satisfies

lim|x|→∞u(x) =
(

max{λ,0}
|a∞|

)1/(p−1)

.

Therefore no positive solution of (1.1) withλ > 0 belongs to the spaceD1,2(RN). Moreover, this implies tha
whatever space one chooses to replaceD1,2(RN) in order to apply a variational approach with suitable compact
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conditions, the space has to beλ dependent. This would make such an approach extremely complicated, if po
at all. A direct application of the global bifurcation argument parallel to that in the bounded domain case
in [3] does not seem to apply to (1.1) either, due to the following reasons. Firstly, the bifurcation appro
the bounded domain case relies heavily on the fact thatλ1(Ω) is a simple eigenvalue of the linearized eigenva
problem at the trivial solutionu = 0. But the correspondent ofλ1(Ω) for (1.1) onRN is 0, and it is well known
that 0 is not a simple eigenvalue of the corresponding linearized problem (it is not even an isolated poin
spectrum). Secondly, in order to obtain suitable compactness, one faces the problem of working with aλ dependen
function space as well.

Let us now briefly explain our approach. The existence of at least one positive solution forλ ∈ (0,Λ) requires
almost no restriction except thatp > 1 anda(x) satisfies (1.3) (in fact a less restrictive one, (2.2), is enou
This is proved in Section 2 by some comparison arguments and local bifurcation analysis for solutions on b
domains.

The existence of a positive solution forλ = Λ requires a priori bounds for solutions of bounded domain probl
such that the bounds are independent of the size of the domain. In Section 3, we adapt the techniques
establish such bounds. We also use boundary blow-up problems for this purpose.

The central part of this paper is Section 4, where we prove the multiplicity result forλ ∈ (0,Λ) and the existenc
of at least one positive solution forλ � 0. Apart from the a priori bounds established in Section 3, we need a cr
new ingredient, which comes from a careful analysis of the global bifurcation branches of positive soluti
bounded domain problems. Roughly speaking, we will show that the global bifurcation branch bifurcatin
(λ,u) = (λ1(Ω),0) can be decomposed into two connected parts,C0 andC∞, whereC0 contains all the minima
positive solutions onΩ , andC∞ is unbounded and contains none of these minimal positive solutions. We
prove that asΩ enlarges toRN , the positive solutions onΩ chosen fromC∞ will converge to solutions of (1.1
onRN which are not minimal positive solutions. This will give rise to two positive solutions onRN for λ ∈ (0,Λ).
Forλ � 0, this will guarantee that the solution so obtained is not the trivial solution 0.

For simplicity of presentation, throughout this paper, we have restrictedour discussion to elliptic problem
of the special form (1.1) (in fact an equivalent form (2.1)), and all the bounded domains are chosen a
By suitable modifications ofour arguments (without essential difficulties), our results in Sections 2 and
be extended to the case that� is replaced by a second order elliptic operator with constant coefficients w
can be obtained through a change of variables from� (due solely to the proof of Lemma 2.5, otherwise,� can
be replaced by a rather general second order elliptic operator, not necessarily self-adjoint), and the nonlinea
replaced byλα(x)u − b(x)f (u), with α a continuous function satisfyingm � α(x) � M for all x ∈ RN and some
positive constantsm andM, with f (u) locally Lipschitz continuous and behaving likeup near 0 and near∞. Our
main result (Theorem 4.6) holds if we further assume thatα(x) → α∞ ∈ (0,∞) as|x| → ∞, and thatf (u)/u is
increasing foru > 0. Our results on the bounded domain problems (including Proposition 4.1 but possibly exce
Lemma 2.5) hold with much more generalities, for example, theunderlying domain can be rather general w
regular boundary, the differential operator and the nonlinearity can also be very general.

2. Existence and nonexistence results

Let us start with an accurate formulation of our problem. We consider the elliptic equation

−�u = λu − b(x)up, x ∈ RN, (2.1)

wherep > 1, λ is a real parameter,b is a continuous function such that

b(x) < 0 in a ballBr0(x0), b(x) � σ > 0 for |x| � R0. (2.2)

Here and throughout this paper,Br0(x0) denotes the open ball inRN with centerx0 and radiusr0. Note that in
order to match the notations in some of the references that will be frequently used later, we have replaceda(x) in
(1.1) by−b(x) in (2.1).
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By a positive solution of (2.1) we mean a functionu ∈ C1(RN ) such thatu > 0 onRN and∫

RN

(∇u · ∇v − (
λu − b(x)up

)
v
)
dx = 0, ∀v ∈ C∞

0 (RN).

From classical theory on elliptic equations (see [14]) we know thatu ∈ W
2,q
loc (RN) for any q > 1, andu is C2

(hence a classical solution) if furtherb(x) is Hölder continuous onRN .

Theorem 2.1. Under the above assumptions, there existsΛ > 0 such that(2.1) has at least one positive solutio
for eachλ ∈ (0,Λ), and it has no positive solution whenλ > Λ.

The proof of Theorem 2.1 will be based mainly on upper and lower solution arguments. We will use
known results for (2.1) on bounded domains, which are proved by a combination of local bifurcation analy
upper and lower solution techniques.

The first bounded domain result we will use follows easily from a result due to Berestycki, Capuzzo-D
and Nirenberg [4, Theorem 2].

Proposition 2.2. Suppose that(2.2) is satisfied. Then there existsR∗ > R0 such that for any ballBR = BR(0) with
R � R∗, there existsΛR ∈ (λ1(BR),∞) such that the problem

−�u = λu − b(x)up, x ∈ BR, u|∂BR = 0 (2.3)

has at least one positive solution forλ ∈ (λ1(BR),ΛR), and no positive solution forλ > ΛR . Hereλ1(BR) denotes
the first eigenvalue of−� onBR under Dirichlet boundary conditions.

Proof. By Theorem 2 in [4], it suffices to show that∫
BR

b(x)φ
p+1
R dx > 0, (2.4)

for all large R, whereφR denotes the normalized (inL∞) positive eigenfunction corresponding to the fi
eigenvalueλ1(BR). We remark that condition (1.5) in [4] is not needed in their proof of Theorem 2.

To show (2.4), we first observe that, through a simple rescaling,φR(x) = φ1(x/R). Therefore,∫
BR

b(x)φ
p+1
R (x) dx =

∫
B1

b(Ry)φ
p+1
1 (y)RN dy

= RN

∫
|y|�R0/R

b(Ry)φ
p+1
1 (y) dy + RN

∫
R0/R�|y|�1

b(Ry)φ
p+1
1 (y) dy.

As R → ∞,∫
|y|�R0/R

b(Ry)φ
p+1
1 (y) dy → 0,

while ∫
R0/R�|y|�1

b(Ry)φ
p+1
1 (y) dy �

∫
R0/R�|y|�1

σφ
p+1
1 (y) dy → σ

∫
B1

φ
p+1
1 (y) dy > 0.

Hence (2.4) holds for all largeR. �
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Clearlyλ1(BR) decreases asR increases. The next result shows thatΛR is also a decreasing function; it as w
gives some properties of the positive solutions of (2.3).

Proposition 2.3. Under the conditions of Proposition2.2, for eachλ ∈ (λ1(BR),ΛR), (2.3)has a minimal positive
solutionuR

λ in the sense that any positive solutionu of (2.3)satisfiesu � uR
λ in BR . Moreover,

ΛR1 � ΛR2 wheneverR∗ � R1 � R2, (2.5)

and

u
R1
λ1

(x) � u
R2
λ2

(x) whenever both sides are defined andλ1 � λ2, R1 � R2. (2.6)

Proof. The arguments below are rather standard. We sketch them here for completeness.
Suppose thatλ ∈ (λ1(BR),ΛR), andu is a positive solution of (2.3). It is easily checked that for all smallε > 0,

εφR < u in BR (by making use of the Hopf boundary lemma), andεφR is a lower solution to (2.3). Suppose th
this is true for allε ∈ (0, ε0]. Then by a standard iteration procedure starting fromε0φR one obtains a minima
solution of (2.3), sayv, in the order interval

[ε0φR,u] := {
v ∈ C1(BR): ε0φR � v � u

}
.

We claim thatv is also minimal among all positive solutions of (2.3). Indeed, sinceεφR is a family of (strict)
lower solutions that varies continuously inε ∈ (0, ε0], and for any positive solutionw of (2.3), we can find som
ε1 ∈ (0, ε0] such thatε1φR < w in BR , by a well known sweeping principle due to Serrin, it follows thatε0φR � w.
Now the iteration procedure shows immediately thatv � w. Hencev is the minimal positive solution of (2.3). W
denotev = uR

λ .
To show (2.5), we argue indirectly. Suppose that for someR∗ � R1 < R2, we haveΛR1 < ΛR2. Then we can

choose aλ such that

max
{
λ1(BR2),ΛR1

}
< λ < ΛR2.

For suchλ, the minimal positive solutionuR2
λ is defined. SinceuR2

λ > 0 on ∂BR1, we can useuR2
λ as an uppe

solution to (2.3) withR = R1. As before, due toλ > ΛR1 > λ1(BR1), for all smallε > 0, εφR1 < u
R2
λ in BR1 and

they are lower solutions of (2.3) withR = R1. This implies that (2.3) withR = R1 has at least one positive solutio
contradicting our choice ofλ. This proves (2.5).

To prove (2.6), we observe thatu
R2
λ2

can be used as an upper solution for the equation satisfied byu
R1
λ1

. On the
other hand, there are arbitrarily small lower solutions given byεφR1. Hence (2.3) with(λ,R) = (λ1,R1) has at
least one positive solutionu satisfyingu � u

R2
λ2

. Now (2.6) follows readily asuR1
λ1

is the minimal solution. �
Theorem 2 in [4] also covers the case of Neumann boundary conditions. We can use this result to obtain an

analogue of Proposition 2.2 for the corresponding Neumann problem of (2.3). Moreover, the argument in the pro
of Proposition 2.3 above shows that the Neumann problemhas a minimal positive solution whenever there i
positive solution withλ > 0. These are summarized in the following result.

Proposition 2.4. Under condition(2.2), for all large R, there existsΛ̃R > 0 such that the problem

−�u = λu − b(x)up, x ∈ BR, ∂νu|∂BR = 0 (2.7)

has a minimal positive solution forλ ∈ (0, Λ̃R), and no positive solution forλ > Λ̃R .

One might wonder whether there are corresponding properties to (2.5) and (2.6) for the Neumann proble
This, however, is not the case in general.
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We are now ready to present a crucial ingredient for the proof of Theorem 2.1.

Lemma 2.5. LetΛR be given by Proposition2.2. Then

Λ∗ := lim
R→∞ΛR > 0.

Proof. From (2.2), we find that there exists a continuous radially symmetric functionb̃(x) = b̃(r), r = |x|, such
that

b̃(x) � b(x), ∀x ∈ BR0; b̃(x) = σ, ∀|x| � R0. (2.8)

Clearly b̃ also satisfies (2.2). By Proposition 2.4, for some largeR1 > R0, there exists̃λ > 0 such that (2.7
with b replaced byb̃ andλ = λ̃ has a minimal positive solution, saỹu, on BR1. The minimality ofũ forces it to
be radially symmetric, as the equation is invariantunder rotations around the origin. The Hopf boundary lem
implies thatũ > 0 onBR1.

Let us denoteξ = ũ(R1) > 0 and letλ0 ∈ (0, λ̃) be such that

λ0ξ − σξp � 0.

We then chooseR2 > R1 so thatλ1(BR) < λ0 for all R � R2. We will show in a moment thatΛR � λ0 for all
R � R2. As by Proposition 2.3,ΛR decreases asR increases, this would guarantee that limR→∞ ΛR � λ0 > 0, as
we wanted.

Let us define

u0(x) =
{

ũ(x), x ∈ BR1,

ξ, |x| � R1.

It is easily checked thatu0 is a weak upper solution of (2.3) withR > R1 andλ = λ0 (see also [6]), that is,∫
BR

∇u0 · ∇ψ �
∫
BR

(
λ0u0 − b(x)u

p

0

)
ψ, ∀ψ ∈ C∞

0 (BR), ψ � 0.

If further R � R2, thenλ0 > λ1(BR) and for all smallε > 0, εφR < u0 in BR and are lower solutions to (2.3) wit
λ = λ0. Hence there is at least one positive solution and soΛR � λ0, ∀R � R2. Moreover

uR
λ0

(x) � u0(x), ∀x ∈ BR, ∀R � R2. (2.9)

This finishes the proof. �
Proof of Theorem 2.1. Let λ0, u0 andR2 be as in the proof of Lemma 2.5. Then, by (2.9) and (2.6), we find
for arbitraryx ∈ RN , U0(x) = limR→∞ uR

λ0
(x) exists andU0(x) � u0(x). Through a regularity consideration an

a standard compactness argument, we see thatU0 is a solution of (2.1) withλ = λ0. U0 is positive sinceU0 � uR
λ0

for everyR � R2. Hence (2.1) has a positive solution forλ = λ0 > 0.
Define

Λ := sup
{
µ > 0: (2.1) has a positive solution forλ = µ

}
.

Clearly Λ � λ0. We also haveΛ � λ1(Br0(x0)). Indeed, ifΛ > λ1(Br0(x0)), then we can findλ > λ1(Br0(x0))

such that (2.1) has a positive solutionu with suchλ. OnBr0(x0), by (2.2), we have

−�u = λu − b(x)up � λu.

Let φ denotes the normalized positive eigenfunction corresponding toλ1(Br0(x0)). We deduce
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∫
Br0(x0)

uφ �
∫

Br0(x0)

(−�u)φ =
∫

Br0(x0)

(−�φ)u +
∫

∂Br0(x0)

∂νφu < λ1
(
Br0(x0)

) ∫
Br0(x0)

φu.

Henceλ < λ1(Br0(x0)), contradicting our assumption thatλ > λ1(Br0(x0)).
It remains to show that (2.1) has a positive solution for everyλ ∈ (0,Λ). Let λ be such fixed. By the definitio

of Λ, we can findλ∗ ∈ (λ,Λ] such that (2.1) has a positive solutionu∗ with λ = λ∗. Thenu∗ is an upper solution
of (2.3) with the above fixedλ on anyBR . Let R∗ > 0 be large enough so thatλ1(BR) < λ for all R > R∗. Then
for any fixedR > R∗ and all smallε > 0, εφR < u∗ in BR and are lower solutions to (2.3) with these givenλ and
R. Hence (2.3) has a positive solution andΛR � λ. It follows from Proposition 2.3 thatuR

λ exists for allR > R∗,
anduR

λ � u∗. Now much as before,U∗ := limR→∞ uR
λ is a positive solution of (2.1) with the givenλ. The proof is

complete. �

3. A priori estimates and further existence result

In this section, we show that under further restrictions onp and onb(x), a priori estimates (independent ofR)
for positive solutions of (2.3) can be established. This will enable us to show that (2.1) has at least one
solution forλ = Λ. In the next section, we will show that (2.1) has at least two positive solutions forλ ∈ (0,Λ),
and at least one positive solution forλ � 0. For these, we will need, apart from the a priori estimates in
section, some global bifurcation arguments, where some subtle ordering properties of positive solutions of (2
will become crucial.

To establish the a priori estimates, we let (2.2) be satisfied and denote

Ω− = {
x ∈ BR0: b(x) < 0

}
, Ω+ = {

x ∈ BR0: b(x) > 0
}
, b−(x) = min

{
b(x),0

}
.

Theorem 3.1. Suppose that(2.2) holds,Ω− and Ω+ are open sets withC2 boundaries, and that there exi
α :Ω− → (−∞,0) which is continuous and bounded away from zero in a neighborhood of∂Ω−, and a constan
γ � 0, such that

b−(x) = α(x)
[
dist(x, ∂Ω−)

]γ
, ∀x ∈ Ω−. (3.1)

Also suppose that

p < (N + 1+ γ )/(N − 1) (3.2)

and

p < (N + 2)/(N − 2) in caseN � 3. (3.3)

Then for any givenM > R∗ (as in Proposition2.2), we can find a constantC = C(M) such that any positive
solutionu of (2.3)with R > M andλ > −M satisfies

‖u‖L∞(BR) � C. (3.4)

Proof. We adapt the techniques of Amann and Lopez-Gomez [3]. If we can show that there existsC0 =
C0(M,M0) > 0 such that

sup
Ω−

u � M0 implies sup
BR\Ω−

u � C0, (3.5)

for any positive solutionu of (2.3) withλ > −M andR > M, then (3.4) can be proved exactly as in [3], wher
standard blow up argument onΩ− is used to deduce a contradiction to a Liouville theorem in [4] if (3.4) does
hold. Let us note that by Proposition 2.3, we haveλ � ΛM whenever (2.3) has a positive solution onBR , R > M.
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Therefore, it suffices to establish (3.5). FixR1 ∈ (R0,M). We first show that there existsC1 = C1(M,R1) such
that

sup
BR\BR1

u � C1 (3.6)

for any positive solution of (2.3) withλ > −M andR > M. To see this, letu be such a positive solution. Then, o
BR \ BR0, we have

−�u = λu − b(x)up � ΛMu − σup.

Let r = R1 − R0. By [16], the problem

−�v = ΛMv − σvp in Br(0), v|∂Br (0) = ∞
has a unique positive solutionv. For fixedx0 ∈ BR \ BR1, clearlyv(x − x0) satisfies the same equation asv(x)

but with Br(0) replaced byBr(x0). SinceBr(x0) ∩ BR0 = ∅, applying Lemma 1.1 in [16] to compareu(x) and
v(x − x0) overBr(x0) ∩ BR , we obtain thatu(x) � v(x − x0) on this set. In particular,u(x0) � v(0). Hence

u � C1 := v(0), ∀x ∈ BR \ BR1.

This proves (3.6).
Next we consideru on Ω := BR1 \ Ω−. Denoteb+(x) = max{b(x),0}. We find thatb+(x) = 0 if and only if

x ∈ D := BR0 \ Ω+. By the proof of Theorem 2.3 of [3], we necessarily haveλ < λ1(D).
Consider now the problem

−�w = λ1(D)w − b+(x)wp in Ω, w|∂BR1
= C1, w|∂Ω− = M0. (3.7)

SinceΩ0 := {x ∈ Ω : b+(x) = 0} = D \Ω−, we haveλ1(Ω0) > λ1(D), and hence, for some smallε-neighborhood
Ωε of Ω0, λ1(Ωε) > λ1(D). Making use of this fact, we can construct an upper solution of the formkw0, with
k > 0 a large constant, andw0(x) = φΩε (x) on Ωε/2 andw0(x) > 0 on BR1 \ Ωε/2, much as in p. 348 of [3]
Clearly 0 is a lower solution of (3.7). It follows that (3.7) has a positive solution. By Lemma 2.1 in [13], we d
that (3.7) has a unique solutionw. Moreover, noticingb(x) = b+(x) in Ω andλ < λ1(D), we have

−�u = λu − b(x)up < λ1(D)u − b+(x)up, ∀x ∈ Ω.

As u|∂Ω � w|∂Ω when the condition in (3.5) holds, we use Lemma 2.1 in [13] again and concludeu � w in Ω .
Combining this with (3.6), we obtain (3.5).�
Remark 3.2. (i) As in [3, Theorem 5.2], the conclusion of Theorem 3.1 holds when the conditions (3.1) thro
(3.3) are replaced by

Ω− ∩ Ω+ = ∅ (3.8)

and

p < N/(N − 2) in caseN � 3. (3.9)

(ii) In a recent paper [10], we were able to treat the case that (3.2) is relaxed top < (N + 2)/(N − 2), by using
the observation that we only need (3.4) for solutions obtained by certain mountain pass processes. In
recent paper [12], by proving some new Liouville type theorems, we were able to show that (3.4) holds for
positive solution under the conditionp < (N + 2)/(N − 2) only.

Theorem 3.3. Suppose(2.2)holds and that either(3.1) through to(3.3)hold or both(3.8)and (3.9)hold. LetΛ
and Λ∗ be as in Theorem2.1 and Lemma2.5, respectively. ThenΛ = Λ∗ and (2.1) has a positive solution fo
λ = Λ.
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Proof. From the definition ofΛ∗, we know thatΛR � Λ∗ for everyR � R∗. By Proposition 2.3, for all smallε > 0,
uR

Λ∗−ε exists and is increasing asε decreases. From Theorem 3.1, we infer thatuR
Λ∗−ε � C for some constantC

independent ofε. HenceUR := limε→0 uR
Λ∗−ε exists and is a positive solution of (2.3) withλ = Λ∗. It follows that

uR
Λ∗ exists. Moreover, the argument in Proposition 2.3 shows thatuR

Λ∗ is increasing withR for R � R∗. We now
apply Theorem 3.1 again and find thatuR

Λ∗ � C1 for some constantC1 independent ofR. HenceU := limR→∞ uR
Λ∗

exists and, as before, is a positive solution of (2.1) withλ = Λ∗. This implies thatΛ � Λ∗.
WereΛ > Λ∗, (2.1) would have a positive solutionu for someλ ∈ (Λ∗,Λ]. As in the proof of Theorem 2.1

this would imply that for all largeR, (2.3) has a positive solution with thisλ. HenceΛR � λ for all largeR, and it
follows thatΛ∗ = lim ΛR � λ > Λ∗, a contradiction. Hence we must haveΛ = Λ∗. �

4. Global bifurcation and multiplicity results

In this section, we make use of global bifurcation arguments to show that (2.1) has at least two positive s
for λ ∈ (0,Λ). We also prove that (2.1) has at least one positive solution forλ � 0. Again we use the bounde
domain problem (2.3) to approximate the entire space problem (2.1). However, it seems that a priori boun
is not enough for this purpose. Under the conditions of the last section, we know that for each fixedλ, any positive
solutionuR of (2.3) onBR has anL∞ bound independent ofR. From this it is easy to see that by choosing a suita
sequenceRn → ∞, uRn converges to a solutionu of (2.1) with suchλ. The problem is that whenλ ∈ (0,Λ), we
want to make sure that such a solutionu can be obtained which is different from the one as obtained in the p
of Theorem 2.1, while whenλ � 0, we want to make sure thatu is not the zero solution. It turns out that this go
can be achieved by choosinguR from a particular part of the global bifurcation branch of (2.3). The crucial poi
in our proof is an ordering property which comes from a careful analysis of the global bifurcation branch o

Let us now describe the global bifurcation branch in more detail. Suppose that (2.2) is satisfied. Then, from
proof of Proposition 2.2, for all largeR, (2.4) holds. It follows from a local bifurcation analysis (see in particu
Lemma 6.1 in [4], and [8] generally) that near(λ1(BR),0) in the spaceX := R × C1(BR), all the solutions(λ,u)

of (2.3) withu > 0 lie in a smooth curve

Γ ′
R := {(

λ(t), u(t)
)
: t ∈ (0, ε)

}
,

whereλ(0) = λ1(BR), u(0) = 0, andλ(t) > λ1(BR) for t ∈ (0, ε), u(t) = tφR + o(1) for small t .
It is well known that the global bifurcation theory of Rabinowitz can be applied to this case (se

Theorem 2.12]) to conclude that there exists an unbounded connected setΓR in X such that,

(i) (λ,u) ∈ ΓR implies thatu is a positive solution of (2.3),
(ii) Γ ′

R ⊂ ΓR ,
(iii) there is a small neighborhoodNδ of (λ1(BR),0) in X such thatNδ ∩ ΓR = Nδ ∩ Γ ′

R .

We assume further that the conditions in Theorem 3.3 are satisfied, so that there existsC = C(M) such that any
(λ,u) ∈ ΓR with λ � −M satisfies‖u‖L∞(BR) � C. By Proposition 2.2 we know that(λ,u) ∈ ΓR impliesλ � ΛR.
Thus the unbounded connected setΓR becomes so only throughλ → −∞, that is,{

λ: (λ,u) ∈ ΓR

} ⊃ (−∞, λ1(BR)
)
. (4.1)

We refer to [2,15] for more detailed discussions for problems of a similar nature.
We are now ready to present some further properties ofΓR, which will play a key role in the proof of our mai

multiplicity and existence result in this section.
Let us recall that forλ ∈ (λ1(BR),ΛR], uR

λ denotes the minimal positive solution of (2.3). It is also conven
to introduce the notation

Oλ = (−∞, λ] × [0, uR
λ ],
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where for anyw ∈ C1(BR) satisfyingw � 0 in BR ,

[0,w] = {
u ∈ C1(BR): 0 � u � w in BR

}
.

Proposition 4.1. Under the conditions of Theorem3.3, the following are true for every large fixedR.

(i) (λ,uR
λ ) ∈ ΓR, ∀λ ∈ (λ1(BR),ΛR].

(ii) Γ c
R := (ΓR \ OΛR) ∪ {(ΛR,uR

ΛR
)} is connected.

(iii) {λ: (λ,u) ∈ Γ c
R} = (−∞,ΛR].

Proof. We will use some ideas in [9]. Due to (4.1), we can find a sequence(λn,un) ∈ ΓR such thatλn → −∞. We
may assume thatλn < 0 for all n.

Let xn ∈ BR be such thatun(xn) = maxBR
un. Then it follows from Bona’s maximum principle and the equat

for un that

λnun(xn) − b(xn)u
p
n (xn) � 0.

As λn < 0 andun(xn) > 0, this is possible only ifb(xn) < 0. We obtain

un(xn) �
[
λn/b(xn)

]1/(p−1) �
[|λn|/|min

RN
b|]1/(p−1) → ∞. (4.2)

Let us fixµ ∈ (λ1(BR),ΛR]. From the properties ofΓ ′
R we see that for(λ,u) ∈ ΓR close to(λ1(BR),0), it holds

(λ,u) ∈ Oµ. On the other hand, (4.2) implies that for all largen, (λn,un) are outsideOµ. As ΓR is connected, we
must haveΓR ∩ ∂Oµ �= ∅.

We claim that

ΓR ∩ ∂Oµ = {
(µ,uR

µ)
}
. (4.3)

Clearly (i) is a consequence of this fact.
To prove (4.3), we choose an arbitrary(λ,u) ∈ ΓR ∩ ∂Oµ. By the definition ofOµ, we inferλ � µ, u � uR

µ .
If λ < µ, then fromu � uR

µ andu �≡ uR
µ we can conclude, by making use of the differential equations they sa

and the strong maximum principle together with the Hopf boundary lemma,v := uR
µ − u > 0 in BR , ∂νv < 0 on

∂BR . Sinceu is a positive solution of (2.3), we also haveu > 0 in BR and∂νu < 0 on∂BR . These facts imply tha
u is in the interior of the set[0, uR

µ], and hence, asλ < µ, (λ,u) is in the interior ofOµ. This is a contradiction. S
we necessarily haveλ = µ. But then we must haveu = uR

µ , sinceuR
µ is the minimal positive solution of (2.3) an

u � uR
µ is also a positive solution of (2.3). Therefore (4.3) is true.

To prove (ii) we argue indirectly. Suppose thatΓ c
R is not connected. Then there exist two nonempty sets�1 and

�2 such thatΓ c
R = �1 ∪ �2 and�1, �2 are separated (see [20, p. 9]), that is,

�1 ∩ �2 = ∅, �1 ∩ �2 = ∅.

Since(ΛR,uR
ΛR

) ∈ Γ c
R, we may assume that this point lies in�1. Then we have

�2 ∩ OΛR = ∅. (4.4)

We show next that�2∩OΛR = ∅. Otherwise, we necessarily have�2∩∂OΛR �= ∅. Let us observe that(λ,u) ∈ �2
implies that(λ,u) solves (2.3) withu � 0 andλ � ΛR . Therefore if there exists(λ,u) ∈ �2 ∩ ∂OΛR , then
0 � u � uR

ΛR
, λ � ΛR and(λ,u) solves (2.3). Ifλ = ΛR , then sinceuR

ΛR
is the minimal positive solution of (2.3

we have eitheru = uR
ΛR

or u = 0. The former possibility cannot occur as we have assumed that(ΛR,uR
ΛR

) ∈ �1.
So we must haveu = 0.

If λ < ΛR , we can also deduce thatu = 0, for otherwise,u is a positive solution of (2.3) and we can use
same argument used in proving (4.3) to show that(λ,u) is in the interior ofOΛR .
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So we have proved that in either case,(λ,u) = (λ,0). It follows that there exists a sequence(λn,un) ∈ �2 such
that(λn,un) → (λ,0) in X. The fact thatun → 0 in C1(BR) implies thatun lies in [0, uR

ΛR
] whenn is large. Since

(λn,un) are positive solutions to (2.3), we must haveλn � ΛR . Hence for all largen, (λn,un) ∈ OΛR , contradicting
(4.4). This proves that�2 ∩ OΛR = ∅. As a consequence,�2 is separated from both�1 andOΛR sinceOΛR is
closed. Now define�3 := �1 ∪ (OΛR ∩ΓR) and we find that�2 and�3 are separated. ButΓR = �2 ∪ �3. So the
above conclusion implies thatΓR is not connected. This contradiction proves thatΓ c

R is connected. Conclusion (i
is thus proved.

(iii) follows from (ii) and the following three facts: (a)(ΛR,uR
ΛR

) ∈ Γ c
R , (b) (2.3) has no positive solution whe

λ > ΛR , (c) ΓR contains a sequence(λn,un) with λn → −∞ and (4.2) holds, and hence(λn,un) ∈ Γ c
R for all

largen. �
Remark 4.2. Let us note that for any(λ,u) ∈ Γ c

R with λ < ΛR, u /∈ [0, uR
ΛR

]. This ordering property will play a
key role in the proof of our main results.

Apart from Proposition 4.1, in proving the main multiplicity result, we also need some auxiliary equations
enlarging balls or annuli.

Lemma 4.3. Suppose thatRn is an increasing sequence converging to∞ andBn = BRn(0). Letλ > 0 andp > 1
be fixed andξn be a sequence of positive numbers converging toξ > 0 asn → ∞. Then, for all largen, the problem

−�u = λu − ξnu
p in Bn, u|∂Bn = 0 (4.5)

and the problem

−�v = λv − ξnv
p in Bn, v|∂Bn = ∞ (4.6)

have unique positive solutionsun andvn, respectively. Moreover,

un(x) → (λ/ξ)1/(p−1), vn(x) → (λ/ξ)1/(p−1), (4.7)

uniformly on any bounded set ofRN asn → ∞.
Here and in what follows, byv|∂Bn = ∞, we meanv(x) → ∞ asd(x, ∂Bn) → 0.

Proof. For any given smallε ∈ (0, ξ), we can findn0 large so thatξ −ε < ξn < ξ +ε for all n � n0. By Lemma 2.2
in [13], (4.5) withξn replaced byξ − ε has a unique positive solutionun for all largen, and

lim
n→∞ un(x) = [

λ/(ξ − ε)
]1/(p−1) (4.8)

uniformly on any bounded set ofRN .
Similarly, (4.5) withξn replaced byξ + ε has a unique positive solutionun for all largen, and

lim
n→∞u n(x) = [

λ/(ξ + ε)
]1/(p−1) (4.9)

uniformly on any bounded set ofRN .
Let un denote the unique positive solution of (4.5) (which exists wheneverλ > λ1(Bn)). By Lemma 2.1 in [13]

we haveun � un � un. Now we see immediately that the first part of (4.7) follows from (4.8), (4.9) and
arbitrariness ofε.

By Lemma 2.3 in [13], we know that (4.6) withξn replaced byξ −ε has a unique positive solutionvn for eachn,
and

lim
n→∞ vn(x) = [

λ/(ξ − ε)
]1/(p−1)

uniformly on any bounded set ofRN .
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Similarly, (4.6) withξn replaced byξ + ε has a unique positive solutionv n for eachn, and

lim
n→∞v n(x) = [

λ/(ξ + ε)
]1/(p−1)

uniformly on any bounded set ofRN .
Let vn denote the unique positive solution of (4.6). Then by Lemma 2.1 in [13], we obtain thatv n+1 � vn � vn−1

onBn−1. The second part of (4.7) then follows.�
Lemma 4.4. Let λ > 0, p > 1 be fixed, andRn, ξn as in Lemma4.3. Denote byAn the annulus{x ∈ RN : Rn/2 <

|x| < Rn}. Then for all largen, the problem

−�u = λu − ξnu
p in An, u|∂An = 0 (4.10)

and the problem

−�v = λv − ξnv
p in An, v|{|x|=Rn/2} = ∞, v|{|x|=Rn} = 0 (4.11)

have unique positive solutionsun andvn respectively. Moreover,un(x) = un(|x|), vn(x) = vn(|x|), and if we define
for r ∈ (−Rn/2,0], Un(r) = un(Rn + r) andVn(r) = vn(Rn + r), then, asn → ∞,

Un → Φ, Vn → Φ in C1([−T ,0]), ∀T > 0, (4.12)

whereΦ is the unique positive solution to

−Φ ′′ = λΦ − ξΦp, Φ(−∞) = (λ/ξ)1/(p−1), Φ(0) = 0. (4.13)

Proof. The existence and uniqueness ofun for λ > λ1(An) is well known. The existence and uniqueness ofvn

follows from [11] (see the arguments in Section 2and Remark 2.9 there). The radial symmetry ofun and vn

follows from their uniqueness. It remains to prove (4.12).
We considerUn first. It satisfies

−U ′′
n − N − 1

Rn + r
U ′

n = λUn − ξnU
p
n in (−Rn/2,Rn), Un(−Rn/2) = Un(0) = 0.

Let rn ∈ (−Rn/2,0) be such thatUn(rn) = max[−Rn/2,0] Un. Then from the equation forUn we deduce

λUn(rn) − ξnUn(rn)
p � 0.

It follows easily that‖Un‖L∞([Rn/2,0]) � C for all n and some positive constantC independent ofn. Now we can
use standard elliptic estimates and a diagonal arguments to choose a subsequence ofUn, which we still denote by
Un for simplicity, such thatUn → U in C1([−T ,0]) for anyT > 0, andU satisfies

−U ′′ = λU − ξUp in (−∞,0), U(0) = 0. (4.14)

We claim thatU is positive in(−∞,0). If this is proved, then it follows from a simple phase plane analysis thU

is the unique positive solution of (4.14) and it satisfiesU(−∞) = (λ/ξ)1/(p−1). We will denote the unique positiv
solution to (4.14) byΦ.

To show thatU is positive on(−∞,0), for a fixedr0 > 0, we chooser∗ > r0 such thatλ1(Br∗) < λ and then
for all largen we choose a ballBr∗(yn) in An such that the ball touches the outer boundary ofAn. Chooseξ∗ > 0
such thatξ∗ > ξn for all n and letw∗ be the unique positive solution of

−�w = λw − ξ∗wp in Br∗(0), w|∂Br∗ (0) = 0.

We know thatw∗ is radially symmetric. Clearlywn(x) = w∗(x − yn) solves the same differential equation ov
Br∗(yn). Using Lemma 2.1 in [13], we deduce thatun � wn on Br∗(yn). Hence,un(x) � w∗(x − yn), and in
particular,un(Rn − r0) � w∗(r∗ − r0). It follows that

U(−r0) = lim Un(−r0) � w∗(r∗ − r0) > 0.
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ThusU is positive in(−∞,0). This finishes our proof that a subsequence ofUn converges to the unique positiv
solutionΦ of (4.14). Since this limit is unique, the entire sequenceUn converges toΦ.

Next we considervn andVn. We first claim that there exists a constantC independent ofn such thatvn � C on
the annulus(2/3)Rn < |x| < Rn for all largen. Indeed, fixr∗ > 0 and chooseξ∗ > 0 such thatξ∗ < ξn for all n,
and then consider the unique positive solutionw∗ of the problem

−�w = λw − ξ∗wp in Br∗ , w|∂Br∗ = ∞.

We will show that, for all largen, vn(x) � w∗(0) on the annulus(2/3)Rn � |x| � Rn. Indeed, suppose thatn is large
enough so thatRn/6> r∗. Then for any chosenx0 satisfying(2/3)Rn � |x0| � Rn, we haveBr∗(x0)∩BRn/2(0) =
∅. Hence we can use Lemma 2.1 of [13] to comparevn with w(x) = w∗(x − x0) overBr∗(x0) ∩ An to conclude
thatvn � w in this region. In particular,vn(x0) � w(x0) = w∗(0), as we claimed.

Thus we haveVn(r) � C for r ∈ [−Rn/3,0] for all large n. As before, by elliptic estimates, subject to
subsequence,Vn → V in C1([−T ,0]) for anyT > 0 andV solves (4.14). Sincevn � un (by Lemma 2.1 in [13]),
we conclude thatV � U and henceV is a positive solution of (4.14). It follows thatV = Φ. �
Remark 4.5. If λ � 0, then by [11],vn still exists and is unique. An examination of the above proof forvn and
Vn shows that, in this case, a subsequence ofVn converges inC1([−T ,0]), ∀T > 0, to a nonnegative solutionV
of (4.14). However, sinceλ � 0, it is easily seen that (4.14) has only one nonnegative solution, that is the
solution. ThusV = 0 and the entire sequenceVn converges to 0. This fact will be needed later.

We are now ready to prove our main result.

Theorem 4.6. Suppose that the conditions of Theorem3.3are satisfied. Moreover,

lim|x|→∞b(x) = b∞ ∈ [δ,∞). (4.15)

Then,(2.1)has at least two positive solutions for eachλ ∈ (0,Λ), and it has at least one positive solution for ea
λ � 0.

Proof. Let us fix λ ∈ (0,Λ). Sinceλ1(BR) decreases to 0 andΛR decreases toΛ asR → ∞, we can find an
increasing sequenceRn → ∞ such thatλ1(BRn) < λ < ΛRn for everyn. We now choose(λ,un) ∈ Γ c

Rn
; this is

possible due to Proposition 4.1.
By Theorem 3.1 and Remark 3.2, there existsC > 0 independent ofn such that

‖un‖L∞(BRn) � C, ∀n � 1. (4.16)

From (4.16) and the equation forun we find that for any fixed ballB ⊂ RN , by theLp theory of elliptic equations
{un|B} is bounded inW2,q (B) for anyq > 1. It follows from Sobolev imbedding theorems that{un|B} is compact in
C1(B). By choosing a sequence of enlarging balls and a standard diagonal argument, we can extract a subsequ
from {un}, still denoted by{un}, such thatun → u in C1(B) for any bounded setB in RN . It is easily checked tha
u solves (2.1).

Sinceun � u
Rn

λ andu
Rn

λ increases withn, we find thatu � u
Rn

λ for everyn. Thereforeu is a positive solution

of (2.1). Denote, for eachµ ∈ (0,Λ), uµ := limn→∞ u
Rn
µ , we know thatuµ is a positive solution of (2.1) (withλ

replaced byµ). (See the proofs of Theorems 2.1 and 3.3; it is easily seen thatuµ is in fact the minimal positive
solution.) It remains to show that

u �= uλ. (4.17)

Since (λ,un) ∈ Γ c
Rn

and λ < Λ � ΛRn , we haveun /∈ [0, u
Rn

ΛRn
]. Moreover, by Proposition 2.3, we hav

u
Rn

Λ � u
Rn

ΛRn
. Therefore,un /∈ [0, u

Rn

Λ ]. It follows that there existsxn ∈ BRn such that

un(xn) > u
Rn(xn). (4.18)
Λ
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We claim that{|xn|} is bounded. Arguing indirectly, we assume that this is not true. Then by passi
a subsequence, we may assume that|xn| → ∞. By passing to a further subsequence we have exactly t
possibilities:

(a) Rn − |xn| → ∞,

(b) Rn − |xn| → δ > 0,

(c) Rn − |xn| → 0.

We will deduce a contradiction for each case.
In case (a), we can find a sequence of ballsBrn(xn) ⊂ BRn(0) with rn increasing to∞ and|xn| − rn → ∞. In

view of (4.15), we can find two sequences{σn} and{σ ∗
n } such that

0< σn � b(x) � σ ∗
n , ∀x ∈ Brn(xn),

σn → b∞, σ ∗
n → b∞.

Let wn denote the unique positive solution of (4.5) withBn = Brn(0) andξn = σ ∗
n , and letvn denote the unique

positive solution of (4.6) withξn = σn andBn = Brn(0). Then by Lemma 4.3, we find that (4.7) holds for bothwn

andvn if we replaceξ by b∞ in (4.7).
We now use Lemma 2.1 in [13] to compareun(x) with wn(x − xn) and withvn(x − xn) overBrn(xn). We easily

find thatwn(x −xn) � un(x) � vn(x −xn) on this ball. In particular,wn(0) � un(xn) � vn(0). It now follows from
(4.7) that

un(xn) → (λ/b∞)1/(p−1). (4.19)

Applying a similar argument touRn

Λ we deduce that

u
Rn

Λ (xn) → (Λ/b∞)1/(p−1).

Sinceλ < Λ, we deduce from this and (4.19) that, for all largen, un(xn) < u
Rn

Λ (xn). But this contradicts (4.18). S
case (a) leads to a contradiction.

In case (b), we letAn denote the annulus{x ∈ RN : Rn/2 < |x| < Rn}. By (4.15), we can find two sequenc
{σn} and{σ ∗

n } such that

0< σn � b(x) � σ ∗
n , ∀x ∈ An,

σn → b∞, σ ∗
n → b∞.

Let wn denote the unique positive solution of (4.10) with the aboveAn andξn = σ ∗
n , and letvn denote the unique

positive solution of (4.11) withξn = σn andAn defined here.
Applying Lemma 2.1 in [13] we easily see thatwn � un � vn onAn. Using Lemma 4.4, we obtain that

un(xn) → Φ(δ). (4.20)

Similarly,

u
Rn

Λ (xn) → Φ∗(δ), (4.21)

whereΦ∗ is the unique positive solution of (4.13) but withλ replaced byΛ. Sinceλ < Λ, we haveΦ∗(−∞) >

Φ(−∞). Hence we can use the one dimensional version of Lemma 2.1 in [13] on[−T ,0] with largeT > 0 to
deduce thatΦ∗ > Φ in (−∞,0). Therefore, by (4.20) and (4.21), for all largen, un(xn) < u

Rn

Λ (xn). A contradiction
to (4.18). So case (b) also leads to a contradiction.

Consider now case (c). Letwn andvn be defined as in the discussion of case (b) above, andWn(r) = wn(Rn +r),
Vn(r) = vn(Rn + r). Then we have

Wn

(|xn| − Rn

)
� un(xn) � Vn

(|xn| − Rn

)
.
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SinceWn → Φ andVn → Φ in C1([−T ,0]) for anyT > 0, we have the estimates

Wn

(|xn| − Rn

) = Φ ′(0)
(|xn| − Rn

) + o
(
Rn − |xn|

)
,

and

Vn

(|xn| − Rn

) = Φ ′(0)
(|xn| − Rn

) + o
(
Rn − |xn|

)
.

Therefore,

un(xn) = Φ ′(0)
(|xn| − Rn

) + o
(
Rn − |xn|

)
. (4.22)

In parallel, we have

u
Rn

Λ (xn) = Φ ′∗(0)
(|xn| − Rn

) + o
(
Rn − |xn|

)
. (4.23)

SinceΦ∗ > Φ, we must haveΦ ′∗(0) < Φ ′(0). Therefore, by (4.22) and (4.23), for all largen, un(xn) < u
Rn

Λ (xn).
Again a contradiction to (4.18). This proves our claim that{|xn|} is bounded. Let us assume thatxn ∈ B for all n

and some finite closed ballB.
We are now ready to prove (4.17). Suppose forcontradiction that it is not true. Thenu = uλ and so

un(x) → uλ(x) uniformly on any bounded set ofRN . Sinceu
Rn

λ � u
Rn

Λ (by Proposition 2.3), we deduceuλ � uΛ.
By the strong maximum principle, we easily deduceuλ < uΛ on RN . Therefore, we can findε > 0 such that
uλ(x) � uΛ(x) − ε on the closed finite ballB. It follows that for all largen,

un(x) � u
Rn

Λ (x) − ε/2, ∀x ∈ B.

Takingx = xn ∈ B in this inequality we reach a contradiction to (4.18). Hence we must haveu �= uλ. This finishes
the proof that (2.1) has at least two positive solutions for everyλ ∈ (0,Λ).

It remains to consider the caseλ � 0. Fix λ � 0 and let(λ,un) ∈ Γ c
Rn

, whereRn increases to infinity. As

before, by passing to a subsequence we may assume thatun → u uniformly on any bounded set ofRN , andu

is a nonnegative solution of (2.1). We need to show thatu �= 0. This follows from a simple modification of ou
arguments for the caseλ ∈ (0,Λ). So we will be rather brief. As in the previous case, we can findxn ∈ BRn such
that (4.18) holds. Again it suffices to show that{|xn|} is bounded. If this is not true, then we have three possibilitie
(a), (b) and (c) as in the previous situation. In case (a), we have

u
Rn

Λ (xn) → (Λ/b∞)1/(p−1),

by the same proof as before. By comparingun with the unique positive solution of (4.6) with suitableξn andBn

but withλ replaced by an arbitraryµ > 0, we deduce that

lim un(xn) � (µ/b∞)1/(p−1).

This impliesun(xn) → 0 sinceµ > 0 is arbitrary. Hence we obtain a contradiction to (4.18). In cases (b) an
we can use Remark 4.5 to deduce a contradiction to (4.18). Hence (2.1) has at least one positive sol
eachλ � 0.

We would like to point out that the caseλ < 0 actually has a much simpler proof. Letun be as above. Choos
xn ∈ BRn such thatun(xn) = maxun. Then from the equation forun andλ < 0 we find, as in (4.2), that

b(xn) < 0, un(xn) �
(|λ|/∣∣min

RN
b(x)

∣∣)1/(p−1)
.

It follows that{xn} ⊂ BR0 and maxBR0
u(x) � (|λ|/|minRN b(x)|)1/(p−1). Henceu �= 0. �

Remark 4.7. Under the conditions of Theorem 4.6, it can be shown, by using results in [20] and argument
proof of Theorem 4.6, that (2.1) has an unbounded branch of positive solutions,Γ , in the spaceR ×L∞(RN), that
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bifurcates from(λ,u) = (0,0) and have similar properties to those forΓR given in Proposition 4.1. Indeed,Γ can
be obtained as the limit ofΓRn for some sequenceRn → ∞ (in the sense of [20]) in the spaceR × L∞(RN), by
making use of the fact that positive solutions(λ,u) of (2.1) satisfies, due to (4.15),

u(x) → (λ+/b∞)1/(p−1) as|x| → ∞
uniformly in u for λ in bounded sets, whereλ+ = max{λ,0}.

Remark 4.8. The alternative method at the end of the proof of Theorem 4.6 for the caseλ < 0 shows that condition
(4.15) is not needed for this case. Therefore, under theconditions of Theorem 3.3 alone, (2.1) has at least
positive solution for eachλ < 0.
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