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Abstract

We consider the model of directed polymers in a random environment introduced by Petermann: the random
Rd -valued and has independentN (0, Id )-increments, and the random media is a stationary centered Gaussian p
(g(k, x), k � 1, x ∈ Rd) with covariance matrix cov(g(i, x), g(j, y)) = δij �(x −y), where� is a bounded integrable functio

on Rd . For this model, we establish an upper bound of the volume exponent in all dimensionsd.
 2004 Elsevier SAS. All rights reserved.

Résumé

On considère le modèle de polymères dirigés en environnement aléatoire introduit par Petermann : la marche aléa
jacente est à valeurs dansRd , ses incréments sont des variables indépendantes de loiN (0, Id ), et le milieu aléatoire est u
processus gaussien stationnaire centré(g(k, x), k � 1, x ∈ Rd ) de matrice de covariance cov(g(i, x), g(j, y)) = δij �(x − y),

où� est une fonction bornée intégrable surRd . Pour ce modèle, nous établissons une majoration de l’exposant de volume
toute dimensiond.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

The model of directed polymers in a random environment was introduced by Imbrie and Spencer
focus here on a particular model studied by Petermann [8] in his thesis: let(Sn)n�0 be a random walk inRd

starting from the origin, with independentN (0, Id)-increments, defined on a probability space(Ω,F ,P), and let
g = (g(k, x), k � 1, x ∈ Rd ) be a stationary centered Gaussian process with covariance matrix

cov
(
g(i, x), g(j, y)

) = δij�(x − y),

E-mail address:olivier.mejane@lsp.ups-tlse.fr (O. Mejane).
0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2003.10.007
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where� is a bounded integrable function onRd . We suppose that this random mediag is defined on a probability
space(Ωg,G,P ), where(Gn)n�0 is the natural filtration:

Gn = σ
(
g(k, x), 1 � k � n, x ∈ Rd

)
for n � 1 (G0 being the trivialσ -algebra). We denote byE (respectivelyE) the expectation with respect toP
(respectivelyP ). We define the Gibbs measure〈.〉(n) by:

〈f 〉(n) = 1

Zn

E
(
f (S1, . . . , Sn)e

β
∑n

k=1 g(k,Sk)
)

for any bounded functionf on (Rd )
n
, whereβ > 0 is a fixed parameter andZn is the partition function:

Zn = E
(
eβ

∑n
k=1 g(k,Sk)

)
.

Following Piza [9] we define the volume exponent

ξ = inf
{
α > 0: 〈1{maxk�n |Sk |�nα}〉(n) →

n→∞ 1 in P-probability
}
.

Here and in the sequel,|x| = max1�i�d |xi | for any x = (x1, . . . , xd) ∈ Rd . Petermann obtained a result
superdiffusivity in dimension one, in the particular case where�(x) = 1

2λ
e−λ|x| for someλ > 0: he proved tha

ξ � 3/5 for all β > 0 (for another result of superdiffusivity, see [6]).
Our main result gives on the contrary an upper bound for the volume exponent, in all dimensions:

∀d � 1, ∀β > 0 ξ � 3

4
. (1)

This paper is organized as follows:

• In Section 2, we first extend exponential inequalities concerning independent Gaussian variables, proved b
Carmona and Hu [1], to the case of a stationary Gaussian process. Then, following Comets, Shiga and
[2], we combine these inequalities with martingalemethods and obtain a concentration inequality.

• In Section 3, we obtain an upper bound forξ when we consider only the value of the walkS at time n,
and not the maximal one beforen. In fact we prove a stronger result, namely a large deviation principle
(〈1Sn/nα∈.〉(n), n � 1) whenα > 3/4. This result and its proof are an adaptation of the works of Comets
Yoshida on a continuous model of directed polymers [3].

• In Section 4, we establish (1).
• Appendix A is devoted to the proof of Lemma 2.4, used in Section 2, which gives a large deviation e

for a sum of martingale-differences. It is a slight extension of a result of Lesigne and Volný [5, Theorem

2. Preliminary: a concentration inequality

2.1. Exponential inequalities

Lemma 2.1.Let (g(x), x ∈ Rd) be a family of Gaussian centered random variables with common varianceσ 2 > 0.
We fixq,β > 0,(x1, . . . , xn) ∈ (Rd)

n
and(λ1, . . . , λn) in Rn. Then for any probability measureµ onRd :

e− β2σ2

2 q � E

(
eβ

∑n
i=1 λig(xi)(∫

R
eβg(x)µ(dx)

)q
)

� e
β2σ2

2
(
q+∑n

i=1 |λi |)2
.
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The proof is identical with the one made by Carmona and Hu in a discrete framework (µ is the sum of Dirac
masses), and is therefore omitted.

Lemma 2.2. Let (g(x), x ∈ Rd) be a centered Gaussian process with covariance matrixcov(g(x), g(y)) =
�(x − y). Let σ 2 = �(0), and letµ be a probabilitymeasure onRd . Then for allβ > 0, there are constant
c1 = c1(β,σ 2) > 0 andc2 = c2(β,σ 2) > 0 such that:

−c1

∫ ∫

Rd

�(x − y)µ(dx)µ(dy)� E

(
log

∫
R

eβg(x)− β2σ2

2 µ(dx)

)
� −c2

∫ ∫

Rd

�(x − y)µ(dx)µ(dy).

In particular,

−c1σ
2 � E

(
log

∫

Rd

eβg(x)− β2σ2

2 µ(dx)

)
� 0.

Proof. Let {Bx(t), t � 0}x∈Rd be the family of centered Gaussian processes such that

E
(
Bx(t)By(s)

) = inf(s, t)�(x − y),

with Bx(0) = 0 for all x ∈ Rd . Define

X(t) =
∫

Rd

Mx(t)µ(dx), t � 0,

whereMx(t) = eβBx(t)−β2σ2t/2. SincedMx(t) = βMx(t) dBx(t), one has

d〈Mx,My〉t = β2Mx(t)My(t) d〈Bx,By〉t = β2eβ(Bx(t)+By(t))−β2σ2t�(x − y) dt,

andd〈X,X〉t = ∫∫
Rd β2eβ(Bx(t)+By(t))−β2σ2t�(x − y)µ(dx)µ(dy) dt. Thus, by Ito’s formula,

E(logX1) = −β2

2

∫ ∫

Rd

µ(dx)µ(dy)�(x − y)

1∫
0

E

(
eβ(Bx(t)+By(t))−β2σ2t

X2
t

)
dt.

By Lemma 2.1, we have for allt :

e−β2σ2t � E

(
eβ(Bx(t)+By(t))−β2σ2t

X2
t

)
= E

(
eβ(Bx(t)+By(t))

(
∫

R
eβBx(t)µ(dx))

2

)
� e8β2σ2t .

Hence:

−e8β2σ2 − 1

16σ 2

∫ ∫

Rd

�(x − y)µ(dx)µ(dy)� E(logX1) � −1− e−β2σ2

2σ 2

∫ ∫

Rd

�(x − y)µ(dx)µ(dy),

which concludes the proof sinceX1
d= ∫

Rd eβg(x)− β2σ2

2 µ(dx). �
2.2. A concentration result

Proposition 2.3.Let ν > 1/2. For n ∈ N, j � n andfn a nonnegative bounded function, such thatE(fn(Sj )) > 0.

We noteWn,j = E(fn(Sj )eβ
∑n

k=1 g(k,Sk)). Then forn � n0(β, ν),

P
(∣∣logWn,j − E(logWn,j )

∣∣ � nν
)
� exp

(
−1

n(2ν−1)/3
)

.

4
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Proof. We use the following lemma, whose proof is postponed to Appendix A.

Lemma 2.4.Let (Xi
n, 1 � i � n) be a martingale difference sequence and letMn = ∑n

i=1 Xi
n. Suppose that ther

existsK > 0 such thatE(e|Xi
n|) � K for all i andn. Then for anyν > 1/2, and forn � n0(K,ν),

P
(|Mn| > nν

)
� exp

(
−1

4
n(2ν−1)/3

)
.

• We first assume thatfn > 0.
To apply the Lemma 2.4, we defineXi

n,j = E(logWn,j | Gi ) − E(logWn,j | Gi−1) so that

log(Wn,j ) − E(logWn,j ) =
n∑

i=1

Xi
n,j .

It is sufficient to prove that there existsK > 0 such thatE(e|Xi
n,j |

) � K for all i and(n, j).
For this, we introduce:

ei
n,j = fn(Sj )exp

( ∑
1�k�n, k �=i

βg(k, Sk)

)
, Wi

n,j = E
(
ei
n,j

)
.

Wi
n,j > 0 since we assumed thatfn > 0. If Ei is the conditional expectation with respect toGi , then

Ei(logWi
n,j ) = Ei−1(logWi

n,j ), so that:

Xi
n,j = Ei

(
logY i

n,j

) − Ei−1
(
logY i

n,j

)
, (2)

with

Y i
n,j = e−β2/2Wn,j

Wi
n,j

=
∫

Rd

eβg(i,x)−β2/2 µi
n,j (dx), (3)

µi
n,j being the random probability measure:

µi
n,j (dx) = 1

Wi
n,j

E
(
ei
n,j | Si = x

)
P(Si ∈ dx).

Since µi
n,j is measurable with respect toGn,i = σ(g(k, x), 1 � k � n, k �= i, x ∈ Rd), we deduce from

Lemma 2.2 that there exists a constantc = c(β) > 0, which does not depend on(n, j, i), such that:

−c � E

(
log

∫

Rd

eβg(i,x)−β2/2 µi
n,j (dx) | Gn,i

)
� 0,

and sinceGi−1 ⊂ Gn,i , we obtain:

0 � −Ei−1
(
logY i

n,j

)
� c. (4)

Thus we deduce from (2) and (4) that for allθ ∈ R

E
[
eθXi

n,j
]
� ecθ+

E
[
eθEi (logY i

n,j )]
with θ+ := max(θ,0). By Jensen’s inequality,

eθEi (logY i
n,j ) � Ei

[(
Y i

n,j

)θ ]
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E
[
eθXi

n,j
]
� ecθ+

E
[(

Y i
n,j

)θ ] = ecθ+
E

[
E

[(
Y i

n,j

)θ | Gn,i

]]
.

Assume now thatθ ∈ {−1,1}, hence in both cases, the functionx 	→ xθ is convex; using (3), we obtai

(Y i
n,j )

θ �
∫

Rd eθ(βg(i,x)−β2/2) µi
n,j (dx), so that:

E
[(

Y i
n,j

)θ | Gn,i

]
�

∫

Rd

E
(
eθ(βg(i,x)−β2/2) | Gn,i

)
µi

n,j (dx) =
∫

Rd

E
(
eθ(βg(i,x)−β2/2)

)
µi

n,j (dx)

= E
(
eθ(βg(1,0)−β2/2)

)
,

using thatg(i, x) is independent fromGn,i , and is distributed asg(1,0) for all i andx. We conclude that fo
all n and 1� i, j � n,

E
[
e|Xi

n,j |] � E
[
eXi

n,j
] + E

[
e−Xi

n,j
]
� K := ec + eβ2

.

• In the general case wherefn � 0, we introducehn = fn + δ for some 0< δ < 1. The first part of the proo

applies tohn: notingWδ
n,j = E(hn(Sj )eβ

∑n
k=1 g(k,Sk)), it remains to show that logWδ

n,j − E(logWδ
n,j )

P -a.s.→
δ→0

logWn,j − E(logWn,j ). Sincefn is bounded by some constantCn > 0, the following inequality holds for al
0 < δ < 1: logWn,j � logWδ

n,j � log((Cn + 1)Zn). Since 0� E logZn � logEZn = nβ2�(0)/2 < ∞, the
conclusion follows from dominated convergence.�

Corollary 2.5. Let ν > 1/2. Let us fix a sequence of Borel sets(B(j,n), n � 1, j � n). ThenP -almost surely,
there existsn0 such that for everyn � n0, everyj � n,∣∣log〈1Sj ∈B(j,n)〉(n) − E

(
log〈1Sj ∈B(j,n)〉(n)

)∣∣ � 2nν.

Proof. Let us write An,j = {| logE(fn(Sj )eβ
∑n

k=1 g(k,Sk)) − E[logE(fn(Sj )eβ
∑n

k=1 g(k,Sk))]| � nν}. Proposi-
tion 2.3 implies that

P

(⋃
j�n

An,j

)
� nexp

(
−1

4
n(2ν−1)/3

)
.

Hence, by Borel–Cantelli,P -almost-surely there existsn0 such that for everyn � n0 and everyj � n:∣∣logE
(
fn(Sj )e

β
∑n

k=1 g(k,Sk)
) − E

[
logE

(
fn(Sj )e

β
∑n

k=1 g(k,Sk)
)]∣∣ � nν.

Then one applies this result tofn(x) = 1x∈B(j,n) and tofn(x) = 1. �

3. A first result

In this section, we prove that a large deviation principle holdsP -almost surely for the sequence of measu
(〈1Sn/nα∈.〉(n), n � 1) if α > 3/4. This was first proved by Comets and Yoshida [3, Theorem 2.4.4], for a mod
directed polymers in which the randomwalk is replaced by a Brownian motion and the environment is given
Poisson random measure onR+ × Rd .

Theorem 3.1.Let α > 3/4. Then a large deviation principle for(〈1Sn/nα∈.〉(n), n � 1) holdsP -a.s., with the rate
functionI (λ) = ‖λ‖2/2 and the speedn2α−1, ‖.‖ denoting the Euclidean norm onRd . In particular, for all ε > 0,

lim − 1
2α−1 log〈1‖Sn‖�εnα 〉(n) = ε2

P -a.s.

n→∞ n 2
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Remark 3.2.In particular this result implies that for allα > 3/4,

〈1|Sn|�nα 〉(n) P -a.s.→
n→∞ 0. (5)

Proof. Let us fixλ ∈ Rd , n � 1, and then introduce the following martingale:

Mλ,n
p =

{
eλ.Sp−p‖λ‖2/2 if p � n,

eλ.Sn−n‖λ‖2/2 if p > n,

with x.y denoting the scalar product between two vectorsx andy in Rd . If Qλ,n is the probability defined by
Girsanov’s change associated to this positive martingale, Girsanov’s formula ensures that, underQλ,n, the process
(S̃p := Sp − λ(p ∧ n), p � 1) has the same distribution asS underP. Therefore:

Zn

〈
eλ.Sn

〉(n) = en‖λ‖2/2E
(
Mλ

n eβ
∑n

k=1 g(k,Sk)
)

= en‖λ‖2/2E
(
eβ

∑n
k=1 gλ,n(k,Sk+kλ)

)
= en‖λ‖2/2E

(
eβ

∑n
k=1 gλ,n(k,Sk)

)
,

where we denote bygλ,n the translated environment

gλ,n(k, x) := g
(
k, x + λ(k ∧ n)

)
.

By stationarity, this environment has the same distribution as(g(k, x), k � 1, x ∈ Rd ), hence

E
(
eβ

∑n
k=1 gλ,n(k,Sk)

) d= E
(
eβ

∑n
k=1 g(k,Sk)

)
,

thus

E log
〈
eλ.Sn

〉(n) = n‖λ‖2/2. (6)

Now let us fixα > 3/4. With nα−1λ instead ofλ, (6) gives

E log
〈
enα−1λ.Sn

〉(n) = n2α−1‖λ‖2/2. (7)

Let us definefn(x) = enα−1λ.x . This function is positive andE(fn(Sn)eβ
∑n

k=1 g(k,Sk)) < ∞, so that the result o
Corollary 2.5 is still true withfn(x) instead of1x∈B(j,n). Since 2α − 1> 1/2, this implies

lim
n→∞

1

n2α−1

(
log

〈
enα−1λ.Sn

〉(n) − E log
〈
enα−1λ.Sn

〉(n)) = 0 P -a.s. (8)

From (7) and (8), we get:

lim
n→∞

1

n2α−1 log
〈
enα−1λ.Sn

〉(n) = ‖λ‖2/2 P -a.s.

Let us definehn(λ) = 1
n2α−1 log〈enα−1λ.Sn〉(n) andh(λ) = ‖λ‖2/2. From what we proved, we deduce the existe

of A ⊂ Ωg , with P(A) = 1, on whichhn(λ) → h(λ) for all λ ∈ Qd . Now we show that onA the convergenc
actually holds for allλ ∈ Rd , by using that the functionshn are convex andh is continuous. To this goal, we ca
reduce the proof to the cased = 1. Indeed ifd � 2, we fix (d − 1) coordinates inQd−1 and use thathn is still
convex as a function of the last coordinate, and then repeat the process. So let us assumed = 1 and fixλ ∈ R∗.
There exist two sequences(ai, i � 0) and (bi, i � 0) in QN that converge toλ, (ai, i � 0) being increasing
and(bi, i � 0) decreasing. Let us fixi � 1 andn � 1. Sincehn is convex and satisfieshn(0) = 0, the function
x → hn(x)/x is increasing. Hence the following inequalities hold:

hn(ai) � hn(λ) � hn(bi)
.

ai λ bi
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Sincehn converges towardsh on Q, it follows that

h(ai)

ai

� lim inf
n→∞

hn(λ)

λ
� lim sup

n→∞
hn(λ)

λ
� h(bi)

bi

.

The limit functionh being continuous, we obtain by lettingi → +∞ that the limit ofhn(λ)/λ exists and is equa
to h(λ)/λ, which proves thathn(λ) → h(λ) for all λ ∈ R.

One then concludes by the Gärtner–Ellis–Baldi theorem (see [4]).�

4. Upper bound of the volume exponent

We now extend the result (5) to the maximal deviation from the origin:

Theorem 4.1.For all d � 1 andα > 3/4,

〈1{maxk�n |Sk |�nα}〉(n) P -a.s.→
n→∞ 0.

Proof. We will use the following notations: forx ∈ Rd andr � 0,B(x, r) = {y ∈ Rd , |y − x| � r}. Forα � 0 and
j = (j1, . . . , jd) ∈ Zd , Bα

j = B(jnα,nα). We will use the fact that the union of the balls(Bα
j , j ∈ (2Z)d\{0}) form

a partition ofRd\B(0, nα).
We first prove the following upper bound:

Proposition 4.2.Letn � 0 andk � n. Then for anyj ∈ Zd andα > 0,

E
(
log〈1Sk∈Bα

j
〉(n)

)
� −n2α−1

2

d∑
i=1

(ji − εi)
2,

whereεi = sgn(ji) (= 0 if ji = 0).

Proof. Let note aα
k,j = E(1Sk∈Bα

j
eβ

∑n
i=1 g(i,Si)), so that 〈1Sk∈Bα

j
〉(n) = aα

k,j /Zn. Let be λ = λ̃/k with λ̃i =
(ji − εi)n

α, 1 � i � d ; then let us define the martingale

Mλ,k
p =

{
eλ.Sp−p‖λ‖2/2 if p � k,

eλ.Sk−k‖λ‖2/2 if p > k,

wherex.y denotes the usual scalar product inRd and‖x‖ the associated euclidean norm. Under the probab
Qλ,k associated to this martingale,(Sp)p�0 has the law of the following shifted random walk underP:

S̃p = Sp + λ̃

(
p

k
∧ 1

)
.

It follows that:

aα
k,j = E

(
e

−1
k

(λ̃.Sk+‖λ̃‖2
/2)1Sk∈Bα

j −λ̃eβ
∑n

i=1 g̃(i,Si )
)
, (9)

whereg̃(i, x) = g(i, x + λ̃(i/k ∧ 1)).
Now we notice that on the event{Sk ∈ Bα

j − λ̃}, one has̃λ.Sk � 0: indeed if we writeSk = (S1
k , . . . , Sd

k ), then

for any 1� i � d , |Si
k − jin

α + λ̃i | � nα , hence:

• for ji � 1, λ̃i = (ji − 1)nα � 0 and 0� Si � 2nα ,
k
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–149].
• for ji � −1, λ̃i = (ji + 1)nα � 0 and−2nα � Si
k � 0,

• for ji = 0, λ̃i = 0,

so that in all cases̃λiS
i
k � 0 and thus̃λ.Sk � 0. Therefore on the event{Sk ∈ Bα

j − λ̃},

e
−1
k

(λ̃.Sk+‖λ̃‖2
/2) � e

−‖λ̃‖2

2n � e
−n2α−1

2

∑d
1(ji−εi)

2
,

and (9) leads to:

aα
k,j � e

−n2α−1
2

∑d
1(ji−εi)

2
E
(
1Sk∈Bα

j −λ̃eβ
∑n

i=1 g̃(i,Si )
)
.

On the other hand,Zn � E(1Sk∈Bα
j −λ̃eβ

∑n
i=1 g(i,Si)), and since by stationarity the environmentg̃ has the same

distribution asg, it follows that for allj ∈ Zd ,

E
(
log〈1Sk∈Bα

j
〉(n)

)
� −n2α−1

2

d∑
i=1

(ji − εi)
2. �

Let ν > 1/2. We deduce from Proposition 4.2 and from Corollary 2.5 (withB(k,n) = Bα
j ) that, P -a.s., for

n � n0, k � n, and allj ∈ Zd :

log〈1Sk∈Bα
j
〉(n) � 2nν − n2α−1

2

d∑
i=1

(ji − εi)
2.

So,P -a.s., forn � n0, 〈1|Sk |�nα 〉(n) �
∑

j∈(2Z)d\{0} e2nν− n2α−1
2

∑d
i=1(ji−εi)

2
, and

〈1{maxk�n |Sk |�nα}〉(n) �
n∑

k=1

〈1|Sk |�nα 〉(n) �
∑

j∈(2Z)d\{0}
ne2nν− n2α−1

2

∑d
i=1(ji−εi)

2
.

But by symmetry, for anyC > 0,

∑
j∈(2Z)d\{0}

e−C
∑d

i=1(ji−εi)
2 � 2d

∑
j1�2

e−C(j1−1)2
d∏

i=2

∑
ji∈2Z

e−C(ji−εi )
2

and using that
∑

j�2 e−C(j−1)2 �
∑

j�1 e−Cj = e−C

1−e−C , we conclude that,P -a.s., for some constantC(d) > 0,
and forn � n0:

〈1{maxk�n |Sk |�nα}〉(n) � C(d)ne2nν e−n2α−1/2

1− e−n2α−1/2
.

Thus for allα > ν+1
2 , P -a.s.,

〈1{maxk�n |Sk |�nα}〉(n) →
n→∞ 0.

This is true for allν > 1/2, which ends the proof.�

Appendix A. Proof of Lemma 2.4

The beginning of the proof is exactly identical with the one made by Lesigne and Volný in [5, pp. 148
Only the last ten lines differ.
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nce

e,
Let us denote(F i
n)1�i�n the filtration of(Xi

n)1�i�n. The hypothesis that it is a martingale difference seque
means that for eachi, Xi

n is F i
n-measurable and, ifi � 2, E[Xi

n |F i−1
n ] = 0.

Let us fixa > 0 and for 1� i � n define

Y i
n = Xi

n1|Xi
n|�an1/3 − E

[
Xi

n1|Xi
n|�an1/3

∣∣ F i−1
n

]
and

Zi
n = Xi

n1|Xi
n|>an1/3 − E

[
Xi

n1|Xi
n|>an1/3

∣∣F i−1
n

]
,

and then defineM ′
n = ∑k

i=1 Y i
n and M ′′

n = ∑k
i=1 Zi

n. Since (Xi
n)1�i�n is a martingale difference sequenc

(Y i
n)1�i�n and(Zi

n)1�i�n are martingale difference sequences andXi
n = Y i

n + Zi
n (1� i � n).

Let us fix t ∈ (0,1). For everyx > 0,

P
(|Mn| > nx

)
� P

(|M ′
n| > nxt

) + P
(|M ′′

n | > nx(1− t)
)
. (A.1)

Since|Y i
n| � 2an1/3 for 1 � i � n, Azuma’s inequality implies:

P
(|M ′

n| > nxt
) = P

( |M ′
n|

2an1/3 >
nxt

2an1/3

)
� 2 exp

(
− t2x2

8a2 n1/3
)

. (A.2)

To control the second term in (A.1), we notice thatE((M ′′
n )2) = ∑n

i=1 E(Zi
n)

2. For each 1� i � n, if we note
F i

n(x) = P (|Xi
n| > x):

E
(
Zi

n

)2 = E
((

Xi
n1|Xi

n|>an1/3

)2) − E
(
E

(
Xi

n1|Xi
n|>an1/3

∣∣ F i−1
n

)2)

� E
((

Xi
n1|Xi

n|>an1/3
)2) = −

+∞∫

an1/3

x2dF i
n(x).

SinceEe|Xi
n| � K, F i

n(x) � Ke−x for all x � 0, hence:

−
+∞∫

an1/3

x2dFi(x) � Ka2n2/3e−an1/3 + 2K

+∞∫

an1/3

xe−x dx = K
(
a2n2/3 + 2an1/3 + 2

)
e−an1/3

.

It follows thatE((M ′′
n )2) � nK(a2n2/3 + 2an1/3 + 2)e−an1/3

, and:

P
(|M ′′

n | > nx(1− t)
)
� K

x2(1− t)2

(
a2n−1/3 + 2an−2/3 + 2n−1)e−an1/3

. (A.3)

We choosea = 1
2(tx)2/3 so thatt

2x2

8a2 = a. From (A.1), (A.2) and (A.3), we deduce:

P
(|Mn| > nx

)
�

(
2+ K

(1− t)2f (t, x, n)

)
exp

(
−1

2
(tx)2/3n1/3

)
, (A.4)

with f (t, x, n) = 1
4t4/3x−2/3n−1/3 + t2/3x−4/3n−2/3 + 2x−2n−1. Now by takingx = nν−1, we have:

P
(|Mn| > nν

) = P
(|Mn| > nx

)
�

(
2+ K

(1− t)2
g(t, n)

)
exp

(
−1

2
t2/3x2/3n1/3

)
, (A.5)

with g(t, n) = f (t, nν−1, n) = 1
4t4/3n−(2ν−1)/3 + t2/3n−2(2ν−1)/3 + 2n−(2ν−1). Now we fix ε > 0 and choose

t0 ∈ (0,1) such that 0< 1− t
2/3
0 < ε/2. (A.5) implies that:

P
(|Mn| > nν

)
exp

(
1
(1− ε)n(2ν−1)/3

)
�

(
2+ K

2g(t0, n)

)
exp

(
−ε

n(2ν−1)/3
)

.

2 (1− t0) 4
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4 (3)

)

r-

1.
But, sinceν > 1/2, (2+ K
(1−t0)

2g(t0, n))exp(− ε
4n(2ν−1)/3) →

n→∞ 0. Therefore there existsn0(ε) such that, for all

n � n0(ε),

P
(|Mn| > nν

)
� exp

(
−1

2
(1− ε)n(2ν−1)/3

)
. (A.6)

Whenε = 1/2 this is exactly the statement of the Lemma 2.4.
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