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Abstract

Consider the continuous gas in a bounded domainΛ of Rd , described by a Gibbsian measureµ
η
Λ associated with a pai

interactionϕ, the inverse temperatureβ, the activityz > 0, and the boundary conditionη. Whenϕ is nonnegative, we show tha
the spectral gap of a Glauber type dynamic (i.e., some Markov process reversible with respect toµ

η
Λ) in L2(µ

η
Λ) is bounded

from below by 1− z
∫
Rd |1− e−βϕ(y)|dy and from above by 1+ z

∫
Rd |1 − e−βϕ(y)|dy, independent ofΛ andη. This result

improves a previous work by L. Bertini et al. (2002) and is extended also to the hard core case. Our approach co
approximate the continuous gas model by the discrete spin model and to apply theM-ε theorem of Ligget. Some other resu
such as uniqueness, exponential convergence of the Glauber dynamic w.r.t. norms of Ligget’s type are also obtained.
 2004 Elsevier SAS. All rights reserved.

Résumé

On considère un gaz continu dans un domaine bornéΛ de Rd , décrit par la mesure de Gibbsµη
Λ associée à l’interaction

paire ϕ, la température inverseβ, l’activité z > 0 et la condition au bordη. Quandϕ � 0, nous démontrons que le tro
spectralλ1 d’une dynamique du type Glauber (i.e., un processus de Markov réversible par rapport àµ

η
Λ) dansL2(µ

η
Λ) vérifie

1− z
∫
Rd |1− e−βϕ(y)|dy � λ1 � 1+ z

∫
Rd |1− e−βϕ(y)|dy, indépendamment deΛ et deη. Ce résultat améliore le travail d

Bertini et al. (2002), et est généralisé au cas de corps durs. Notre méthode consiste à approcher le gaz continu par un
spin discret auquel le théorèmeM-ε de Ligget s’applique. Nous établissons également l’unicité de la dynamique de Glau
sa convergence exponentielle par rapport aux normes du type Ligget.
 2004 Elsevier SAS. All rights reserved.

MSC:60J75; 60G57; 82B20; 82C20

Keywords:Poincaré inequality; Gibbs measures; Birth and death processes

1. Introduction

In statistical mechanics, relations between the mixing properties of the Gibbs measure and the exponen
at which the associated Glauber dynamics relaxes to equilibrium are a fascinating and important object. For latt
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0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
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spin systems with compact spin space, Stroock and Zegarlinski, in their important and difficult work [18,19] prove
the equivalence between the Poincaré inequality, the log-Sobolev inequality, and the Dobrushin–Shlosman mixin
condition for the Gibbs measure, both for the Glauberdynamics of pure jumps type orof diffusion type. See Lu
and Yau [12] and Martinelli [9] for further development and the recent work by F. Cesi [5] for a simplified pro
The (partial) extension of their impressive resultsto unbounded spin case for Glauber dynamics of diffusion t
is carried out by Bodineau and Heffler [2,3], Ledoux [10], Yoshida [23] etc.

In this work we are interested in the same question when the discrete latticeZd is replaced by the continuum
Rd (i.e., gas instead of crystals in physics language). By decompositionRd := ⋃

k∈Zd k[0,1)d , we may regard this
continuous gas model as a lattice model with unbounded spin (and with unbounded interaction). For continuo
gas, L. Bertini et al. [4] establish the spectral gap existence of a Glauber dynamic for high temperature
activity. Let us present this interesting work briefly.

LetΛ be a bounded domain inRd . Given the boundary conditionη outside ofΛ, consider the Gibbs measureµ
η
Λ

in Λ associated with a “stable” pair interactionϕ :Rd → (−∞,+∞], activity z > 0 and the inverse temperatureβ

(see the next section for precise definition). Under the following assumptions

(H1) ϕ � 0 andϕ is even;
(H2) ϕ is of finite range, i.e.,ϕ(x) = 0 if |x| > r for some finiter > 0;
(H3) z

∫
Rd (1− e−βϕ(y)) dy < 1

3e
(i.e., condition (CE) in [4]);

Bertini, Cancrini and Cesi [4] (Theorem 2.2) establish thatµ
η
Λ for all rectanglesΛ satisfies the Poincaré inequali

Gµ
η
Λ(f,f ) � Eη

Λ(f,f ), ∀f (1.1)

where the constantG = G(z,β, r) > 0 is independent ofη and Λ, andEη
Λ is a quite natural Dirichlet form

on L2(µ
η
Λ) generating the Glauber dynamic (which is a birth-death Markov process reversible w.r.t.µ

η
Λ, see

Sections 2, 3). Their main idea is:

1) a quasi-factorization of the variance;
2) to establish an exponential decay of correlation betweenf and g when their “supports” are sufficientl

separated by condition (H3) and cluster expansion;
3) the iterative method by doubling the volume and a delicate geometric consideration.

Their result so obtained does not, seems – it however, yield a robust estimate of the spectral gap conλ1,
like most known results in [18,19,23,12] issued of the iterative method (we emphasize that some explicit
gap estimates are given by Bodineau and Heffler [2,3] and Ledoux [10]). The reader can compare their (H
the following classical estimate of the convergence radiusR of the cluster expansion of the pressionp = p(z)

(thermodynamic limit) in terms of the activityz ([17], Theorem 4.5.3):

1

e
� R

∫
Rd

(
1− e−βϕ(y)

)
dy � 1. (1.2)

So their result can be roughly read as the spectral gap existence when|z| < R/3.
The main aim of this paper is to improve their result (1.1). Indeed our main result (see Theorem 2.1) s

for nonnegativeϕ, the best constantG for (1.1), denoted byλ1 (i.e., the spectral gap), satisfies

1− z

∫
Rd

(
1− e−βϕ(y)

)
dy � λ1 � 1+ z

∫
Rd

(
1− e−βϕ(y)

)
dy

without the finite range condition (H2). Henceλ1 is uniformly lower bounded once ifz
∫

Rd (1 − e−βϕ(y)) dy < 1,
a condition weaker than (H3), and sharp in the viewpoint of (1.2). Moreover we extend this result to the ha
case.
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The estimate above yieldsλ1 = 1 whenϕ = 0 (i.e., the free case), a well known result (to all specialists
Malliavin Calculus over the Poisson space). See Ané and Ledoux [1] and the author [21] for modified log-Sobolev
inequalities which are stronger than the Poincaré inequality.

Our method will be completely different, and more classical in some sense. Indeed our idea is inspire
classical Poisson limit theorem, i.e., a Poisson distribution is the weak limit of laws of sums of i.i.d. Bernou
random variables. Then it is not surprise that we can approximate the Glauber dynamic associated witµ

η
Λ by

the spin models on{0,1}V for which the Ligget’s theorem gives us an explicit exponential rate for the “tri
norm. Hence the key consists to bound the Ligget’s constant for the spin models on{0,1}V by means ofϕ, and to
transform that convergence rate inL2(µ

η
Λ), and fortunately this is possible.

This paper is organized as follows. The next section is devoted to describe the Gibbs measure, the
dynamic and the main result. In Section 3 we solve some uniqueness problems (which are cru
approximation) and construct the corresponding Markovprocess. Section 4 is devoted to the approximatio
continuous gas by discrete spin models, which is the crucial part of this paper. As consequence, the spectral
result is derived in Section 5, together with the exponential convergence in other senses (thanL2).

2. Main result

2.1. Gibbs measure

Let Ω be the space of all point measuresω = ∑
i δxi (finite or countable) withxi different in Rd , which are

moreover Radon measures (i.e., finite particles in compact subsets), whereδx denotes the Dirac measure atx.
Let FA := σ(ω(B); B (B Borelian) ⊂ A) for eachA ∈ B(Rd), the Borelσ -filed of Rd andF = FRd . Given the
activity z > 0, letP be the law of the Poisson point process onRd with intensity measurez dx, i.e., a probability
measure on(Ω,F) characterized by

(i) P(ω(A) = k) = e−z|A| (z|A|)k
k! , ∀k ∈ N for any A ∈ B(Rd); here and throughout this paper|A| designs the

Lebesgue volume ofA;
(ii) If Ai ∈ B(Rd), i = 1, . . . , n, are disjoint, thenω(Ai), i = 1, . . . , n, areP -independent.

Throughout this paper the pair interactionϕ :Rd → (−∞,+∞] will be a Borel-measurable even function whi
is stable([17]), i.e.,∃B � 0 such that

H(ω) :=
∑

1�i<j�n

ϕ(xi − xj ) � −Bn, ∀ω =
n∑

j=1

δxj , n � 1 (stability). (2.1)

We assume often also thatϕ is regular [17], i.e.,∫
Rd

∣∣1− e−βϕ(y)
∣∣dy < +∞ (2.2)

whereβ = (κT )−1 > 0 is the inverse temperature. Recall that (see [17]) the stability condition is a necessary a
sufficient condition for defining the (freeboundary) Gibbs measures on bounded domainsΛ. Moreover for a stable
pair interactionϕ, ϕ(x) = H(δx + δ0) � −2B by (2.1), and then the regularity condition (2.2) is equivalent to
integrability ofϕ outside of some finite measure set (e.g.[ϕ � 1]).

Given a bounded open and non-empty domainΛ ⊂ Rd and ω ∈ Ω , let ωΛ = ∑
xi∈Λ

⋂
supp(ω) δxi be the

restriction of the measureω to Λ, andΩΛ = {ωΛ; ω ∈ Ω}. The image measurePΛ of P by ω → ωΛ is the
law of Poisson point process onΛ with intensity measurez dx.
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We say that an elementη of Ω is in Ωϕ , if

x →
∫
Rd

ϕ−(x − y) dη(y) is locally bounded onRd . (2.3)

Whenϕ � 0 or is of finite range, we have of courseΩϕ = Ω .
The Gibbs measure inΛ for a given boundary conditionη ∈ Ωϕ on Λc is a probability measure on(ΩΛ,FΛ)

given by

µ
η
Λ(dωΛ) := 1

Z(Λ,η)
e−βH

η
Λ(ωΛ)PΛ(dωΛ) (2.4)

where

H
η
Λ(ωΛ) := H(ωΛ) +

∫
Λ

ω(dx)

∫
Λc

ϕ(x − y) η(dy)

is the Hamiltonian (H(ωΛ) being given in (2.1)), and

Z(Λ,η) :=
∫

ΩΛ

e−βH
η
Λ(ωΛ) dPΛ(ωΛ)

is the normalization constant. Remark thatH
η
Λ(0) = 0 where0 denotes the zero measure (or the vide state) an

the stability condition,

H
η
Λ(ωΛ) � −BNΛ(ω) +

∫
Λ

hη(x) dω(x)

whereNΛ(ω) = ω(Λ) is the number of particles in the configurationωΛ, and

hη(x) =
∫
Λc

ϕ(x − y) ηΛc(dy) (2.5)

which is bounded from below onΛ by (2.3). HenceZ(Λ,η) is a finite positive constant,µη
Λ is then a well defined

probability onΩΛ, and moreover

dµ
η
Λ

dPΛ

∈
⋂

1�p<+∞
Lp(PΛ). (2.6)

2.2. Generator of the Glauber dynamic

Let rF be the space of realF -measurable functions, andbF the space of thoseF ∈ rF which are moreove
bounded. For anyr ∈ rF , according to Picard [16] consider the difference operators

D+
x F (ω) := F(ε+

x ω) − F(ω), ε+
x ω := ω + 1x /∈suppωδx;

D−
x F (ω) := F(ε−

x ω) − F(ω), ε−
x ω := ω − 1x∈suppωδx;

DxF(ω) := F(ε+
x ω) − F(ε−

x ω). (2.7)

Those resulting functions are measurable jointly onRd × Ω . Recall thatD+
x (or Dx ) plays the same role in th

Malliavin calculus over the Poisson space as the Malliavin derivative on the Wiener space ([16,21] and re
therein).

We shall study the Glauber dynamic employed in [4], which is formally generated by the pre-generator
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ΛF(ωΛ) =

∫
Λ

D−
x F (ωΛ)ωΛ(dx) + z

∫
Λ

e−βD+
x H

η
Λ(ωΛ)D+

x F (ωΛ)dx

= −
∫
Λ

e−βD+
x H

η
Λ(ωΛ)DxF(ωΛ)

(
ωΛ(dx) − z dx

)
, ∀F ∈ bFΛ (2.8)

(recallingD+
x H

η
Λ(ωΛ) = 0, ∀x ∈ suppωΛ). Its dynamic can be intuitively described as follows: if the configura

of the system isωΛ at time t, each particle inωΛ will be killed at ratedt , and a new particle will be born atx ∈ Λ

with rateze−βD+
x H

η
Λ(ωΛ) dx dt .

Let ‖F‖u = supω∈ΩΛ
|F(ω)|. Since| ∫Λ D−

x F (ωΛ)ωΛ(dx)| � 2‖F‖u · NΛ(ω) and

D+
x H

η
Λ(ωΛ) =

∫
Λ

ϕ(y − x)
(
ωΛ(dy) + ηΛc (dy)

)
� −2BNΛ(ω) + hη(x), ∀x /∈ suppωΛ (2.9)

where hη(x) given in (2.5) is lower bounded, then it is easy to verify thatLη
ΛF ∈ rFΛ and Lη

ΛF ∈⋂
1�p<+∞ Lp(µ

η
Λ) for all F ∈ bFΛ. Moreover ifF1 = F2, µ

η
Λ-a.s.,Lη

ΛF1 = Lη
ΛF2, µ

η
Λ-a.s. (by [16], Section 4)

In particularL is a well defined operator onLp(µ
η
Λ) with domainbFΛ (in which each element represent a cla

of µ
η
Λ-equivalent functions, by usual convention). In further by Picard [16] (Proposition 6 and Théorème 2), for

F,G ∈ bFΛ, we have by a simple calculus〈
F,−Lη

ΛG
〉
µ

η
Λ

=
∫

ΩΛ

dµ
η
Λ(ωΛ)

∑
x∈suppω

D−
x F (ωΛ)D−

x G(ωΛ)

=
∫

ΩΛ

dµ
η
Λ(ωΛ)

∫
Λ

e−βD+
x H

η
Λ(ωΛ)D+

x F (ωΛ)D+
x G(ωΛ)zdx

=: Eη
Λ(F,G). (2.10)

(L. Bertini et al. [4] (Proposition 2.1) has indicated this fact whenϕ � 0.) Then(−Lη
Λ, bFΛ) is nonnegative

definite, symmetric operator onL2(µ
η
Λ). HenceEη

Λ is a closable form and its closure(Eη
Λ,D(Eη

Λ)) is a Dirichlet

form on L2(µ
η
Λ), generating a symmetric Markov semigroup(P

Λ,η
t ) on L2(µ

η
Λ) such thatPΛ,η

t 1 = 1, µ
η
Λ-

a.s. (sinceLη
Λ1 = 0). The last symmetric Markov semigroup, whose generator is the Friedrichs extens

(Lη
Λ, bFΛ), is the Glauber dynamic used in [4] and in this work. Of course(P

Λ,η
t ) is also a strongly continuou

semigroup of contractions onLp(µ
η
Λ), whose generator will be denoted by(Lη

Λ,Dp(Lη
Λ)) (Dp(Lη

Λ) being its
domain inLp(µ

η
Λ)).

Notice that the same kind of model is studied by Olla and Tremoulet [15] (2003).

2.3. Main result

Theorem 2.1. Let ϕ :Rd → (−∞,+∞] be an even measurable function onRd , which is both stable(2.1) and
regular (2.2). Assume either

(C1) ϕ � 0 (nonnegative potential); or
(C2) for somerhc > 0, ϕ(x) = +∞ if |x| < rhc (hard core) (|x| denotes the Euclidean norm ofx ∈ Rd ) and for

someB � 0,
n∑

i=1

ϕ(xi) � −2B, (2.11)

for all n � 1 and all (x1, . . . , xn) ∈ (Rd )n such that|xi − xj | � rhc for i �= j .
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Then for any bounded (non-empty) open domainΛ of Rd and for any η ∈ Ωϕ , the spectral gapλ1 of
(−Lη

Λ,D2(Lη
Λ)) in L2(µ

η
Λ), i.e. the best constantλ1 � 0 such that

λ1µ
η
Λ(F,F ) � Eη

Λ(F,F ), ∀F ∈ D(Eη
Λ) (2.12)

satisfies

1− ze2βB

∫
Rd

∣∣1− e−βϕ(x)
∣∣dx � λ1 � 1+ zeβB

∫
Rd

(
1− e−βϕ+(x)

)
dx (2.13)

where the constantB is given by condition(2.11) (of courseB = 0 if ϕ � 0), µ
η
Λ(F,G) denotes the covariance o

F,G underµη
Λ, and(Eη

Λ,D(Eη
Λ) is the closure of the form(Eη

Λ, bFΛ) given in(2.10).

Remarks 2.2. Under the hard core assumption in (C2), condition (2.11) is verified once if there is anonnegative
decreasingfunctionh : [rhc,+∞) → R+ such that

∞∫
rhc

h(r)rd−1 dr < +∞ and ϕ(x) � −h
(|x|), ∀x ∈ Rd, |x| � rhc

(see [17], Section 3.2.5, pp. 37–38). Moreover (C2) implies the stability condition (2.1) with the same constantB.

Remarks 2.3. Let p(z) := β−1 limΛ↑Rd
1

|Λ| logZ(Λ,0) (thermodynamic limit in the sense of Von Hove, see [1
be the pressure function. In the nonnegative case (C1), ourcondition about the existence of spectral gap is shar
the point of view of the cluster expansion estimate (1.2) (but perhaps not all sharp in reality, becausep(z) may be
analytical for realz � R). And the spectral gap result above suggests thatR = R0 := (

∫
Rd (1 − e−βϕ(y)) dy)−1 or

at leastp(z) is analytical forz ∈ [0,R0), a claim (perhaps known) that I do not know how to prove it.
In the general stable and regular case, the classical estimate of the convergence radiusR of the pressure

functionalp(z) in terms of the activityz verifies

R · e2βB

∫
Rd

∣∣1− e−βϕ(x)
∣∣dx � 1

e

(see [17], Theorem 4.2.3). And our result suggests that the estimate above may hold with 1/e substituted by 1 on
the right hand side above, in the hard core case (C2) (to which we equally have no answer).

An interesting (open) question is to extend Theorem 2.1 to general stable and regular interactionϕ. Our proof
seems working only under (C1) or (C2).

Remarks 2.4. L. Bertini et al. [4] derive, from the spectral gap existence, the exponential decay of correla
µ

η
Λ(F,G) whereF ∈ bFA andG ∈ bFB , when the distance between their “supports”A,B is large, illustrating the

impetus of spectral gap in the understanding of the mixing properties of the underlying Gibbs measure.
Though our theorem above improves their main result [4] Theorem 2.2, but one main contribution of [4] resid

in their approach: the exponential decay of correlation in the form of their Corollary 2.5 implies the spectral g
existence, via their quasi-factorization of variance. Indeed F. Cesi [5] utilizes this approach to give a sim
proof of the Stroock–Zegarlinski’s log-Sobolev inequalityof the Gibbs measure, but our approach here is v
only for the Poincaré inequality.

Remarks 2.5. The continuous gas model has an essential difference from the lattice spin model with co
spin space: the equivalence between the (uniform) Poincaré inequality and the (uniform) log-Sobolev inequality
lost. In fact it is known since the work of Surgailis [20] on 1984 that even the free Poisson measurePΛ does not
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satisfy the log-Sobolev inequality. And Ané and Ledoux[1] and the author [21] prove the modified log-Sobole
inequalities, one of which is the followingL1-log-Sobolev inequality [21]

EntPΛ(F ) := EPΛF log
F

EPΛ(F )
� EPΛ

∫
Λ

D+
x FD+

x logFzdx, ∀0 < F ∈ bFΛ.

This last inequality is equivalent to the exponential decay in the sense of entropy:EntPΛ(P 0
t F ) � e−tEntPΛ(F ),

whereP 0
t = P

Λ,η
t with ϕ = 0. And it is equivalent to the usual log-Sobolev inequality when the employed Dirichl

form is of diffusion type (but this interesting equivalencefails for jumps processes: the case here). One can
reasonably hope the equivalence of the Poincaré inequality with theL1-log-Sobolev inequality above for th
continuous gas model here.

Notice that Dai Pra, Paganoni and Posta [6] (2002) establish theL1-log-Sobolev inequality for the lattice ga
with unbounded spin.

2.4. A guideline to our proof of Theorem 2.1

For the reader’s convenience, let us outline our approach for proving the lower bound ofλ1 in Theorem 2.1. At
first notice that

d

dt
µ

η
Λ

(
P

Λ,η
t F,P

Λ,η
t F

) = −2Eη
Λ

(
P

Λ,η
t F,P

Λ,η
t F

)
= −2

∫
ΩΛ

dµ
η
Λ(ωΛ)

∫
Λ

e−βD+
x H

η
Λ(ωΛ)

(
D+

x P
Λ,η
t F (ωΛ)

)2
z dx.

If one can prove that for somec > 0, for all F belonging aL2(µ
η
Λ)-dense class of test functionsD,∥∥D+

x P
Λ,η
t F (ωΛ)

∥∥ � e−ct
∥∥D+

x F (ωΛ)
∥∥ (2.14)

for some norm‖ · ‖ stronger than the norm ofL2(Λ × ΩΛ,zdx dµ
η
Λ(ωΛ)), we will get immediately (since

D+
x H

η
Λ(ωΛ) � −2B by (C1) or (C2)),

µ
η
Λ

(
P

Λ,η
t F,P

Λ,η
t F

) = −
+∞∫
t

d

ds
µ

η
Λ

(
PΛ,η

s F,PΛ,η
s F

)
ds � C(F)e−2ct , ∀F ∈ D

for some constantC(F) > 0 depending onF . This implies, by the spectral decomposition,λ1 � c (true but not
trivial).

For showing (2.14) which is of independent interest, as vaguely said in the introduction, we shall approxim
the Poisson measurePΛ by the product Bernoulli measure on{0,1}IN , µ

η
Λ by Gibbs measuresµN on {0,1}IN ,

Lη
Λ by LN on some good test functions spaceD (this is possible ifϕ is continuous and of finite range). A fir

questions arises:

1) to prove thatPN
t = etLN verifies a relation similar to (2.14) with a constantc > 0 independent ofN and

with D+
x substituted by some difference operator∇. This is provided by the LiggetM-ε theorem which say

roughly∣∣∇PN
t f

∣∣ � e−t etΓN |∇f |
with the Ligget’s matrixΓN . It remains to boundΓN in some nice norm in such a way that is independ
of N , and fortunately this works w.r.t.‖∇f ‖∞ under (C1) or (C2).
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([16],
If the story stopped here, it would be simple and lucky. The real story is:

2) to transfer the Ligget’s estimate on(PN
t ) to P

Λ,η
t , thoughLN → Lη

Λ on D, we should prove that∇PN
t →

D+P
Λ,η
t , or PN

t fn → P
Λ,η
t F in the sup norm. For the last convergence we should prove at first that(L,D)

generates a unique semigroup onbFΛ for applying the Trotter type theorem. The latter is quite difficult,
(P

Λ,η
t ) is not defined everywhere onΩΛ and even so, it is not at all strongly continuous onbFΛ and the usua

Trotter theorem can not be applied (but the involved techniques work, fortunately).

That is exactly the task of the following section.

3. Uniqueness and the Markov process generated by Lη
Λ

Throughout this paper, for a pair of measure-function(ν, f ), ν(f ) := ∫
f dν. From now on, the bounded ope

(non-empty) domainΛ and the boundaryconditionη ∈ Ωϕ , though arbitrary, will be fixed. A genetic element
ΩΛ will be often denoted byω for simplicity of notation.

In this section we assume the stability (2.1), but not the regularity (2.2). The following duality relation
Remarque 1, p. 518) will be used:

EPΛ

∫
Λ

F(ε+
x ω)G(x,ω)z dx = EPΛF(ω)

∫
Λ

G(x, ε−
x ω) dω(x) (3.1)

for all FΛ-measurableF :ΩΛ → R+ and allB(Λ)⊗FΛ-measurableG :Λ×ΩΛ → R+, whereB(Λ) is the Borel
σ -field of Λ.

3.1. Uniqueness problem inLp(µ
η
Λ)

Proposition 3.1. Assume the stability condition(2.1). Let

D1 := {
f

(
ωΛ(A1), . . . ,ωΛ(An)

)
1maxi ωΛ(Ai)�1 | n � 1, Ai ∈A, f :Nn → R bounded

};
(3.2)

D2 := {
F

(
ωΛ(h1), . . . ,ωΛ(hn)

); hn ∈ C∞
b (Λ), F ∈ C∞

0 (Rn), n � 1
};

whereA is an arbitrary subalgebra ofB(Λ) such thatσ(A) = B(Λ).

(a) For any1 � p < +∞, D1 andD2 are both a core for the generator(Lη
Λ,Dp(Lη

Λ)) of (P
Λ,η
t ) on Lp(µ

η
Λ). In

particular (P
Λ,η
t ) is the unique strongly continuous semigroup of bounded operators onLp(µ

η
Λ) such that its

generator extends(Lη
Λ,D1) or (Lη

Λ,D2); and(Lη
Λ,Di ), i = 1,2, are essentially self-adjoint inL2(µ

η
Λ).

(b) GivenF ∈ rFΛ

⋂
L2(µ

η
Λ). ThenF ∈ D(Eη

Λ) iff∫
ΩΛ

dµ
η
Λ(ωΛ)

∫
Λ

e−βD+
x H

η
Λ(ωΛ)(D+

x F )2(ωΛ)zdx < +∞, (3.3)

and iff∫
ΩΛ

dµ
η
Λ(ωΛ)

∑
x∈suppωΛ

(D−
x F )2(ωΛ) < +∞. (3.4)

In those cases, the two quantities above coincide withEη
Λ(F,F ).
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Proof. (a) At first the second claim in (a) is a consequence of the first by [22] (Proposition 1.1), and the third cla
is another expression of the first forp = 2. To show the first claim, notice thatbFΛ, identified withL∞(µ

η
Λ) up

to µ
η
Λ-equivalence, is a core for the generator of the Markov semigroup(P

Λ,η
t ) in Lp(µ

η
Λ) (true for any strongly

continuous Markov semigroup). Hence it is enough to show that anyF ∈ bFΛ can be approximated byFn ∈Di in
the graph norm topology ofLη

Λ in Lp(µ
η
Λ), for i = 1,2.

In fact we can findFn ∈ Di such thatFn → F , µ
η
Λ-a.s. and|Fn| � ‖F‖u = supω∈ΩΛ

|F(ω)| everywhere
over ΩΛ. Then‖Fn − F‖p := ‖Fn − F‖Lp(µ

η
Λ) → 0 by the dominated convergence. It remains to prove

‖Lη
Λ(Fn − F)‖p → 0. By the expression (2.8) and (2.9), we have

∣∣Lη
Λ(Fn − F)

∣∣(ω) �
∣∣∣∣
∫
Λ

[
(Fn − F)(ω) − (Fn − F)(ε−

x ω)
]
ω(dx)

∣∣∣∣ + z

∣∣∣∣
∫
Λ

e−βD+
x H

η
Λ(ω)D+

x (Fn − F)(ω) dx

∣∣∣∣
� |Fn − F |(ω) · NΛ(ω) +

∫
Λ

|Fn − F |(ε−
x ω)ω(dx)

+ e2BβNΛ(ω)

∫
Λ

e−βhη(x)z dx · |Fn − F | + e2BβNΛ(ω)

∫
Λ

e−βhη(x)|Fn − F |(ε+
x ω)z dx.

Let us show that the four terms in the last sum converge all to 0 inLp(µ
η
Λ), or in probabilityµ

η
Λ ∼ PΛ by the

dominated convergence (by relation (2.6)).
The first and third terms pose no problem. For the second and fourth terms, it is enough to notice tha

duality formula (3.1), we have∫
dPΛ(ω)

∫
Λ

|Fn − F |(ε−
x ω)ω(dx) = z

∫
dPΛ(ω)|Fn − F | · |Λ| → 0,

z

∫
dPΛ(ω)

∫
Λ

e−βhη(x)|Fn − F |(ε+
x ω) dx =

∫
dPΛ(ω)|Fn − F |(ω)

∫
Λ

e−βhη(x)dω(x) → 0.

(b) We shall prove only the first “iff” and the second can be proved in the same way. GivenF ∈ rFΛ ∩ L2(µ
η
Λ)

satisfying (3.3) and integerL � 1, letFL := (F ∧ L) ∨ (−L) ∈ bFΛ ⊂ D(Eη
Λ). Then(D+

x FL)2(ω) � (D+
x F )2(ω)

and(D+
x FL)2(ω) ↑ (D+

x F )2(ω) asL ↑ ∞, for all (x,ω) ∈ Λ × ΩΛ. Then by the expression (2.10) and monoto
convergence,Eη

Λ(FL − FM,FL − FM) → 0 asL,M → ∞ and

Eη
Λ(FL,FL) →

∫
ΩΛ

dµ
η
Λ

∫
Λ

e−βD+
x H

η
Λ(ωΛ)(D+

x F )2(ωΛ)zdx < +∞,

where it follows thatF ∈ D(Eη
Λ) and the last quantity coincides withEη

Λ(F,F ).
Inversely letF ∈ D(Eη

Λ). Hence by definition there exists a sequence(Fn)n�1 ⊂ bFΛ such thatFn → F in
L2(µ

η
Λ) andEη

Λ(Fn−F,Fn −F) → 0 asn → ∞. By taking a subsequence and a re-definition ofFn,F if necessary
we may assume without loss of generality thatFn(ω) → F(ω) everywhere inΩΛ. HenceD+

x Fn(ω) → D+
x F (ω)

for all (x,ω) ∈ Λ × ΩΛ. Thus by the expression (2.10) ofEη
Λ(Fn,Fn), we see that

Eη
Λ(Fn,Fn) →

∫
ΩΛ

dµ
η
Λ

∫
Λ

e−βD+
x H

η
Λ(ωΛ)(D+

x F )2(ωΛ)zdx

the desired result. �
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3.2. Construction of the associated Markov process

As probabilists we always want to construct a good Markov process associated with generatorLη
Λ. This was

done by Holley and Stroock [7] and Picard [16]. Unfortunately the conditions imposed in those known works
not all verified for the model used here.

Proposition 3.2. Assume the stability condition(2.1). There is a strong Markov process((Xt)t�0, (Pω)ω∈ΩΛ)

valued inΩΛ ∪ {∂} whereΩΛ is equipped with the weak convergence topology and∂ is an extra isolated point to
ΩΛ, defined on some measurable space(W,B), such that

(i) For anyω ∈ ΩΛ, Pω-a.s.,X0 = ω, Xt = ∂ (∀t � ζ ), t → Xt is right continuous and of pure jumps type
[0, ζ ), i.e., there are a sequence of stopping times0= T0 < T1 < T2 < · · · < Tn ↑ ζ (w.r.t. the natural filtration
of (Xt)) such thatXt = XTn for all t ∈ [Tn,Tn+1).

(ii) Let PtF (ω) := Eω(F (Xt)1t<ζ ) := EPω(F (Xt)1t<ζ ). It is a semigroup of transition kernels onbFΛ and for
anyF ∈ bFΛ and anyω ∈ ΩΛ, PtF (ω) is continuous differentiable onR+ and

d

dt
PtF (ω) = (Lη

ΛPtF )(ω). (3.5)

(iii) If ν is a nonnegative measure onΩΛ such thatν([NΛ � L]) < +∞, ∀L ∈ N andν(Lη
ΛF) = 0, ∀F ∈D1 (cf.

(3.2)), thenν = Cµ
η
Λ for some constantC.

(iv) For µ
η
Λ-a.s.ω ∈ ΩΛ, Pω(ζ = +∞) = 1 andPtF (ω) = P

Λ,η
t F (ω), µ

η
Λ-a.s. for all t � 0, F ∈ bFΛ.

If we suppose moreover that there are constantsK1,K2 � 0 (depending eventually onΛ) such that,

z

∫
Λ

e−β
∑n

i=1 ϕ(xi−x) dx � K1n + K2, ∀n � 1, ∀x1, . . . , xn ∈ Λ (3.6)

thenPω(ζ = +∞) = 1, ∀ω ∈ ΩΛ, and for anyF ∈ bFΛ and anyω ∈ ΩΛ, PtLη
ΛF(ω) is finite and continuous o

t and

d

dt
PtF (ω) = Pt

(
Lη

ΛF
)
(ω); (3.7)

moreover if(P̃t (ω, ·)t�0 is any semigroup of kernels onbFΛ such that the Kolmogorov equation(3.5) holds for
all F ∈ Di (cf. (3.2))andsup‖F‖u�1 ‖P̃tF‖u is bounded on any bounded intervalt ∈ [0, T ], thenP̃t = Pt ; where
i = 1 or 2.

Remarks 3.3. The last uniqueness allows us to say, without ambiguity, that(Pt ) is the semigroup of kernels o
bFΛ generated byLη

Λ. This result satisfies not only our probabilistic desire, but it is also technically crucial i
approximation procedure in the proof of our main results. Notice that this Markov process is constructed for ev
starting point. It is an easy application of the theory of jumps processes.

Let us also compare (3.5) and (3.7): they are usually known as to be equivalent for strongly con
semigroup forF in domain of generator. But on the bad space “bFΛ”, (Pt ) is not strongly continuous and th
domain of its generator has many different definitions. In our case, (3.7) is stronger than (3.5). Moreov
implies bothPω(ζ = +∞) = Pt1(ω) = 1, ∀ω (the non-explosion) and the last uniqueness, but (3.5) does no

The linear growth condition (3.6) about the birth rate is adopted from [16], Proposition 4 where anot
condition, which is not satisfied here, is imposed too. It is (fortunately) satisfied for a family of important inter
functions such as those verifying (C1) or hard core condition. But we believe that the conservability (for any
point) should be true under the only stability condition.
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Proof. Step1. The construction in this step is well known (e.g. [8]). For any(ω,A) ∈ ΩΛ ×FΛ, let

b(ω) := z

∫
Λ

e−βD+
x H

η
Λ(ω) dx (birth rate),

c(ω) := NΛ(ω) + b(ω) (total intensity),

Q(ω,A) :=
∫
Λ 1A(ε−

x ω)ω(dx) + z
∫
Λ e−βD+

x H
η
Λ(ω)1A(ε+

x ω) dx

c(ω)

(note thatb(0) = c(0) = z|Λ| > 0 and thenc(ω) > 0 overΩΛ). Q is a Markov kernel on(ΩΛ,FΛ) (Q1(ω) =
1, ∀ω). Let Qω be the probability measure onΩN

Λ such that its coordinates system(Yn) is a Markov chain with
transition kernelQ and with the starting pointY0 = ω, Qω-a.s. andγ be the exponential law of parameter 1
R+. Consider the product space(W := ΩN

Λ × (R+)N,B = F⊗N

Λ ⊗ B(R+)⊗N,Pω = Qω ⊗ γ N) whose coordinate
system will be denoted by(Yn, γn)n�0. Set

T0 = 0, Tn :=
n∑

k=1

γk

c(Yk−1)
, ∀n � 1;

Xt := Yn, ∀t ∈ [Tn,Tn+1), ∀n ∈ N;

Xt := ∂, ∀t � ζ := sup
n�1

Tn =
∞∑

k=1

γk

c(Yk−1)

where∂ is an extra point toΩΛ. ((Xt ),Pω) constitutes a strong Markov process valued inΩΛ ∪ {∂}, satisfying (i).
Step2. Let us now verify (ii), (iii) and (iv). At first (ii)follows from [8], Theorem 10.24 (though it is stated f

conservative pure jumps processes, but the same proof works in the eventual non-conservative case here
notice that∀F ∈D1 nonnegative,F ∈ L1(c(ω) dν(ω)) andLη

ΛF ∈ bFΛ ∩ L1(ν), and∫
(QF − F)(ω)c(ω) dν(ω) =

∫
Lη

ΛF(ω)dν(ω).

Henceν verifiesν(Lη
ΛF) = 0, ∀0 � F ∈ D1 iff c(ω) dν(ω) is an invariant measure ofQ. As Qk(ω,0) > 0, where

k = NΛ(ω), Q is irreducible in the classical language of Markov chains; moreover sinceµ
η
Λ(Lη

ΛF) = 0, ∀F ∈
bFΛ by (2.10), thenc(ω) dµ

η
Λ(ω) is the only invariant measure ofQ, which yields (iii) by the strict positivity of

c(ω) overΩΛ.
For (iv), notice at first that

{ζ = +∞} =
{ ∞∑

k=1

1

c(Yk−1)
= +∞

}
, Pω-a.s. (3.8)

Since c(ω) dµ
η
Λ(ω) is an finite invariant measure ofQ, then Y = (Yn) is positively recurrent. In particula

Pω(Yn = 0, i.o.)= 1 for µ
η
Λ-a.e.ω (i.o.= infinitely often). ThusPω(ζ = +∞) = 1 for µ

η
Λ-a.e.ω.

For allF ∈ bFΛ, by (ii) and the fact thatµη
Λ(Lη

ΛPtF ) = 0, we see thatµη
Λ(PtF ) = µ

η
Λ(F ), ∀t � 0. Then(Pt )

is a strongly continuous semigroup of contractions onL2(µ
η
Λ) whose generator coincides withLη

Λ onbFΛ. By the

uniqueness result in Proposition 3.1,PtF = P
Λ,η
t F , µ

η
Λ-a.s.

Step3. Let us prove the conservabilityand (3.7) under the extra condition (3.6), which is one of condition
[16], Proposition 4. Fix our starting pointω ∈ ΩΛ.

By (3.8) and the fact thatc(Yk) � NΛ(Yk), we havePω(ζ = +∞/NΛ(Yn) � L, i.o.) = 1, for anyL > 0.
Consequently on[ζ < +∞], we havePω-a.s.,

lim NΛ(Xt) = lim
n→∞NΛ(Yn) = +∞
t→ζ−
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(i.e. the life timeζ , if finite, coincides with the explosion time in number of particles). To controlNΛ(Xt ), notice
that for anyF ∈ rFΛ such thatQk(ω, |F |) < +∞, ∀k � 1,

F(Xt∧Tn) − F(ω) −
t∧Tn∫
0

Lη
ΛF(Xs) ds

is aPω-martingale for eachn. Applying it to F(ω) = NΛ(ω), and noting that by condition (3.6)

Lη
ΛNΛ(ω) = −NΛ(ω) + z

∫
Λ

e−βD+
x H

η
Λ(ω) dx

�
(
K1e

−β infx∈Λ hη(x) − 1
)
NΛ(ω) + K2e

−β infx∈Λ hη(x) � L
(
NΛ(ω) + 1

)
for some constantL, we see that

NΛ(Xt∧Tn) − NΛ(ω) − L

t∫
0

[
1+ NΛ(Xs∧Tn)

]
ds

is a supermartingale. ThusEωNΛ(Xt∧Tn) � eLt (NΛ(ω) + 1 − e−Lt) by Gronwall inequality. By the fact tha
[ζ < +∞] ⊂ [limt↑ζ NΛ(Xt) = +∞] shown previously, we get by Fatou’s lemma that for eachT > 0,

+∞ · Pω(ζ � T ) = Eω lim
t↑ζ,n→∞NΛ(Xt∧Tn)1ζ�T � eLT

(
NΛ(ω) + 1

)
where it follows the desired non-explosion:Pω(ζ < +∞) = 0. Let us show now

Eω sup
t∈[0,T ]

NΛ(Xt) < +∞, ∀T > 0. (3.9)

In fact, consider the local martingaleMt := NΛ(Xt )−NΛ(ω)−∫ t

0 L
η
ΛNΛ(Xs) ds. Its predictable quadratic proce

is given by

〈M〉t =
t∫

0

(
NΛ + z

∫
Λ

e−βD+
x H

η
Λ dx

)
(Xs) ds � L

t∫
0

(
NΛ(Xs) + 1

)
ds

which isPω-integrable by the estimation above. HenceMt is a true martingale inL2(Pω). Now the desired (3.9
follows by the maximal inequality of Doob.

Having (3.9) we can conclude our proof of (3.7) easily. For everyF ∈ bFΛ, since∣∣Lη
ΛF(ω)

∣∣ � 2‖F‖uL
[
NΛ(ω) + 1

]
for some constantL by (3.6), thenPt |Lη

ΛF |(ω) < +∞ for all ω. Moreover for eacht fixed, sinceXs = Xt , Pω-a.s.
for all s sufficiently close tot , we then have for allG ∈ rFΛ satisfying|G| � L(NΛ + 1),

lim
s→t

PsG(ω) = lim
s→t

EωG(Xs) = EωG(Xt) = PtG(ω)

by dominated convergence and (3.9). ConsequentlyPtLη
ΛF(ω) is continuous ont .

Moreover (3.9) implies that the local martingaleF(Xt ) − F(ω) − ∫ t

0 L
η
ΛF(Xs) ds is a true martingale. Finally

taking expectation in this martingale we get

PtF (ω) − F(ω) =
t∫

0

PsLη
ΛF(ω)ds, ∀ω ∈ ΩΛ, t � 0,

where (3.7) follows.
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1]).
Step4. It remains to show the last uniqueness. Notice that ifP̃tF = PtF for all F ∈ D1, then they coincide on
bFΛ (sinceP̃t is assumed to be kernel asPt ). Then it is enough to show that for anyF ∈ D1, s → PsP̃t−sF (ω) is
continuous on[0, t] and

d

ds+ PsP̃t−sF (ω) = 0, ∀s ∈ (0, t).

We begin with the following fact: ifGε → G everywhere (asε → 0) and if |Gε| � L(NΛ + 1), then

Ps+εGε(ω) → PsG(ω), ∀ω. (3.10)

In fact, for allε sufficiently small,Xs+ε = Xs , a.s. and then asε → 0,

Gε(Xs+ε) → G(Xs), Pω-a.s.

By (3.9), we so havePs+εGε(ω) = EωGε(Xs+ε) → EωG(Xs) = PsG(ω).
The previous fact gives the continuity ofs → PsP̃t−sF on [0, t]. For anys ∈ (0, t),

d

ds+ PsP̃t−sF (ω) = lim
ε→0+

Ps+εP̃t−s−εF − PsP̃t−sF

ε

= lim
ε→0+Ps+ε

P̃t−s−εF − P̃t−sF

ε
+ lim

ε→0+
Ps+εP̃t−sF − PsP̃t−sF

ε
.

The last limit above isPsLη
ΛP̃t−sF by (3.7). For the first limit above, by the assumption,

P̃t−s−εF − P̃t−sF

ε
→ −Lη

ΛP̃t−sF

which is uniformly bounded by supu∈[0,t ] |Lη
ΛP̃uF | � 2 supu∈[0,t ] ‖P̃uF‖L(1 + NΛ). Then the first limit above is

−PsLη
ΛP̃t−sF , by (3.10). Thus d

ds+ PsP̃t−sF (ω) = 0 as required. �
To illustrate the usefulness of the previous result, let us present a comparison result (of independent in

Corollary 3.4. Assume(C1)or (C2) in Theorem2.1. Let

L0
ΛF(ω) :=

∑
x∈suppω

D−
x F (ω) + ze2Bβ

∫
Λ

D+
x F (ω) dx, ∀F ∈ bFΛ (3.11)

which generates a Markov semigroupP 0
t on bFΛ by Proposition3.2. If F ∈ bFΛ verifiesD+

x F (ω) � 0, dx-a.e.
for everyω ∈ ΩΛ, then

PtF (ω) � P 0
t F (ω), ∀ω ∈ ΩΛ, t � 0. (3.12)

In particular for all nonnegativeF1, . . . ,Fn ∈ bFΛ such thatD+
x Fk � 0 dx-a.e. for everyω ∈ ΩΛ and0 � t1 <

t2 < · · · < tn, we have

EPωF1(Xt1) · · ·Fn(Xtn) � EP
0
ωF1

(
X0

t1

) · · ·Fn

(
X0

tn

)
where((X0

t )t�0,P0
ω) is the Markov process with transition semigroup(P 0

t ) and starting pointω.

Recall that the “free” semigroupP 0
t is symmetric w.r.t. the Poisson measure onΛ with intensity measure

e2Bβzdx, its spectral gap is 1, and has an explicit expression by means of the chaos decomposition (cf. [2
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s

Proof. Let F ∈ bFΛ, t > 0. By Proposition 3.2 (3.7),PsP
0
t−sF (ω) is continuously differentiable on[0, t] and

d

ds
PsP

0
t−sF (ω) = Ps

(
Lη

Λ −L0)P 0
t−sF (ω) = Ps

(∫
Λ

(
e−βD+

x H
η
Λ − e2Bβ

)
D+

x P 0
t−sF zdx

)
(ω).

Since[L0,D+
x ]F(ω) := (L0D+

x − D+
x L0)F (ω) = D+

x F (ω), ∀x /∈ suppω (a simple calculus), we have

D+
x P 0

t F (ω) = e−tP 0
t D+

x F (ω), dx-a.e., ∀ω ∈ ΩΛ, t � 0 (3.13)

(this relation implies that the spectral gap of−L0 is 1). ThusD+
x P 0

t−sF (ω) � 0,dx-a.e. for allω. On the other hand
sinceD+

x H
η
Λ � −2B overΩΛ by (C1) or (C2), thend

ds
PsP

0
t−sF (ω) � 0 for all s ∈ [0, t]. ThusPtF (ω) � P 0

t F (ω),
the desired (3.12). The last inequality follows from (3.12) by iteration.�

4. Approximation of continuous gas by discrete spin systems

Throughout this section we assume, besides the stability (2.1) and the regularity (2.2), moreover thatϕ :Rd →
(−∞,+∞] is continuous and is of finite range, i.e., there exists somer > 0 such thatϕ(x) = 0 if |x| > r.

4.1. Construction of the approximating discrete spin systems

Consider a sequence(PN := {AN
i ; i ∈ IN = {1, . . . ,2N }},N � 1) of partitions ofΛ (i.e., for eachN � 1,

Λ = ⋃
i∈IN

AN
i and(AN

i , i ∈ IN ) ⊂ B(Λ) disjoint), such that

• the maximumr(N) of the diameters ofAN
i , i = 1, . . . ,2N , goes to 0 asN , goes to infinity;

• eachAN
i is the union of two disjoint subsetsAN+1

j ,AN+1
j+1 in the(N + 1)th partition.

This sequence of partitions will be fixed as well as pointsxN
i ∈ AN

i , i ∈ IN ,N � 1. Then under the Poisso
measureP ,

qN(ω) = (
ω(AN

1 ) ∧ 1, . . . ,ω(AN
2N ) ∧ 1

) ∈ {0,1}2N

is a sequence of independent Bernoulli random variables respectively with laws(γ N
i )i∈IN , where the succes

probabilityγ N
i (1) = 1− e−|AN

i |z ∼ z|AN
i |, i ∈ IN . Moreover

ΩN
Λ := {

ω ∈ ΩΛ; max
i∈IN

ω(AN
i ) � 1

}
increases toΩΛ. Consequently∀ω ∈ ΩΛ,

pN(ω) :=
∑
i∈IN

(
ω(AN

i ) ∧ 1
)
δxN

i
→ ω

weakly (as bounded measures onΛ).
Regarding the expression (2.8) ofLη

Λ, we see that a good candidate for approximatingLη
Λ is the following

generator for real functionf on {0,1}IN = {0,1}2N
,

LNf (σ) =
∑
i∈IN

D−
i f (σ ) +

∑
i∈IN

(
ez|AN

i | − 1
)
e−βD+

i HN(σ )D+
i f (σ ), ∀σ ∈ {0,1}IN (4.1)

where
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HN(σ) =
∑

1�i<j�2N ,i �=j

ϕ
(
xN
i − xN

j

)
σ(i)σ (j) +

2N∑
i=1

∑
y∈supp(η)∩Λc

ϕ
(
xN
i − y

)
σ(i)

= H
η
Λ

(
n∑

i=1

σ(i)δxN
i

)
(4.2)

and

D−
i f (σ ) := f (σ i−) − f (σ), D+

i f (σ ) := f (σ i+) − f (σ) (4.3)

andσ i±(j) = σ(j) for j �= i andσ i+(i) = 1 andσ i−(i) = 0. In fact we have

Lemma 4.1.

(a) For anyf : {0,1}IN → R, let F(ω) = f (qNω). Then for allω ∈ ΩΛ,

(LNf )(qNω) =
∑
x∈Λ

D−
x F (ω) +

∑
i∈IN

1ω(AN
i )>1(D

−
i f )(qNω)

+
∑
i∈IN

∫
AN

i

ez|AN
i | − 1

|AN
i | e−βD+

x H
η
Λ(pNω)D+

x F (ω) dx

(warning: D+
x H

η
Λ(pNω) �= (D+

x H
η
Λ)(pNω)), wheree

z|AN
i

|−1
|AN

i | := z if |AN
i | = 0.

(b) Let

µN(σ) = e−βHN(σ)

CN

∏
i∈IN

γ N
i (σ ) (4.4)

be the Gibbs measure on{0,1}2N
associated with the HamiltonianHN given in (4.2), whereγ N

i is the

Bernoulli measure such thatγ N
i (1) = 1− e−z|AN

i |, andCN is the normalizing constant. ThenLN is symmetric
onL2({0,1}IN ,µN) and for all real functionsf,g on {0,1}IN ,

EN(f,g) := µN

(
g(−LNf )

) = µN

( ∑
i∈IN

D−
i f · D−

i g

)

= µN

( ∑
i∈IN

(
ez|AN

i | − 1
)
e−βD+

i HN

D+
i f · D+

i g

)
. (4.5)

Proof. Part (a) is an immediate consequence of the following simple relations

D+
x f (qNω) = (D+

i f )(qNω), ∀x ∈ AN
i , ∀ω ∈ ΩΛ,

D−
x f (qNω) = 1ω(AN

i )�1(D
−
i f )(qNω), ∀x ∈ AN

i ∩ suppω, (4.6)

HN(qNω) = H
η
Λ(pNω)

whose verifications, very easy, are omitted.
For part (b), letµN,i(·/σ) be the conditional probability law ofσ(i) knowingσ(j), j �= i. Then

µN,i(0/σ) = e−βHN (σ i−)

−βHN(σ i−) z|AN | −βHN(σ i+)
. (4.7)
e + (e i − 1)e
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By an easy calculus and the fact that

µN,i(1/σ)

µN,i(0/σ)
= (

ez|AN
i | − 1

)
e−β(D+

i HN )(σ i−),

we have

µN,i

(
g
[
D−

i f + (
ez|AN

i | − 1
)
e−βD+

i HN

D+
i f

]
/σ

) = µN,i(D
−
i f · D−

i g/σ )

= (
ez|AN

i | − 1
)
µN,i

(
e−βD+

i HN

D+
i f · D+

i g/σ
)

where (4.5) follows by at first taking the conditional expectation.�
Let

DN := {
f (qNω); N � 1, f : {0,1}2N → R

}
,

D0 :=
⋃
N�1

DN . (4.8)

This space of test-functionsD0 containsD1 associated with the algebraA generated by
⋃

N�1PN , given in

Proposition 3.1 (3.2). Remark that for anyF(ω) = f (qNω) in DN , asqNω is a function ofqN+1(ω), we have
F ∈ DN+1. Then for anyF ∈ D0, for all N sufficiently large, there is a unique functionfN : {0,1}IN → R such
thatF(ω) = fN(qNω), ∀ω ∈ ΩΛ.

Lemma 4.2. Assume, besides(2.1) and (2.2), moreover thatϕ :Rd → (−∞,+∞] is continuous and is of finit
range. Then there exists a sequence ofFΛ-functionsεn(ω) → 0, ∀ω ∈ ΩΛ and bounded by some constantL

(depending only on the partitions and|Λ|), such that for anyF(ω) = fn(qnω) ∈ D0,∣∣(Lnfn)(qnω) −Lη
ΛF(ω)

∣∣ � εn(ω)‖F‖u

(
1+ NΛ(ω)

)
e2BβNΛ(ω)−β infx∈Λ hη(x), ∀ω ∈ ΩΛ

and the factorexp(2BβNΛ(ω) − β infx∈Λ hη(x)) above can be replaced bye2Bβ under (C1) or (C2) in
Theorem2.1.

Proof. At first notice that∣∣∣∣∣
2n∑
i=1

1ω(An
i )>1(D

−
i fn)(qnω)

∣∣∣∣∣ � 2‖F‖uNΛ(ω)
(
1− 1Ωn

Λ
(ω)

)
.

On the other hand, we have by (2.9),D+
x H

η
Λ(pnω) � −2BNΛ(ω) + infx∈Λ hη(x). Then

∑
i∈IN

∣∣∣∣ez|AN
i | − 1

|AN
i |

∫
AN

i

e−βD+
x H

η
Λ(pnω)D+

x F (ω) dx − z

∫
AN

i

e−βD+
x H

η
Λ(ω)D+

x F (ω) dx

∣∣∣∣

� max
i∈IN

∣∣∣∣ez|AN
i | − 1

|AN
i | − z

∣∣∣∣2‖F‖u|Λ|e2BβNΛ(ω)−β infx∈Λ hη(x)

+ 2‖F‖u

∫
Λ

∣∣e−βD+
x H

η
Λ(pnω) − e−βD+

x H
η
Λ(ω)

∣∣z dx,

where the last factor is bounded by 2 exp(2BβNΛ(ω) − β infx∈Λ hη(x)) and tends to zero, becausepnω → ω

weakly for all ω, andH
η
(ω) is continuous onω for the weak convergence topology inΩΛ by our assumption
Λ
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on ϕ. Those estimates yield the desired estimate by the expressions ofLη
ΛF and Lemma 4.1(a). Finally in th

context of (C1) or (C2) in Theorem 2.1, it is enough to useD+
x H

η
Λ(pnω) � −2B in the estimates above.�

4.2. A priori estimate of Ligget for the discrete spin model

Assume now (C1) or (C2) in Theorem 2.1. The generatorLN in (4.1) can be written as

LNf (σ) =
∑
i∈IN

∫
{0,1}

ci(σ, dξ)
(
f (σ i,ξ ) − f (σ)

)

whereσ i,ξ (j) = σ(j) for j �= i andσ i,ξ (i) = ξ , and

ci(σ,0) = 1σ(i)=1, ci (σ,1) = 1σ(i)=0
(
ez|AN

i | − 1
)
e−βD+

i HN (σ ).

According to Ligget [11], p. 24, introduce the matrixΓN := (ΓN(i, j))i,j∈IN of Ligget, whereΓN(i, i) := 0 and
for all i �= j (∈ IN)

ΓN(i, j) := sup
σ=τ off j

∥∥ci(σ, ·) − ci(σ, ·)∥∥
= sup

σ=τ off j, σ (i)=τ (i)=0

(
ez|AN

i | − 1
)∣∣e−βD+

i HN (σ ) − e−βD+
i HN (τ)

∣∣
= (

ez|AN
i | − 1

)∣∣1− e
−βϕ(xN

j −xN
i )

∣∣
× sup

σ
exp

(
−β

( ∑
k �=i,j

σ (k)ϕ
(
xN
k − xN

i

) +
∑

y∈suppηΛc

ϕ
(
y − xN

i

)))
.

Under (C1) or (C2) in Theorem 2.1, the last factor above is bounded bye2Bβ (without (C1) or (C2), the last facto
explodes!), then

ΓN(i, j) �
(
ez|AN

i | − 1
)∣∣1− e

−βϕ(xN
j −xN

i )
∣∣ · e2Bβ. (4.9)

Let ∇f (i) = supσ |f (σ i+) − f (σ i−)|, ∇f := (∇f (i))i∈IN (column vector), and

‖∇f ‖∞ := max
i∈IN

∇f (i), ‖∇f ‖1 :=
∑
i∈IN

∇f (i).

We now translate Ligget’sM-ε theorem ([11], Chapter I, Theorem 3.9) into the

Theorem 4.3. LetPN
t := etLN . Assume(C1)or (C2) in Theorem2.1andϕ is continuous and of finite range. The

(a) (Ligget) ∇PN
t f (j) � e−t [et(ΓN)∗∇f ](j), ∀j ∈ IN , t � 0, where(ΓN)∗ denotes the transposition of the mat

ΓN .
(b) LetM := M(z,β,B) := ze2Bβ

∫
Rd |1− e−βϕ(x)|dx. For anyδ > 0, for all N sufficiently large, we have for a

f : {0,1}IN → R,

‖∇PN
t f ‖∞ � e−(1−M−δ)t‖∇f ‖∞, ∀t � 0. (4.10)

(c) Assume moreover thatmaxi∈IN |AN
i | � (1+ ε(N))mini∈IN |AN

i | whereε(N) → 0 asN → ∞ (this is possible
for e.g.Λ rectangles). Then for anyδ > 0, for all N sufficiently large, we have for allf : {0,1}IN → R,

‖∇PN
t f ‖1 � e−(1−M−δ)t‖∇f ‖1, ∀t � 0. (4.11)
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Recall that‖∇f ‖1 is the “triple” norm of Ligget.

Proof. Part (a) is exactly [11], Chapter I, Theorem 3.9(c) since the constantε given there is� 1 for the model
here.

For part (b), notice that for anyh ∈ l∞(IN) identified as column vector,

∣∣(ΓN)∗h(j)
∣∣ =

∣∣∣∣ ∑
i∈IN

ΓN(i, j)h(i)

∣∣∣∣ � ‖h‖∞ ·
∑
i∈IN

(
ez|AN

i | − 1
)∣∣1− e

−βϕ(xN
j −xN

i )
∣∣ · e2Bβ

by (4.9). Thus

lim sup
N→∞

∥∥(ΓN)∗
∥∥

l∞(IN )
� lim sup

N→∞
max
j∈IN

∑
i∈IN

(
ez|AN

i | − 1
)∣∣1− e

−βϕ(xN
j −xN

i )
∣∣ · e2Bβ

� ze2Bβ

∫
Rd

∣∣1− e−βϕ(x)
∣∣dx = M

where part (b) follows from (a) by noting that‖exp(t (ΓN)∗)‖l∞(IN ) � exp(t‖Γ ∗
N‖l∞(IN )).

Finally for part (c), we have by a similar calculus

∥∥(ΓN)∗
∥∥

l1(IN )
� max

i∈IN

∑
j∈IN

(
ez|AN

i | − 1
)∣∣1− e

−βϕ(xN
j −xN

i )
∣∣ · e2Bβ

�
(
1+ ε(N)

)
max
i∈IN

∑
j∈IN

(
e
z|AN

j | − 1
)∣∣1− e

−βϕ(xN
j −xN

i )
∣∣ · e2Bβ.

Then

lim sup
N→∞

∥∥(ΓN)∗
∥∥

l1(IN )
� ze2Bβ

∫
Rd

∣∣1− e−βϕ(x)
∣∣dx = M

where part (c) follows. �

5. Exponential decay of the Glauber dynamics and proof of the main result

5.1. Exponential decay of the Glauber dynamics

The following theorem, being a consequence of Ligget’s Theorem 4.3 and of Proposition 3.2, is our second m
result. It gives an exponential convergence ofP

Λ,η
t (σ, ·) to µ

η
Λ w.r.t. the norms different from that ofL2(µ

η
Λ), for

every starting point, and it is in reality stronger than the spectral gap result in Theorem 2.1.

Theorem 5.1. Assume(C1)or (C2) in Theorem2.1. Let(PΛ,η
t = Pt ) be the transition semigroup onbFΛ generated

byLη
Λ (constructed in Proposition3.2).

(a) For anyF = f (ω(B1), . . . ,ω(Bk)) wherek � 1,Bk ∈ B(Λ), f :Nk → R is bounded,∥∥D+· P
Λ,η
t F

∥∥
u

� e−t (1−M)‖D+· F‖u, ∀t � 0 (5.1)

whereM := ze2Bβ
∫

d |1− e−βϕ(x)|dx, and‖D+· F‖u := sup(x,ω)∈Λ×Ω |D+
x F (ω)|.
R Λ
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(b) If Λ allows a sequence of partitions(PN)N�1 as in Section4 such thatmaxi |AN
i | � (1 + ε(N))mini |AN

i |
whereε(N) → 0 (e.g.Λ rectangles), then for allF = f (ω(B1), . . . ,ω(Bk)) wherek � 1,Bk ∈ A (the algebra
generated by{PN,N � 1}), f :Nk → R is bounded,∫

Λ

dx
∥∥D+

x P
Λ,η
t F

∥∥
u

� e−t (1−M)

∫
Λ

dx ‖D+
x F‖u, ∀t � 0. (5.2)

Remarks 5.2. It would be interesting to investigate whether the LiggetM-ε theorem still holds true for gener
continuous gas models, with a direct proof. The classical proof of Ligget [11] in the lattice case (i.e., onET with T

at most countable) relies on the Yosida theorem (for applying it, Ligget assumed the compactness of spinE and the
continuity of local transition rate kernels for proving the uniqueness inCb(E

T )). For the continuous gas mode
the main difficulty for a direct proofseems residing in the facts that

(i) Even in the finite volume case, the configurations spaceΩΛ is unbounded and infinite dimensional;
(ii) the Yosida theorem is no longer available, because usual Markov semigroups(Pt ) on ΩΛ is not strongly

continuous onCb(ΩΛ) (e.g., the free semigroup(P 0
t ) is such an example). The uniqueness in Proposition

and its extension to more general models might be helpful in this story.

Remarks 5.3. In the lattice case, restricted to a finite number of sites, Ligget [11] succeeded to obta
exponential convergence in the uniform norm from hisM-ε theorem. That is impossible for the continuous g
model here, because even the free semigroup(P 0

t ) (i.e., ϕ = 0) on a bounded domainΛ does not have th
exponential convergence in the uniform norm. In fact let((X0

t ),P0
ω) be the free Glauber Markov process associa

with (P 0
t ). Then(NΛ(Xt))t�0 is a birth-death process valued inN with death ratebn = n and birth ratean = z|Λ|,

it is non-Doeblin recurrent by Mao [14], then no exponential convergence in the uniform norm.

The following elementary lemma will be used.

Lemma 5.4. Letf :Rd → (−∞,+∞] be a measurable function such thatf − ∈ L1
loc(R

d , dx). Then

lim
ε→0

hε ∗ f (x) = f (x), dx-a.e. in (−∞,+∞]

wherehε(x) := 1
εd h(

y−x
ε

), 0 � h ∈ C∞(Rd) is an even function such thath(x) = 0 for |x| > 1 and
∫

h(x) dx = 1.

Proof. This lemma is well known iff ∈ L1
loc(R

d, dx) (Lebesgue’s theorem). We can then assume thatf = f + �
0. For anyL > 0, we have fordx-a.e.x,

lim inf
ε→0

hε ∗ f (x) � lim inf
ε→0

hε ∗ (f ∧ L)(x) = f (x) ∧ L

and on the other hand by Jensen’s inequality, we have fordx-a.e.x,

lim inf
ε→0

e−hε∗f (x) � lim inf
ε→0

(hε ∗ e−f )(x) = e−f (x). �
Proof of Theorem 5.1. (a). We separate its proof into three steps of approximation.

Step1. The first approximation.We assume at first thatϕ is moreover continuous and of finite range a
F ∈ D0. Write Pt := P

Λ,η
t and PN

t := etLN for simplicity. For anyF ∈ D0, F(ω) = fn(qnω) for all n � N

(for someN ), wherefn : {0,1}In → R. By Proposition 3.2 (3.7), we have that for anyω ∈ ΩΛ and anyt > 0,
s → Ps[(P n

t−sfn)(qn·)](ω) is continuous differentiable on[0, t], and

d
Ps

[(
Pn

t−sfn

)
(qn·)

]
(ω) = Ps

(
Lη

Λ

[(
Pn

t−sfn

)
(qn·)

]
(ω) − (

LnP
n
t−sfn

)
(qnω)

)
.

ds
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Thus

PtF (ω) − (
Pn

t fn

)
(qnω) =

t∫
0

dsPs

[
Lη

Λ

[(
Pn

t−sfn

)
(qn·)

]
(ω) − (

LnP
n
t−sfn

)
(qnω)

]
ds.

By Lemma 4.2,|Lη
Λ[(P n

t−sfn)(qn·)](ω) − (LnP
n
t−sfn)(qnω)| � εn(ω)‖F‖u(1 + NΛ(ω))e2Bβ whereεn(ω) → 0

everywhere and uniformly bounded by some constantL. Then by (3.9) in the proof of Proposition 3.2, we c
apply the dominated convergence and get

lim
n→∞(P n

t fn)(qnω) = PtF (ω), ∀ω.

Consequently∀(x,ω) ∈ Λ × ΩΛ,∣∣D+
x PtF (ω)

∣∣ = lim sup
n→∞

∣∣D+
x

(
Pn

t fn

)
(qnω)

∣∣
� lim sup

n→∞
∥∥max

i∈In

(
D+

i P n
t fn

) ◦ qn

∥∥
u

� e−(1−M)t lim sup
n→∞

∥∥max
i∈In

(
D+

i fn

)∥∥
u

= e−(1−M)t‖D+· F‖u

the desired estimate, where the crucial third inequality follows by Theorem 4.3(b).
Step2. The second approximation.Assume at first thatϕ is of finite range. For anyε ∈ (0,1) let

ϕε(x) := hε ∗ ϕ(x) :=
∫
Rd

hε(y − x)ϕ(y) dy

wherehε is given in Lemma 5.4. Obviouslyϕε satisfies (C1) or (C2) if so doesϕ, andϕε :Rd → (−∞,+∞] is
continuous and of finite range. By Lemma 5.4,ϕε(x) → ϕ(x), dx-a.e.

Write Hε,µε,Lε,P
ε
t respectively for the Hamiltonian (with the same boundary conditionη ∈ Ωϕ), Gibbs

measure, the generator of the Glauber dynamic and the corresponding semigroup onbFΛ, associated withϕε

instead ofϕ.
Again by Proposition 3.2, we have as step 1 that for anyF ∈ D0,

∣∣PtF (ω) − Pε
t F (ω)

∣∣ =
∣∣∣∣∣

t∫
0

Ps

(
Lη

Λ −Lε

)
Pε

t−sF (ω) ds

∣∣∣∣∣
=

∣∣∣∣∣
t∫

0

dsPs

(∫
Λ

(
e−βD+

x H
η
Λ − e−βD+

x Hε
)
D+

x P ε
t−sF zdx

)
(ω)

∣∣∣∣∣
� 2‖F‖u

t∫
0

dsPs

(∫
Λ

∣∣e−βD+
x H

η
Λ − e−βD+

x Hε
∣∣z dx

)
(ω)

where it follows by dominated convergence thatPε
t F (ω) → PtF (ω) asε → 0. Now the desired result forPtF

follows from that ofPε
t F obtained in step 1.

We now remove the finite range condition. Puttingϕr(x) := ϕ(x)1|x|<r , we see that asr → ∞,
∫
Λc ϕr(y −

x)η(dy) → ∫
Λc ϕ(y − x)η(dy) for everyx ∈ Rd by our assumption thatη ∈ Ωϕ . Hence the same proof as abo

yields (5.1) for allF ∈D0, without the finite range condition.
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Step3. Passage toF = f (ω(B1), . . . ,ω(Bk)). We can choose the sequence of partitions(PN)N�1 in Section 4
so that moreover eachBi is an union of elements inPN for someN . Then for alln � N , Bi = ⋃

j∈J n
i
An

j where
J n

i ⊂ In = {1, . . . ,2n}. Let

Fn(ω) = f

( ∑
j∈J n

1

ω(An
j ) ∧ 1, . . . ,

∑
j∈J n

k

ω(An
j ) ∧ 1

)
.

It is easy to see that|DxFn(ω)| � |DxF(ω)| andFn → F , everywhere. Now for every(x,ω) ∈ Λ × ΩΛ, we have
by step 2 (asFn ∈D0),∣∣D+

x PtF (ω)
∣∣ = lim sup

n→∞
∣∣D+

x (PtFn)(ω)
∣∣ � e−(1−M)t lim sup

n→∞
‖D+· Fn‖u � e−(1−M)t‖D+F‖u

the desired result.
(b) It can be proved exactly in the same way as in the proof of part (a), by applying Theorem 4.3(c) ins

Theorem 4.3(b). �
5.2. Proof of Theorem 2.1

Proof of the upper bound in (2.12). By Proposition 3.1,NΛ ∈ D(Eη
Λ) and

Eη
Λ(NΛ,NΛ) =

∫
dµ

η
Λ(ω)

∫
Λ

(
D−

x NΛ(ω)
)2

ω(dx) = µ
η
Λ(NΛ).

Then

λ1 �
µ

η
Λ(NΛ)

µ
η
Λ(NΛ,NΛ)

� 1+ zeβB

∫
Rd

(
1− e−βϕ+(x)

)
dx

where the last inequality is a classicalestimate, see [17], Proposition 3.4.9.�
Proof of the lower bound in (2.12). Obviously we may assume without loss of generality thatM :=
ze2Bβ

∫
Rd |1− eϕ(x)|dx < 1.

Let −Lη
Λ = ∫

R+ λdEλ be the spectral decomposition of−Lη
Λ in L2(µ

η
Λ) (recall thatE0F = µ

η
Λ(F )). Letλ0 be

an arbitrary point in(0,1− M). By Theorem 5.1, for anyF ∈ D0 given in (4.8),

e−2λ0t

∫
[0,λ0]

λd
〈
(Eλ − E0)F,F

〉
�

∫
(0,+∞)

λe−2λtd〈EλF,F 〉 = Eη
Λ(PtF,PtF )

= µ
η
Λ

(∫
Λ

e−βD+
x H

η
Λ(ω)

(
D+

x PtF
)2

z dx

)

� z|Λ|e2Bβ‖D+· PtF‖2
u

� z|Λ|e2Bβ‖D+· F‖2
u · e−2(1−M)t

where it follows that
∫
[0,λ0] λd(Eλ − E0)F = 0, by lettingt → ∞ (because‖D+· F‖u = 0 impliesF = µ

η
Λ(F )).

As D0 is dense inL2(µ
η
Λ) and

∫
[0,λ0] λd(Eλ − E0) is bounded onL2(µ

η
Λ), then

∫
[0,λ0] λd(Eλ − E0) = 0, i.e.,

Eλ = E0 for all λ ∈ [0, λ0]. As λ0 ∈ (0,1− M) is arbitrary, then

λ1 = inf{λ > 0; Eλ − E0 �= 0} � 1− M

the desired result. �
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5.3. Extension to other Glauber dynamics

One can transfer the estimate ofλ1 in Theorem 2.1 to other reversible or non-reversible Glauber dyna
associated withµη

Λ, by comparison (always under (C1) or (C2)). At first if(Pt ) is a Markov semigroup on
L2(µ

η
Λ) with invariant measureµη

Λ and with generatorL (representing a Glauber dynamic), letλ1(P·) be the
largest exponential convergence rate ofPt to the equilibriumµ

η
Λ, i.e., the best constant such that

µ
η
Λ(PtF,PtF ) � e−2λ1tµ

η
Λ(F,F ), ∀F ∈ L2(µ

η
Λ).

As this last property is equivalent to the Poincaré inequality

λ1µ
η
Λ(f,f ) � 〈F,−LF 〉µη

Λ
, ∀F ∈ Dom(L)

henceλ1 coincides with the spectral gap of(L+L∗)/2 (in the form sense). In other words we are always redu
to the reversible case.

For constructing reversible Glauber dynamics, consider the pre-Dirichlet form

EZ(F,G) :=
∫

ΩΛ

dµ
η
Λ(ω)

∫
Λ

eZ(x,ω)−βD+
x H

η
Λ(ω)D+

x F (ω)D+
x G(ω)zdx, ∀F,G ∈ bFΛ

whereZ(x,ω) is B(Λ) ⊗FΛ-measurable, such that

(i) Z(x,ω) � C(Z);
(ii) Z(x,ω) − βD+

x H
η
Λ(ω) is upper bounded.

Then from Theorem 2.1, we have

(1− M)e−C(Z)µ
η
Λ(F,F ) � EZ(F,F ), ∀F ∈ bFΛ.

If we assume moreover that

(iii)
∫
Λ eZ(x,ω)dω(x) ∈ L2(µ

η
Λ),

then by the duality formula (3.1), the associated symmetric (nonpositive definite) pre-generator is given by

LZF(ω) =
∫
Λ

eZ(x,ε−
x ω)D−

x F dω(x) +
∫
Λ

eZ(x,ω)−βD+
x H

η
Λ(ω)D+

x F (ω)zdx, ∀F ∈ bFΛ.

Thus(EZ,bFΛ) is closable and its closure will be still denoted byEZ . Its spectral gapλ1(EZ) verifies then

λ1(EZ) � (1− M)e−C(Z).

As in Section 2, one can prove that(LZ,bFΛ) is essentially self-adjoint inL2(µ
η
Λ) and its closure generates

conservative reversible Glauber dynamic.
A quite natural choice ofZ is Zδ(x,ω) = βδD+

x H(ω) with δ ∈ [0,1] for which all conditions (i), (ii) and (iii)
are satisfied under (C1) or (C2). For this last family ofZδ, one can prove that all results in Section 3 remain tr
but surprisely enough, ifδ > 0, in the process of approximation ofLZδ by discrete models as in Section 4, thou
the constantε in the Ligget’sM-ε theorem might become very large, butM explodes as well asM-ε in general.
That’s why we chooseδ = 0 in this paper.

Note added to the revised version: I learn from A. Guillin during Augest (6 monthes after the submission of
paper), the work by Kondratiev and Lytvynov [13] (June2003) who prove independently the same lower boun
the spectral gap whenϕ � 0.
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