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Abstract

We give an explicit formula for the Donsker delta function of a certain class of Lévy processes in the Lévy—Hida distribution
space. As an application we use the Donsker delta function to derive an explicit chaos expansion of local time for Lévy
processes, in terms of iterated integrals with respect to the associated compensated Poisson random measure.

0 2004 Elsevier SAS. All rights reserved.

Résumé

On donne une formule explicite pour la fonction delta de Donsker d'une classe de processus de Lévy dans I'espace de:
distributions de Lévy-Hid. A titre d’application on donne le développementchaos du temps local d’'un processus de Lévy,
sous la forme d'intégrales itérées de la mesure de Poisson compensée.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Let (¢) be a pure jump Lévy process without drift. It is known (see e.g. [3]) that under certain conditions on
the characteristic exponewt of n(-) thelocal time L;(x) = L;(x, w) of n(-) at the pointc € R up to timer exists
and the map

(x,w)— L;(x, w)
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belongs toL2(x x P) for all ¢, wherex is the Lebesgue measure @hand P is the probability law ofy(-),
defined on a measurable space, 7). Additional information about local time of Lévy processes can be found
e.g.in [3,4,18].

The main purpose of this paper is to give the explicit chaos expansidn(of in terms of iterated integrals
with respect to the associated compensated Poisson random m¥égtrdc). See Theorem 3.2.4.

To achieve this we first prove results of independent interest abotdhsker delta function 8, (n(r)) of n(t).
For a certain class of pure jump Lévy processes we showstiiatr)) exists as an element of the Lévy—Hida
stochastic distribution spacé&)* and we give the explicit representation

t

Sx(n() = %/epr (/ /(eﬁg —1)N(ds,d<) +t/(eik§ —1—ixc)v(dc) — i)\x) dh. (1.1)
R 0 R R

See Theorem 3.1.4. Based on a different approach the Donsker delta function for Lévy processes was define
in [12]. Contrary to the latter authors’ definition we obtain an explicit formula for the Donsker delta function in the
case of a special class of Lévy processes.

Further, we show that, (x) is related tos, (n(¢)) by the formula

T

Lr(x) =/5x (n())dt, (1.2)
0

just as in the Brownian motion case (Theorem 3.2.2).

Finally these results are applied to obtain the chaos expansibp(@f).

Our approach is inspired by the method in [8], where the chaos expansion of local time of fractional Brownian
motion is obtained. For the chaos expansion of local time of classical Brownian motion see [15].

2. Some concepts of a white noise analysis for Lévy processes

Here we briefly elaborate a framework for the paper, using concepts and results developed in [5,17,13].

A Lévy process can be considered a random walk in continuous time, that is a stochastic pngcessth
independent and stationary increments, starting at zero, i.8(0) = 0 a.e. The state space may be a general
topological group, but we confine ourselves to the real Badesvy processes can be characterized in distribution
by the famous Lévy—Khintchine formula, revealing the correspondence to infinitely divisible distributions. This
formula gives a closed form expression fhetcharacteristic function of Lévy processgs), i.e.

EEMD —exp(—1¥ (1)), reR, teRy, (2.1)

whereVY is the characteristic exponent, given by

1 .
U(A)=iar+ 50A2+/(1—e‘“ +iAs x(c|<1) v(dg)
R

for constants: € R ando > 0. The measure denotes the Lévy measure, which plays the role of governing the
jumps ofn(z). We recommend the books of [3] and [18] for general information about Lévy processes.

In this paper we will exclusively deal with pure jump Lévy processgs without drift. We assume thay(z) is
defined on the filtered probability space, F, P), (F:):»0 With F = F o, WhereF; is the completed filtration,
generated by the Lévy process.

Next we aim at recalling the construction of various spaces sfchastic test functions and stochastic
distributions, which are based on chaos expansions. In the sequel we adopt the notation in [9]. Let us define
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J to be the set of all multi-indices = («1, a2, ...), which have only finitely many non-zero values e Np.
Define Indexa) = maxi: «; # 0} and|a| =), o; for « € 7. Now we choose the Laguerre functions of oréer

denoted by{&}x>1, as a complete orthonormal systemIG(R ;) (for its definition see e.qg. [19]). Further denote
by (r;);>1 any orthonormal basis di?(v). Then define the bijective map

K:NxN->N; (i, )= j+0+j-20@+j—-1)/2 (2.2)
If k=«(i,j)fori, j € N, define the product
Sk, ¢) =& M)mj(s).

Let IndeXa) = j and|a| =m for « € 7 and introduce the functios®* as

® .
5®a((tl: S1)s---s (Ims §m)) = 5?0[1 QX Q® 8}' * ((tls S1)s---s (Ims §m))

=01(t1, 61) - '8l(tl)!1’ §a1) e '5j (ta1+---+a_/_1+1a §a1+»»»+a_/_1+l) T 8.1' (tm> Sm), (23)

where 8i®° := 1. Then we define thesymmetrized tensor product of the §;'s, denoted by5®“, to be the
symmetrization of the functioA®* with respect to the variable@s, ¢1), ..., (tn, ¢n). Using the symmetrized
tensor products, one constructs an orthogdraP) basis{ K (®)}qe7, given by

Ko@) =1 (6%%), aeJ. (2.4)
with

(e%e] t2
L(f) :=n!//...//f(t1, Clyennstny c)N(t1,dc1) ... N(dtn, dcp) (2.5)
0 R 0 R

for symmetric functiong’ € L2((x x v)"), Whereﬁ(ds, d¢)=N(ds,dc)—v(dg)A(ds) denotes the compensated
Poisson random measure associated witHere N (ds, d¢) is the Poisson random measure anstands for the
Lebesgue measure dd. Note that the isometrﬁ[lnz(f)] = ”!”f”izmxv)n) holds and that the orthogonality
relation’, (f) L I,,(g), n # m is valid for symmetricf, g (see [10]).

Hence eveny e L?(P) can be uniquely represented as

F= Z caKy, co €R, (2.6)
aed
where
IFIZ2p) = EPLFA1= ") ald] 2.7)
aeJ

with a! := aglap!... for @ = (a1, @2,...) € J. Let 0< p < 1. The stochastic test function spa@®), can be
characterized as the space of Al= Zaej ca Ky € L2(P) such that

115 =Y @) P (2N)* < 0o (2.8)
aeJ
forall g € R, where(2N)9% = (2- 1)7%1(2 - 2)9%2 .. . (2- m)9% , if Index(a) = m.
In the same manner the spac®_, of stochastic distributions can be described as the collection of all formal
expansiong’ = Zaej co Ky such that there existsgae R with

IFI2, _, = Z(a!)l_pcg(ZN)_"“ < 00. (2.9)
aed
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The seminormg| - ||,,,} naturally induce the projective topology @8), and the inductive topology ofS)_,.
The spacésS)_, becomes the dual @), by the action

(F.f)=_ aubya! (2.10)
aed
if F= Zaej ag Ky € (S)* and f = Zaej by Ky € (S). We set(S) = (S)p and(S)* = (S)—o. The spacdS)
respectively(S)* is a Lévy version of theHida test function space respectivelyHida distribution space (see
e.g. [7,9,11,16]). For generakQ p < 1 we have the following chain of sets
(8)1C(S)y C(S) CLAP) C(S)* C(8)—p C(S)-1.

One of the important properties ¢5)* is that it is rich enough to carrlyévy white noise. We recall its precise
definition. For the convenience of a simplified notation we chooserfoin (2.3) a certain orthonormal basis
of polynomials, which we now describe. For this reason we restrict the Lévy meagartulfill the following
integrability condition: For every > 0 there exists a > 0 such that

exp(Als|)v(ds) < oo. (2.11)
R\(—¢,e)
It follows from (2.11) that integrates all monomials of degree2. We definer; to be

mj(s) = s lj—1(s), (2.12)

Ij-1ll2¢1p)

where{l, }, >0 is the orthogonalization dfl, ¢, ¢?, ...} with respect to the inner product &f (vg) for vo(d¢) :=
c2v(d¢). Further condition (2.11) implies thatr) can be expressed as

t
n(t)z//gﬁ(ds,dg). (2.13)
0 R
Next define! € 7 by
1|1 forj=I,
€ (])_{O else. 1>1 (2.14)

Sinces®¢ = 8i(t,¢)=&mj (), if I =«(, j),n() in (2.13) can be rewritten as

t
n() = Zm/Sk(S)dS'KEK(kJ),
0

k>1

wherem = |52, Then differentiation of;(z) with respect to time, denoted b'y(t), in the (S)*-topology
yields

n (t)y=m Zék(f) - K e (2.15)

k>1
for all t, where&, (¢) are the Laguerre functions ard, j) the mapin (2.2). We call (t) Lévy white noise. A more
general definition, which comprisés(t), is thewhite noise of the Poisson random measu?e(t, ) e (S* ae.,
given by

N@to)= Y &®mm(s) Ketm. (2.16)
k,m>1
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TheLévy Wick product F o G of F(0) = }_,c 7 da Ko andG (o) = Zﬁej bgKg € (S)_1 is defined by

(FoG) @)= Y aabpKuip(®). (2.17)
a,8eT

This Wick product makes the spac&®1, (S), (S)*, (S)—1 topological algebras (see [5]). Later on we will utilize
the following interesting property of the Wick product, exposing its relation to It6—Skorohod integration (see [17]).
The relation is describéduoly the representation

//Y(t, g)ﬁ(ét, dg)= / / Y, ) 1%/ (t,¢)v(dg)dt, (2.18)
Ry R Ry R

where the left side defines the Skorohod integral of a randomifieRl; x R — R with respect to the compensated
Poisson random measure (which coincides with the corresponding Itd intedfél, &) is predictable). The right
hand side is in terms of aff)*-valued Bochner-integral with respect to the measusel (see Definition 3.11

in [17]). In the sequel we need the important tool of Ligey Hermite transform (see [13]). This transform enables
the application of methods of complex analysis, since it maps the alg8pra homomorphically into the algebra
of power series in infinitely many complex variablesieTdefinition of this transform is analogous to that in the
Gaussian case, which was first introduced in [18]s based on the expansion along the bd#g},c 7. Let
F(w) =), auKy(w) € (S)_1. Then theLévy Hermite transform of F, denoted byH F, is defined as

(HF)(2) =) aqz" €C, (2.19)

provided convergence holds, where= (z1, z2, ...) € CN (the space of all sequences of complex numbers) and
wherez® 1=z z5 ...z ... fora = (a1, a2, ...) € J with z? = 1. It can be shown that the sum in (2.19) converges

for some O< ¢, R < oo in the infinite-dimensional neighborhodg (R) in CN, defined by

Ug(R) = {(s;l, f2...0 €C ) g P@NT < RZ}. (2.20)
a#0

Furthermore, it can be verified that any element(d)_1 is uniquely characterized through itg-transform
(Theorem 2.3.8 in [13]). For example, the Hermite transformt g, ) is

(HK k) (2) = Zie(k, j)s 2= (21,22, -..)
and the Hermite transform (73]f(t) can be determined as

(H n 1)) (2) = Z Ec(DZick,1)-

k=1

Since’H is an algebra-homomorphism, we have

H(F ¢ G)(2) =H(F)(z) - H(G)(2). (2.21)

Relation (2.21) can be extended to Wick versions of complex analytical fungtjavisich have a Taylor expansion
aroundtg = H(F)(0) with real valued coefficients. It is an immediatonsequence of the characterization theorem
(Theorem 2.3.8 in [13]) that there exists a unidque (S)_1 such that

(HY)(z) = (g o H(F))(2). (2.22)
We setg®(F) = Y to indicate the Wick version of applied to F. As an example the Wick version of the
exponential function exp is given by

1
eXpO(F) — Z ;FOH

n=>0 "



558 S Mataramvura et al. / Ann. |. H. Poincaré — PR 40 (2004) 553-567

with F" = F o F ¢ --- o F (n-times). In conclusion we state tiskainrulein (S)*: Assume thaX : R — (S)* is
continuously differentiable. Further lgt: C — C be an entire function withf (R) c R and f°(X (z)) € (S)* for
all r. Then we have

d (o INO d . *
/X @) =D (X))o =X in(S)". (2.23)

3. The Donsker delta function of a pure jump Lévy process

In this section we investigate the local tinkg (x) of a certain class of pure jump Lévy processés, which
can be heuristically described by

T
LT(x)zfa(n(t)—x)dt, (3.1)
0
wheres (1) is theDirac delta function, which is approximated by

1 2 1 1,2

Pe.(u) = € 22 =—— | M7 dy, uek, 3.2
0= N R/ ’ (3:2)

with i = 4/—1. Formally, this implies

1 .

— i _ yu

8(u)_€|£n0Pg(u)_ m/e‘ dy. (3.3)
R

The justification for this heuristical line of reasoning is similar to that of the Gaussian case (see [2,6]). In the
following subsections we will make the above considerations rigorous, by showing thariHeer delta function

3(n(t) — x) of n(¢r) may be realized as a generalized Lévy functional . Furthermore we provide an explicit formula
for §(n(¢) — x). We also prove that the identity (3.1) makes sense in terms of a Bochner integral. To demonstrate
an application we use the Donsker delta function to derive a chaos expandigimofwith explicit kernels.

3.1. Anexplicit formula for the Donsker delta function
We proceed as in the Gaussian case (see [1]) to define the Donsker delta function.

Definition 3.1.1.Suppose thaX : 2 — R is a random variable and th&te (S)_1. The Donsker delta function of
X is a continuous functiof. (X) : R — (S)_1 such that

/h(y)ay(X)dyzh(X) (3.1.2)
R
for all measurable functior’s: R — R under the assumption that the integral convergésin ;.

As the main result of this subsection we will determine an explicit formula for the Donsker delta function in the
case of a certain class of pure jump Lévy processes. Fiamnon we limit ourselves to consider Lévy measures,
whose characteristic exponehtsatisfies the following condition: There exists & (0, 1) such that

lim (A" Rew (L) = o0, (3.1.2)

|A]— 00

where ReV is the real part ofv.
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Remark 3.1.2.Condition (3.1.2) entails the strong Feller property of the semigroup of our Lévy prg¢ess
implying that the probability law of;(¢) is absolutely continuous with respect to the Lebesgue measure. The
assumption covers e.g. the following Lévy proce&s of unbounded variation with Lévy measurggiven by

v(dg) = x0.1)(g)s~* ¥ dg,

where O< « < 1. We shall also emphasize that various other conditions of the type (3.1.2) are conceivable, as the
proof of Theorem 3.1.4 unveils.

The main theorem is preceded by the following lemma.

Lemma 3.1.3.Let A € C, t > 0, then

t
exp(An(1)) = exp’ (/ /(e*s —1)N(ds,d¢) + t/(eM —1—2¢) v(dg)). (3.1.3)
0 R

R

Proof. Define

Y(t) = eXp<An(t) —1 /(e*s —1-1x¢) v(dg)). (3.1.4)
R

Then It6’s formula shows that satisfies the stochastic differential equation

dY () =Y(r) /(e*? —DN@dt,dg); Y(©0) =1
R

By relation (2.18) the last equation can be rewritten as
d 3
EY@ =Y(t—)<>/(e“ -DN(@ o)vds); YO =1
R

With the help of the chain rule (2.23) on checks that the solution of the last equation is given by

t t
Y (1) = exp’ (/ /(e“ —1)N (@, )vds) dt) = exp’ (f /(e“ — 1N s, dg)). (3.1.5)
0 R 0 R

This solution is unique and if we compare (3 )Ylasd (3.1.5) we receive the desired formulal

Theorem 3.1.4 Assume that condition (3.1.2)holds. Then §,(n(¢)), i.e. the Donsker delta function of 5(r), exists
uniquely. Moreover §, (n()) takes the explicit form

t
8y(n(®) = %/exp<> (/ /(eﬁg —1)N(ds,d<) +t/(e”§ —1—iro)v(dg) — iky) dh.
R R

R 0

Proof. The proof is essentially based on the application of the Hermite transfbim(2.19) and the use of the
Fourier inversion formula.
To ease the notation we define
13

X, = X,(0) = / / (@ — DN (ds, d<)
0 R
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and

f) = exp(X, +t/(ei)‘§ —1—iic) v(dg)).
R
Further we set

g0, ) = (M) (),

where ¢ is the Wick version off. Thus according to relation (2.22) we can write
gh.2) = exp((Hx,xz) +1 / (€% —1—ikrg) v(dg))
R

— exp(HX) () — 1% (3)).

We subdivide the proof into several steps.
(i) We want to show thag(-, z) is an element of the Schwartz spaSéR). To this end we provide some
reasonable upper bound fg(-, 7). Let 0< ¢ < T. Since

¢ t
X, = //(e’*g—l)ﬁ(ds,dg) (Zés)//(ei“—l)oﬁ(s, ) v(ds)ds
0 R 0 R

t
A [ [ @ =10 Y 6u05)m) (61K v(ds) ds
0 R

k,j

t
=y / f (€ — D& ()7 () v(dg) ds - Koty
kio R
with basis elementg, andx; as in Section 2, we can find the estimate

t 2
|(HX ) ()| <|x|(2< / / |g|\5k(s>nj<g>|v(dg)ds) (2N>2(<’<’f'>)
0 R

k.j

t i 1
<|x|(2< / / |g|2v<dg>ds>(2N>2“"*f'>) ~(le“|z(2N>2“)2
0 R

k,j «
< const |\ (3.1.6)

NI

1
: (Z |z“|2(2N)2“> 2

for all z € Ua(R) for someR < oo (see (2.20)), where we used thal, ;(2N)~2*-)) < oo (see Proposition 2.3.3
in [9]). Therefore using the definition @f(A, z) we get

\g(k, Z)‘ < econsme—t Rew (1)
for all z € U2(R). By condition (3.1.2) let us require| =% Rew (1) > 1 for |A| > L > 1. This implies

‘g(k Z)‘ < econsme—t\kl(”s)lk\*(”s) Rew () econsp\|—z\x|(1+€> < e—zC\M(HS)
E) ~ ~ ~

for z € U2(R) and|A| > M with positive constants/, C. Next we cast a glance at the derivati\gé%g()», z). Since
a similar estimate to (3.1.6) yields
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t

/ / (i)' & & ()7 () v(de) ds - 2o
0 R

t

é//I§I"|§k(S)ﬂj(§)| v(dg)ds - |z, jl € L*NxN)
0 R
for all fixed z € U2(R) andn € N, we obtain that for alh € N there exists a constafy, such that

n

d
W(er)(z, M| <Cy

forall A € R, z € U2(R). Further we observe that

d . .

H(r/(e*“—l—ikg)v(dg)) r/ig(e”?—l)v(dg)‘ < |A|r/|g|2v(dg)
R R R

or more generally that

d" " .
o (rf(e' g—l—zAg)v(dg))‘ <Gyl
R

Altogether we conclude that for dll n € Ng there exists a polynomialg , (1) with positive coefficients such that

871
sup g(A, 2)
2€Us(R) oA

for all |A| > M. This implies thaig(-, z) € S(R) for all z € U2(R). _
Since the (inverse) Fourier transform map&) onto itself, we get thag(y, z) = 5 [ €V g(x,2)dA is
Ll-integrable and that

/eimé’(y,z)d§=g(k,z) (3.1.8)
R

(1+ 1219 < prn(In))e M (3.1.7)

for all z € U2(R). In view of identity (2.22), Lemma 3.1.3 and condition (3.1.1) relation (3.1.8) gives rise to
defining the Donsker delta function gfz) as

1 .
55 (1) = 5 / e fO() di, (3.1.9)
R

1 N .
H(8y(n()) = g/e_’”g(/\,z)cﬂ:g(y,z).
R

Now we proceed as follows to corge the proof: We check #t the Hermite transfori (s, (n(¢))) = &(y, z) in
the integrand in (3.1.8) can be extracted outside the integral and that all occurring expressions are well defined. The
we can apply the inverse Hermite transform and Lemma 3.1.3 to show,ihgt)) in (3.1.9) fulfills the property
(3.1.1) for h(x) = €**. Finally, the proof follows from a well-known density argument, using trigonometric
polynomials.

(i) Let us verify thats, (n(r)) exists in(S)—1 for all y. By a Lévy version of Lemma 2.8.5 in [9] (analogous
proof) we know that

Ya(y,2) = L e fo (1) da
2

—n
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exists in(S)_1 and that

n

1 —iyA
HYn(y,z)=—/e Y g (h, z)dA
2

—n

for all n € N. Further, the bound (3.1.7) gives

1
sup  |HYa(y,2)| < —/ sup [g(r,z)|dx < oo, (3.1.10)
neN,zeUs(R) 21 J zeUx(R)

So it follows with the help of an analogue of Theorem 2.8.1 c) in [9] 8hah (7)) € (S)_1 forall y.
(iii) We check that the integral

/ &8y (n(®)) dy (3.1.11)
R

converges inS)_1. Because of the estimate (3.1.10) we also get that

n

Xn(X, 2) ZZ/eiykay(n(t))dy

—n

exists in(S)_1. By (3.1.7) and integration by parts we deduce

1
sup |HXn(y,z)|</—-(1+y2)|H(5y(n(t)))(z)|dy
R

neN,zeUn(R) 1+4y?
82
<const  sup (‘(1+k2)—2g(k,z) + |(1+k2)g(k,z)|)
1eR,zeUa(R) A
<M < oo,

where we have used that

1 L, 02
— [ e —g, z)dnr.
27 / ZMZg( 2

R
Again with the help of a Lévy version of Theorem 2.8.1 ¢) in [9] we see that the integral (3.1.11) is well-defined in

(8)-1.
Finally, by using the inverse Hermite transform and Lemma 3.1.3 we obtain

YH(8,(1()))(2) = y%6(v, 2) =

fe‘”(sy (n(0)) dy = £°(3) = @10 (3.1.12)
R

Thus we have proved relation (3.1.1) f¢y) = €*'. Since (3.1.1) still holds for linear combinations of such
functions, the general case is attained by a well-known density argument. The continuity 8f(n (7)) is also a
direct consequence of a Lévy version of Theorem 2.8.1 in [9].

3.2. Chaos expansion of local time for Lévy processes

Let us recall the definition of a particular version of the density of an occupation measure, which is referred to
as thdocal time.
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Definition 3.2.1.Letz > 0, x € R. Thelocal time of 5(¢) at levelx and timer, denoted by, (x), is defined by

t

. 1 . 1
Li(x):= 8|_IH)1+ % X{n(s)—x|<e) ds = £|_|[T3+ 2—8k({s €[0,1]: n(s) € (x — e, x +8)}),
0

wherex is the Lebesgue measure.

We mention that the local time of(z) exists, if the integrability condition

1
R

holds, wherel denotes the characteristic exponent ¢ (see e.g. [3]). Since we have the inequality

Re( L )< ! )
1+¥ () 1+ Rew (1)

condition (3.1.2) entails (3.2.1), giving the existencelgfx). We point out thatx, w) — L,(x)(w) belongs to
L?(x x P) forall r >0 and that

/f(n(s))ds=ff(x)Lz(x)dx (3.2.2)
0 R

for all measurable bounded functiogfs> 0 a.s. Relation (3.2.2) is called tloecupation density formula. Note
thatz — L,(x) is an increasing process and tlat(-) has compact support for all> 0 a.e. Furthermore (3.1.2)
implies thatx — L, (x) is Holder-continuous a.e. for every- 0 (see p. 151 in [3]).

Next we give a rigorous proof for relation (3.1).

Proposition 3.2.2.Fix T > 0. Then
T
Lz (x) =/8x (n(s)) ds
0
forallx eRae.

Proof. Let f be a continuous function with compact supporf#r, r] C R. Define the functiorZ : [0, T] x R x
[—r,r] = (S)* by

Z(t. h, y) = @000,

First we want to show thaZ is Bochner-integrable iS)* with respect to the measus® = 1 x A x A. One
observesthat, 1, y) — (Z(t, A, y),1) is B([0, T]) @ B(R) ® B([—r, r]), B(R)-measurable for all € (S). Further
we consider the exponential process

t

t
Y(t):= exp( / p(s)dn(s) — / / (695 —1—p(s)5) v(dg)ds)
0 R

0
for deterministic functiong such that €)s — 1 e L2([0, T] x R, A x v). Then by the Lévy—Itd formula we have

dy() =Y (1) /(eW)? — DNt de),
R
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so that
t

Y(t)=1+ / Y(s1) /(eﬁ"“ﬂgl — D)N(ds1,dg1).
0 R
If we iterate this process, we get the following chaos expansioki for

Y(1)=) Iu(g.) inL*(P)

n>0

with g,(s1, 61, ..., 80, Cn) = % ]_[’}=l(e‘/’(sj)§j — 1) x/~maxs;). Wherel, denotes the iterated integral in (2.5). Thus
we obtain forp(s) = i)

Z(t,hy) =) In(gu-h) inL3(P) (3.2.3)
n>0

with the functioni(z, 1, y) = exp(fy [ (€*S —1—irs) v(dg)ds —iry). We also get the isometry

2
E(Z@, 3, 9) = ntlgn - hl1Z2 -
n=>0

Now, let us have a look at the weighted sum

122,02, = 3 ntlgn - A2 € " < 00
n=0

forg > 0. Then

2

n

2 1 D _ _

HZ(nhy)H_ﬁZ;/ / (1_[|e”§f—1|e ’Re““) Xi=maxsy) 451 . dsy v(dg1) .. .v(ds,) - € "
n=0 R” [0,T]" j=1

1 n_—2tRe¥ (A —
< Z Et”Z”(RelI/(A)) e ») ., gman,
n>0
where we used the fact that

/ €% — 1% v(dc) = 2Rew (1).
R

So it follows that

1 n_n no _ 9
|z@. 2m]_, < ;)WtZZZ(RelI/(A))Ze ‘ReV () . g3, (3.2.4)
nz

Next suppose thak|~+9) Rew (1) > 1 for |A| > K > 0. Then

r T
///||Z(t,x,y)||_thd)\dy

—rAzK 0

(n)1/2
n20 M=K

1 n q 1 n
<2 — _22¢ 2" ——dr-T'|=+1),
72 G2 / Rew (1) <2+)

n=0 =K

T
1 n n n
<2r2—27e‘%" / (Reglr(x))?/ﬂe—'ReW”dtdx
0
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wherel” denotes the Gamma function. Together with (3.1.2) we receive

r T
(n/2)! 14 / 1
Z(t, A, dtdrdy < consty  —L-2 03¢ 2" dx
[ 126501 ardna < consty_ =0
—rAZK 0 nz A=K
constz ( /132
Since
12 [n/2]
((n/2)}) < 2 <1
nl 22(1+1)/2]

for all n € N, we conclude that
r T
/||Z(t,)\, y)“_q dtdrdy < oo
—r A=K 0

forall ¢ > 2. It also follows directly from (3.2.4) that

r T
///||Z(t,)\,y)||_thd)\dy<oo

—rAI<K 0

for all g > 2. Therefore we have

//f“zax | _, drdrdy < oo

—r R
forall ¢ > 2. Letl € (S). Then it is not difficult to verify that

(z@. a9, 0)| <cons| Z(z, . )| _, (.1 y)-ae

The latter gives

///\Z(t A y). )| dtdrdy < oo

—r R

565

(3.2.5)

foralll € (5). Note that]| Z(z, A, y) || -4 is measurable. Thus we proved the Bochner-integrabilig of (S)*. By

using Fubini, Lemma 3.1.3 and Theorem 3.1.4 we get

T T
f £ f 5, (n(t)) di dy = / F(n(0)) de
R 0 0

Then we can deduce from relation (3.2.2) that

T
/f(y)/éy(n(t))dtdy=/f(y)Lr(y)dy
R 0 R

(3.2.6)
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for all continuousf : R — R with compact support. Using a density argument we find
T
Lr(x)= / 8x(n())dr fora.axeR P-ae (3.2.7)
0
Letl € (S). The mapr — 8, (n(¢)) is continuous by Theorem 3.1.4. Thus

T
1
(Bx(@)). 1) = > / /(Z(t, A, x),l)dxrdt
0 R

is continuous, too. Then, based on (3.2.4), one showsathat foT 8x(n(t))dt is continuous in(S)*. Since
x +— L7 (x) is Holder-continuous, relation (3.2.7) is valid falf x e R P-a.e. O

Remark 3.2.3.Relation (3.2.5) in the proof of Proposition 3.2.2 shows that the Donsker delta fudgtiog))
even takes values in the Lévy—Hida distribution sp@g C (S)—_1.

We are coming to the main result of our paper.

Theorem 3.2.4.The chaos expansion of thelocal time L7 (x) of n(¢) isgiven by

LT(X)_ZI(fn)—Zn'// //fn(u,gl,.. ssns S)N(ds1,d1) ... N(dsy, dsn)

n>0 0

in L2(P) with the symmetric functions

T
fl’l (slv glv ceesSn, §n 27.[ n[ / /(H(el)tgj 1)>h(t )\' X)Xt>ma)(51) d)\’ dt

0o R V=1
for

h(t, A, x) = exp(r/(e”? —1—irg)v(dg) — i)\x).
R

Proof. By Proposition 3.2.2 we can writey (x) = fOT 8, (n(1)) dt. Using the definition of the functio#(z, A, y) =
*)=¥) in the proof of Proposition 3.2.2 and itsais representation (3.2.3), we get

Lr(x)= o //21 (gn - h)drdt (3.2.8)

n=>0

With g, (51, 1, -+, Sn. Gn) = =5 ]‘[jzl(e‘*?/ — 1 x~maxs;) @andh as in the statement of this theorem. Because of
the inequality (3.2.4) and similar estites directly after this relation in the proof of Proposition 3.2.2 we can take
the sum sign outside the double integral in (3.2.8). Thus we obtain

—//21 (gn - My didt = —— Z//I (gn -h)drdt in (S)*. (3.2.9)

n>0 n>00
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Further we can interchange the integrals in (3.2.9), so that we obtain

T
1
LT(X)ZZZI” //gn-hdxdt in (S)*.
0 R

n>0

Note that this is a consequence of timegrability conditimm (3.2.5). SinceLr(x) is in L?(P), the result
follows. O
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