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Abstract

We consider a minimization problem associated with the elliptic systems of FitzHugh—Nagumo type and prove that the
minimizer of this minimization problem has not only a boundary layer, but also may oscillate in a set of positive measure.
0 2003 Elsevier SAS. All rights reserved.

Résumé

Nous étudions des solutions d’'énergie minimale pour I'équation de FitzHugh—Nagumo. Nous prouvons que ces solutions ont
plusieurs transitions rapids si la diffusion est petite.
0 2003 Elsevier SAS. All rights reserved.
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1. Introduction

In this paper, we consider the following problem:
—e2Au= f(u) —v, ins2,
—Av+yv=du, in £2, (1.2)
U—=—7°v= O’ on 89,

wheres2 is a bounded domain iRY, ¢ is a parametery ands are nonnegative constanis(t) is C-function in
R! satisfying the following conditions:

(f1) There are O< 11 < 72 such thatf (t1) <0, f(12) > 0, f'(t) <0if t € (—o0, 11) U (12, +00), and f'(t) > 0
if t € (11, T2). Moreover,f (1) - +o0 ast — —oo, f(t) > —oo ast — +o0.
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Let I_1 = (—o0, 11), lo = (11, T2), @and I1 = (12, +00). By (f1), f(z) has exactly three zero poinds € I;,
i=-1,0,1. We assume that

(f2) [3* f(s)ds>0.

Typical examples satisfyingf1) and (f2) include f (1) =t(a — t)(t — 1), a € (0, %); and f.(t) = f(t — ¢),
c>0.

System (1.1) is a modification of the FitzHugh—Nagumo equation which arises in studies on the physiological
phenomenon of nerve conduction. This system has been studied among others by DeFigueiredo, Mitidieri, Troy
[10,14,15], Lazer and McKenna [16], Reinecke and Sweers [18-21]. Existence results in [18—20] are in some sense
analogies of the results for the scalar case 0 in [7]. Numerical results in [21] suggest that (1.1) should have
other types of solutions. The aim of this paper is to prove that for suitably éaxg@, (1.1) has solutions, which
either oscillate around a constant in a compact subs@t, @ir have a sharp interior layer. These solutions are local
minimum of the corresponding functional. We know that for the autonomous scalar eqdati@),(the minimizer
does not have interior layer. See for example [5-7].

For eachu e H&(Q), let G, u be the unique solution of the following problem:

—Av+yv=u, in§2,
v=0, onas2.
Then we see (1.1) is equivalent to the following nonlocal elliptic problem:

—&?Au+38G, u= f(u), ing,

1.2
u € HJ($2). (12
The energy associated with (1.2) is
1
I(u) = E/(82|Du|z+5ucyu) —/F(u), u € Hy (). (1.3)

2 2

Itis easy to see fronf, uG,u = [,(1DGyul?+ y|G,ul|?) >0, that! () is bounded from below i} (s2)
and/ (1) is weakly lower semicontinuous iH(}(.Q). So the following problem has a minimizer:

inf{I(u): ue HJ(2)}. (1.4)

In this paper, we will analyse the profile of the global minimizer of (1.4)sfor O small. Before we state our
results, we give some notation.

Letu = hy(v), v e f(I1), be the inverse function af = f (u) restricted tol1; and letu = h_(v), v € f(I-1),
be the inverse function af = f («) restricted tol_1.

Let
hy (@)
J(a) = / (f(s) —a)ds. (1.5)
h_(a)

By (f1), we see thaj’(a) = h_(a) — hy(a) < 0. Thus by(f2), there is a uniqueg > 0 such thatj (ag) =0,
j@) >0if « <ag, andj(x) < 0if « > ap.

We extendr (v) continuously intav € (f(72), +00) in such a way thak, (v) is decreasing. Then sinég. (v)
is decreasing, it is easy to see that the following problem has a unique salgttion

{ —Av+yv=38hy(v), Iing,

ve HNR). (1.6)
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Moreover, by using the maximum principle, we can deduce easilyuifiat vs, if §1 < 2. By the comparison
theorem, it is easy to see that max vs(x) — +oo asd — +oo. So, there is a uniquéy > 0, such that
maXx.e Vs, (x) = ap. It is easy to check thap > yao/h4 (o).

Define
hv) = {h+(v), if v < Qp;
h_(v), ifv>ao.
Consider
—Av+yve[Sh(v+0),8h(v—0)], ing2,
1 1.7)
ve HX ).

Then, the above problem has a solution, which is the global minimum of the corresponding functional. Besides,
(1.7) has exactly one solution because) is decreasing. This is easy to prove but also follows from monotone
operator theory as in [4]. Note thatdif< 8o, the solution of (1.7) is the solution of (1.6) and vice versa.illeé the
solution of (1.7). It is easy to see thabit> g, the set{x € £2: v(x) > ag} has nonzero measure. In the following,

we denote

S:{xe.Q: v(x)<ao}.
Note thatS = 22 if 0 <8 < dpand2 \ S # 0 if § > do.

Theorem 1.1.Suppose that_(xg) < 0. Letu, be a global minimizer ofl.4)and letv, = §G,u,. Thenv, — v
in cL(£2), for anyo € (0, 1), wherev is the solution of1.7). Moreover, we have

(i) if 0< 6§ < do, thenu, — h4 (v) uniformly in any compact subset &f ase — 0;
(iiy if § = 6o, then{x: v(x) = ap} = £2 \ S and the measure of the sét: v(x) = ap} is zero. Moreover,
ue — hy(v) uniformly in any compact subset 8fase — 0;
(i) if § > 30, then{x: v(x) = ap} = 2 \ S and the measure of the sgt: v(x) = oo} is positive. Moreover,
ug — hy(v) uniformly in any compact subset®fse — 0, u, — yap/s weak in L>°(£2\ §) ase — 0, but
u, does not converges almost everywhergdg/s ase — 0 for any subsequence, and for afiy- 0 small,

mix: v(x) = ao, ue(x) ¢ (h-(@0) — 60, h—(a0) +6) U (h+(20) — 6, hy(a0) +6)} — 0
ase — 0, wherem S denotes the measure of the Set

Theorem 1.2.Suppose thak_ («g) > 0. Letu, be a global minimizer of1.4), and letv, = §G, u.. Thenv, — v
in cL(£2), for anyo € (0, 1), wherev is the solution of1.7). Moreover, we have

(i) if 0< 6§ < 8o, thenu, — h4(v) uniformly in any compact subset &fase — 0;

(ii) if 6 = &g, then{x: v(x) = ap} = £ \ S and the measure of the sét: v(x) = ag} is zero. Moreover,
ue — hy(v) uniformly in any compact subset 8fase — 0;

(i) if 6 > 81 = max(§o, yao/h—(ap)), then the measure of the sgt: v(x) = ag} is zero, andu, — hy(v)
uniformly in any compact subset §fase — 0, u, — h_(v) uniformly in any compact subset pf: v(x) >
oo} ase — 0;

(iv) if 80 < yag/h—(xp) and § € (8o, yao/h—(ap)), then{x: v(x) = ag} = £2 \ S and the measure of the
set {x: v(x) = ap} is positive. Moreovern, — hy(v) uniformly in any compact subset §fas¢ — 0,
us — yap/s weak in L*(22\ S) ase — 0, butu, does not converges almost everywhere/tg/é as
¢ — 0for any subsequence, and for afy 0 small,

m{x: v(x) =0, ug(x) ¢ (h—(c0) — 0, h_(cr0) + ) U (h4-(cr0) — 6, hy-(ct0) +6)} — 0

ase — 0;
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(v) if 80 < yao/h—(ap) ands = yao/h—_(ap), then{x: v(x) = ap} = £\ S and the measure of the dat v(x) =
ag} Is positive. Moreovem, — hy(v) uniformly in any compact subset §fase — 0, u, — h_(xp) In
measure in2 \ S ase — 0.

If fu)=ul@—u)u—-1,0<a< % thenh_(ag) < 0. Thus we see from Theorem 1.1 that for 5o,
the minimizer of (1.4) has a boundary layer, and it oscillates wildly around the constayd in the set2 \ S.
Moreover, for anyl’ C §2 \ S which has positive measure, the portiorfinvhereu, is close ta: 1 («g) has measure
close to((yaod 1 — h_(0))/(h4(a0) — h_(x0)))m(T), while in most of the rest part &, u, is close toh_ (xp).
If we translatef () to the right suitably, we see from Theorem 1.2 thatffer §1, the minimizer of (1.4) not only
has a boundary layer, but also has an interior layer near the measure-Zarowged = ag}.

Noting thatsg only depends oh . (v) for v < ag, we can easily give examples wher&) and( f2) are satisfied
anddo > yao/h—(ap), and examples whergf1) and (f2) are satisfied andp < yao/h—(xo). In the first case,
we only need to construgt, such that:_ («p) is very close tdi («p), while in the second case, we only need to
constructf, such that:_ («g) > 0 is very small.

We are not able to prove the uniform convergence 0bn any compact subset & if § = §p. It is not clear
whether the convergence in (v) of Theorem 1.2 can be replaced by uniform convergence in any compact subset of
2\8S.

To have a better understanding of the profile of a global minimizeof (1.3), we can blow up:, at any
point xg € 352 and obtain good asymptotic af near the boundary. Roughly speaking(x) depends mainly on
d(x,082) if d(x,08) < Re for any R > 0. In other wordsy, transits from 0 toz, (0) in the inward normal
direction of the boundary. See Proposition 3.5 in Section 3. On the other hand, if we blaw atpa point
xo0 € {x: v(x) = ag}, we will encounter the following variant of the De Giorgi conjecture [9]:

—Aw = f(w) — ao, in RV, 18
J(w,A) < J(w+g¢,A), VoeHiA), (1.8)

whereA is any bounded open set RV,
1 2
J(w, A) =/ E|Dw| — (F(w) — aow) |.
A

Using the results in [1-3,11], we can easily classify all the bounded solutions in (N8, 3. These solutions
are either the constanis: («p), or the ODE solution. See the discussion in Section 2. As an application of this
result to the analysis of the behavioungfin {x: v(x) = ap}, we see that iV = 2, 3, thenu, transits from: . («g)
to h_(ap) mainly in one direction in a neighbourhoodxf € {x: v(x) = ag} of ordere, although the direction can
change rapidly withxg. For other phase transition problems which lead to the De Giorgi conjecture, the readers
can refer to [17,22].

Our next result shows that for sorde- g, I (1) has a local minimizer which behaves quite well in the interior
of 2.

Thec_)rem 1.3.Let§ > &g be _the number such thatax.c v;(x) = f(t2), wherev; is the solution o{1.6) with
8 = 8. Suppose that € (8o, §). Then there is arg > 0, such that fore € (0, o], (1.1) has a solution(iz,, vg),
satisfying

(i) . — vin CLo(£), for anyo € (0, 1), whereu is the solution of1.6);
(i) #e — hy(v) uniformly in any compact subset of;
(i) i, is a local minimizer off; (u).
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Solutions of the same type as in Theorem 1.3 were obtained in [21] by using a bifurcation theorem. In the
result of [21],8 is a parameter depending @n In [21], numerical analysis suggests that (1.1) wjttu) =
u(w —a)(—u), ac (0, %), have a solution which has an interior layer. Our result here shows that the number
of the interior layers of the global minimizer will increasesatends to 0 in this case. On the other hand, since
is a local minimum, we can attach a peak solution to this local minimum to get a new solution. We shall discuss
this problem in a forthcoming paper. It is worth pointing out that the solution obtained by attaching a peak solution
to the local minimumi, converges tdiy (v) in LP(£2), Vp > 1, ase — 0, but it does not converges to, (v)
uniformly in any compact subset @2. Thus for the solutions of (1.1),” convergence does not imply uniform
convergence.

This paper is arranged as follows. In Section 2, we prove Theorems 1.1 and 1.2. Section 3 contains the proof of
Theorem 1.3.

2. The profile of the global minimizers

Let us recall thaG, « is the solution of

{—Av—i—yv:u, in 2,
v=0, onos2.
Itis easy to check that there > 0, such thatG, u| < Clut]so.

Lemma 2.1.There is a constar® > 0, such that for any solutiotu,, v.) of (1.1), we havgu,|xo, |ve|oo < C.

Proof. Letxg € £2 be a maximum point of.. Then

0< —e2Aus(x0) = f(ue(x0)) — vs(x0) < f (it (x0)) + Cute (x0).
But f(«)/u — —o0, asu — +o0. Thus we see from the above relation thatxg) < C’. Similarly, we can prove
Mingeoue > —C’. O

Letu, be a minimizer of (1.4)y. = 8G,u.. By Lemma 2.1y, is bounded inL>(£2). From

—AvVe + YV = Sue, in 2,
we see that, is bounded inW2 7 (£2) for andp > 1. Thus we assume that up to a subsequence,

ve—>v  InCH(Q), (2.1)
foranyo € (0, 1).

Lemma 2.2.Letu, be a minimizer of1.4), v; = §G,u,. Then
h4+(v), uniformly in any compact subsetfof: 0 < v(x) < ao};
e {h(v), uniformly in any compact subsetof: v(x) > ao},
Proof. For any smalk > 0, letn > 0 be small enough, such that
‘vg(x) — v(xo)‘ <71, Vxe&Byxo).
Let M > O be a large constant satisfyifg > max..g |u¢| for all ¢ > 0. Consider

inf{ Je 4 (u): u € HY(By(x0)), u = —M 0nd B, (x0)}, (2.2)
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where

g2

Jo,+(u) = > / | Du|? - / (F(u) — (v(xo0) + 20)u).
Bn(XO) Bn(XO)
Let w, 4+ be a minimizer of (2.2). Then
—&2AWe 4 + we 1 = f(we,4) — (v(x0) + 27).

Thus similar to the proof of Lemma 2.1, we know that | < C for someC > 0, independent of, n > 0 small.
We claim that, > w, 1.
Let Sy = {x: we 4+ > ue, x € By(x0)}. Sincew, 4 < u, if |x — xo| = n, we seeS; C B, (xo). Let

We,+ —Ug, X €S,
7o, xeQ\S..

Theng, € H}(£2) andg, > 0. Thus, we have
0< Le(ue + @e) — Le(ue)
1)
= I:(ué‘ +@e) — I:(Us) + 2 /((“s + )Gy (e + @e) — usGyue)

2
215*(”8 +‘ps)_I:(us)+/¢svs+g/¢scy¢8a (2-3)
2 2
where
2
IF(u) = - / |Du|? — / F(u).
By (x0) By (x0)

On the other hand, we have
0< Je (e, — @) — Je (e )

= Ie*(ws,Jr — @Qe) — I:(wngr) - /(v(xo) + 275)§03
Se

=11 (ue) — I (ue + ¢5) — /(v(xo) + 27)%
Se

8
= le(ue) — I (e + @) + E/(PSG)/(PS - /(U(XO) +27 — Us)ws

2 Se
1)
< E/(DsG)/(Ds - /(U(XO) + 2t — Ue)ws' (2.4)
2 Se
Noting thatv(xp) + 2t — ve > 7 if x € B, (xg), we obtain
1)
T/(ps < /(U(XO) + 2t — Ua)‘/’s < E/‘pscyfp& (2.5)
Se Se 2

Since|p:| < 2C, we have

|Gy @elro(2) < CloelLri) < Cn™/P,
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forp>%.80

T/(pe <C7}N/p/<ﬂe.

Se Se

Thus, we see that if > 0 small, we obtairp, = 0. So we have proved thai; < u,.
Similarly, consider

inf{ Jo.—(u): u € HY(B,(x0)), u =M ondB,(x0)}, (2.6)

where
2

Jem )= f |Duf? - / (F) — (u(x0) — 20)u).
Bn(XO) Bn(XO)

Let w.,_ be a minimizer of (2.6). Then we haue < w, _.
By a result of [6,7], we know
hT(v(xg) +27), if v(xg) + 27 < ap;
ot { h=(u(xo) + 27), if v(x0) + 21 > o,
and
w0, {hJ“(v(xo) —27), if v(xg) — 27 < ap;
’ h™(v(xg) — 21), if v(xg) — 27 > ag,

uniformly on any compact subset 8f,(xo). Thus this lemma follows frorw, + <u, <w,—. O

Lemma 2.3.Letu, be a minimizer of1.4), v; =G, u,. Then
m{x: v(x) =0, us(x) ¢ (h—(a0) — 0, h_(c0) + 0) U (h4-(c0) — 60, hy (o) +6)} — 0

ase — 0, wherem S denotes the measure of the Set

Proof. Let xg € 2 and letC, (xo) be the cube with side, centred atcg, with sides parallel to the axes. For any
smalln > 0, we may assume that> 0 is small enough such thék ., (xo) € 2. Define

ue(x), x € 82\ Ceyyy(x0);
it (x) = 3 ho(ve (1)) + 2G5 o] —[x']),  x € Cony(x0) \ Cy(x0);
h—(ve (X)), x € Cy(x0),

wherex’ = t,/”(x — x0)/|x — xo| € 3Cy(x0) andx” = t,;/_ks’x(x —x0)/|x — x0| € 3C;1¢(x0). Then

0< I(ue) — 1(ue)
= %82/(|Dﬁ£|2 _ |Du£|2) + g /(L_tgGVL_tg — MSG)/MS) — /(F(I/-lg) - F(I/lg))
2

2 2
=h+DLh-1Is (2.7)

Noting thatu, satisfies—Au, = ¢ ~2(f(us) — v¢), using Theorem 2.10 and Theorem 4.5 in [13], we see
&|Due ()| < Clue| oo, o) + Ce2[72(f (ue) = v)| oo, )

In particular,e| Du.| < C if d(x, 382) > 2¢. Thus it is easy to check thatDi.| < C. As a result,
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1 ) 1 a
n=5s [ (pil-pu)<gze [ pap
C6+r1(XO) C6+r1(XO)
1 2 _
ng(C8+n(x0)\Cn(xo))+§£2 / |Dh_(ve)|” < C(en™ 1+ %9M). (2.8)
Cy(x0)

On the other hand, we have

_ S [ _ _
I = /(us —Ue)Ve + E /(us - us)Gy(us —ue) =14+ Is, (2.9)
2 2

Iy = / (e — ue)ve

Cetn(x0)

= O(m(Cesy(x0) \ Cy(x0))) + / (e — )0

Cn (x0)

= / (h,(vg) - ug)vg + O(eanl). (2.10)
Cy(x0)

and

Let G, (x, y) be the Green’s function of A 4+ y with Dirichlet boundary condition. The@, (x, y) <

_Cc
[x—y[V-2"
For anyx € Cq4,(x0), we have

|Gy (e — ue) (x)| = ‘/Gy(x, (e (y) = us(y))dy‘
2

= ‘ / Gy (x, y)(ite(y) — ue(y))dy‘

Cs-H] (x0)

1
<C f ————dy < C(e +n)°
|x — y|N=2
C£+r](XO)

So

=2 [ w06y @ —u) = Of(e + ), (2.1)

Cs+n (x0)

For I3, we have

Is= / (F(@ie) — Flup) = / (F(@e) — F(ue)) +O(en™ ). (2.12)
Cetn(x0) Cp(x0)

Combining (2.7)—(2.12), we obtain

/ ((h=(ve) — ue)ve — (F (h—(ve) — F(u))) +O(en™ 1+ (e + mNT2) > 0. (2.13)
Cy(x0)
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Thus

/ ((F(h—(ve)) — h—(ve)ve)—(F(ue) — ueve)) < O(en™ 2 + (e + N +2). (2.14)

Cy(x0)
Sincev =0 on 352, we see{x: v(x) = ap} iS @ compact subset g2. Thus we can choos€,(x;), j € J,
whereJ contains finite number of points, such th@f,(x;) N C,(x;) =0, Vi # j, the set{C, (x;), j € J} covers

{x: v(x) = ap}. It is easy to see that the number of such cubes is at 8¢y for some large constaidt > 0
independing orV. Hence, from (2.14), we obtain

87)N71+(8+77)N+2
nN '

/ ((F(h*(ve)) - h*(vs)vs) — (F(ug) - ugvg)) <C

v(x)=ag

So for anyn > 0,
enN =14 (& 4 mN+2

/ ((F(h—((XO)) - h—(OlO)OlO) - (F(us) - ”sOZO)) <C TIN +0: (D).

v(x)=0ap
That is,
h— (o)
N-1 N+2
/ / (F(0) —ao)dr <X FEFD T o). (2.15)
n
v(x)=ag Ue
Note that

h—(ao)

/ (f(x) —ag) =co >0,
if s ¢ (h_(ag) —6, h_(cg) +6) U (hy (o) — 6, hy(cg) +6), andj;h‘(“(’)(f(r) —ag) > 0foralls, (2.15) yields
m{x: v(x) = 0o, ug(x) ¢ (h—(c0) — 0, h_(cr0) + ) U (h4-(ct0) — 6, hy-(ct0) +6)} — 0 (2.16)
ase — O foreveryd > 0small. O

Lemma 2.4.Letu, be a minimizer o{1.4), ve =G, u,. Thenv, — v in clo () foranyo € (0,1), andv is a
solution of(1.7).

Proof. Sinceu. is bounded in.®°(£2), we may assume that up to a subsequence, there &°(£2), such that
ug — u, weakin L®(R).
By Lemmas 2.2 and 2.3, we see= A (v) if x € {x: v(x) < ao}, u =h_(v) if x € {x: v(x) > oo}, and
u € [h_(ap), hy(ao)] if x € {x: v(x) = ap}. Thus,v satisfies
—Av+yve[sh(v—0),8h(v+0)], ing2,
{ v=0, onos2,
whereh(v) =hy(v) if v <ag, h(v) =h_(v) if v >ap. O

Before we prove Theorems 1.1 and 1.2, we need the following lemma:

Lemma 2.5.There is & > 0, such that ifs € (0, 8p), the solutiorw of (1.6) satisfieamax,c v(x) < ap; if § > S0,
the solutiorw of (1.6) satisfieamax,c v(x) > ap.
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Proof. By the maximum principle, we can check easily thasif< é,, then the solutionss, andv;, of (1.6)
corresponding té = 81 ands = §, respectively satisfy;, < vs,. On the other hand, suppose that maxvs < o
for § — +o0. Since

—Avs + yvs =8hT (vs) = 8hT (ao),

we seevs > code, for some constantg > 0, wheree > 0 is the first eigenfunction of A 4+ y with Dirichlet
condition. This is a contradiction.
Let

o= inf[a: maxvs > ao}.
xXeNR
Thendg € (0, +00) anddg is the number we need..o

Remark 2.6.1t is easy to see from Av(xg) > 0 at any maximum point of thatdo > yao/h ().

Proof of Theorem 1.1. If § € (0, &p), it follows from Lemma 2.5 that the solutianof (1.7) satisfie® < «g. Thus
(i) follows from Lemma 2.2.

If § =380, then maxc = . Suppose that{x: v(x) = ag} > 0. Then we havéy = yap/h(ap). This is a
contradiction to Remark 2.6. Thus{x: v(x) = o} = 0 and (ii) follows from Lemma 2.2.

Suppose that > §p. Sinceh(r) < 0 if 1 > ap, we see that the solutiosy of (1.7) satisfiews (x) < «g for all
x € £2. Now we claim that

m{x: vs(x) =ao} > 0.

Suppose that{x: vs(x) = ag} = 0. Then we see thai; is also the solution of (1.6) ands < ag. This is a
contradiction to the definition ofy.
Suppose that, — yap/8 almost everywhere ifix : vs(x) = ao}. Then
Ug(x) — ——

m{x. s

ase — 0, foranyr > 0. Thisis a contradictionto Lemma 2.3 and Remark 2.6. Thus, (iii) follows from Lemmas 2.2,
23and2.4. O

Yoo

21}—)0

Proof of Theorem 1.2. The proofs of (i) and (ii) of this theorem are exactly the same as those in Theorem 1.1.
Suppose that > yag/h—(ap). We claim that

m{x: vs (x) =ao} =0.
Suppose that:{x: vs(x) = ag} > 0. Then we have
yoo=3du(x), foralmostevery € {x: vs(x) = apo}.

Sou(x) = yao/8 < h_(ap). This is a contradiction ta(x) € [h_(ao), h+(ap)] for almost every € {x: vs(x) =
ag}. Thus (iii) follows from Lemma 2.2.

Now we consider the case < yao/h—(xo).

Suppose that € (8o, yao/h—(xp)]. We claim that max. v(x) = ap. In fact, sincedh_(xg) — yao < 0 and
h_(t) is decreasing for > ag, we see thabh_(r) — yt < 0 if t > ag. Suppose that maxg, v(x) > ag and let
x0 € £2 satisfyv(xp) = max.ep v(x) > ag. Thenv is C? in a small neighbourhood af. But

0< —Av(xo) = (Sh_(v(xo)) —yv(xg) <0.

So we get a contradiction.
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Since

8
% & (h-(a0). hs (o))

if 8 € (80, yao/h—(xp)) We can prove (iv) in a similar way as in the proof of (iii) of Theorem 1.1.
Finally, if § = 81 = yao/h— (o), thenu, — h_(ag) weak' in L°(£2 \ §), which, together with Lemma 2.3,
givesu, — h_(ap) inmeasure in2 \ S. O

Before we close this section, we discuss briefly the local behaviour, dh a small neighbourhood of
xo € {x: v(x) = ap}.
Let w,(y) = u.(ey + x0). Thenw, satisfies

—Awe = f(we) —v(ey +x0), y€R:=:{y. ey+x0€ 2}
Sincew, is bounded inL*°(£2,), we may assume that
we — w, IN C%C(RN).

We have the following result:

Proposition 2.7.Letw be the function defined above. Thersatisfies

—Aw = f(w) — ag, in RN,

TJ(w, A) < J(w+g¢, A), VoeHiA,
where A is any bounded open set iRY, J(w, A) = fA(%|Dw|2 — (F(w) — agw)). If N =2, 3, then either
w = h_(ag), Of w = h (ap), Or w(y) = wo({a, y)) for somea € S¥~1, wherewyq is a solution of

—wg = f(wo) —ap, wp>0, in RL.

Proof. Itis easy to see that
—Aw= f(w)—ap, inR".
On the other hand, for any bounded opensén RY, andy € H(}(A), we have
T(ue) < I(ug + @),
whereg, (x) = ¢((x — xg)/¢). Thus
- / F(ug) < 82/ Du, Dy + %82/ | Dy |? — / F(ue + @:) + / Qeve + gf%cy%.

2 2 2 2 2 2
That s,

1 )

—/F(ws)</DwgD<p+E/Ilez—/F(ws+<p)+/<pv5(8y +x0)+28—N/€0£GV(P£~ (2.17)
A A A A A 2

Since|G, ¢;|1%(2) — 0 ase — 0, we have

‘/‘pscyfps
2

Lettinge — 0in (2.17), we obtain

—/F(w)</DwD<p+%/ID(pIZ—/F(w+<p)+/(pao.
A A

A A 2

< |Gyfﬂs|L00(.Q)/|<pg|=0(sN).
2
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ThatisJ(w, A) < J(w + ¢, A).
It is easy to see that(w, A) < J(w + ¢, A) implies

/ |Dw|> < CRN 1, (2.18)
Br(0)

forany R > 0, whereC > 0 is some constant independenttfSee for example [2].
On the other hand] (w, A) < J(w + ¢, A) implies

/ (IDg> — f'(w)e?) >0, Vo eC3°(RY), (2.19)
RN
which will give that the following problem have a positive solutin
—AE — f'(w)é=0, inRV.
See for example [3,11]. Thus, using (2.18), we see thatif 2, 3, there is a constaudt;, such that
a—w =C;é.
0x;
See [2,3].
If C;=0,i=1,...,N, thenw = C. Thus f(C) — ap = 0. But from (2.19), we seg’(C) < 0. Thus
C =hi (o).
If C; # 0 for somei, thendw/dx; = Cl;aw/ax,», j=1,..., N. Thus the result follows. O

Remark 2.8. The second part in Proposition 2.7 is a direct consequence of the results in [2,3,11]. This fact was
observed in [12].

3. The existence of local minimizer

In Section 2, we have proved thait- 8o, the global minimizer of (1.4) will either oscillate around a constant
in an open set of positive measure, or have an interior jump. In this section, we shall prove that theré exidgs a
such that (1.1) has a solution, which is a local minimizef.@f;) and just has a boundary layer.

Let > 0 be the constant, such that the solutigrof (1.6) satisfies

£ (r2) = maxvs (x).

Thendg < 6. )
Suppose that € (8o, §). Letvs be the solution of (1.6). Then we have

maxwvs (x) € (eo, f (0)-

Let A ={x € £2: vs(x) > ap}, Wherev; is the solution of (1.6). TheA is a compact subset 6. Letd > 0 be
so small thatdy = {x: d(x, A) <0} C £2.
We denote by («) an extension off (u), u > 12, into (—oo, 72) in such a way thag(u) € C1(R1) andg(u) is
decreasing. Let
feu) =0 —1a,) f @) + 14,8 W),
where k=1ifxeS,1s=0if x ¢ S.
Consider the following problem

inf{Je (u), u € H3($2)}, 3.1)
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where
1 2 -
Jg(u)=§/(|Du| +uGyu)—/F(x,u),
2 2

andF(x,u) = [y f(x,7)dT.
Let u = k(v) be the inverse function of = g(u). Let i, be a minimizer of (3.1)p, = G, i.. Then,i, is
uniformly bounded and, is bounded inW?7(£2) for any p > 1. Thus we have

U — v, inCY(Q),

foranyo € (0, 1). Similar to Lemmas 2.2 and 2.3, we have

Lemma 3.1.
k), uniformly in any compact subset oft(Ay);
itg — { hy(v), uniformly in any compact subsetfof: 0 < v(x) < ap} N (§2 \ Ap);
h_(v), uniformly in any compact subsetfof: v(x) > ap} N (£2 \ Ap),

Lemma 3.2.
m{x: x € 2\ Ag, (x) = o, ile(x) ¢ (h—(ct0) — 0, h—(c0) +8) U (hy(ct0) — 0, hy(0) +6)} — 0
ase — 0, for any6 > 0.
The proofs of Lemmas 3.1 and 3.2 are exactly the same as those of Lemmas 2.2 and 2.3, and thus we omit them.
Define
k(x,v) = (L= 14,))h(v) + L4, k(v).

Then, from Lemmas 3.1 and 3.2, we have

Lemma 3.3.v satisfies

{ —Av+yv € [8k(x,v+0),8k(x,v—0)], ins,

3.2
v=0, onoas2. (32)

For each fixed, k(x, v) is decreasing im, thus it is easy to see that the solution of (3.2) is unique. Now we are
ready to prove the following result:
Proposition 3.4.Suppose that € (8o, 8). Letii, be a minimizer of3.1), v, = 8Gyit. Then

ile — hy(v), uniformly in any compact subset &f,

andi, — v in C17(£2), wherev is the solution of1.6).
Proof. First we prove thai is the solution of (1.6). Because the solution of (3.2) is unique, to prove thetisfies
(1.6), we only need to prove that the solutionf (1.6) also satisfies (3.2). .

Sinces € (g, §), we know the solution of (1.6) satisfies maxg v(x) € (xo, f(12)). Thus,k(x, v) = k(v) =

h,(v) if x € Ag. On the other hand; < ag if x € 2\ Ag. Thusk(x, v) = h(v) = h, (v) if x € 2\ Ag. Hencep
is the solution of (3.2) and

{x1 v(x) = a0} N2\ Ag) =0.
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In view of Lemma 3.1, to prove Proposition 3.4, it remains to prove that forgryd Ag,
ite = hy(v), uniformlyin Bg,2(xo).

The proof of this claim is similar to that in Lemma 2.2. The only change here is that we need to use that minimizer
of the following problem to contral,:

2
inf{% / |Du|? — / (F(x,u) — vou): u € H'(B,(x0)), u=C on aBn(xo)}, (3.3)

Bn(XO) Bn(xo)

wherevg € (0, ap) is a constant
It is easy to check that the minimizar, of (3.3) satisfiesw, — hy (vo) uniformly in B;,2(xg). Noting that

Vs (x) < ap for anyx € 944, we can now prove thatk, — i (v), uniformly in Bg/2(xo) in exactly the same way
asinLemma2.2. O

The following result gives the asymptotic behaviour of the minimizer of (3.1) near the boundary.
Proposition 3.5.Let i, be the minimizer of3.1) (or (1.3)). LetU.(y) = it (ey 4+ x0), x0 € 352, thenU,(y) — U(y)

ase — 0in C%C(Ri’) (after suitably translating and rotating the coordinate systgrasdU is the unique solution
of

—AU = f(U), in RY,
0< U <hy(0), in RY, (3.4)
U=0, onxy =0, '

Ux', xy) — hy(0), asxy — oo, uniformly forx’ e RN 1.

Proof. In fact, sinceU, satisfies
—AUg = f(Ug) — ve(ey + x0),
U, is bounded inL®> andu, (ey + x0) — 0 ase — 0 uniformly for bounded, we see that
Us() > U in Cag(RY),
ase — 0, andU (y) satisfies
{—AU: f), inRY,
U=0, onxy =0.

Now we proveU (x’, xy) — h4(0), asxy — +oo, uniformly for x’ € RN=1. To prove this, we only need to
prove that for any > 0 small, there exist®y > 0 large, such that

|ite (x + eRv) — h(0)] <, (3.5)

forall x € 982, R > Ro, ¢ € (0, eg), wherev is the unit inward normal 02 atx, ¢g > 0 is a small constant
depending orRr.
For anyx € 982, letx, = x + e Rv. Consider the following problem:

2
inf{% / |Dw|? — / (F(w) — nw): w e H(Ber(x:)), w=C on aBgR(xg)}, (3.6)
Bep(xe) Bep(xe)

where|n| > 0 is a small constant and is a constant.
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Letw(y) = w(eRy + x¢). Then (3.6) becomes

. 1
mf{ﬁ / |Dw|? — / (F(w) —nw): w e HY(B1(0)), w=C,on 831(0)}. (3.7)
B1(0) B1(0)
Let wg be the minimizer of (3.7). Then there iskg > 0 large, such that
lwr(y) —hy ()| <t
forall R > Ro, y € B1/2(0). Thus, the minimizeiv, of (3.6) satisfies
|We (y) — ()] < 7, (3.8)

forall R > Ro, y € Beg/2(xe).
Now for eachR > Rg, we chooseg > 0 small, such thatR < 6 for ¢ € (0, eg), whered > 0 is a suitably
small constant. Lei, — be the minimizer of

&

2
inf{ 5 / |Dw|? — / (F(w) — qw): w € HY(Ber(xe)), w=C on aBgR(xg)}, (3.9)
Bep(xe) Bep(xe)

and letw; 4 be the minimizer of

2
inf{% / |Dw|? — / (F(w)—l—r_]w):weHl(BgR(xg)),E:—(_?,OHSBgR(xg)}, (3.10)
Bep(xe) Bep(xe)

whereq; > 0 is a small constant and > 0 is a large constant. Similar to the proof of Lemma 2.2, we know that if
6 > 0 is suitably small, then

We— <Ug < Wey, VYyEBersa(xe).

On the other hand, it follows from (3.8) that

|We,+ — hy (=), [We,— —hy ()| < 7.

Thus (3.5) follows.
It remains to prove that & U < 44(0),in Rﬂ‘r’. For anyn > 0 small, we claim that

—n<itg(x) <hp(0)+n, Vxe{xeR:dx, 08)<Re}. (3.11)

LetS; = {x: us(x) > hy(0) +n, d(x,982) < Re}. By (3.5), we know thas, N {x: d(x, 32) = Re} = . Define
we=u, if x €2\ Se, we =h(0)+nif x €S,. Thenu, — w, € Hol(.Q). Thus we have

’

0< Je(ws) — Je(ue)
< /(F(us) — F(h+(0) +n)) + 8/(u8 —we)Gyues + 2 /(us —we)Gy (Up — W)

2
Se Se Se
< /(F(Ms) — F(h4(0) + 1)) +81Gyuelre=s,) /(ug — We)
Se Se
8
+ |Gy(”£ - w8)|Loo(_Q)§ /(us - ws)- (312)

Se

Becaus&’, u, is small near the boundary 6f andS, C {x: d(x,352) < 7'}, we see

|GVM8|L°°(S5) < T(8)7
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wherez (¢) — 0 ase — 0. On the other hand, we have

|Gy (tte = we)| oo ) < ltte — welLr(2) < Cm(Se).

Thus,
0< Je(we) — Je(ue) < /(F(us) - F(h+(0) + 77)) + 7" (¢) /(146 — We), (3.13)
Se Se
wheretr”(¢) — 0 ase — 0.
But
h+(0)+n

F(hy(©) + 1) — Flup) = / F(s)ds > — F (he0) + 1) (e — (h+(0) + ).

Ug

for anyu, > h4(0) + n. Thus we obtain from (3.13) that

=@+ 1) [ (e = (140 +0) <) [ (e = (120 + ).
Se

Se

ThusS, = @. Thusu, < h(0) + n. Similarly, u, > —n if d(x, 3£2) < Re. Thus we have proved (3.11). Clearly,
0< U < h4(0)in RY follows from (3.11). O

Remark 3.6.The solution of (3.4) is unique and is a functiongf only. See [7].
Proposition 3.7.Suppose that € (89, 8). Letii, be a minimizer of3.1). Thenu, is a local minimizer of1.4).
Proof. We only need to prove

f(ezwwz +8¢G ) — / [ i) > Co/fpz, Vo € HJ(2),
2 2 2
for somecg > 0. But

f (£%1Dgl? + 890G, ) — / [ g > / &%|Dg|? — / f'Ge)e?,
2 2 2 2
so the claim follows if we can prove

2 pol2 — 1em N2
inf Jo #1D¢! fzﬂ Sy _, e > 0. (3.14)
peHH(R), p£0 Jaw
Let ¢, is a minimizer of (3.14). We may choogeg such thaty, > 0 and maxco ¢(x) = 1.
Suppose thatt, — u < 0. Letx, be a maximum point of.. Suppose thad (x¢, 9§2)/e — +o00 ase — 0.
Then|ug(xe) — hy(v(xe))| is small. As a resultf’ (i, (x.)) < —co < 0. Since

—Age — f/(ﬁs)(ﬂe = UeQs,

we see that f'(i1. (x¢)) < ue — 0ase — 0. Thisis impossible. So we have proved thiat., 952)/¢ — ¢ < +o0.
Let g (y) = g (ey + X¢), Wherex, € 382 is the point such that, — x.| = d(x¢, 32). Theng, is bounded in
L andg, ((xe — x.)/e) = 1. Moreovergp, satisfies

—Age — f,(l/_ls(gy +i£))(/_7s = e Qe-
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Thus, in view of the boundedness@f, we may assume up to a subsequenceghat ¢ in C%C(Rf) andg is a
bounded nontrivial solution of

{—A¢— f/(WU)@=up, inRY,
@=0, onRN-1,

whereU is the solution of (3.4). This is impossible. See the proof of Lemma 4.2 in [7], or the proof of Proposition 2
in[8]. O

Proof of Theorem 1.3. Theorem 1.3 follows from Propositions 3.4 and 3.7
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