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Abstract

One can view a 2-parameter Brownian sheet{W(s, t); s, t � 0} as a stream of interacting Brownian motions{W(s,•); s � 0}.
Given this viewpoint, we aim to continue the analysis of [J.B. Walsh, The local time of the Brownian sheet, Astérisque
(1978) 47–61] on the local times of the streamW(s,•) near times = 0. Our main result is a kind of maximal inequality that,
particular, verifies the following conjecture of [D. Khoshnevisan, The distribution of bubbles of Brownian sheet, Ann. P
23 (2) (1995) 786–805]: Ass→ 0+, the local times ofW(s,•) explode almost surely. Two other applications of this maxim
inequality are presented, one to a capacity estimate in classical Wiener space, and one to a uniform ratio ergodic t
Wiener space. The latter readily implies a quasi-sure ergodic theorem. We also present a sharp Hölder condition for
times of the mentioned Brownian streams that refines earlier results of [M.T. Lacey, Limit laws for local times of the Br
sheet, Probab. Theory Related Fields 86 (1) (1990) 63–85; P. Révész, On the increments of the local time of a Wie
J. Multivariate Anal. 16 (3) (1985) 277–289; J.B. Walsh, The local time of the Brownian sheet, Astérisque 52–53 (1978)
 2003 Elsevier SAS. All rights reserved.

Résumé

Le drap brownien{W(s, t); s, t � 0} à deux paramètres peut être vu comme une famille de mouvements brow
{W(s,•); s � 0}. Nous nous proposons de poursuivre l’analyse de [J.B. Walsh, The local time of the Brownian sheet, As
52–53 (1978) 47–61] sur les temps locaux de la familleW(s,•) au voisinage des = 0. Notre résultat principal est une inégal
du type maximale, qui, en particulier, prouve la conjecture suivante de [D. Khoshnevisan, The distribution of bub
Brownian sheet, Ann. Probab. 23 (2) (1995) 786–805] : lorsques→ 0+, il y a une explosion presque sûre du temps lo
deW(s,•). Deux autres applications de cette inégalité sont présentées : une estimation de capacité dans l’espace
et un théorème ergodique dans l’espace de Wiener. Ce dernier implique en fait un théorème ergodique au sens quas
obtenons également une estimation précise de la continuité höldérienne du temps local deW(s,•), ce qui raffine des résulta
antérieurs de [M.T. Lacey, Limit laws for local times of the Brownian sheet, Probab. Theory Related Fields 86 (1) (1990)
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1. Introduction

Let W = {W(s, t); s, t � 0} denote standard 2-parameter Brownian sheet, and writeWs(t) andW(s, t)
interchangeably. One of the many natural ways to think about the processW is as a stream{Ws; s � 0} of
interacting Brownian motions, where the interaction is in some sense governed by the temporal structu
stochastic wave equation.

In this paper we are interested in the properties of the local times of the streamWu at 0. Let us write
{Lat (X); a ∈ R, t � 0} for the local times of processX if a measurable version of such local times exists. Form
this means

Lat (X)=
t∫

0

δa
(
X(s)

)
ds, a ∈ R, t � 0,

whereδa denotes Dirac’s delta function ata ∈ R. Summarily, we are interested in the properties of the pro
u 	→ L0

t (Wu) wheret � 0 is fixed. These local times are also called the local times along lines ofW , and arise
quite naturally in the analysis of Brownian sheet.

A notable application of local times along lines arises in the analysis of [10]. Therein, local time metho
devised that show that ifN(h) denotes the number of excursions ofW in [0,1]2 that have height greater thanh > 0,
then with probability one,N(h)= h−3+o(1) ash→ 0+, whereo(•) is Landau’s “little o” notation.

[10] contains two open problems pertaining to the latter result and its derivation. The first is to ident
“little o” term above, and has recently been solved by T.S. Mountford (1999, personal communications).
Mountford has invented a novel method that shows that a.s.,N(h)=Λh−3(1+o(1)), whereΛ is a random variable
which is defined in terms of the local times along linesu 	→L0

t (Wu).
The second open problem in [10] is whether or not with probability one, limu→0+ L

0
1(Wu)=+∞. Our goal, in

this paper, is to answer this in the affirmative. As pointed out in [10], the difficulty here is in proving poin
convergence. In fact, scaling considerations show thatu1/2L0

1(Wu) has the same distribution asL0
1(W1), which is

Brownian local time. Consequently, asu→∞, L0
1(Wu) blows up in probability. Thus, the mentioned explos

problem amounts to the “strong law” corresponding to this weak limit theorem. Viewed as such, it should
a great surprise that a sufficiently sharp maximal inequality is in order. This turns out to be the case, and
indeed show the following:

lim sup
h→0+

log log(1/h)

log(1/h)
logP

{
inf

1�u�2
L0

1(Wu) < h
}

� −1

2
, (1.1)

where here and throughout, log denotes the natural logarithm. The above will appear in Theorem 3.3 below
a number of interesting consequences one of which is the pointwise explosion of local times along lines me
earlier (Theorem 3.1). It also implies large-time decay for the very same local times (Theorem 3.2). The m
inequality (1.1) also implies a capacity estimate in Wiener space (Corollary 4.2), as well as a uniform ratio
theorem for Brownian motion in Wiener space that we describe in Theorem 4.3 below. Finally, let us ment
such a maximal inequality has geometric consequences for two-parameter random walks. We hope to
subject at a later time.
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2. Local times

In this section we describe some of the basic properties of local times along lines. While some of this ma
known, we will also present a new and nontrivial modulus of continuity for these local times, viewed as a fu
of the line in question.

Recall that by Tanaka’s formula,∣∣Wu(t)− a∣∣= |a| +Ma
t (Wu)+ uLat (Wu), (2.1)

where

Ma
t (Wu)=

t∫
0

sgn
(
Wu(s)− a

)
Wu(ds)

is an Itô integral, viewed as a process int � 0. In Eq. (2.1), the extrau in front ofLat (Wu) accounts for the quadrat
variation ofWu which isut at timet . Thus, with this extra multiplicative factor ofu we have the usualoccupation
density formula: For all bounded Borel functionsf :R → R,

t∫
0

f
(
Wu(s)

)
ds =

∞∫
−∞

f (a)Lat (Wu)da. (2.2)

So far, the parameteru has been fixed, and the above follows from the existing theory of Brownian motio
[18, Chapter 6, Section 2] for a pedagogic treatment. Moreover, as a function ofu, Lat (Wu) is the local times of
Brownian sheet at levela along the line{u} × [0, t]. It is this process that will concern us henceforth.

According to [19],(a, t, u) 	→ Lat (Wu) can be chosen to be continuous onR × [0,∞) × (0,∞). Moreover,
u 	→ Lat (Wu) is Hölder continuous of any order< 1/4. In order to better understand the structure of local tim
along lines, we begin our analysis with an improvement of this continuity result that we believe is sharp. N
in this section we will prove the following:

Theorem 2.1. If T > 1 is fixed, then with probability one,

lim sup
δ→0+

sup
1�u,v�T :
|u−v|�δ

|L0
1(Wu)−L0

1(Wv)|
{2δ log(1/δ)}1/4 · {log(1/δ)}1/2 � 4

√
sup

u∈[1,T ]
L0

1(Wu).

To study the regularity ofu 	→ L0
t (Wu), we begin by refining the analysis of [19], and closely examine

quadratic variation oft 	→M0
t (Wu)−M0

t (Wv), whenu≈ v.

Lemma 2.2. For each0< u< v and for all t � 0,〈
M0(Wu)−M0(Wv)

〉
t
� 8u sup

0�r�t

∣∣Wv(r)−Wu(r)∣∣× supLat (Wu)+ t (v − u),

where the supremum is taken over all0 � a � sup0�r�t |Wv(r)−Wu(r)|.

Remark 2.3. Among other things, the previous lemma, and the modulus of continuity ofW , together show tha

if u ≈ v, then〈M0(Wu)−M0(Wv)〉t � |u − v| 1
2+o(1). We believe this to be sharp. This was also noticed by

anonymous referee.

Proof. A few lines of calculation show that
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〈
M0(Wu)−M0(Wv)

〉
t
= t (v − u)+ 4u

t∫
0

1
{
Wu(r) < 0,Wv(r) > 0

}
dr

+ 4u

t∫
0

1
{
Wu(r) > 0,Wv(r) < 0

}
dr

= t (v − u)+ 4uT1 + 4uT2,

notation being obvious. Since 0< u< v, owing to the occupation density formula, we can write

T2 =
t∫

0

1
{
0<Wu(r) <−(Wv −Wu)(r)

}
dr �

t∫
0

1
{
0<Wu(r) < sup

0�s�t
|Wv(s)−Wu(s)|

}
dr

=
m∫

0

Lat (Wu)da,

wherem = sup0�s�t |Wv(s)−Wu(s)|. Similarly,

T1 �
t∫

0

1
{−m<Wu(r) < 0

}
dr =

0∫
−m

Lat (Wu)da.

We combine these estimates forT1 andT2 and use the occupation density formula to finish.✷
The argument used to prove Theorem 2.1 will be described shortly. However, we mention in passing th

similar methods, one can deduce the following “local” result whose proof is omitted.

Theorem 2.4. For any fixedT > 1 and for all fixedu ∈ [1, T ], with probability one,

lim sup
δ→0+

sup
v∈[1,T ]:
|v−u|�δ

|L0
1(Wu)−L0

1(Wv)|
{2δ log log(1/δ)}1/4 · {log log(1/δ)}1/2 � 4

√
L0

1(Wu).

Remark 2.5. Originally, we stated and proved a weaker version of Theorem 2.1 that is now equation (2.3)
The present improvement owes its existence to an argument devised by an anonymous referee.

We end this section by proving Theorem 2.1, using the exponential martingale ideas of [15].

Proof of Theorem 2.1. We first prove the following weaker bound: For anyT ,T ′ > 1, the following holds with
probability one:

lim sup
δ→0+

sup
u∈[1,T ′]

sup
v∈[1,T ]:
|v−u|�δ

|L0
1(Wu)−L0

1(Wv)|
{2δ log(1/δ)}1/4 · {log(1/δ)}1/2 � 4

√
(T ∧ T ′) sup

u∈[1,T∨T ′]
L0

1(Wu). (2.3)

We will prove this forT = T ′ = 2; this is not a great loss in generality, and simplifies some of the notation i
exposition.

Throughout this proof, we define the modulus of continuity,

µε = sup
u,v∈[1,2]:

sup
0�r�1

∣∣Wu(r)−Wv(r)∣∣. (2.4)
|u−v|�ε
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. (2.5)
With regards to this modulus, we introduce two events. First, for anyc > 1 andε > 0, we define

Θc,ε =
{
ω: ∀� ∈ (0, ε), µ� � c

√
2� log(1/�)

}
.

By the proof of the uniform version of the law of the iterated logarithm of [13],∑
n

P
{
Θ�
c,q−n

}
<∞, ∀c,q> 1. (2.5)

As for our second event, we define for allε, δ ∈ (0,1),
Ξε,δ =

{
ω: sup

0�a�µδ
sup

1�u�2

∣∣Lat (Wu)−L0
t (Wu)

∣∣ � ε
}
. (2.6)

By combining the moment estimate of [14, Proposition 4.2]—or alternatively, Lemma 3.12 below—with Eq
above,∑

n

P
{
Ξ�
ε,q−n

}
<∞, ∀ε ∈ (0,1), q> 1. (2.7)

Having disposed of the needed preliminaries, we begin our proof by fixingu,v ∈ [1,2], writing δ = |u− v|, and
defining

N
u,v
t =M0

t (Wu)−M0
t (Wv), t � 0.

Note thatNu,v is a martingale with respect to its own natural filtration. Moreover, by Lemma 2.2,

〈Nu,v〉t � 16cL!t (ε)
√

2δ log(1/δ)+ δt, onΞε,δ ∪Θc,δ, (2.8)

whereL!t (ε)= ε+ supu∈[1,2]L0
t (Wu). Now for anyα,β > 0,

P
{
N
u,v
t �

[
α + βL!t (ε)

]
δ1/4 log3/4(1/δ)+ ζδ andΞε,δ ∪Θc,δ

}
= P

{
N
u,v
t − 16γ c

√
2δ log(1/δ)L!t (ε)− γ δt � αδ1/4 log3/4(1/δ) andΞε,δ ∪Θc,δ

}
,

where

γ = β(16c
√

2)−1δ−1/4 log1/4(1/δ),

ζδ = βtδ3/4 log1/4(1/δ)

16c
√

2
.

Therefore, by (2.8)

P
{
N
u,v
t �

[
α + βL!t (ε)

]
δ1/4 log3/4(1/δ)+ ζδ andΞε,δ ∪Θc,δ

}
� P

{
N
u,v
t − γ 〈Nu,v〉t � αδ1/4 log3/4(1/δ)

}
= P

{
Eγt � exp

[
2αγ δ1/4 log3/4(1/δ)

]}
,

whereEγt is the mean 1 exponential martingale

Eγt = exp

{
2γNu,vt − 1

2
(2γ )2〈Nu,v〉t

}
, t � 0.

By Chebyshev’s inequality, for anyy > 0, P{Eγt � y} � y−1. Consequently, for allu,v ∈ [1,2] such that
|u− v| � δ,

P
{
N
u,v
t �

[
α + βL!t (ε)

]
δ1/4 log3/4(1/δ)+ ζδ andΞε,δ ∪Θc,δ

}
� exp

(
− αβ√ log(1/δ)

)
. (2.9)
8c 2
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The remainder of our proof is a standard application of Eq. (2.5) and chaining; cf. [15] for references and s
the details in relation to Lévy’s original chaining argument for the samples of Brownian motion. The upshot
chaining argument, used in conjunction with Eqs. (2.5) and (2.7), is that with probability one,

lim sup
δ→0+

sup
u,v∈[1,2]:
|u−v|�δ

∣∣Nu,vt ∣∣
δ1/4 log3/4(1/δ)

� α + βL!t (ε), (2.10)

for all α,β, ε > 0, as long asqn times the right-hand side of Eq. (2.9) sums alongδ = q−n for any fixedq > 1.4

This means thatαβ > 8c
√

2, and as a result, Eq. (2.10) holds a.s. for all rationalα,β > 0 andc > 1 such that
αβ > 8c

√
2. The optimal choice is obtained upon choosingc > 1, β = 8c

√
2α−1, and a sequence of rationalα’s

larger than, but arbitrarily close to{8c√2L!t (ε)}1/2. Finally, we letc ↓ 1 along a rational sequence. In this way,
derive the following almost sure statement:

lim sup
δ→0+

sup
u,v∈[1,2]:
|u−v|�δ

∣∣Nu,vt ∣∣
δ1/4 log3/4(1/δ)

� 4 · 21/4
√

2L!t (ε). (2.11)

On the other hand,u 	→ Wu(r) is Hölder continuous of any order< 1/2, uniformly in r ∈ [0,1]; see [21] for
instance. Consequently, (2.3) follows from (2.11) and (2.1) after takingε→ 0 along a rational sequence.

Now we conclude our argument by proving that (2.3) implies the theorem. [This part is the referee’s ar
that we reproduce here with his/her permission.]

Choose and hold fixed some smallε > 0, and consider the intervals

In = I
ε
n =

[
(1+ ε)n−1, (1+ ε)n], ∀n= 1,2, . . . .

Clearly,[1, T ]2 is covered by rectangles of the formIn × Im, where 1� n,m�N(ε), and

N(ε)= 1+
⌊

logT

log(1+ ε)
⌋
.

This and symmetry considerations together imply that for allδ > 0,

sup
u,v∈[1,T ]
|v−u|�δ

∣∣L0
1(Wu)−L0

1(Wv)
∣∣ � max

1�n�m�N(ε)
sup
u∈Im

sup
v∈In:|v−u|�δ

∣∣L0
1(Wu)−L0

1(Wv)
∣∣. (2.12)

On the other hand, sinceIn = (1+ ε)n−1
I1 and(1+ ε)−n+1

Im = Im−n+1, Brownian scaling shows us that for a
fixed 1� n�m�N(ε),

sup
u∈Im

sup
v∈In:|v−u|�δ

∣∣L0
1(Wu)−L0

1(Wv)
∣∣ (d)= (1+ ε)−(n−1)/2 sup

u∈Im−n+1

sup
v∈I1:

|v−u|�δ(1+ε)n−1

∣∣L0
1(Wu)−L0

1(Wv)
∣∣,

where
(d)= denotes equality of finite-dimensional distributions as processes inu ∈ [1, T ]. Thus, we can apply

(2.3) with T (respectivelyT ′) replaced by(1+ ε) (respectively(1+ ε)m−n+1) to deduce that for anyε > 0 and
1 � n�m�N(ε), almost surely,

lim sup
δ→0+

sup
u∈Im

sup
v∈In:|v−u|�δ

|L0
1(Wu)−L0

1(Wv)|
{2δ log(1/δ)}1/4 · {log(1/δ)}1/2

� 4(1+ ε)−(n−1)/4
√

sup
u∈[1,T ]

L0
1(Wu)� 4

√
sup

u∈[1,T ]
L0

1(Wu).

4 This uses the obvious fact thatζδ = o(δ1/4 log3/4(1/δ)), asδ→ 0.
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(More precisely, the above follows from the argument that led to (2.3).) The theorem follows from th
Eq. (2.12). ✷

3. An explosion theorem

In this section we intend to demonstrate the following blowup result for local times along lines.

Theorem 3.1 (Explosion Theorem).With probability one,

lim
h→0+

1

log(1/h)
logL0

1(Wh)=
1

2
.

In particular, limh→0+ L
0
1(Wh)=+∞, almost surely.

There is a companion result to Theorem 3.1 that states that if we look at lines far away from the axis, t
time at 0 is very small almost surely. In fact, we have the following

Theorem 3.2. With probability one,

lim
h→∞

1

logh
logL0

1(Wh)=−1

2
.

In particular, limh→∞L0
1(Wh)= 0, almost surely.

Theorem 3.2 follows from Theorem 3.1 and time-inversion; we omit the elementary details.
Stated somewhat informally, Theorem 3.1 states that the local time along lines at 0 explodes with pro

one as we consider lines that are closer to the axes. (The stress being on “with probability one”, for explosion in
probability follows trivially from scaling considerations). Moreover, the rate of explosion ish−1/2 upto terms tha
are negligible at the logarithmic scale. As is the case in many delicate limit theorems of probability and a
we prove this by verifying an upper and a lower bound, respectively. While each bound relies on a pro
estimate, the important half is derived from the following “maximal inequality”, whose proof requires most
work toward deriving Theorem 3.1.

Theorem 3.3. For all γ ∈ (0,1/2), there existsh0> 0, such that for everyh ∈ (0, h0),

P
{

inf
1�u�2

L0
1(Wu)� h

}
� exp

(
− γ log(1/h)

log log(1/h)

)
.

Remark 3.4. We conjecture that Theorem 3.3 is nearly sharp. This issue is discussed further in item (2) of Se
below.

Note that Theorem 3.3 is a reformulation of equation (1.1). Moreover, it has other consequences, one
is the following large-time asymptotic result.

Corollary 3.5. For anyη ∈ (0,1/2), with probability one,

lim
t→∞ t

−η inf
u∈[1,2]L

0
t (Wu)=+∞.
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One can easily construct a proof for this by following our derivation of Theorem 3.1 below. It is also
pointing out that there are variants of Theorem 3.3 that are different in form as well as in derivation. Let us m
one such possibility.

Theorem 3.6. If j1 denotes the smallest positive zero of the Bessel functionJ0,

lim
h→0+

h2 logP
{

inf
u∈[1,2] sup

a∈R

La1(Wu)� h
} =−2j2

1 .

Our proof of Theorem 3.3 is somewhat long and is divided into several parts. We begin our demonstra
introducing a sequence of numbers that go to 0 a little faster than exponentially. Namely, we first hold
nondecreasing sequenceΦ1,Φ2, . . . , to be determined later, such that limk→∞Φk =+∞. Then, we define

tk =Φ−k
k , ∀k � 1. (3.1)

(It will turn out later on in the proof thatΦk = ck for an approrpriate constantc. Thus,tk ≈ exp{−k logk}, which
indeed vanishes a little faster than exponentially.)

Before discussing things further, let us record the following elementary estimate on the asymptotics
relative gap sizes in the sequence{tj }j�1:

Φk � tk−1

tk
, ∀k � 2. (3.2)

Next, we consider the following collection of measurable events: For allε > 0 and alln� 2, define

Λn,ε =
{
ω: sup

1�u�2

∣∣Wu(tn)∣∣ � ε

2

√
tn−1

}
. (3.3)

It turns out that for largen,Λn,ε, . . . ,Λ2n,ε all happen simultaneously, and with overwhelmingly large probab
To be more precise, we have the following:

Lemma 3.7. For all n� 2,

P

{
2n⋃
j=n

Λ�
j,ε

}
� 4nexp

(
− ε

2

16
Φn

)
.

Proof. By Brownian scaling, sup0�u�2 |Wu(t)| has the same distribution as
√

2t sup0�u�1 |Wu(1)|. Thus,

P

{
2n⋃
j=n

Λ�
j,ε

}
�

2n∑
j=n

P

{
sup

0�u�1

∣∣Wu(1)∣∣ � ε

2
√

2

√
tj−1

tj

}
� (n+ 1)P

{
sup

0�u�1

∣∣Wu(1)∣∣ � ε

2
√

2
Φ

1/2
n

}
.

The lemma follows from standard Gaussian tail estimates, used in conjunction with two successive applic
the reflection principle, sinceu 	→Wu(1) is a Brownian motion. ✷

Our next goal is to obtain uniform upcrossing estimates for Brownian sheet. To this end, we first hol
someε > 0 and define a set of indicator variablesI2,ε, I3,ε, . . . as follows: For allk � 2, defineIk,ε to be 1 if for all
u ∈ [1,2], the random mapt 	→Wu(t) upcrosses or downcrosses[−ε√tk−1, ε

√
tk−1] while t ∈ [tk, 1

10(9tk+ tk−1)];
otherwise, we setIk,ε = 0. We make the obvious but necessary remark that1

10(9tk + tk−1) is 1/10 of the way
betweentk and tk−1, although the proportion 1/10 could be replaced by anyα ∈ (0,1) that is sufficiently smal
(how small comes out of our arguments). To understand theseIj,ε ’s, we start with a warmup lemma. While it
too simple to be of fundamental use to our analysis, its proof is indicative of the nature of things to come.

Lemma 3.8. For everyε > 0, ψ0(ε)= limn→∞ E{In,ε} exists and is nonincreasing, andlimε→0+ ψ0(ε)= 1.
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Proof. By scaling, E{In,ε} is the probability that for everyu ∈ [1,2], the mapt 	→Wu(t) upcrosses or downcross
[−ε,+ε] while

t ∈
[
tn

tn−1
,

1

10
+ 9

10

tn

tn−1

]
.

By (3.2) and the assumed fact that limk→∞Φk = +∞, this interval converges, asn→ ∞, to [0,1/10]. Having
mentioned this, only a few simple lines suffice to verify that asn→∞, E{In,ε} converges to the probabilityψ0(ε)

that for all u ∈ [1,2], the mapt 	→Wu(t) upcrosses or downcrosses[−ε,+ε] some time in[0,1/10] (this uses
continuity of Brownian sheet). Sinceψ0 is clearly nonincreasing, it remains to show that limε→0+ ψ0(ε) exists and
equals 1. Existence, of course, is a consequence of monotonicity. In fact, limε→0+ ψ0(ε) is at least

P

{
∀u ∈ [1,2], lim

t→0+
Wu(t)√

2ut log log(1/t)
=− lim

t→0+

Wu(t)√
2ut log log(1/t)

= 1

}
,

which is one thanks to the law of the iterated logarithm of [23]; cf. also [20]. [21] presents an elegant proof
fact, together with related facts on the propagation of singularities of the sheet.✷

Now we strive to show that with overwhelming probability, nearly all of the random variables{Ij,ε; n� j � 2n}
are one as long asn is large andε is small. To do this, we start with an elementary large deviations bound.

Lemma 3.9. SupposeJ1, J2, . . . are {0,1}-valued random variables that are adapted to a filtrationF1,F2, . . . and
satisfy the following for someη > 0:

E{Jk |Fk−1}� η, ∀k � 2.

Then, for allλ ∈ (0, η) and alln� 1,

P

{
n∑
j=1

Ji � λn
}

� exp

(
− n

2η
(η− λ)2

)
.

Proof. This is based on the familiar fact thatM1,M2, . . . is a supermartingale, where

Mk = exp

(
−ξSk + kη

[
ξ − ξ2

2

])
, k � 2,

Sk = J1 + · · · + Jk , andξ > 0 is an arbitrary constant. Indeed,

E
{
e−ξSn | Fn−1

}= e−ξSn−1 E
{
e−ξJn

∣∣Fn−1
}

= e−ξSn−1
[
1− (1− e−ξ )E{Jn |Fn−1}

]
� e−ξSn−1

[
1− (1− e−ξ )η].

Since for ally � 0, 1− y � e−y � 1− y + 1
2y

2, we have found the announced supermartingaleM. Moreover,

E{e−ξSn}� exp

(
−ηn

[
ξ − ξ2

2

])
.

By Chebyshev’s inequality, for allλ ∈ (0, η),

P{Sn � λn}� exp

(
−n

[
ξ(η− λ)− η2

2

])
, ∀ξ > 0.

The lemma follows from making the optimal choice ofξ = (η− λ)/η. ✷
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We would like to apply the above toJi = In+i−1,ε (i = 1, . . . , n+1). However, a number of technical problem
arise, all involving independence issues. To avoid them, we define auxiliary random variableJ2,ε, J3,ε, . . . that are
a modified version ofI2,ε, I3,ε, . . . as follows: For eachk � 2, we letJk,ε to be 1 if for allu ∈ [1,2], the random map
t 	→Wu(t)−Wu(tk) upcrosses or downcrosses[−3ε

2
√
tk−1,+3ε

2
√
tk−1] while t ∈ [tk, 1

10(9tk + tk−1)]. Recalling
(3.3), we have the following.

Lemma 3.10. For anyn� 2, ε > 0, and for everyω ∈⋂2n
j=n Λj,ε ,

Ij,ε(ω)� Jj,ε(ω), ∀j = n, . . . ,2n.
Furthermore,

lim
n→∞E{Jn,ε} =ψ(ε), ∀ε > 0,

whereψ is nonincreasing, andlimε→0+ ψ(ε)= 1.

Proof. The first part is a direct consequence of the triangle inequality. For example, ifWu(t) − Wu(tk) <

−3
2ε
√
tk−1, by the triangle inequality,Wu(t) < −ε√tk−1, as long asWu(tk) � 1

2ε
√
tk−1, a fact that holds on

Λk,ε . The second part is provedexactlyas Lemma 3.8 was.✷
Now theJ ’s are independent from one another and we can apply Lemma 3.9 tothemin order to present th

following uniform up/downcrossing result. Roughly speaking, it states that with overwhelming probability,nearly
all of the variablesIn,ε, . . . , I2n,ε are equal to one as long asε (n) is chosen to be small (large).

Proposition 3.11. For all δ ∈ (0,1), there existsn0 � 2 and ε0 > 0, such that for alln � n0, ε ∈ (0, ε0), and
ζ ∈ (δ,1),

P

{
2n∑
j=n

Ij,ε < (1− ζ )n
}

� exp

(
−n(ζ − δ)

2

2(1− δ)
)
+ 4nexp

(
−ε

2Φn

16

)
.

Proof. By Lemmas 3.7 and 3.10,

P

{
2n∑
j=n

Ij,ε < (1− ζ )n
}

� P

{
2n∑
j=n

Jj,ε < (1− ζ )n
}
+ 4nexp

(
−ε

2Φn

16

)
.

The second portion of Lemma 3.10 assures us that limε→0+ limn→∞ E{Jn,ε} = 1. In particular, by choosingn0
(ε0) large enough (small enough), we can ensure that for allm � n0 and allε ∈ (0, ε0), E{Im,ε} � 1− δ. Since
ψ is nonincreasing,n0 depends onε0 but not on the value ofε ∈ (0, ε0), and the announced result follows fro
Lemma 3.9. ✷

We will also need an estimate for the modulus of continuity ofu 	→ L0
1(Wu) although we will not require

anything as delicate as the results of Section 2. In fact, the following moment estimate suffices; it can be p
combining theLp(P)-estimates of [19, line−6, p. 53], together with Kolmogorov’s continuity theorem [18, p. 1
and the Burkholder–Davis–Gundy inequality [18, p. 151]. The details of this derivation, and more, can be f
[14, proof of Proposition 4.2].

Lemma 3.12. There exists a positive and finite constantC > 0 such that for allp > 1, ε ∈ (0,1/2), andT > 0,∥∥sup
a∈R

sup
0�t�T

sup
u,v∈[1,2]:

∣∣Lat (Wu)−Lat (Wv)∣∣∥∥Lp(P) � C(p!)1/p T 1/2 {
ε log(1/ε)

}1/4
.

|u−v|�ε
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Remark. In the literature, the more cumbersomeC(p!)1/p is usually replaced by an asymptotically equival
term of formO(p). However, this formulation is more convenient for our needs.

Our next lemma is a technical result about the ordinary Brownian motiont 	→Wu(t), whereu ∈ [1,2] is held
fixed. It is a useful way to quantify the idea that whenever Brownian motion hits zero often, then it generate
large amount of local time with overwhelming probability.

Lemma 3.13. Consider the event

Υ ζn,ε =
{
ω:

2n∑
j=n

Ij,ε � (1− ζ )n
}
, ∀n� 2, ε > 0, ζ ∈ (0,1).

Then, for allδ ∈ (0,1), there existsn1 � n0 � 2 andε0> 0 such that for alln� n1, and for eachζ ∈ (δ,1) and
h ∈ (0,1),

sup
u∈[1,2]

P
{
L0

1(Wu) < h, Υ
ζ
n,ε0

}
�

(
h√
t2n

)(1−ζ )n
.

Remarks. (1) It is possible to prove a slightly better estimate by using large deviations. However, we w
require a very sharp inequality for this estimate, and the simpler argument used in the proof below suffic
argument is inspired by some of the ideas of [17].

(2) The constantsε0 andn0 are given to us by Proposition 3.11.

Proof. Throughout this proof,u ∈ [1,2] andn� n0 are held fixed. With this in mind, define

Su(1)= sup

{
n� j � 2n

∣∣∣∣ ∃r ∈
[
tj ,

1

10
(9tj + tj−1)

]
: Wu(r)= 0

}
,

Tu(1)= inf
{
r > t2n |Wu(r)= 0

}
.

As usual, inf∅ = +∞, and sup∅ = 0. Of course,Tu(1) is a stopping time with respect to the natural filtration
the Brownian motionWu. Having defined(Su(k), Tu(k)) (k � 1), we inductively define(Su(k+ 1), Tu(k+ 1)) as:

Su(k+ 1)= sup

{
n� j < Su(k)

∣∣∣∣ ∃r ∈
[
tj ,

1

10
(9tj + tj−1)

]
: Wu(r)= 0

}
,

Tu(k+ 1)= inf
{
r > Su(k) |Wu(r)= 0

}
.

It is not too difficult to verify thatTu(1), Tu(2), . . . are all stopping times with respect to the natural filtration ofWu
and that the cardinality of{k: Tu(k) <∞} is greater than or equal to

∑2n
j=n Ij,ε for anyε > 0. (This is due to the

fact that wheneverWu upcrosses or downcrosses[−εx,+εx] for somex > 0, then by continuity,Wu hits a zero
somewhere in the up- or downcrossing interval: i.e., Rolle’s theorem of calculus). For allk such thatTu(k) <∞
define

∆k = L0
tSu(k)−1

(Wu)−L0
tSu(k)

(Wu),

otherwise,∆k =+∞. Note that∆k+1<∞ implies that∆k <∞. Moreover, sincet 	→ L0
t (Wu) grows only when

Wu is at the origin,

∆k = L0
t (Wu)−L0 (Wu), on {∆k <∞}.

Su(k)−1 Tu(k)
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Therefore, by the strong Markov property,∆1,∆2, . . . are independent although they arenot identically distributed.
Let us temporarily concentrate on∆1, for simplicity. On{∆1<∞},∆1 is the amount of local time of the proce
Wu at 0 accrued in the left-most interval of type

Ik =
[
tk,

1

10
(9tk + tk−1)

]
, k ∈ {n, . . . ,2n}.

Defineβ = 9
10t2n(Φ2n − 1), and note that thanks to (3.2), on{∆1<∞},

tSu(1)−1 − Tu(1)� tSu(1)−1 − 1

10
(9tSu(1)+ tSu(1)−1)� β.

Thus, by Brownian scaling and the strong Markov property applied at the stopping timeTu(1), ∆11{∆1<∞} is
stochastically larger thanL0

β(Wu). The latter has, in turn, the same distribution asβ1/2|Wu(1)|, thanks to Lévy’s
theorem. Thus, another application of scaling yields the following.

P{∆1< h} � P

{∣∣W1(1)
∣∣ � h√

u 9
10t2n(Φ2n − 1)

}
�

√
20

9πut2n(Φ2n − 1)
h.

Sinceu ∈ [1,2] and limn→∞Φ2n =+∞, there existsn1 � n0 so large that for alln� n1,

20� 9π(Φ2n − 1).

Sinceu ∈ [1,2], for all n� n1,

P{∆1< h} � h√
t2n
. (3.4)

We have already seen that the cardinality of{k: ∆k <∞} is at least
∑2n
j=n Ij,ε0. Thus, onΥ ζn,ε0, the cardinality of

{k: ∆k <∞} is at least(1− ζ )n. By (3.4) and its obvious extension to∆j (j � 2), and using the independence
∆’s, we can apply induction to deduce the lemma.✷

We are ready to present the following.

Proof of Theorem 3.3. Consider the following finite subset of(0,1):

Q�(h)=
{
jh�: 0< j < h−�

}
, h ∈ (0,1),

where� > 1 is fixed. Of course, the cardinality ofQ�(h) is no more than 2h−� and it has the property that for an
x ∈ [0,1], there existsy ∈Q�(h) such that|x − y| � h�. Therefore, we can begin our bounds by approxima
[0,1] with the elements ofQ�(h). Indeed, for anyp > 1, Lemma 3.12 assures us of the veracity of the followin

P
{

inf
1�u�2

L0
1(Wu) < h

}
� P

{
min

u∈Q�(h)
L0

1(Wu) < 2h
}+ P

{
sup

u,v∈[1,2]:
|u−v|�h�

∣∣L0
1(Wu)−L0

1(Wv)
∣∣ � h

}

� P
{

min
u∈Q�(h)

L0
1(Wu) < 2h

}+Cpp!hp(�/4−1) logp/4(1/h�)

= P1 + P2. (3.5)

While P2 is explicit enough, we need to boundP1 which is done as follows: By Proposition 3.11, and using
notation there, for alln� n0 and allζ ∈ (δ,1),

P1 � P1,1 + exp

(
−n(ζ − δ)

2)
+ 4nexp

(
−ε

2
0Φn

)
, (3.6)
2(1− δ) 16
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where

P1,1 = P
{

min
u∈Q�(h)

L0
1(Wu) < 2h, Υ ζn,ε0

}
.

We recall that the above display holds for allh ∈ (0,1) and alln� n0. We also recall thatε0 andn0 depend only
on δ. On the other hand, by pickingn even larger (in fact, ifn� n1), Lemma 3.13 guarantees us that

P1,1 � 2h−�
(

2h√
t2n

)(1−ζ )n
, (3.7)

since the cardinality ofQ�(h) is no more than 2h−�. Now we combine equations (3.5), (3.6), and (3.7) to ob
an upper bound for the distribution function P{inf1�u�2L

0
1(Wu) < h

}
. To make it useful, we now choose th

parameters involved carefully so that for theγ of the statement of the theorem,

γ = (ζ − δ)2
2(1− δ) . (3.8)

That is, pickδ > 0 so small andζ ∈ (δ,1) so large that Eq. (3.8) holds. Next, we define

Φj = 16ε−2
0 j, j � 1.

By Eq. (3.6), there existsn2 � n1 so large that for alln� n2,

P1 � P1,1 + 2e−γ n. (3.9)

It suffices to properly estimateP1,1; this is achieved by choosing the parametern in terms ofh. Fix someν ∈ (0,1)
and choose

n= (1− ν) log(1/h)

log log(1/h)
,

to see that for allh ∈ (0,1) small enough (how small depends onγ ),

P1,1 � exp

(
−K log2(1/h)

log log(1/h)

)
= o(e−γ n),

whereK is an uninteresting positive and finite constant. In light of equation (3.9), for allh ∈ (0,1) sufficiently
small,P1 is bounded above by 3e−γ n, which equals 3 exp{−γ (1−ν) log(1/h)/ log log(1/h)}. The Theorem easily
follows from this and equations (3.5), (3.7), and (3.9), by choosing� > 4, sinceγ andν can be chosen arbitraril
close to 1/2 and 0, respectively.✷

Having verified Theorem 3.3, we are ready to prove the difficult half of Theorem 3.1.

Proof of Theorem 3.1 (Lower bound). Theorem 3.3 and scaling, together, show us that for allγ ∈ (0,1/2) and all
κ ∈ (0,1/2), there existsn3 such that for alln� n3,

P
{

inf
2−n�u�2−n+1

L0
1(Wu) < 2nκ

} = P
{

inf
1�u�2

L0
1(Wu) < 2−n(

1
2−κ)}

� exp

(
−γ log(2)

(
1

2
− κ + o(1)

)
n

logn

)
,

whereo(1) is Landau’s notation, and goes to 0 asn→∞. Since this sums, the Borel–Cantelli lemma shows
almost surely,

inf
−n −n+1

L0
1(Wu)� 2nκ,
2 �u�2
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eventually. We complete the lower bound by a standard monotonicity argument. Namely, ifh ∈ [2−n,2−n+1],
L0

1(Wh)� inf
2−n�u�2−n+1

L0
1(Wu)� 2nκ , eventually, a.s.

� h−κ .
Sinceκ ∈ (0, 1

2) is arbitrary, this shows that

lim inf
h→0+

1

log(1/h)
logL0

1(Wu)�
1

2
, a.s.,

which is the desired lower bound.✷
The corresponding upper bound relies on the following large deviations result, which is a consequenc

Theorem 4.1] in its present formulation:

Lemma 3.14 (Lacey, 1990).Asx→∞,

x−2 logP
{

sup
u∈[1,2]

L0
1(Wu) > x

}→−1

2
.

The remainder of Theorem 3.1 follows the given argument for the lower bound closely, except that Lemma
used in place of Theorem 3.3.✷

We close this section with our

Proof of Theorem 3.6. We will derive this by establishing an upper and a lower bound, respectively. Acco
to [2, Theorem 2.1],

P
{
sup
a∈R

La1(W1)� h
} = exp

{
−2j2

1

h2

(
1+ o(1))}, h→ 0+, (3.10)

sinceW1 is standard Brownian motion. For our lower bound, we need only note that

P
{

inf
1�u�2

sup
a∈R

La1(Wu)� h
}

� P
{
sup
a∈R

La1(W1)� h
}
, h > 0. (3.11)

On the other hand, for any finite setF ⊂ [1,2],
P
{

inf
1�u�2

sup
a∈R

La1(Wu)� h
}

� P
{

inf
u∈F sup

a∈R

La1(Wu)� h+ h2}+ P
{
ω(F)� h2}, (3.12)

where

ω(F)= sup
u,v∈F :
u  =v

sup
a∈R

∣∣La1(Wu)−La1(Wv)∣∣.
Now we chooseF as (the closest possible candidate to) an equipartition of[1,2] of meshh1000. Clearly, the
cardinality ofF is bounded above byΓ h−1000 for some absoluteΓ > 0. Thus, thanks to (3.10) and scaling, w
can bound, from the above, the first term on the right-hand side of Eq. (3.12) by

Γ h−1000 sup
u∈[1,2]

P
{
sup
a∈R

La1(Wu)� h+ h2}
= Γ h−1000 sup

u∈[1,2]
P
{
sup
a∈R

u−1/2La1(W1)� h+ h2}
= Γ h−1000exp

{−(
1+ o(1))2j2

1h
−2}

= exp
{−(

1+ o(1))2j2
1h

−2}. (3.13)
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On the other hand, by Lemma 3.12, for allp > 1,∥∥ω(F)∥∥p
Lp(P) �D

pp!{h1000log(1/h)
}p/4

,

whereD is a universal constant. In particular,

Λ= sup
h>0

E

[
exp

(
Dω(F)

2{h1000log(1/h)}1/4
)]
<∞.

This yields the following bound on the second term on the right-hand side of (3.12):

P
{
ω(F)� h2} �Λexp

(
− D

2h998/4 log1/4(1/h)

)
� exp

{−(
1+ o(1))2j2

1h
−2}.

Together with (3.13) and (3.12), we can see that (3.11) is sharp at a logarithmic scale. This completes our p✷

4. Applications

In this section we explore two applications of Theorems 3.1 and 3.3. In particular, we present in turn:

(1) an estimate for the capacity of paths in Wiener space that have small local times; and
(2) a uniform ratio ergodic theorem.

These will be discussed, in order, in the proceeding subsections.

4.1. A capacity estimate

Define the Ornstein–Uhlenbeck process on Wiener spaceOu(t)= e−u/2Weu(t). The processOu also has loca
times at 0. In fact,

Lemma 4.1. The random fieldO has continuous local times along lines given by

Lxt (Ou)= exp(u/2)Lexp(u/2)x
t (Weu), x ∈ R, t � 0, u� 0.

Proof. It suffices to show that for all bounded, measurable functionsf : R → R,

t∫
0

f
(
Ou(s)

)
ds =

∞∫
−∞

f (a) exp(u/2)Lexp(u/2)a
t (Wexp(u))da, ∀t � 0,

which follows readily from the definition of the processOu in terms of Brownian sheet.✷
Recall thatO = {Ou; u� 0} is a diffusion on the spaceC[0,1] of real continuous functions on[0,1] endowed

with the compact-open topology. Moreover, by Hunt’s theorem, the hitting probabilities ofO killed at rate one
determine a natural Choquet capacityCap on the classical Wiener spaceC[0,1]. This connection to capacities h
received some attention in infinite-dimensional stochastic analysis, and a formal definition of the said capa
be given as follows: For all measurableA⊂ C[0,1],

Cap(A)=
∞∫
e−tP

{∃u ∈ [0, t]: Ou ∈A
}

dt .
0
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Theorem 3.3 has the following ready capacitary translation.

Corollary 4.2. If Cap denotes capacity in the classical Wiener space, then

lim sup
h→0+

log log(1/h)

log(1/h)
· logCap

{
X ∈C[0,1]: L0

1(X)� h
}

�−1

2
.

Proof. Define the incomplete 1-capacityCap1 for the OU-process as

Cap1(A)= P
{∃u ∈ [0,1]: Ou ∈A

}
,

for all measurableA⊂ C[0,1]. According to [4, Lemma 2.2], there exists a finiteK > 1 such that for all measurab
A ⊂ C[0,1], K−1Cap1(A) � Cap(A) � KCap1(A). Thus, it suffices to prove our result withCap replaced by
Cap1.

By its definition, the above incomplete 1-capacity equals

P
{

inf
0�u�1

L0
1(Ou) < h

} = P
{

inf
1�v�e

v1/2L0
1(Wv) < h

}
� P

{
inf

1�v�e
L0

1(Wv) < h
}

� P
{

inf
1�v�2

L0
1(Wv) < h

}+ P
{

inf
2�v�e

L0
1(Wv) < h

}
.

We have used Lemma 4.1 in the above. By scaling,

P
{

inf
2�v�e

L0
1(Wv) < h

} = P
{

inf
1�v�e/2

L0
1(Wv) < 21/2h

}
.

Thus,

Cap1
{
X ∈C[0,1]: L0

1(X) < h
}

� 2P
{

inf
1�v�2

L0
1(Wv) < 21/2h

}
.

The corollary easily follows from Theorem 3.3, sinceγ ∈ (0,1/2) is otherwise arbitrary. ✷
4.2. A uniform ratio ergodic theorem

The ratio ergodic theorem for Brownian motion states that for allf ∈ L2(dx) and for each fixedu ∈ [1,2],

lim
t→∞

1

L0
t (Wu)

t∫
0

f
(
Wu(s)

)
ds =

∞∫
−∞

f (v)dv, a.s.; (4.1)

see, for example, [7]. As a consequence of this, one obtains the more familiar form of the ratio ergodic t
that states that forf,g ∈L2(dx) with

∫ ∞
−∞ g(v)dv  = 0,

lim
t→∞

∫ t
0 f (Wu(s))ds∫ t
0 g(Wu(s))ds

=
∫ ∞
−∞ f (v)dv∫ ∞
−∞ g(v)dv

, a.s.

It is instructive to consider the following quick derivation of the above. (More details will be supplied in the c
of our proof of Theorem 4.3 below.) Lett 	→ τu(t) denote the inverse tot 	→L0

t (Wu). That is,

τu(t)= inf
{
s > 0: L0

s (Wu) > t
}
, t � 0. (4.2)

Then, by the strong Markov property,t 	→ ∫ τu(t)
0 f (Wu(s))ds is a Lévy process. Thus, (4.1) follows at on

from Kolmogorov’s law of large numbers, once we verify that the mean of
∫ τu(t)

0 f (Wu(s))ds exists and equal
t · ∫ ∞

−∞ f (v)dv. On the other hand, by the occupation density formula (Eq. (2.2)),

E

{ τu(t)∫
f

(
Wu(s)

)
ds

}
=

∞∫
f (x)E

{
Lxτu(t)(Wu)

}
dx,
0 −∞
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which equalst · ∫ ∞
−∞ f (v)dv, since standard methods of excursion theory show that E{Lx

τu(t)
(Wu)} = t ; for

instance, see Lemma 4.4 below. This argument is a streamlined modification of the classical methods of [
As an application of Theorem 3.1, we propose to show that under a slightly more stringent conditio

f ∈ L2(dx), the ratio ergodic theorem (4.1) holds uniformly inu ∈ [1,2]. This is closely-related to the quasi-su
ergodic theorem of [5].

Theorem 4.3. If f ∈L1({1+ |x|}dx), then with probability one,

lim
t→∞ sup

u∈[1,2]

∣∣∣∣∣ 1

L0
t (Wu)

t∫
0

f
(
Wu(s)

)
ds −

∞∫
−∞

f (v)dv

∣∣∣∣∣ = 0.

Theorem 4.3 is proved in a few stages using some of the methods and calculations of [11].

Lemma 4.4. For anyu > 0, and for allx ∈ R, E{Lxτu(t)(Wu) |Wu(0)= 0} = t . Moreover,E{LxTu(0)(Wu) |Wu(0)=
x} = 2|x|u−1, if Tu(0)= inf{s > 0: Wu(s)= 0}.

Proof. By Brownian scaling, ifu > 0 is held fixed, the stochastic process{(
Wu(t), u

−1/2Lau
−1/2

s (Wu),T1(0), τ1(ru1/2)
); r, s, t � 0, a ∈ R

}
has the same finite dimensional distributions as the process{(

W1(t),L
a
s (Wu),Tu(0), τu(r)

); r, s, t � 0, a ∈ R, u > 0
}
.

From this one gathers that

E0
{
Lxτu(t)(Wu)

}= u−1/2E
{
L
x/

√
u

τ1(t
√
u)
(W1) |W1(0)= 0

}
, (4.3)

Ex
{
LxTu(0)(Wu)

}= u−1/2E
{
L
x/

√
u

T1(0)
(W1) |W1(0)= xu−1/2}, (4.4)

for all u > 0, where Px and Ex are the conditional probability measure and the expectation integral givenWu(0)= x
for theu in question. To be more precise, we should write Pu,x , but this would confound the notation more than o
present admittedly relaxed notation. Thus, the problem is reduced to one about thestandardBrownian motionW1.

Since the second calculation is needed to make the first, we start with it. Without loss of generality, we
x > 0 and use Tanaka’s formula in the following form:

(
W1(t)− x

)− =Mt + 1

2
Lxt (W1), Px -a.s.,

whereMt =
∫ t

0 1{W1(r) < x}W1(dr). Replacet by T1(0)∧n, and letn→∞ to see that the left-hand side rema
in [0, x] and hence, by the optional stopping theorem, and by the bounded convergence theorem, for allx > 0,

x = 1

2
Ex

{
LxT1(0)

(W1)
}
.

This, used in conjunction with (4.4), implies the second assertion of our lemma. To verify the first one,
excursion theory, still assuming thatx > 0 (without loss of generality). LetDx denote the number of downcrossin
of the interval[0, x] made bys 	→W1(s) while s ∈ [0, τ1(t)]. By Itô’s excursion theory,Dx is a Poisson random
variable with E0{Dx} equaling the reciprocal of Ex{LxT1(0)

(W1)} = 2|x|, thanks to the previous calculation. Als
by excursion theory, under P0, Lxτ1(0)(W1) is the sum ofDx many exponential random variables each of which
the same law as the Px -law of LxT1(0)

(W1). Finally, these exponential random variables, together withDx , are all
mutually independent. The lemma follows readily from these observations used in conjunction with Eq. (4✷
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Lemma 4.5. For every integerk � 1, everyu > 0, and allx ∈ R,

E
{∣∣Lxτu(1)(Wu)∣∣k} � k!2k

[
1+ |x|

u

]k
.

Proof. By scaling, we can reduce to theu= 1 case; see the argument leading to (4.3) for instance. Keeping t
mind, and applying the strong Markov property to the first hitting time ofx, we can see that

E0
{∣∣Lxτ1(1)(W1)

∣∣k} � Ex
{∣∣Lxτ1(1)(W1)

∣∣k}. (4.5)

We have used the additivity property of local times. On the other hand, under Px ,

Lxτ1(1)(W1)= LxT1(0)
(W1)+Lxτ1(1)−T1(0)

(W1) ◦ θT1(0),

whereθ is the shift functional on the paths ofW1. In particular, it follows immediately from this that

Lxτ1(1)(W1)�LxT1(0)
(W1)+Lxτ1(1)(W1) ◦ θT1(0), Px-a.s.

Thanks to Lemma 4.4, this gives

Ex
{
Lxτ1(1)(W1)

}
� 1+ 2|x|� 2

{
1+ |x|}. (4.6)

In light of Eq. (4.5), it suffices to show the following type of hypercontractivity: For allk � 1,

Ex
{∣∣Lxτ1(1)(W1)

∣∣k} � k![Ex{Lxτ1(1)(W1)
}]k
.

But this follows from [12, Lemma (A.2)], since by the strong Markov property,Lxτ1(1)
(W1) is NBU (New Better

than Used) under the measure Px . That is, for alla, b > 0,

Px
{
Lxτ1(1)(W1) > a + b

}
� Px

{
Lxτ1(1)(W1) > a

} ·Px{Lxτ1(1)(W1) > b
}
.

This is proved in a similar manner as (4.5) was, and completes our proof. For a similar inequality s
Lemma (A.4)]. ✷
Lemma 4.6. For anyν > 0 and for all� > 4(1+ ν), there exists a finitec�,ν > 0 such that for allt > ee,

P
{
sup
x∈R

sup
u,v∈[1,2]:
|u−v|�t−�

∣∣Lxτu(t)(Wu)−Lxτu(t)(Wv)∣∣ � t−ν
}

� exp

(
−c�,ν logt

log logt

)
.

Proof. Note that for anys, t > 0,

sup
u∈[1,2]

τu(t)� s ⇐⇒ inf
u∈[1,2]L

0
s (Wu)� t .

We use this withs = t2+η, whereη is a small positive number (to be chosen shortly), in order to deduc
following:

P
{
sup
x∈R

sup
u,v∈[1,2]:
|u−v|�t−�

∣∣Lxτu(t)(Wu)−Lxτu(t)(Wv)∣∣ � t−ν
}

� P
{

inf
u∈[1,2]L

0
t2+η (Wu)� t

}+ P
{

sup
u,v∈[1,2]:
|u−v|�t−�

sup
x∈R

sup
0�s�t2+η

∣∣Lxs (Wu)−Lxs (Wv)∣∣ � t−ν
}

= P1 + P2,
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using obvious notation. By Theorem 3.3 and by scaling,

P1 � exp

(
− η logt

4 log logt

)
,

as long asη < 1/2. On the other hand, by combining Lemma 3.12 with Chebyshev’s inequality, we can see t
any integerk � 1,

P2 � Ckk�k/4t(2+η)k/2t−�k/4tkν logk/4 t .

Thus, as long as we chooseη strictly between 0 and the minimum of 1/2 and 1
2(� − 4 − 4ν), it follows that

P2 = o(P1) ast→∞, from which the lemma follows. ✷
Before presenting our proof of Theorem 4.3 we will need to develop one final technical estimate. R

speaking, it states that ifu andv are close, so areτu(t) andτv(t), and with overwhelming probability. Howeve
since the latter are jump processes, we need to “smudge” time (i.e., the variablet) a little bit in order for such
a statement to actually hold. This amounts to tightness in an appropriately chosen Skorohod topology (f
convergence of random functions with jumps), and a formal statement follows.

Lemma 4.7. For all µ> 0 and� > 4(1+µ), there exists a finite constantd�,µ > 0 such that for allt > ee,

P
{∃u,v ∈ [1,2]: |u− v| � t−�, τu(t) > τv(t + t−µ)

}
� exp

(
−d�,µ logt

log logt

)
.

Proof. To expedite the presentation, we fix someν ∈ (µ,∞) such that� > 4(1+ ν), and define two eventsEt and
Ft as

Et =
{
ω: sup

u,v∈[1,2]:
|u−v|�t−�

∣∣L0
τv(t+t−µ)(Wu)−L0

τv(t+t−µ)(Wv)
∣∣ � t−ν

}
,

Ft =
{
ω: ∀u,v ∈ [1,2] : |u− v| � t−�, τu(t) < τv(t + t−µ)

}
.

We claim that for allt > ee,

P{Et }� P{Ft }. (4.7)

This follows from the continuity of local times. Indeed, if (4.7) were false for somet > ee, on Et ∩ F�
t , we could

always findu,v ∈ [1,2] such that|u− v| � t−�, and

t = L0
τu(t)

(Wu)� L0
τv(t+t−µ)(Wu)� L

0
τv(t+t−µ)(Wv)− t−ν = t + t−µ − t−ν .

Since this contradicts our choice ofµ < ν, by (4.7), P{F �
t } � P{E�

t }, and our lemma follows from this an
Lemma 4.6. ✷

We are ready to present our

Proof of Theorem 4.3. By consideringf+ andf− separately, we may assume, without any loss in gener
thatf is a nonnegative function. This assumption will be tacitly made throughout.

For eachu ∈ [1,2], define

Sut =
τu(t)∫
f

(
Wu(s)

)
ds, t � 0.
0
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By the strong Markov property, the process{Sun ; n� 1} is a random walk for each fixedu ∈ [1,2]. Now we hold
such au fixed, and proceed to estimate the moments of the increments of the corresponding walkn 	→ Sun . First, to
the mean: By Lemma 4.4, for allu ∈ [1,2],

E{Su1} =
∞∫

−∞
f (x)dx. (4.8)

We have used the following consequence of the occupation density formula (cf. Eq. (2.2)):

Su1 =
∞∫

−∞
f (x)Lxτu(1)(Wu)dx.

To estimate the higher moments, we use the occupation density formula once more, this time in conjunct
Lemma 4.5 and Minkowski’s inequality, to see that for allk � 1,

‖Su1‖Lk(P) �
∞∫

−∞
f (x)

∥∥Lxτu(1)(Wu)∥∥Lk(P) dx � 2(k!)1/k
∞∫

−∞
f (x)

{
1+ |x|}dx.

In particular, for allk � 1 and allu ∈ [1,2],
‖Su1‖kLk(P) � k! 2k‖f ‖kL1({1+|x|}dx). (4.9)

This, (4.8), and Rosenthal’s inequality [6], all used in conjunction, give us the following: For eachk � 1, there
exists a (universal) finite constantAk > 0 such that for allu ∈ [1,2] all n� 1, and allk � 1,

E

{
max

1�i�n

∣∣∣∣∣Sui − i ·
∞∫

−∞
f (x)dx

∣∣∣∣∣
k}

�Aknk/2. (4.10)

Next we choose and hold fixedµ> 0 and� > 4(1+µ), in agreement with the conditions of Lemma 4.7. We a
introduce the following equipartition of[1,2] of meshn−�:

S�(n)=
{
1+ jn−�; 0 � j � n�

}
, n� 1.

We need to introduce four more parameters as follows:

ν > 0, R > 1,
1

2
< δ < 1, k > �

(
δ − 1

2

)−1

. (4.11)

The remainder of our proof concerns monotonicity arguments used in conjunction with the Borel–Cantelli
By Chebyshev’s inequality, Eq. (4.10), and using the fact that #S�(m)� (1+m�),

∑
n

P

{
∃u ∈ S�(R

n): max
1�i�Rn

∣∣∣∣∣Sui − i
∞∫

−∞
f (w)dw

∣∣∣∣∣>Rδn
}

�Ak
∑
n

(1+Rn�)R−(δ− 1
2 )kn,

which is finite by (4.11). Thus, the Borel–Cantelli lemma assures us of the existence of a finite random variN1
such that a.s. for alln�N1,

max
u∈S�(Rn)

∣∣∣∣∣
τu(R

n)∫
f

(
Wu(r)

)
dr −Rn

∞∫
f (w)dw

∣∣∣∣∣ �Rδn. (4.12)
0 −∞
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Similarly, Lemma 4.7 and a Borel–Cantelli argument, together imply the existence of a finite random variaN2

such that a.s. for alln�N2,

∀u,v ∈ [1,2]: |u− v|�R−n�, τu(R
n−1)� τv(Rn)� τu(Rn+1). (4.13)

Finally, another Borel–Cantelli argument, this time involving Lemma 4.6, shows the existence of a finite r
variableN3 such that a.s. for alln�N3,

sup
x∈R

sup
u,v∈[1,2]:

|u−v|�R−n�

∣∣Lxτu(Rn)(Wu)−Lxτv(Rn)(Wv)∣∣ �R−nν . (4.14)

LetN = max1�i�3Ni to see from (4.12) that for alln�N andu ∈ S�(R
n),

Rn

∞∫
−∞

f (w)dw−Rδn �
τu(R

n)∫
0

f
(
Wu(r)

)
dr �Rn

∞∫
−∞

f (w)dw+Rδn. (4.15)

On the other hand, if we choose an arbitraryv ∈ [1,2] we can always findu ∈ S�(R
n) such that|u− v| �R−�n.

Thus, by (4.13), for any suchv ∈ [1,2], and for alln�N ,

τv(R
n)∫

0

f
(
Wv(s)

)
ds �

τu(R
n+1)∫

0

f
(
Wv(s)

)
ds =

∞∫
−∞

f (x)Lx
τu(Rn+1)

(Wv)dx

�
∞∫

−∞
f (x)Lx

τu(Rn+1)
(Wu)dx +R−nν

∞∫
−∞

f (w)dw

=
τu(R

n+1)∫
0

f
(
Wu(s)

)
ds +R−nν

∞∫
−∞

f (w)dw.

We have used Eq. (4.14) in the penultimate line. Consequently, equation (4.15) implies that a.s. for allv ∈ [1,2]
and alln�N ,

τv(R
n)∫

0

f
(
Wv(r)

)
dr � {Rn+1 +R−nν }

∞∫
−∞

f (w)dw+Rδn.

A similar lower bound ensues analogously from which it follows that a.s. asn→∞,

sup
1�v�2

∣∣∣∣∣
τv(R

n)∫
0

f
(
Wv(r)

)
dr −Rn

∞∫
−∞

f (w)dw

∣∣∣∣∣ � (Rn+1 −Rn)
∞∫

−∞
f (w)dw+ o(Rn).

Consequently, a.s.,

lim sup
n→∞

∣∣∣∣∣R−n
τv(R

n)∫
0

f
(
Wv(r)

)
dr −

∞∫
−∞

f (w)dw

∣∣∣∣∣ � (R− 1)

∞∫
−∞

f (w)dw.

By sandwichingt ∈ [Rn,Rn+1] and appealing to yet another monotonicity argument we can deduce that
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R

∞∫
−∞

f (w)dw� lim inf
n→∞

1

Rn+1

τv(R
n)∫

0

f
(
Wv(r)

)
dr � lim inf

t→∞
1

t

τv(t)∫
0

f
(
Wv(r)

)
dr

� lim sup
t→∞

1

t

τv(t)∫
0

f
(
Wv(r)

)
dr � lim sup

n→∞
1

Rn

τv(R
n+1)∫

0

f
(
Wv(r)

)
dr

�R2

∞∫
−∞

f (w)dw,

where the convergences, as well as the inequalities, hold uniformly over allv ∈ [1,2]. SinceR > 1 is arbitrary (cf.
(4.11)), we can letR ↓ 1 along a rational sequence to see that with probability one,

lim
t→∞ sup

v∈[1,2]

∣∣∣∣∣1

t

τv(t)∫
0

f
(
Wv(r)

)
dr −

∞∫
−∞

f (w)dw

∣∣∣∣∣= 0.

A final monotonicity argument used together with Corollary 3.5 concludes our proof.✷
Remarks. (a) The above demonstration makes very heavy use of the notion of monotonocity which is know
a key idea in classical ergodic theory as well. In particular, see [8] and its standard-analysis interpretation

(b) In the above proof we used theL1({1 + |x|}dx) condition to show that the random walkn 	→ Sun has
finite moments of all order; for instance, see equation (4.9). While this may seem extravagant, we no
that in most interesting cases, the mentioned random walk has finite moments of all ordersif and only if it has
a finite variance. Moreover, in such cases, the condition thatf ∈ L1({1+ |x|}dx) is equivalentto the finiteness
of the variance of each such random walk. Indeed, supposef � 0, and without loss of generalityu = 1. Then,
W1 is standard Brownian motion, and we claim thatχf = ∫ τ1(1)

0 f (W1(r))dr has a finite variance if and only
f ∈ L1({1+ |x|}dx). To show this we begin by recalling thatχf = ∫ ∞

−∞ f (x)L
x
τ1(1)

(W1)dx. Hence, thanks to
Lebesgue’s monotone convergence theorem, the following always holds.

E
{
χ2
f

} =
∞∫

−∞

∞∫
−∞

f (x)f (y) E
{
Lxτ1(1)(W1)L

y

τ1(1)
(W1)

}
dx dy.

While there are various ways of computing this “energy integral,” perhaps the most elegant one uses t
Knight theorem; cf. [18, Ch. XI]. Namely, we recall that ifZx = Lxτ1(1)(W1) (x ∈ R), then (i) {Zx; x � 0} and
{Z−x; x � 0} are independent copies of one another; and (ii){Zx; x � 0} is a squared Bessel process of dimens
0, starting at 1. In other words,{Zx; x � 0} solves the SDEZx = 1+ 2

∫ x
0

√
Zs dβs (x � 0), whereβ is a standard

Brownian motion. From this it follows readily that for allx ∈ R, E{Zx} = 1 (cf. also Lemma 4.4), and

E{ZxZy} =
{

1+ 4(|x| ∧ |y|), if xy � 0,
1, otherwise.

Thus, wheneverf � 0, thenχf has two finite momentsif and only if f ∈ L1({1+ |x|}dx) in which case it has al
finite moments thanks to Lemma 4.5. In this regard, see also Eq. (4.9).

(c) With very little extra effort it is possible to extend Theorem 4.3 to cover more general “continuous ad
functionals” (CAFs). Consider a signed measureµ on R, and the parametrized CAFs,

Aµu (t)=
∞∫
Lxt (Wu)µ(dx).
−∞
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Then, our proof of Theorem 4.3 goes through with no essential changes to show that as long as (i)
∫ ∞
−∞{1 +

|x|}|µ|(dx)<+∞; and (ii) |µ|(R) <∞ with probability one, then

lim
t→∞ sup

u∈[1,2]

∣∣∣∣ A
µ
u (t)

L0
t (Wu)

−µ(R)
∣∣∣∣= 0.

As an example of its use, we mention the choice ofA
µ
u (t)= Lat (Wu), in which case we obtain the following: Fo

eacha ∈ R,

lim
t→∞ sup

u∈[1,2]

∣∣∣∣Lat (Wu)L0
t (Wu)

− 1

∣∣∣∣= 0, (4.16)

almost surely.

5. Concluding remarks and open problems

We conclude this paper with some remarks and a few open problems that we have been unable to resol
problems are potentially difficult, but we believe that their resolution is well worth the effort:

(1) With regards to our results on the modulus of continuity of local times along lines, we mention two d
open problems. Since there are very few methods for analyzingu 	→ L0

1(Wu), the resolution of the following
would invariably require a better understanding ofu 	→ L0

1(Wu), which is a non-Dirichlet, non-semimartinga
non-Markov process with a very complicated evolution structure:
(a) Are there corresponding lower bounds to the upper bound in Theorem 2.1?
(b) Can the lim sup be replaced by a true limit?

(2) Although in this article we have no practical need for discussing lower bounds that correspond to Theo
let us mention a few words on this topic for the sake of completeness. Recall thatL0

1(W1) is standard Brownian
local time at 0 by time 1 which, by Lévy’s theorem, has the same distribution as|W1(1)|; cf. [18]. The explicit
form of the probability density function of the latter random variable easily yields

P
{

inf
1�u�2

L0
1(Wu)� h

}
�

(
1+ o(1))

√
2

π
h, ash→ 0+.

There is an obvious gap between this simple estimate and the inequality of Theorem 3.3. To il
this, we conclude this remark with an open problem: “Does the decay rate of the distribution function
inf1�u�2L

0
1(Wu) near0 satisfy a power law?” In other words, does the following exist as a positive and fin

constant:

Λ= lim
h→0+

1

logh
logP

{
inf

1�u�2
L0

1(Wu)� h
}
?

If so, what is the numerical value ofΛ?
(3) Can the condition of Theorem 4.3 be reduced tof ∈ L2(dx), or are there counterexamples for the s

condition ofL2(dx)? It should be pointed out that if the limit and the supremum are interchanged, th
main result of [5] implies the existence of a ratio ergodic theorem only under the condition thatf ∈ L2(dx).
Nevertheless, it should be pointed out that theL1({1+|x|}dx) condition is a very natural one; see the Rema
at the end of Section 4.2.

(4) In the context of Eq. (4.16), consider the processa 	→Rt (a), which is defined by

a 	→ sup

∣∣∣∣Lat (Wu)
L0(W )

− 1

∣∣∣∣.

u∈[1,2] t u
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Is there a normalizationα1 � α2 � · · · � αn → ∞ such thata 	→ αnRn(a) has a nontrivial limiting law as
n→∞? For some related works, see [1,3,22].
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