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The proof of Lemma 5.1 is incorrect, as it is based on the false statement in the paragraph following Eq.
the product property of the distribution of(η′′(0), ζ ′′(0)). This paragraph corrected and Lemma 5.1 with a cor
proof can be found below.

Recall thatS(0) = U(s(0))(0) = U(0)(0) is the first site on the right-hand side of the origin initially with seco
class particles. We introduce the notation(η′′(t), ζ ′′(t)) := (τS(0)η(t), τ S(0)ζ (t)), which is the(η(t), ζ (t)) process
shifted to this initial positionS(0) of theS-particle. We also introduce itsS′′-particle:S′′(t) := S(t) − S(0). Hence
the initial distribution of(η′′(0), ζ ′′(0)) is modified according to this random shifting-procedure; we show
details in the proof of the next lemma.

Using the Palm measures, we show that the expected rates forS to jump are bounded in time.

Lemma 5.1. Let n ∈ Z
+, k ∈ Z, and

ci(t) := f
(
ζi(t)

) − f
(
ηi(t)

) + f
(−ηi(t)

) − f
(−ζi(t)

)
(42)

the rate for any second class particle to jump from site i . Then

E
([

cS(t)(t)
]n · [ζS(t)(t) − ηS(t)(t)

]k) � K(n, k)

uniformly in time.

Proof. First we consider the pair(η′(0), ζ ′(0)) defined following (38). As described there, this is in fact the p
(η(0), ζ (0)) at timet = 0, as seen from “a typical second class particle”, or equivalently, as seen from “a t
S-particle”. In this pair, we have at least one second class particle at the origin, which we callS′. We let our process
(η′, ζ ′) evolve, and we follow this “typical”S′-particle. Started from the Palm-distribution, this taggedS′-particle
keeps on “being typical” (see [1]), i.e., for a functiong of the process as seen byS′,

E
(
g
(
τ S ′(t)η

′(t), τS ′(t)ζ
′(t)

)) = Ê
(
g
(
η(t), ζ (t)

))
with definition (37).
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Now we first show the desired result for theS′-particle of(η′, ζ ′) instead of theS-particle of(η, ζ ). In the
previous display, we put the function

g
(
η(t), ζ (t)

) := [
c0(t)

]n · [ζ0(t) − η0(t)
]k

,

and we denote byk+ the positive part ofk. We know thatζ0(t) − η0(t) � 1 holdŝP-a.s., hence

E
([

cS ′(t)(t)
]n · [ζ ′

S ′(t)(t) − η′
S ′(t)(t)

]k) = Ê
([

c0(t)
]n · [ζ0(t) − η0(t)

]k)
� Ê

([
c0(t)

]n · [ζ0(t) − η0(t)
]k+)

= E([c0(t)]n · [ζ0(t) − η0(t)]k++1)

E(ζ0(t) − η0(t))

by (37). The functionc0(t) consists of sums off (±η0(t)) andf (±ζ0(t)), hence the numerator is ann + k+ + 1-
order polinom of these functions and ofζ0(t), η0(t). These are all random variables with all moments fin
Therefore, using Cauchy’s inequality, the numerator can be bounded from above by products of moments
f (η0(t)) or f (ζ0(t)) or η0(t), or ζ0(t). The modelsη andζ are both separately in their stationary distributio
hence these bounds are constants in time. The denominator is a positive number due toθ2 > θ1 and strict
monotonicity ofEθ (z) in θ . We see that we found a bound, uniform in time for the functiong of (η′, ζ ′) as
seen fromS′.

We need to find similar bound for a functiong of the original pair(η, ζ ), as seen fromS. This is equivalen
to finding a bound forg of (η′′, ζ ′′) defined above, as seen fromS′′ of this pair. Let us consider first the initia
distribution of(η′′, ζ ′′), which we shall callµ′′. By definition, it is clear that this distribution is the product

the original marginalsµ for sitesi > 0. Fix aK positive integer and two vectorsx, y ∈ Z
Z. For simplicity we

introduce the notations

η[a, b] := (ηa, . . . , ηb) and ζ [a, b] := (ζa, . . . , ζb),

x[a, b] := (xa, . . . , xb) and y[a, b] := (ya, . . . , yb)

and, where not written, we consider our models at time zero. We break the events according to the initial
S(0) of theS-particle in the original pair(η, ζ ):

P
(
η′′

[−K, 0] = x[−K, 0], ζ ′′
[−K, 0] = y[−K, 0]

)
= P

(
η[S(0)−K, S(0)] = x[−K, 0], ζ [S(0)−K, S(0)] = y[−K, 0]

)
=

K∑
n=0

P
(
η[n−K, n] = x[−K, 0], ζ [n−K, n] = y[−K, 0], S(0) = n

)
+

∞∑
n=K+1

P
(
η[n−K, n] = x[−K, 0], ζ [n−K, n] = y[−K, 0], S(0) = n

)
=

K∑
n=0

P
(
η[n−K, n] = x[−K, 0], ζ [n−K, n] = y[−K, 0]

) · En(x, y)

+
∞∑

n=K+1

P
(
η[n−K, n] = x[−K, 0], ζ [n−K, n] = y[−K, 0]

) · EK(x, y) · P{Fn−K },

where the functionEn of x andy is an indicator defined by

En(x, y) := 1{x−n = y−n, x−n+1 = y−n+1, . . . , x−1 = y−1, x0 < y0},
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and the eventFn−K is

Fn−K := {η0 = ζ0, η1 = ζ1, . . . , ηn−K−1 = ζn−K−1}.
The last equality follows from the product structure ofµ and from the fact thatS(0) is the first site to the right o
the origin whereηi �= ζi . Continuing the computation results in

P
(
η′′

[−K, 0] = x[−K, 0], ζ ′′
[−K, 0] = y[−K, 0]

)
=

0∏
i=−K

µ(xi, yi) ·
[

K∑
n=0

En(x, y) + EK(x, y) ·
∞∑

n=K+1

µ{η0 = ζ0}n−K

]

=
0∏

i=−K

µ(xi, yi) ·
[

K∑
n=0

En(x, y) + EK(x, y) · µ{η0 = ζ0}
µ{η0 < ζ0}

]
using translation-invariance.

For later purposes, we are interested in the Radon–Nikodym derivative of the distributionµ′′ of (η′′, ζ ′′) w.r.t.
the Palm distribution̂µ of (η′, ζ ′). Since both have product of marginalsµ for sitesi > 0, we only have to dea
with the left part of the origin. Passing to the limitK → ∞, we have

dµ′′

dµ̂
( x, y) = lim

K→∞
P(η′′

[−K, 0] = x[−K, 0], ζ ′′
[−K, 0] = y[−K, 0])

P(η′
[−K, 0] = x[−K, 0], ζ ′

[−K, 0] = y[−K, 0])

= lim
K→∞

∏0
i=−K µ(xi, yi)∏−1

i=−K µ(xi, yi)µ̂(x0, y0)
·
[

K∑
n=0

En(x, y) + EK(x, y) · µ{η0 = ζ0}
µ{η0 < ζ0}

]

= µ(x0, y0)

µ̂(x0, y0)
·
[ ∞∑

n=0

En(x, y) + lim
K→∞EK(x, y) · µ{η0 = ζ0}

µ{η0 < ζ0}

]

= µ(x0, y0)

µ̂(x0, y0)
·

∞∑
n=0

En(x, y)

for µ̂-almost all configurations( x, y). Note that the sum on the right-hand side gives exactly the distance be
the origin and the first positioni to the left of the origin withxi �= yi . Hence this sum is finite for̂µ-almost all
configurations( x, y).

In view of this result, we can now obtain our estimates. The main idea here is that the pairs(η′, ζ ′) and(η′′, ζ ′′)
only differ in their initial distribution, hence their behavior conditioned on the same initial configuration agree
is used for obtaining the third expression, and Cauchy’s inequality is used for the fourth one below.

E
([

cS ′′(t)(t)
]n · [ζS ′′(t)(t) − ηS ′′(t)(t)

]k)
=

∫
Ω̃∩{x0<y0}

E
([

cS ′′(t)(t)
]n · [ζS ′′(t)(t) − ηS ′′(t)(t)

]k | η′′(0) = x, ζ ′′(0) = y
)
dµ′′( x, y)

=
∫

Ω̃∩{x0<y0}
E
([

cS ′(t)(t)
]n · [ζS ′(t)(t) − ηS ′(t)(t)

]k | η′(0) = x, ζ ′(0) = y
)

× µ(x0, y0)

µ̂(x0, y0)
·

∞∑
En(x, y)dµ̂( x, y)
n=0
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[ ∫

Ω̃∩{x0<y0}

[
E
([

cS ′(t)(t)
]n · [ζS ′(t)(t) − ηS ′(t)(t)

]k | η′(0) = x, ζ ′(0) = y
)]2

dµ̂( x, y)

]1/2

×
[ ∫

Ω̃∩{x0<y0}

[
µ(x0, y0)

µ̂(x0, y0)
·

∞∑
n=0

En(x, y)

]2

· dµ̂( x, y)

]1/2

�
[ ∫

Ω̃∩{x0<y0}
E
([

cS ′(t)(t)
]2n · [ζS ′(t)(t) − ηS ′(t)(t)

]2k | η′(0) = x, ζ ′(0) = y
)
dµ̂( x, y)

]1/2

×
[ ∫

Ω̃∩{x0<y0}

µ(x0, y0)

µ̂(x0, y0)
·
[ ∞∑

n=0

En(x, y)

]2

· dµ(x, y)

]1/2

= [
E
([

cS ′(t)(t)
]2n · [ζS ′(t)(t) − ηS ′(t)(t)

]2k)]1/2

×
[ ∫

Ω̃∩{x0<y0}

E(ζ0 − η0)

y0 − x0
·
[ ∞∑

n=0

En(x, y)

]2

· dµ(x, y)

]1/2

by (38). The first factor of the last display is finite by the first part of the proof. Using the definition o
indicatorEn, the second factor can be bounded from above by

[
E(ζ0 − η0)

]1/2 ·
[ ∫

Ω̃∩{x0<y0}

[ ∞∑
n=0

(2n + 1) · En(x, y)

]
· dµ(x, y)

]1/2

= [
E(ζ0 − η0)

]1/2 ·
[ ∞∑

n=0

(2n + 1) · µ{η0 = ζ0}n · µ{η0 < ζ0}
]1/2

using the product property ofµ, and is again finite. ✷
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