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The Pascal adic transformation is loosely Bernoulli
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Abstract

The Pascal adic transformation is one of the simplest examples of adic transformations. We recall its construction b
and stacking and prove that it is loosely Bernoulli.
 2003 Elsevier SAS. All rights reserved.

Résumé

La transformation Pascal adique est un des exemples les plus simples de transformations adiques. Nous rap
construction par découpage et empilement et montrons qu’elle est lâchement Bernoulli.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The notion ofadic transformationhas been introduced by Vershik (see e.g. [4,5]), as a model in whic
transformation acts on infinite paths in some graphs, calledBratteli diagrams. As shown by Vershik, every ergod
automorphism of the Lebesgue space is isomorphic to some adic transformation, with a Bratteli diagram
may be quite complicated. Vershik also proposed to study the ergodic properties of an adic transforma
given simple graph, such as the Pascal graph which gives rise to the so-calledPascal adic transformation.

1.1. The Pascal adic transformation

Here we recall the construction and some basic properties of the Pascal adic transformation with parap,
following the cutting and stacking model exposed in [2]. Our spaceX is the interval[0,1[, equipped with its Bore
σ -algebraA and the Lebesgue measureµ.
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Fig. 1. Cutting and stacking construction of the Pascal adic transformation.

Let 0< p < 1 be a fixed parameter. We start by dividingX into two subintervalsP0
def= [0,p[ andP1

def= [p,1[.
Let P def= {P0,P1} be the partition obtained at this first step. We also considerP0 andP1 as “degenerate” Rokhlin
towers of height 1, respectively denoted byτ1

0 andτ1
1 .

On second step,P0 andP1 are divided in proportions(p,1 − p). The transformationT is defined on the righ
piece ofP0 by sending it linearly onto the left piece ofP1; note that both intervals have the same lengthp(1− p).
This gives a collection of 3 disjoint Rokhlin towers denoted byτ2

0 , τ
2
1 , τ

2
2 , with respective heights 1, 2, 1 (se

Fig. 1).
After stepn, we get(n + 1) towersτn0 , . . . , τ

n
n , with respective heights

(
n
0

)
, . . . ,

(
n
n

)
, the width ofτnk being

pn−k(1 − p)k . Denote byFn
k the base ofτnk . At this step, the transformationT is defined on the whole spac

except the top of each stack. We then divide each stack in proportions(p,1 − p), and defineT on the right piece
of the top ofτnk by sending it linearly onto the left piece of the baseFn

k+1 of τnk+1 (both have the same leng
pn−k(1− p)k+1).

Repeating recursively this construction,T is finally defined almost everywhere, and clearly preserves
measureµ.

It is well-known (see e.g. the proofs given in [2]) thatT is ergodic and has zero entropy.

1.2. Loose Bernoullicity

In this section and in Section 2.1, we consider a general dynamical system(X,A,µ,T ), whereT is an invertible
measure-preserving transformation of the Lebesgue probability space(X,A,µ). The notion of loose Bernoullicity
has been introduced by Feldman in 1976 [1], then used by Ornstein, Rudolph and Weiss [3] to deve
study of Kakutani equivalence for measure preserving transformations. In the zero-entropy case, sayin
transformationT is loosely Bernoulli is equivalent to saying thatT is isomorphic to a transformation induced
an irrational rotation. The characterization of loose Bernoullicity given by Feldman makes use of the so
“P-name” of a pointx.

Let P = {P0, . . . ,Pk} be a finite measurable partition of(X,A,µ). Forx ∈ X, we setP(x)
def= j ∈ {0, . . . , k} if

x ∈ Pj . Form< n in Z, we define theP-nameof x (from m to n) by

P |nm(x) def= jmjm+1 · · ·jn,
where, for eachm � i � n, ji

def= P(T ix). TheentireP-name ofx is the doubly-infinite sequenceP |+∞−∞(x).
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To define the property of being loosely Bernoulli, Feldman introduced thef̄ distance between finite words. L
V = v1 · · ·vl andw = w1 · · ·wl be two words of lengthl on the same alphabet. Thēf distance betweenv andw
is defined by

f̄ (v,w)
def= l − s

l
,

wheres is the greatest integer in{0, . . . , l} such that we can find 1� i1 < i2 < · · ·< is � l and 1� j1 < j2 < · · ·<
js � l with vir = wjr (r = 1, . . . , s).

Definition 1.1.Let T be a zero-entropy measure preserving transformation on the probability space(X,A,µ), and
let P be a finite measurable partition ofX. The process(P, T ) is said to beloosely Bernoulli(LB) if for all ε > 0
and for all sufficiently largel, we can findA⊂ X with µ(A) > 1− ε such that

∀x, y ∈ A, f̄
(
P |l0(x),P |l0(y)

)
< ε.

The transformationT is said to be LB if for each finite partitionP the process(P, T ) is LB.

Remark. In order to prove that a transformationT is LB, it is enough to verify that(P, T ) is LB for some
generating partitionP .

1.3. Main result

Theorem 1.2.The Pascal-adic transformation is loosely Bernoulli.

2. Proof of the loose-Bernoullicity

2.1. Equivalence of loose-Bernoullicity with seemingly weaker properties

Lemma 2.1.Suppose that for allε > 0 and for all sufficiently largel, we can findB ⊂ X×X withµ⊗µ(B) > 1−ε

such that

∀(x, y) ∈ B, f̄
(
P |l0(x),P |l0(y)

)
< ε.

then the process(P, T ) is LB.

Proof. Givenε > 0, letB ⊂ X ×X with µ⊗µ(B) > 1− ε be such that

∀(x, y) ∈ B, f̄
(
P |l0(x),P |l0(y)

)
< ε/2.

We can findx ∈ X such thatµ(Bx) > 1− ε, where

Bx
def= {

y ∈ X | (x, y) ∈ B
}
.

But, because of the triangular inequality forf̄ , for all y andy ′ in Bx we have

f̄
(
P |l0(y),P |l0(y ′)

)
< ε.

Thus, the definition of LB is satisfied, withA
def= Bx . ✷

Lemma 2.2. Suppose that for allε > 0 and for µ ⊗ µ-almost every(x, y) ∈ X × X, we can find an intege
l(x, y) � 1 such that

f̄
(
P |l(x,y)0 (x),P |l(x,y)0 (y)

)
< ε,

then the process(P, T ) is LB.
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Fig. 2. Covering of{0, . . . , l} with good intervals and bad points.

Proof. Let us fix ε > 0. Forµ ⊗ µ-almost every(x, y) ∈ X × X, we definel(x, y) as the smallest integerk � 1
such thatf̄ (P |k0(x),P |k0(y)) < ε/3. Sinceµ⊗µ(l(x, y) < ∞) = 1, there existsn ∈ N

∗ such that

µ⊗µ
(
l(x, y)� n

)
< ε2/3.

For anyl > 3n/ε, we consider

Ml
def= 1

l

l−1∑

k=0

1{l(T kx,T ky)�n}.

Using Markov’s inequality and the fact thatT preserves the measureµ, one can easily check that

µ⊗µ(Ml � ε/3) � E(Ml)

ε/3
<

ε2/3

ε/3
= ε.

Therefore, the setB
def= {Ml < ε/3} ⊂ X×X is such thatµ⊗µ(B) > 1− ε. Let us fix(x, y) ∈ B. We want to show

that f̄ (P |l0(x),P |l0(y)) < ε. We say thatk ∈ {0, . . . , l − 1} is bad if l(T kx,T ky) > n. Since(x, y) ∈ B, there are
less thanlε/3 suchk.

We define(ji)i�0 and (ri )i�0 recursively byj0 = r0
def= inf{r � 0 | r is not bad}, and for i � 1 such that

ji−1 � l − n,

ri = inf
{
r � 0 | ji−1 + l

(
T ji−1x,T ji−1y

) + r is not bad
}
,

ji = ji−1 + l
(
T ji−1x,T ji−1y

) + ri .

We denote byf the greatest indexi such thatji is defined:l − jf < n (see Fig. 2).
Recall the definition off̄ :

(l + 1)f̄
(
P |l0(x),P |l0(y)

)

�
f−1∑

i=0

(ji+1 − ji)f̄
(
P |ji+1

ji
(x),P |ji+1

ji
(y)

) + (l − jf )

�
f−1∑

i=0

l
(
T ji x, T ji y

)
f̄

(
P |ji+l(T ji x,T ji y)

ji
(x),P |ji+l(T ji x,T ji y)

ji
(y)

) +
f−1∑

i=0

ri + (l − jf )

=
f−1∑

i=0

l
(
T ji x, T ji y

)
f̄

(
P |l(T ji x,T ji y)

0 (T ji x),P |l(T ji x,T ji y)

0 (T ji y)
) +

f−1∑

i=0

ri + (l − jf )

� ε

3

f−1∑

i=0

l
(
T ji x, T ji y

) + lε

3
+ n < (l + 1)ε.

Therefore, we proved that for all sufficiently largel, we can findB ⊂ X × X with µ ⊗ µ(B) > 1 − ε such that
∀(x, y) ∈ B, f̄ (P |l0(x),P |l0(y)) < ε. We conclude with Lemma 2.1.✷
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2.2. Some lemmas on the Pascal adic transformation

From now on,T is the Pascal adic transformation described in Section 1.1, andP is the partition{P0,P1} given
by the first step of the cutting-and-stacking construction. Forx ∈ X andn � 1, we definekn(x) as the element o
{0, . . . , n} telling in which tower of the leveln x lies: for eachn � 1, x ∈ τnkn(x).

Lemma 2.3.P is a generating partition for the system(X,A,µ,T ), i.e.

+∞∨

k=−∞
T kP =A.

Proof. As in [2], for eachn � 1, we define thebasic blocks of leveln Bn,k (0 � k � n), which are words on the

alphabet{0,1}, by the following induction:Bn,0
def= 0,Bn,n

def= 1, and for 1� k � n − 1,

Bn,k
def= Bn−1,k−1Bn−1,k .

It is straightforward to verify thatBn,k is theP-name of length
(
n
k

)
of any pointx lying in the baseFn

k of τnk . We
are now going to prove by induction onn thatBn,k characterizes the base ofτnk . More precisely, for anyn � 2 and
1 � k � n− 1,

if P
∣∣(

n
k)−1

0 (x)= Bn,k, thenx ∈ Fn
k . (1)

Indeed, (1) is clearly satisfied forn = 2. Next, suppose that (1) is satisfied forn − 1, and pick anx such that

P |(
n
k)−1

0 (x)= Bn,k (1� k � n− 1). First, assume that 2� k � n − 2. We have then

P
∣∣(

n−1
k−1)−1

0 (x) = Bn−1,k−1, (2)

so thatx ∈ Fn−1
k−1 , and

P
∣∣(

n−1
k )−1

0

(
T (n−1

k−1)x
) = Bn−1,k, (3)

which impliesT (n−1
k−1)x ∈ Fn−1

k . Thus, after climbing the towerτn−1
k−1 , the image ofx goes to the next towerτn−1

k ,

which is possible only ifx ∈ Fk
n (otherwise, the image ofx would go back toFn−1

k−1 ). For the casek = 1, we first
have to notice that

∀m � 2, ∀1 � j � m− 1, Bm,j begins with “0” and ends with “1”. (4

(We leave to the reader the verification of (4) by induction onm.) Now, if P |n−1
0 (x) = Bn,1 = 0Bn−1,1, we know

thatT x ∈ Fn−1
1 because (1) is true forn − 1, and then we can tell thatx ∈ Fn−1

0 : otherwise, the letter preceedin
Bn−1,1 would be “1”. This yieldsx ∈ Fn

1 . The casek = n− 1 is similar.
Now, for a fixedn � 1 we observe that the entireP-name of any pointx is a concatenation of basic blocks

level n. Because of (1), this decomposition into basic blocksBn,k is unique, and knowing theP-name ofx gives
for anyn the value ofkn(x) and tells us in which rung ofτnkn(x) x lies. But the partitionQn of X into rungs of
towersτnk , 0� k � n is constituted of intervals whose maximal width is max(p,1 − p)n ; moreoverQn+1 refines
Qn. Therefore

∨
n�1Qn =A. ✷

Lemma 2.4.For µ-almost everyx ∈ X, we have

kn(x)

n
−→

n→+∞ 1− p. (5)
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Fig. 3. Representingkn(x) as the sum ofn independent Bernoulli random variables.

Proof. Suppose thatx lies in towerk ∈ {0, . . . ,m} at levelm (x ∈ τmk ). Then, at level(m + 1), x lies either in
towerk or tower(k + 1), with probabilityp, 1−p respectively. Therefore,kn(x) is the sum ofn independent and
identically distributed Bernoulli random variables(Xm){1�m�n} with P(Xm = 0)= p = 1− P(Xm = 1).

By the law of large numbers, we obtain that forµ-almost everyx ∈ X, kn(x)
n

−→
n→+∞E[Xm] = 1− p. ✷

Let r � 1 be a fixed interger. We consider each towerτnk as a stacking of 2r blocks which are pieces of towe
of leveln− r.

Lemma 2.5.For µ⊗µ-almost every(x, y) ∈ X ×X, we can find arbitrarily largen such that

kn(x)= kn(y), (6)

andx andy are both in the first block of level(n− r) in τnkn(x).

Proof. We have seen in the previous lemma that if(x, y) follows the lawµ ⊗ µ, then km(x) and km(y) can
be respectively represented as

∑m
i=1Xi and

∑m
i=1Yi , where(Xi){1�i�m} and(Yi){1�i�m} are independent an

identically distributed Bernoulli random variables with parameterp. We want to prove that we can find arbitrar
largem such thatkm(x) = km(y) andXm+1,Xm+2, . . . ,Xm+r andYm+1, Ym+2, . . . , Ym+r are equal to 1. One ca
easily verify thatkm(x) − km(y) = ∑m

i=1(Xi − Yi) is a symmetric random walk and is thus recurrent. Hence
can find arbitrarily largem such thatkm(x) = km(y). Let us callm1(x, y) < m2(x, y) < · · · such integersm and
consider the events(Aj )j�1 defined by

Aj = {Xmj+1 = · · · = Xmj+r = Ymj+1 = · · · = Ymj+r = 1}.
Using the strong Markov property, we can check that

• for anyj � 1,P(Aj ) = (1−p)2r > 0;
• (Ajr )j�1 are independent (becausemr(j+1) −mrj � r for all j � 1).

Therefore, we can find arbitrarily largemj such thatkmj (x) = kmj (y) andAj happens. ✷
2.3. Conclusion

Because of Lemma 2.3, to achieve the proof of Theorem 1.2 it is enough to show that the process(P, T ) is LB.
For this, we are going to verify that(P, T ) satisfies the hypotheses of Lemma 2.2. Givenε > 0, choose an intege
r such that(1− p)r < ε/2. Let(x, y) ∈ X ×X be such that

• kn(x)
n

−→ 1− p;

n→+∞
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Fig. 4. Coupling of largeP-names.

• there exist arbitrarily largen satisfyingkn(x) = kn(y), andx andy are both in the first block of level(n− r)

in τnkn(x).

(The preceding lemmas tell us that these properties are satisfied forµ ⊗µ-almost all(x, y).) Let us consider suc
ann, and notek for kn(x). Observe that ifn is large enough, the height of the first(n − r)-block of τnk , in which
bothx andy lie, is very small compared to the height ofτnk . Indeed, the height of this(n − r)-block is

(
n−r
k−r

)
, and

we have
(
n−r
k−r

)
(
n
k

) = k(k − 1) · · · (k − r + 1)

n(n − 1) · · ·(n − r + 1)
∼ (1− p)r asn → +∞.

Thus, ifn is chosen large enough, and if we setl
def= (

n
k

)
, bothP |l0(x) andP |l0(y) begin with a suffix ofBn,k whose

length is greater than(1− ε/2)l.
It is then easy to find a common subsequence ofP |l0(x) andP |l0(y) whose length is greater than(1− ε)l, which

gives

f̄
(
P |l0(x),P |l0(y)

)
< ε. ✷

3. Open questions

So far, very few ergodic properties of the Pascal adic transformation are known. Many important qu
concerning its spectral properties remain open; in particular it is not known whether it is weakly mixing or n

More closely related to the present work, we can point out that the class of zero-entropy and loosely B
transformations contains several interesting subclasses: rank one, finite rank, local rank one (whererank one⇒
finite rank⇒ local rank one⇒ loosely Bernoulli). To which of these subclasses do the Pascal adic transform
belong? Although the cutting and stacking construction suggests that it is not of local rank one, even prov
it is not rank one seems to be a difficult question.
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