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Abstract

This paper applies the method of Harris’s convergence theorem for additive particle systems to a stochastic PDE t
as the limit of long range contact processes. This is used to study the uniqueness of a translation invariant stationary d
and its domain of attraction.
 2004 Elsevier SAS. All rights reserved.

Résumé

On applique la méthode conduisant au théorème de convergence de Harris pour les systèmes de particules additifs à
EDP stochastique qui apparaît comme limite d’un processus de contact à longue portée. On étudie ainsi l’unicité de
stationnaire invariante par translation et son domaine d’attraction.
 2004 Elsevier SAS. All rights reserved.

1. Introduction and statement of results

We consider non-negative solutions of the one-dimensional stochastic PDE

∂tu = ∂xxu + θu − u2 + √
2udW. (1)

HereW is a space–time white noise on[0,∞) × R. By linear scaling we have reduced the equation to a single
rameterθ . The aim is to show that, whenθ is sufficiently large, there is exactly one non-zero, translation invar
stationary distribution and to give a sufficient condition to be in its domain of attraction.

* Corresponding author.
E-mail address:tribe@maths.warwick.ac.uk (R. Tribe).
0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
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1.1. Background

The deterministic part of (1) is the KPP equation (also known as the Fisher or Kolmogorov equation
in modelling travelling wave phenomena. The form of the noise term arises in high density limits of bra
particle systems, as in Dawson–Watanabe processes. Solutions to (1) itself arise as limits of scaled lo
contact processes (see Mueller and Tribe [7,8]). The solutions share many of the properties of the contac
(or its discrete time analogue oriented percolation), in particular the following phase transition. We writeu(t) = 0
whenu(t, x) = 0 for all x ∈ R. In [7] it is shown that there exists a critical value of the parameterθc > 0 such that,
for any solutionu started from a compactly supported non-zero initial condition, ifθ < θc thenu(t) = 0 for large
t with probability one, and ifθ > θc there is a strictly positive probability thatu(t) is non-zero for allt .

As for the contact process or oriented percolation, solutions to (1) possess a self duality relation. In [5]
uses a duality relation for a class of particle systems onZ

d , which include long range contact processes, to st
their ergodic behaviour. Our interest was to try to implement this use of duality in the stochastic PDE setting. Th
approach of Harris, sketched in Section 1.3, does carry over and the main interest of this paper is the meth
in this PDE setting for the various technical estimates needed. The method of proof relies totally on the
relation, but the result acts as a guide for intuition about related equations for which no duality is available.

1.2. Self duality

A suitable state space for solutions is the setC+
exp of non-negative continuous functions with slower than ex

nential growth, defined, as a subset of the space of non-negative continuous functionC+, by

C+
exp= {

f ∈ C+: ‖f ‖λ < ∞ for all λ > 0
}

where‖f ‖λ = sup
x∈R

e−λ|x||f (x)|.

Equip C+
exp with the topology generated by the norms‖f ‖λ for λ > 0. It is standard to show the existence

solutions, with continuous paths inC+
exp, started from any random initial condition inC+

exp (see the techniques o
Shiga [10]). Throughout this paper the results refer to such solutions. Uniqueness in law holds and the laws fo
a Feller Markov family (see Theorem 2.2 of Tribe [11]). We shall writePf andEf when we wish to indicate tha
we are referring to a solution with an initial conditionf .

The self duality relation for (1) is as follows. Letu andv be independent solutions to (1) with initial conditio
u(0) ∈ C+

exp andv(0) ∈ C+
c , the space of non-negative continuous functions of compact support. Write(f, g) for

the integral
∫

R
f (x)g(x) dx, when this is well defined. Self duality is the identity, for 0� s � t ,

E
[
e−(u(t),v(0))

] = E
[
e−(u(s),v(t−s))

] = E
[
e−(u(0),v(t))

]
. (2)

This identity fits into the framework of Markov process duality and can be established along the standa
described in Ethier and Kurtz [4, Section 4.4]. The main steps are as follows: if we define

H(f,g) = e−(f,g)
(
(f, g2) + (g2, f ) − (f, ∂xxg) − θ(f, g)

)
then by Ito’s formula we have that e−(u(t),g) − ∫ t

0 H(u(s), g) ds is a local martingale. Assuming sufficient integ
bility we deduce that

d

dt
E

[
e−(u(t),g)

] = E
[
H(u(t), g)

]
.

Similarly d
dt

E[e−(v(t),f)] = E[H(v(t), f )]. Using integration by parts we haveH(f,g) = H(g,f ), given enough
smoothness and when one of the functions has compact support. The duality identity thenfollows formally, since
we should have

d
E

[
e−(u(s),v(t−s))

] = 0.

ds
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To carry this argument through one needs to smooth the solutions to allow the integration by parts and al
that there is sufficient integrability. See Horridge [6, Proposition 3.4.1] for the details (or see similar smooth
arguments used to establish duality relations in, for example, Athreya and Tribe [1]).

1.3. The main result

The idea in Harris’s argument is to lett → ∞ in the duality relation (2). The branching noise is well kno
(see Section 2) to maintain the compact support of a solutionv started atg ∈ C+

c . Define the death timeτ =
inf{t : v(t) = 0}. Then from the self duality relation (2) we have

E
[
e−(u(t),g)

] = E
[
e−(u(0),v(t))

]
� Pg[τ � t]

since(u(0), v(t)) = 0 on{τ � t}. Letting t → ∞ we deduce

lim inf
t→∞ E

[
e−(u(t),g)

]
� Pg[τ < ∞]. (3)

When θ < θc we know thatPg[τ < ∞] = 1 and thus any solution suffers local extinction, that is converge
probability to zero on any compact region. In particularthere can be no non-zero stationary distributions.

Whenθ > θc the right-hand side of (3) is non-zero. The main step in Harris’s argument is to find a class of initi
conditionsu(0) for which the complementary inequality to (3) holds, that is when

lim
t→∞E

[
e−(u(t),g)

] = Pg[τ < ∞]. (4)

The method used to show that this identity holds is to show that on the set{τ = ∞} the solutionv(t) grows,
in that (v(t),1) → ∞, and to use this to force(u(0), v(t)) → ∞. The convergence of the Laplace function
for all compactly supported test functions, is equivalent to convergence in distribution for random Rado
sures onR with the topology of vague convergence (which is also equivalent to convergence in distribu
((u(t), g1), . . . , (u(t), gn)) for any gi ∈ C+

c andn ∈ N .) Thus when (4) holds, it implies thatu(t) converges in
distribution and that the limit does not depend onu(0). The class ofu(0) for which this will hold will contain all
translation invariantu(0) satisfyingP [u(0) = 0] = 0. This will then establish the main result of the paper, wh
we state here. We use(Tt : t � 0) to denote the heat semigroup.

Theorem 1. Suppose thatθ > θc. The Laplace functional∫
e−(f,g)µ(df ) = Pg[τ < ∞], for g ∈ C+

c , (5)

characterizes a translation invariant measureµ on C+
exp that is a stationary distribution for(1). It is the unique

translation invariant stationary distribution satisfyingµ{f �= 0} = 1.
If a measureν onC+

exp satisfies, for somet0 > 0 andK < ∞,

lim
δ→0

ν
{
f : Tt0(f ∧ K)(x) < δ

} = 0, uniformly overx ∈ R (6)

thenν is in the domain of attraction ofµ; in other words ifu is a solution to(1) with initial law ν then(the law of)
u(t) converges in distribution toµ.

Remarks. (1) As a consequence of (6), adeterministicinitial conditionf ∈ C+
exp is in the domain ofµ whenever

Tt0(f ∧ K) is bounded away from zero, for somet0 > 0 andK < ∞. The cut-offf ∧ K is natural since the
non-linearity−u2 brings down arbitrarily large initial conditions in finite time.

(2) The hypothesis (6) is actually independent of the choice oft0 > 0 andK ∈ (0,∞). Indeed the independenc
of K follows from the inequalities

K
Tt (f ∧ L) � Tt (f ∧ K) � Tt (f ∧ L) whenever 0< K < L.
L
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To see that it is independent oft we fix 0< s < t . ThenTt (f ) � (s/t)1/2Ts(f ) shows that if the hypothesis hold
for s it will also hold for t . Conversely suppose it holds fort . Then, givenε > 0, there existsδ > 0 and sets
Ωx ⊆ C+

exp with measureν(Ωx) � 1 − ε so thatTt (f ∧ K)(x) � δ for f ∈ Ωx . ChoosingL = L(K, δ) large we
have, writingχ[a,b] for the indicator of an interval,

Tt

(
(f ∧ K)χ[x−L,x+L]

)
(x) � δ

2
for f ∈ Ωx.

Comparing the Brownian densities ats andt over the interval[−L,L] we find, forf ∈ Ωx ,

Ts(f ∧ K)(x) � Ts

(
(f ∧ K)χ[x−L,x+L]

)
(x) �

√
t

s
exp

(
L2

4t
− L2

4s

)
Tt

(
(f ∧ K)χ[x−L,x+L]

)
(x)

�
√

t

s
exp

(
L2

4t
− L2

4s

)
δ

2

which shows the hypothesis will hold fors as well.
(3) An earlier, somewhat weaker, version of this result was contained in the Warwick PhD Thesis [6], to

we refer for various technical details.

2. Preliminary results

A comparison argument will allow us to obtain estimates for solutions to (1) by studying the equation

∂t ū = ∂xxū + θū + √
2ū dW. (7)

Indeed, givenf ∈ C+
exp, we may construct solutionsu andū, both with initial conditionf and with respect to th

same white noise, so that they are coupled to satisfyu(t, x) � ū(t, x) for all t, x, almost surely. See Mueller an
Tribe [7, Lemma 2.1.4] for some details. As the noise coefficient is non-Lipschitz, and we do not know w
pathwise uniqueness holds, we cannot assert that any two solutions driven by the same noise will sa
coupling. But since uniqueness in law holds it will be sufficient for us to obtain one pair of coupled solution
and similar couplings were used in [7], so in this paper we omit the detailed proofs of these constructio
merely sketch the main ideas. First approximate by an equation with Lipschitz coefficients. For this approx
standard comparison theorems (see Donati-Martin and Pardoux [2, Theorem 2.1]) imply that the pair of s
are coupled. Checking tightness, one extracts a convergent subsequence and the limit is the desired coup
solutions to the original equation.

The solutions to (7) are the densities of Dawson–Watanabe processes with constant mass creationθ and many
properties are known. We will mainly refer to the survey by Perkins [9] for the properties we need. In par
(see [11, Lemma 2.1]) solutions̄u started fromf ∈ C+

c retain compact support at all timest � 0. The comparison
shows this also holds for solutionsu to (1).

2.1. Death estimates

The process̄u may die out in finite time (see [9, II.5.3]) and the exact probability of this is known: for
f ∈ C+

exp satisfying(f,1) < ∞,

Pf

[
(ū(t),1) = 0

] = exp

(−θ(f,1)

1− e−θt

)
. (8)

More generally there is an exact formula for the probability thatū is zero on an interval[a, b]:
Pf

[
(ū(t), χ[a,b]) = 0

] = exp
(−(f,U

a,b
t )

)
, (9)
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a,b
t = limλ↑∞ U

λ,a,b
t andU

λ,a,b
t is the unique non-negative solution to the PDE{

∂tu = ∂xxu + θu − u2 for x ∈ R andt � 0,

u = λχ[a,b] whent = 0.

It is known (see [9, III.5.11]) thatUa,b
t (x) is bounded and integrable. By the comparisonu � ū, the formulae (8),

(9) hold as lower bounds for the processu.
We also need a death estimate that exploits the non-linearity−u2 in (1). We claim that, for anyt > 0 there exists

p(θ, t) > 0 so that

Pf

[
u(t) = 0

]
� p(θ, t) > 0 for all f ∈ C+

c supported in[0,1]. (10)

The point is that the lower bound on the death probability depends only on the sizeof the support of the initia
conditionf . This is possible because the−u2 term in (1) can bring down infinite initial conditions in finite time.
By scaling and translation invariance the specific choice of the interval[0,1] is irrelevant. To prove (10) we argu
as follows:

Pf

[
u(2t) = 0

] = Ef

[
Pu(t)[u(t) = 0]] by the Markov property,

� Ef

[
Pu(t)[ū(t) = 0]] by the comparisonu � ū,

= Ef

[
exp

(
− θ

1− e−θt
(u(t),1)

)]
by (8),

= E θ

1−e−θt

[
exp

(−(u(t), f )
)]

by self duality,

� P θ

1−e−θt

[(
u(t),χ[0,1]

) = 0
]

sincef is supported in[0,1],
� P θ

1−e−θt

[(
ū(t), χ[0,1]

) = 0
]

by the comparisonu � ū,

= exp

(
− θ

1− e−θt
(U

0,1
t ,1)

)
:= p(θ,2t) by (9).

Above we have written θ
1−e−θt for the constant function with this value.

2.2. Moments

We quote from Tribe [11] two simple moment estimates for the solutionsu to (1) andū to (7). Lemma 3.2 from
[11] implies, for anyp > 0 andT ,K < ∞,

Ef

[|u(t, x)|p]
� Ef

[|ū(t, x)|p]
� C(p, θ,T ,K) for x ∈ R, t � T andf � K, (11)

and the argument from Lemma 3.4 in [11] implies, for anyp � 2 andT , K < ∞,

Ef

[∣∣u(t, y) − u(t, x)
∣∣p]

� C(p, θ,T ,K)|y − x|(p/2)−1 for t � T , |y − x| � 1 andf � K.

By Levy’s chaining argument that obtains a modulus of continuity from increment moments, one can deduce
for a fixedx ∈ R there exists a random
(x, t) > 0 so that∣∣u(t, x) − u(t, y)

∣∣ � |x − y|1/3 for all y ∈ [x − 
,x + 
], almost surely, (12)

and thatPf [
(x, t) < δ] → 0 asδ → 0, uniformly overx ∈ R, t � T andf � K. (We do not need the be
modulus of continuity here, which would be 1/2− ε.)

We also need simple estimates on the first moment. WriteT θ
t f = eθtTtf for the heat semigroup with exponent

growth. The Green’s function representation for the solution to (1) implies

Ef [u(t, x)] = T θ
t f (x) −

t∫
Ef

[
T θ

t−s(u
2
s )(x)

]
ds. (13)
0
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Discarding the second term we have the upper boundEf [u(t, x)] � T θ
t f (x). To get a lower bound on the firs

moment from (13) we need an upper bound onEf [u2(t, x)]. We use the comparisonu � ū and second momen
of the Dawson–Watanabe processū which are known explicitly; indeed wheng � 0 we have (see [9, II.5.2.(b)]):

Ef

[
(ū(t), g)2] = (T θ

t f, g)2 +
t∫

0

(
T θ

t−sf, (T θ
s g)2)ds. (14)

Suppose thatf � K and that(g,1) = 1, so that(T θ
s f, g) � Keθs andT θ

s g(x) � eθs(2πs)−1/2. Using these esti
mates in (14) we obtain

Ef

[
(ū(t), g)2] � (T θ

t f, g)

(
Keθt +

t∫
0

eθs(2πs)−1/2 ds

)
� (T θ

t f, g)eθt (K + t1/2).

In particular we see thatEf [u2(t, x)] � Ef [ū2(t, x)] � eθt (K + t1/2)T θ
t f (x). Substituting this into (13) we obtai(

1− (Kt + t3/2)eθt
)
T θ

t f (x) � Ef

[
u(t, x)

]
� T θ

t f (x). (15)

In particular, whent is small, the first moment is well approximated by eθtTtf (x).

2.3. Mixing properties

We want to approximate solutions to (1) by solutions to the same equation over large finite interva
Dirichlet boundary conditions. Fixx0, L > 0 and the deterministic initial conditionf and consider solutionsuL,x0

to 


∂tu = ∂xxu + θu − u2 + √
2udW for |x − x0| � L andt � 0,

u = 0 for x = x0 ± L andt � 0,

u = f for |x − x0| � L andt = 0.

(16)

We can construct a solutionsuL,x0 coupled to a solutionu of (1) so thatuL,x0(t, x) � u(t, x) for all t � 0 and
x ∈ [x0 − L,x0 + L], almost surely. The noise used foruL,x0 is the restriction of the noise used foru to the
interval [x0 − L,x0 + L]. In Section 3.3 we need such a construction for countably many solutionsuL,xi for
i = 1,2, . . . all simultaneously coupled below a solutionu to (1). This is also possible by the same techniq
(see [7, Lemma 2.1.5]). Two solutionsuL,xi anduL,xj will be independent provided that|xi − xj | � 2L. This is
intuitive since they are driven by independent parts of the noise, and follows rigorously since it holds at each st
of the approximation scheme used to construct the couplings. This independence can then be used to e
mixing property since, whenL is large, the solutionuL,x0(t, x0) should be close to the solutionu(t, x0) of the
original equation (1) on the whole line. The following lemma establishes this closeness.

Lemma 2. Letu anduL,x0 be the coupled solutions to(1) and(16)constructed as above with the same white no
and the same initial conditionf . Then there existc1 = c1(θ) > 0 so that

Ef

[∣∣u(t, x0) − uL,x0(t, x0)
∣∣] � C(θ,T ,K)exp(−c1L) for x0 ∈ R, t � T andf � K.

Proof. Without loss of generality we may takex0 = 0. Let Gt(x, y) (respectivelyG(L)
t (x, y)) be the Green’s

function for the equation∂tu = 
u + θu on the whole space (respectively on[−L,L] with Dirichlet boundary
conditions). Subtracting the two Green’s function representations foru anduL,0 we obtain, forx ∈ (−L,L) and
t � T ,
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t
t

0� u(t, x) − uL,0(t, x)

=
∫

(Gt(x, y) − G
(L)
t (x, y))f (y) dy +

t∫
0

∫ (
G

(L)
t−s(x, y)

(
uL,0(s, y)

)2 − Gt−s(x, y)u2(s, y)
)
dy ds

+
t∫

0

∫ (
Gt−s(x, y)

√
2u(s, y) − G

(L)
t−s(x, y)

√
2uL,0(s, y)

)
W(dy,ds)

�
∫ (

Gt(x, y) − G
(L)
t (x, y)

)
f (y) dy +

t∫
0

∫ (
G

(L)
t−s(x, y) − Gt−s(x, y)

)
u2(s, y) dy ds

+
t∫

0

∫ (
Gt−s(x, y)

√
2u(s, y) − G

(L)
t−s(x, y)

√
2uL,0(s, y)

)
W(dy,ds).

Taking expectations, and using the moment bounds (11), we obtain

E
[∣∣u(t, x) − uL,0(t, x)

∣∣]
�

∫ (
Gt(x, y) − G

(L)
t (x, y)

)
f (y) dy + C(θ,T ,K)

t∫
0

∫ (
Gt−s(x, y) − G

(L)
t−s(x, y)

)
dy ds.

Now we choosex = 0. The difference in the Green’s functions
∫

Gt(0, y) − G
(L)
t (0, y) dy can be bounded, fo

example, by the Brownian probability eθtP0[Bs exits[−L,L] before time 2t]. Straightforward estimates now giv
the required result. �

3. The main argument

3.1. Consequences of the uniform non-degeneracy hypothesis (6)

The following lemma converts the hypothesis (6) into the form we shall need.

Lemma 3. Supposeν satisfies the hypothesis(6). Then there existst1 = t1(θ) > 0 such that

lim
ρ↓0

ν
{
f : Pf ∧1[u(t1, x) > ρ] < ρ

} = 0 uniformly inx ∈ R. (17)

Proof. By the second remark after the statement of Theorem 1, we may assume in the hypothesis (6) thaK = 1
and also choose the value oft0. We choose to taket0 = t1(θ) where(t1 + t

3/2
1 )eθt1 = 1/2. Then, by the momen

estimate from (15), we have

1

2
eθt1Tt1(f ∧ 1)(x) � Ef ∧1

[
u(t1, x)

]
� eθt1Tt1(f ∧ 1)(x).

We now use a simple estimate derived from the first and second moments. For a non-negative variableZ we have

E[Z] � ρ + E[Zχ{Z>ρ}] � ρ + (
E[Z2])1/2(

P [Z > ρ])1/2
.

Rearranging and takingρ = E[Z]/2 gives

P

[
Z >

1
E[Z]

]
� (E[Z])2

2 .

2 4E[Z ]
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Applying this toZ = u(t1, x), and using the first moment bounds above and the second moment bounds fro
we obtain forρ � 1

4eθt1Tt1(f ∧ 1)(x) � 1
2Ef ∧1[u(t1, x)]

Pf ∧1
[
u(t1, x) > ρ

]
� Pf ∧1

[
u(t1, x) >

1

2
Ef∧1

[
u(t1, x)

]]
� c2

(
Tt1(f ∧ 1)

)2
(x)

for somec2 = c2(θ, t1) > 0. Hence

ν
{
f : Pf ∧1

[
u(t1, x) > ρ

]
< ρ

}
� ν

{
f : c2

(
Tt1(f ∧ 1)

)2
(x) < ρ

} + ν

{
f :

1

4
eθt1Tt1(f ∧ 1)(x) � ρ

}

which converges to zero, uniformly inx, asρ → 0 by the hypothesis (6).�
3.2. Growth conditioned on non-extinction

We need to show that, conditioned on non-extinction, a solution started from finiteinitial mass has growing
total mass. The difficulty is to find an argument that works for allθ > θc, since the critical valueθc is defined
in a non-explicit way. Although one expects linear growth of the total mass it will be enough for us to sh
following weak estimate.

Lemma 4. Let v be a solution of(1) with initial conditiong ∈ C+
c . For eachV > 0,

lim
t→∞Pg

[
0 < (v(t),1) � V

] = 0. (18)

Moreover there existsc3 = c3(θ) < ∞ so that for anyδ ∈ (0,1] andV > 0

Pg

[
0 <

∑
k∈δZ

min

{ k+δ∫
k

v(t, x) dx, c3

}
� V

]
→ 0 ast → ∞. (19)

Indeed we may takec3(θ) = −1−e−θ

θ
logp(θ,1), wherep(θ, t) is from(10).

Remark. Using (18) in the self duality relation one can quickly show that the distribution of the solutionu(t),
started from any initial conditionf satisfyingf (x) � δ > 0 for all x ∈ R, will converge to the stationary distr
bution given by (5). The problem is that typically randominitial conditions of interest (in particular stationa
distributions) will have regions where they are zero and will not be bounded below. Thus we will need the
more detailed information on the growth given in the second part of the lemma.

Proof. We start by following the argument in the proof of Theorem 3.3 in Durrett [3]. Recall thatτ = inf{t : v(t) =
0} is the death time.Note that for eacht � 0 andV > 0,

Pg

[
τ ∈ (t, t + 1]] = Pg

[
v(t) �= 0 andv(t + 1) = 0

]
� Pg

[
0<

(
v(t),1

)
� V andv(t + 1) = 0

]
= Pg

[
v(t + 1) = 0 | 0 < (v(t),1) � V

]
Pg

[
0 < (v(t),1) � V

]
.

Using the Markov property and the death time estimate (8), we have

Pg

[
v(t + 1) = 0 | 0 < (v(t),1) � V

]
� exp

( −θV

1− e−θ

)
. (20)

Rearranging we find

Pg

[
0 <

(
v(t),1

)
� V

]
� exp

(
θV

−θ

)
Pg

[
τ ∈ (t, t + 1]].
1− e
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Letting t → ∞ shows the first part of the lemma. For the secondpart we use another coupling construction u
before in Lemma 2.1.7 of [7], which we briefly describe. Dawson–Watanabe processes are additive, in that the
of two independent solutions̄v1+ v̄2, started from initial conditionsg1 andg2 respectively, is a new solution starte
at g1 + g2. The solutions to(1) are super-additive in that the sum of two independent solutions is stochastica
larger than a solution. This is intuitive from the derivation of solutions to (1) as limits of particle systems
non-linearity−v2 comes from a death term due to two particles colliding. Summing two independent sol
of say red and blue particles, allows deaths due to collisions between particles of the same colour, but ignores
deaths due to collisions between one particle of each colour, and is therefore healthier than the true soluti
all collisions lead to deaths. Mathematicallywe can construct a coupling as follows. Supposeg ∈ C+

c can be written
asg = ∑

k gk for gk ∈ C+
c . Then we can find independent solutionsvk to (1), started atgk , and a further solutionu

started atg so thatv(t, x) �
∑

k vk(t, x) for all t, x, almost surely.
We use this coupling withgk = gχ[k,k+δ] whereδ ∈ (0,1] andk ∈ δZ. Using the estimates on the death pro

bilities in (8), (10), we have

Pg

[
v(1) = 0

]
�

∏
k

Pgk

[
v(1) = 0

]
�

∏
k

max
{
e
− θ

1−e−θ (gk,1)
, p(θ,1)

} = exp

(
− θ

1− e−θ

∑
k

(gk,1) ∧ c3

)
.

The second half of the lemma now follows by repeating the argument for the first part, but conditioning
event in (19) and using the above death estimate in place of (20).�
3.3. Key estimate

The tricks used below to obtain the main estimate follow, in the main, those from the account of Harris’s th
given in Chapter 3 of Durrett [3].

Takeu(t) a solution to (1) with an initial distributionν satisfying the hypothesis (6). The main estimate sh
that E[exp(−(u(t1), g))] will be small for certain good test functionsg. We fix ε > 0 and choose a number
parameter valuesρ, V , δ andL. They may make little sense until the main argument starts but we choose th
now so as to make clear their dependence only onε andθ . Moreover for notational simplicity we will not indicat
their dependence onθ .

Firstly, using Lemma 3, we chooseρ = ρ(ε) ∈ (0,1] so that

ν
{
f : Pf ∧1

[
u(t1, x) > ρ

]
< ρ

}
� ε for all x ∈ R, (21)

wheret1(θ) is chosen as in Lemma 3. Secondly, we chooseV = V (ε) � c4 ∨ 1 so that

exp(−c4ρ
2V ) � ε, (22)

wherec4 = 1−e−c3

c3
andc3 < ∞ is the value occurring in Lemma 4. Thirdly, using the moment bound (11) an

modulus of continuity (12), we have

Ef

[∣∣ inf
y∈[x,x+δ]u(t1, y) − u(t1, x)

∣∣] � Ef

[
u(t1, x)χ{
(t1,x)�δ}

] + δ1/3 � C
(
Pf [
 � δ])1/2 + δ1/3.

Therefore we may chooseδ = δ(ε) ∈ (0,1] so that

Ef

[∣∣ inf
y∈[x,x+δ]u(t1, y) − u(t1, x)

∣∣] � ε

2V
for x ∈ R andf � 1. (23)

Fourthly, using Lemma 2, we chooseL = L(ε) � 1 so that

Ef

[∣∣u(t1, x) − uL,x(t1, x)
∣∣] � ε

2V
for x ∈ R andf � 1, (24)

whereuL,x is the solution of the equation on the interval[x − L,x + L] with Dirichlet boundary conditions a
described before Lemma 2.

Finally we say that the test functiong is ε-goodif there exist intervals[xj , xj + δ], with xj ∈ δZ, that satisfy
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ume
(i) |xj+1 − xj | � 2L for eachj ,

(ii)
∑

j λj � V , whereλj is defined byλj = min{∫ xj +δ

xj
g(x) dx, c3}.

We now start the main estimate. Fix anε-goodg. By throwing out some intervals if necessary we may ass
thatλj > 0 and that

∑
j λj ∈ [V,2V ]. Using the fact that we can couple a solution started atf above a solution

started atf ∧ 1, we have

E
[
exp

(−(u(t1), g)
)]

�
∫

C+
exp

ν(df )Ef

[
exp

(−(
u(t1), g

))]
�

∫
C+

exp

ν(df )Ef ∧1
[
exp

(−(
u(t1), g

))]

�
∫

C+
exp

ν(df )Ef ∧1

[
exp

(
−

∑
j

λj inf
y∈[xj ,xj +δ]u(t1, y)

)]

�
∫

C+
exp

ν(df )Ef ∧1

[
exp

(
−

∑
j

λju(t1, xj )

)]
+ Error1,

where, using|e−∑
aj − e−∑

bj | �
∑ |aj − bj |, we can bound|Error1| �

∑
j λj δ � ε by the choice (23) ofδ and

the fact that
∑

λj � 2V . We continue

∫
C+

exp

ν(df )Ef ∧1

[
exp

(
−

∑
j

λju(t1, xj )

)]
�

∫
C+

exp

ν(df )Ef∧1

[
exp

(
−

∑
j

λju
L,xj (t1, xj )

)]

=
∫

C+
exp

ν(df )
∏
j

Ef∧1
[
exp

(−λju
L,xj (t1, xj )

)]

�
∫

C+
exp

ν(df )
∏
j

Ef∧1
[
exp

(−λju(t1, xj )
)] + Error2.

The equality here comes from the fact that the solutionsuL,xj are independent overj . Using the inequality|∏i ai −∏
i bi | �

∑
i |ai − bi| whenai, bi ∈ [0,1], we can estimate the error term by|Error2| � ε by the choice (24) ofL.

Finally we use Hölder’s inequality, with
∑

j p−1
j = 1, and the choice (21) ofρ to estimate

∫
C+

exp

ν(df )
∏
j

Ef∧1
[
exp

(−λju(t1, xj )
)]

�
∏
j

( ∫
C+

exp

ν(df )
(
Ef ∧1

[
exp(−λju(t1, xj ))

])pj

)1/pj

�
∏
j

(
ε + (1− ρ + ρe−λjρ)pj

)1/pj

�
∏
j

(
ε + exp(−c4ρ

2λjpj )
)1/pj .

The final inequality here follows from

1− ρ + ρe−λj ρ � 1− ρ2 1− e−c3

λj = 1− c4ρ
2λj � exp(−c4ρ

2λj )

c3
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which holds since 1− z � e−z � 1− (1−e−K

K
)z whenz ∈ [0,K]. Choosingpj = (

∑
i λi )/λj we obtain

∏
j

(
ε + exp(−c4ρ

2pjλj )
)1/pj = ε + exp

(
−c4ρ

2
∑

i

λi

)
� ε + exp(−c4ρ

2V ) � 2ε

by the choice (22) ofV . Collecting these estimates we have, forε-goodg, that

E
[
exp

(−(u(t1), g)
)]

� 4ε. (25)

3.4. Completion of the proof of Theorem 1

Takeu(t) a solution to (1) with an initial distributionν satisfying the hypothesis (6). Letv(t) be an independen
solution started atg ∈ C+

c . Chooset1(θ) as in Lemma 3. Applying the duality relation (2) using the times = t1 we
have, fort > t1,

E
[
e−(u(t),g)

] = E
[
e−(u(t1),v(t−t1))

] = Pg[τ � t − t1] + E
[
e−(u(t1),v(t−t1))χ{v(t−t1) �=0}

]
= Pg[τ � t − t1] + E

[
e−(u(t1),v(t−t1))χ{v(t−t1) is ε-good}

]
+ E

[
e−(u(t1),v(t−t1))χ{0�=v(t−t1) is not ε-good}

]
. (26)

Using the main estimate (25) from the last subsection, the second term on the right-hand side is bounded bε. By
Lemma 4 we know that

Pg

[
0 <

∑
k∈δZ

min

{ k+δ∫
k

v(t, x) dx, c3

}
�

(
2L

δ
+ 1

)
V

]
→ 0 ast → ∞. (27)

This implies thatPg[0 �= v(t) is notε-good] → 0 as t → ∞. Indeed consider an infinite lattice of intervals
sizeδ, where the intervals are separated by 2L. There are 2L/δ disjoint lattices of this type and (27) ensures t
with high probability at least one of these lattices satisfy the conditions forv(t) to beε-good.

Letting t → ∞ in (26) we conclude that

lim
t→∞E

[
e−(u(t),g)

] = Pg[τ < ∞].
This shows that the distribution ofu(t) converges to a limiting distributionµ characterized by (5). Standard a
guments for Feller process imply thatµ is a stationary distribution. It satisfiesµ{f �= 0} > 0 sinceθ > θc and
is translation invariant sincePg[τ < ∞] is unchanged by shifts ofg. We now know that anyν satisfying the
hypothesis (6) is in the domain of attraction ofµ.

Suppose now thatν is any translation invariant stationary measure satisfyingν{f �= 0} = q > 0. Thenν̃(A) =
q−1ν(A∩{f �= 0}) defines another translation invariant stationary distribution. Moreoverν̃{f : Tt0(f ∧K)(x) < δ}
is independent ofx by translation invariance and converges to zero asδ ↓ 0 sinceν̃{f �= 0} = 1. Thusν̃ satisfies
the hypothesis (6) and hence must equalµ. In particular this shows thatµ{f �= 0} = 1 and that the set of translatio
invariant stationary measures is precisely{θµ+(1−θ)δ0: θ ∈ [0,1]}, whereδ0 is a point mass on the zero functio
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