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Abstract

This note deals with localized approximations of homogenized coefficients of second order divergence form elliptic o
with random statistically homogeneous coefficients, by means of “periodization” and other “cut-off” procedures. For i
in the case of periodic approximation, we consider a cubic sample[0, ρ]d of the random medium, extend it periodically
R
d and use the effective coefficients of the obtained periodic operators as an approximation of the effective coefficien

original random operator. It is shown that this approximation converges a.s., asρ → ∞, and gives back the effective coefficien
of the original random operator. Moreover, under additional mixing conditions on the coefficients, the rate of converge
be estimated by some negative power ofρ which only depends on the dimension, the ellipticity constant and the rate of d
of the mixing coefficients. Similar results are established for approximations in terms of appropriate Dirichlet and N
problems localized in a cubic sample[0, ρ]d .
 2004 Elsevier SAS. All rights reserved.

Résumé

Nous étudions différentes procédures de périodisation ou troncature pour approcher les coefficients effectifs d’un
elliptique du second ordre à coefficients aléatoires stationnaires. Considérons par exemple la restriction d’un enviro
aléatoire à un cube[0, ρ]d et son prolongement périodique àR

d tout entier. Nous montrons qu’alors, pour presque to
réalisation de l’environnement aléatoire, les coefficients homogénéisés dans l’approximation périodique converge
ρ → ∞ vers les coefficients effectifs de l’opérateur initial. Sous des hypothèses de mélange nous prouvons des b
la vitesse de convergence de la formeρ−α où α > 0 ne dépend que de la dimension, la constante d’ellipticité et du tau
mélange. Nous obtenons aussi des résultats similaires pour des approximations basées sur des problèmes de Neu
Dirichlet, localisées dans un cube[0, ρ]d .
 2004 Elsevier SAS. All rights reserved.
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Introduction

The main goal of this work is to provide a rigorous mathematical justification for the convergence and t
whenever possible, estimates for the rate of convergence of the various localization methods used in en
literature to approximate the effective tensor of random stationary media. The question on how to get the
parameters characterizing the constitutive equation in randomly heterogeneous media has been a subject
in many scientific fields including solid and fluid mechanics, hydrogeology or thermics. It was a subject of i
for engineers, in connection with applications in composite media [11,17,21], in oil recovery [9,1], in under
pollutant transport [2,12]. All these practical methods are based on computing the average of either the e
the flux on a sufficiently big volume, called Representative Elementary Volume (or REV), with some bo
conditions like for instance periodic or Dirichlet or Neumann boundary conditions. The same kind of avera
a finite volume is also systematically used, in the so called Volume Averaging method (see for instan
for deriving theoretical scaled up models from microscopic phenomenological descriptions. Clearly a
approximated effective characteristics, obtained from a finite volume, are in general still random. And be
these computations there is no indication on how this averaging, on a finite part of only one realization, w
of the mentioned boundary conditions, is related to the effective tensor given by the rigorous methods of st
homogenization.

First mathematical results on stochastic homogenization of linear second order divergence form
operators were obtained in [14] and in [20]. Later on other stochastic models have been studied and new
have been developed in the works [3,6,7,13,15,18,21] and many others.

In these works it was proved that the homogenization result holds almost surely and that the effective
can be found in terms of a solution of a certain auxiliary problem. Since this auxiliary problem is stated
abstract probability space, this formal mathematical technique does not give any practical recipe for cons
or approximating the effective characteristics. On the contrary to the random case, in the case of period
there are many efficient numerical homogenization procedures.

One of the important aspect of homogenization theory, both in applications and from the theoretica
of view, is the rate of convergence of homogenization procedure. This question is getting extremely diffi
the random case. An important result was obtained in [24], where boundary value problems for a seco
divergence form operator were studied and, under proper mixing condition, polynomial bounds for the conv
rate of boundary value problems solutions were achieved. For a system of equations only logarithmic bou
been obtained, see [22].

The estimate of discrepancy in various cut-off approximations procedures is another important prob
seems, according to the authors present knowledge, that there is still no rigorous result on that subject. In th
paper we prove the convergence and estimate the rate of convergence for the typical “practical homog
procedures” applied to random second order uniformly elliptic operators with statistically homogeneous
coefficients.

The first section is devoted to a complete definition of the random media and to the precise descriptio
effective coefficients obtained by homogenization as it appears in [14,20], and in [13]. Then, in the same sec
recall the three widely used ways of approximating the effective tensors by averaging the operator on an ele
volume with different boundary conditions.

In Section 2 we study the accuracy of all these approximations and prove their almost sure convergenc
elementary volume tends to infinity, to the effective characteristics obtained by homogenization of the
stochastic operator. These results give also rigorous mathematical justification for most of the approx
procedures used in the engineering literature [23]; see Remark 2 below.

It should be noted that the convergence of approximations by periodization has been studied by prob
methods in the recent work [19]. However, our approach gives rise to a shorter proof and allows us, unde
conditions, to estimate the rate of convergence.
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Finally, in the last section, under the additional uniform mixing conditions on coefficients similar to
in [24], we estimate the rates of convergence of these approximations and show that the corresponding bo
depend on the ellipticity constant in the original problem, the space dimension, and the rate of decay of the
mixing coefficients. To this end we penalize the original operator by adding a small positive potential and in
“effective auxiliary characteristics” associated to this penalized operator. These effective auxiliary charac
are then approximated by applying to the penalized operator one of the mentioned cut-off procedures. Fi
show, that there is always a properly chosen potential depending on the sample size, such that all the disc
involved admit polynomial bounds.

1. Definition of random media and approximation models

We begin by giving the general assumptions and definitions.
Let (Ω,F ,P) be a standard probability space, and assume that ad-dimensional dynamical systemTz, z ∈ R

d ,
is given onΩ , i.e. a family of invertible measurable mapsTz :Ω → Ω , z ∈ R

d , such that

– Tx+y = TxTy , T0 = Id;
– Tx preserves the measureP that isP{(Tx)

−1(A)} = P{A} for anyA ∈F and anyx ∈ R
d ;

– Tx is a measurable mapping fromRd ×Ω toΩ , whereR
d ×Ω is equipped with the productσ -algebraB×F

andB is the Borelσ -algebra inRd .

In the presence of such a dynamical system, a wide class of statistically homogeneous random field
introduced as follows: for an arbitrary random variablef = f (ω) we definef (z,ω) ≡ f (Tzω). It is then easy to
check thatf (z,ω) is a statistically homogeneous random field. In this work we suppose that the coefficie
random operators are defined in terms of a dynamical systemTz.

Next we introduce the notion of ergodicity. By definition, a subsetA ∈ F is invariant if Tz(A) = A for any
z ∈ R

d . A dynamical systemTz is said to be ergodic if for any invariant setA ∈ F we have eitherP(A) = 1 or
P(A) = 0.

Although the homogenization result remains valid for nonergodic operators, the ergodicity assumption
us to simplify the calculations; in this connection, if the opposite is not indicated explicitly, we suppose
following sections that the dynamical systemTz is ergodic.

We recall now the main results on homogenization of random operators.

1.1. Random operators

For a given matrix-functionaij = aij (ω) such that

aij (ω)ηiηj � λ|η|2, η ∈ R
d, λ > 0,

aij (ω) � λ−1,
(1)

we define the following family of operators

Aε = ∂

∂xi
aij

(
Tx/ε(ω)

) ∂

∂xj
. (2)

It is then well known from the works [14], [20] (see also [13] and the quoted literature there) that the famAε

admits almost surely (a.s.), asε ↓ 0, a homogenized limit also called the “effective operator”:

Â = âij
∂ ∂

, (3)

∂xi ∂xj
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whereâ = {âij } is a constant matrix. By definition, this means that for any Lipschitz bounded domainQ ⊂ R
d and

anyf ∈ H−1(Q), a solution to the problem

Aεu
ε(x) = f (x) inQ, uε(x)|∂Q = 0 (4)

converges a.s., asε ↓ 0, to a solutionu0 of the limit problem

Âu0(x) = f (x) inQ, u0(x)|∂Q = 0. (5)

The matrix{âij } is known to be positive definite so that problem (5) has a unique solution.
In the ergodic case, this constant matrix{âij } is nonrandom. Without ergodicity assumption, the homogeniza

result still holds with the only difference that the effective coefficientsâij are no more deterministic, but measura
with respect to theσ -algebra of invariant sets

Finv = {
A ∈F |Tz(A) =A for all z ∈ R

d
}
.

1.2. Homogenization procedure

For the reader’s convenience we outline briefly the homogenization procedure in the random ergodic c
Uz be ad-parameter strongly continuous group of unitary operators inL2(Ω) = L2(Ω,F ,P), associated withTz:

(Uzf )(ω) = f (Tzω), f ∈ L2(Ω).

We suppose thatL2(Ω) is separable. Denote by∂j
ω the generator ofUz alongj th coordinate direction, i.e.

∂j
ω = lim

δ→0
δ−1(f (Tδej ω)− f (ω)

)
.

The domainsDj of ∂j
ω are dense inL2(Ω), and the intersectionD = ⋂d

j=1Dj is also dense inL2(Ω) (see [8]
Lemma VIII.1.8 and Ex. VIII.3.10, and [6]).

Forf ∈D andg= (g1, . . . , gd) ∈ (D)d we define

∇ωf = (
∂1
ωf, . . . , ∂

d
ωf

); divωg =
d∑

j=1

∂j
ωgj ,

and then introduce the following subspaces of(L2(Ω))d

L2
pot(Ω)= {

v ∈ (
L2(Ω)

)d | v = ∇ωf for somef ∈D
}
,

L2
sol(Ω)= {

v ∈ (D)d |divωv = 0
}
,

where the overline symbol means the closure in(L2(Ω))d .
The effective coefficients could be then obtained from solutions of the following family of auxiliary probl

givenη ∈ R
d , find vη ∈ L2

pot(Ω) such thata(ω)(vη + η) ∈ L2
sol(Ω). (6)

For any vectorη in R
d this problem is well-posed and has a unique solution (see, for instance, [13]); it is also

thatvη is a linear function ofη. The coefficientŝaij of effective operator (3) or, briefly, effective coefficients a
now computed as follows:

âη =
∫
Ω

a(ω)
(
vη(ω)+ η

)
P(dω). (7)

If the medium is not ergodic, then{âij } is a random matrix that can be found in terms of auxiliary problem (6
follows:

â(ω)η = E
{
a(ω)

(
η + vη(ω)

) |Finv
}
.



A. Bourgeat, A. Piatnitski / Ann. I. H. Poincaré – PR 40 (2004) 153–165 157

al

, it does
nique is
, or in a

sample
nience.
irichlet,
eneral

ole

effective
ts

en

ry
According to the Birkhoff theorem, both in ergodic and nonergodic cases,â can be approximated by spati
averages:

â = lim
ρ→∞ρ−d

∫

[0,ρ]d
a(Tzω)

(
η + vη

(
Tz(ω)

))
dz.

1.3. Approximation models

Since auxiliary problem (6), used for defining the effective coefficients, is stated in an abstract space
not allow any natural direct approximation procedures. Due to this reason, in applications the cut-off tech
used, and the solution of problem (6) is usually approximated by a solution of problems stated on a torus
bounded domain with Dirichlet, Neumann or appropriate mixed boundary conditions.

We consider here three typical approximation models used in practice, and for all of them we use a cubic
[0, ρ]d denoted bySρ . However, it should be noted that the cubic sample is chosen just for notations conve
In the case of approximations based on boundary value problems in cut-off domains, with appropriate D
Neumann or mixed boundary conditions, all our claims remain valid if we use homothetic dilatations of a g
regular bounded domain instead of a cubic sample.

1.3.1. Periodic approximation
The coefficientsaij (Tzω) are first restricted onto the cubeSρ and then extended from this cube to the wh

spaceR
d periodically with periodρ in each coordinate direction so that

aρ
per(z,ω) = a

(
Tz(modSρ)ω

)
.

For eachω ∈ Ω the family of operators

Aρ
ε = ∂

∂xi

(
a
ρ
per,ij

(
x

ε
,ω

))
∂

∂xj
(8)

has periodic coefficients and thus can be homogenized in a standard way (see, for instance, [4]). The
operatorÃρ has constant coefficientsãρ

ij , however, since the fieldaρ
per(z,ω) is not ergodic any more, the coefficien

could possibly not be deterministic.
Let us recall that the matrix{ãρ

ij } can be found in terms of a solution of the following cell problem:

for anyη ∈ R
d find χρ

η ∈ H 1
per(Sρ) such that

−div
(
aρ

per(z,ω)
(∇χρ

η + η
)) = 0 in R

d, (9)

whereH 1
per is the space of[0, ρ]d -periodicH 1

loc-functions. The effective matrix for this periodic operator is th
given by

ãρη = ρ−d

∫
Sρ

a(z,ω)
(∇χρ

η + η
)
dz, ∀η ∈ R

d . (10)

Our aim is to show that̃aρ approacheŝa, a.s., asρ → ∞.

1.3.2. Approximation by Dirichlet problem
In this approximation model we make a truncation on a sampleSρ and impose linear Dirichlet bounda

conditions on∂Sρ ; namely we consider the equations

−div
(
a(z,ω)

(∇wρ
η + η

)) = 0 in Sρ, (11)
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with the linear Dirichlet boundary conditions(
wρ

η (z)+ η · z)∣∣
∂Sρ

= η · z, ∀η ∈ R
d . (12)

The approximate effective coefficients are now defined∀η ∈ R
d , by

āρη = ρ−d

∫
Sρ

a(z,ω)
(∇wρ

η + η
)
dz. (13)

Remark 1. It is interesting to notice that in [18] the a.s. limit ofāρ , asρ → ∞, was taken as a definition o
homogenized matrix.

1.3.3. Approximation by Neumann problem
In this model we make a truncation on a sample and impose Neumann boundary conditions; namely we

the following problems inSρ

−div
(
a(z,ω)

(∇ψ
ρ
η + η

)) = 0 in Sρ,

∂

∂ν

(
ψ

ρ
η (z)+ η · z) = η · ν on∂Sρ, ∀η ∈ R

d,

(14)

whereν is the external conormal toSρ . Then, the effective matrix approximation is computed as follows

ǎρη = ρ−d

∫
Sρ

a(z,ω)
(∇ψρ

η + η
)
dz, ∀η ∈ R

d . (15)

2. Convergence results

In this section we are going to show that the three approximationsãρ , āρ andǎρ introduced in the precedin
section, converge a.s., asρ → ∞, to the effective coefficientŝa obtained by stochastic homogenization of
original random operator (2) as was described in Section 1.

We begin by studying the first model based on Periodic Approximation.

Theorem 1.Let ãρ be the effective matrix obtained in(9) and (10) by Periodic Approximation method, then t
following limit relation holds

lim
ρ→∞

{
ã
ρ
ij

} = {âij } a.s.

Proof. Consider in the unit cubeS1 = [0,1]d an auxiliary problem

−div
(
aρ

per(ρx,ω)∇uρ
) = f (x), x ∈ S1,

uρ |∂S1 = 0.
(16)

Since by the definition ofaρ
per, we haveaρ

per(ρx,ω) = a(ρx,ω) for x ∈ S1, this problem is a particular case
problem (4) withε = 1/ρ andS1 = Q. Thus the homogenization result (5) applies, and the effective ope
obtained by passage to the limit, asρ → ∞, in (16), coincides withÂ.

It is convenient to rescale the variables in the cell problem (9) so that the rescaled equation is stated in
cubeS1. Denoteχρ

0,η(x) = 1
ρ
χ

ρ
η (ρx). In the coordinatesx = z/ρ problem (9) reads

−div
(
aρ

per(ρx,ω)
(∇χ

ρ + η
)) = 0 in R

d, (17)
0,η
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whereχρ
0,η(x) is a [0,1]d -periodic function. Denoteχρ

0,j = χ
ρ
0,ej

, whereχρ
0,ej

is a solution of (17) related to th

j th coordinate vectorη = ej in R
d , and letχρ

0 be the vector-function(χρ
0,1, . . . , χ

ρ
0,d). The solutionχρ

0 is unique
up to an additive constant vector. In order to fix the choice ofχ

ρ
0, we assume that

∫
S1

χ
ρ
0(x) dx = 0. A priori

estimates for (17) are straightforward. Indeed, multiplying (17) byχ
ρ
0,η, integrating by parts and applying th

Poincaré inequality, we get∥∥χ
ρ
0

∥∥
(H1(S1))

d � C. (18)

Hence, there is a subsequence ofχ
ρ
0 that converges weakly in(H 1

per(S1))
d asρ → ∞. If we denote the limit

functionχ∞
0 = χ∞

0 (x), then, by Theorem 5.2 in [13],χ∞
0 satisfies the equation

−div
(
â
(∇χ∞

0 + I
)) = 0 in S1, (19)

this equation can be easily solved explicitly. Its only zero average periodic solution isχ∞
0 = 0. Therefore, the

whole sequenceχρ
0 converges a.s., asρ → ∞. Moreover, by the same result in [13], the fluxes also converge

that is

a(ρx,ω)
(∇χ

ρ
0 + I

)
⇀ â

(∇χ∞
0 + I

) = â in
(
L2(S1)

)d2
weakly. (20)

Integrating the last relation overS1 and taking into account formula (10) gives

ãρ =
∫
S1

a(ρx,ω)
(∇χ

ρ
0 + I

)
dx −−−→

ρ→∞

∫
S1

â dx = â.

This completes the proof.✷
We proceed with the second model.

Theorem 2.Let {āρ
ij } be the approximate effective coefficients, obtained by Dirichlet problem Approximatio

defined in(13). Then{āρ
ij } converges a.s., asρ → ∞, to the matrixâ.

Proof. The proof is similar to that of the preceding theorem. We introducew
ρ
0,η(x) = 1

ρ
w

ρ
η (ρx). In the rescaled

coordinatesx = z/ρ problem (11)–(12) takes the form

−div
(
a(ρx,ω)

(∇w
ρ
0,η + η

)) = 0 in S1,

w
ρ
0,η|∂S1 = 0.

(21)

Denotewρ
0,j = w

ρ
0,ej

andwρ
0 = (w

ρ
0,1, . . . ,w

ρ
0,d). The estimate‖wρ

0‖(H1(S1))
d � C is evident. Letw∞

0 be the limit

of a weakly convergent subsequence ofwρ
0. Then, by Theorem 5.2 in [13],w∞

0 satisfies the equation

−div
(
â
(∇w∞

0 + I
)) = 0 in S1,

w∞
0 |∂S1 = 0,

(22)

and, a.s.

a(ρx,ω)
(∇wρ

0 + I
)
⇀ â

(∇w∞
0 + I

)
in

(
L2(S1)

)d2
weakly.

Clearly,w∞
0 = 0, therefore,

āρ =
∫
S1

a(ρx,ω)
(∇wρ

0 + I
)
dx −−−→

ρ→∞

∫
S1

â
(∇w∞ + I

)
dx = â,

and the desired statement is proved.✷
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We study the third model by means of exactly the same procedure, and the following result holds.

Theorem 3.Let {ǎρ
ij } be the approximate effective coefficients, obtained by Neumann problem Approxima

defined in(15). Then{ǎρ
ij } converges a.s., asρ → ∞, to the matrixâ.

3. Estimates for the rate of convergence

We study the rate of convergence in the three models of Section 1 under the assumption that the rand
a(z,ω) satisfies uniform mixing condition. Our analysis relies essentially on the results obtained in [24].

For the reader’s convenience we recall the definition of uniform mixing condition.
Given a statistically homogeneous random fieldξ(z,ω) in R

d , we denoteFA theσ -algebraσ {ξ(z), z ∈ A}. The
function

α(s) = sup
A,B⊂R

d ,
dist(A,B)�s

sup
A∈FA,B∈FB

∣∣P(A∩ B)− P(A)P(B)
∣∣

is said to be the uniform mixing coefficient ofξ .
In what follows we denote byα(s) the uniform mixing coefficient of the random fielda(z,ω) = a(Tzω), and

suppose thatα(s) satisfies the inequality

α(s) � c(1+ s)−θ ∀s > 0, (23)

for someθ > 0.
Let vκ(z,ω) be a solution of the following “penalized” equation inR

d :

−div
(
a(z,ω)∇vκ

) + κvκ = diva(z,ω), (24)

with κ > 0. For each positiveκ this equation has a unique solutionvκ ∈ (H 1
loc(R

d))d in the space of function
of subexponential growth at infinity. Moreover, according to [14], this solution is statistically homogen
vκ(z,ω) = vκ(Tzω), and the following a priori estimates hold

∣∣vκ(z,ω)
∣∣ � Cκ−1, (25)

E
∥∥∇vκ

∥∥
(L2(S1))

d2 � C; (26)

here and in what followsC stands for any generic nonrandom constant. We introduce a “volume-ave
approximation of̂a onSρ = [0, ρ]d as follows

âκ,ρ = ρ−d

∫
Sρ

a(z,ω)
(∇vκ(z,ω)+ I

)
dz. (27)

As was shown in [24], Lemma 2.5,

E
∣∣âκ,ρ − â

∣∣2 � C

(
κβ + (

κρ2)−β1

(
log

(
1

κ

))β2
)
, (28)

whereβ , β1, β2 andC are strictly positive constants that only depend on the ellipticity constantλ, the exponentθ
in (23), and the dimensiond .

We proceed with the Approximation by Dirichlet problem, and consider an auxiliary Dirichlet problem

−div
(
a(z,ω)∇wκ,ρ

) + κwκ,ρ = diva(z,ω) in Sρ,

wκ,ρ | = 0.
(29)
∂Sρ
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We now use a solutionwκ,ρ to define

āκ,ρ = ρ−d

∫
Sρ

a(z,ω)
(∇wκ,ρ(z,ω)+ I

)
dz. (30)

Then the difference(vκ − wκ,ρ) satisfies the equation

−div
(
a(z,ω)∇(

vκ − wκ,ρ
)) + κ

(
vκ − wκ,ρ

) = 0 in Sρ,(
vκ − wκ,ρ

)∣∣
∂Sρ

= vκ |∂Sρ . (31)

We will estimate a solution of this equation separately in a smaller cubeS(ρ−ρδ) = (ρδ, ρ − ρδ)d with 0< δ < 1,
and in the boundary layerSρ \ S(ρ−ρδ).

In a slightly bigger cube(ρδ − 1, ρ − ρδ + 1)d , by (25) and the bounds for the Green function of (31) given
Proposition 1 below, we obtain∣∣vκ(z)− wκ,ρ(z)

∣∣ � cκ−1 exp
(−C1

√
κρδ

)
(32)

with nonrandom constantsc and C1 > 0. With the help of local elliptic estimates, based for instance
Corollary 8.7. in [10], this implies the inequality∥∥∇vκ − ∇wκ,ρ

∥∥(
L2(S

(ρ−ρδ)

))d2 � cρ(d/2)κ−1 exp
(−C1

√
κρδ

)
. (33)

To estimate the contribution of the boundary layerSρ \ S(ρ−ρδ), we change the variablesx = z/ρ so thatSρ is
transformed inS1, and introduce the functions

vκ,ρ
0 (x,ω) = 1

ρ
vκ(ρx,ω); wκ,ρ

0 (x,ω) = 1

ρ
wκ,ρ(ρx,ω). (34)

These functions satisfy inS1 the equations

−div(a(ρx,ω)∇vκ,ρ
0 + ρ2κvκ,ρ

0 = diva(ρx,ω),

−div(a(ρx,ω)∇wκ,ρ
0 + ρ2κwκ,ρ

0 = diva(ρx,ω),
(35)

and formula (27) and (30) read respectively

âκ,ρ =
∫
S1

a(ρx,ω)
(∇vκ,ρ

0 (x,ω)+ I
)
dx, (36)

āκ,ρ =
∫
S1

a(ρx,ω)
(∇wκ,ρ

0 (x,ω)+ I
)
dx. (37)

Standard energy estimates in (35) yield∥∥∇wκ,ρ
0

∥∥
(L2(S1))

d2 � C.

Using the notationΠ(ρ, δ) for the boundary layerS1 \ (ρδ−1,1 − ρδ−1)d , and considering (25), (33) and the la
estimate, we get

E
∣∣āκ,ρ − âκ,ρ

∣∣2 = E
(∫

S1

a(ρx,ω)
(∇wκ,ρ

0 − ∇vκ,ρ
0

)
dx

)2

� 3E
( ∫

ρ−1S δ

a(ρx,ω)
(∇wκ,ρ

0 − ∇vκ,ρ
0

)
dx

)2
(ρ−ρ )
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nd

,

+ 3E
( ∫
Π(ρ,δ)

a(ρx,ω)∇wκ,ρ
0 dx

)2

+ 3E
( ∫
Π(ρ,δ)

a(ρx,ω)∇vκ,ρ
0 dx

)2

� Cκ−1 exp
(−C1

√
κρδ

) + CE
( ∫
Π(ρ,δ)

∣∣∇wκ,ρ
0

∣∣2dx
∫

Π(ρ,δ)

1dx

)

+ CE
( ∫
Π(ρ,δ)

∣∣∇vκ,ρ
0

∣∣2dx
∫

Π(ρ,δ)

1dx

)

� Cκ−1 exp
(−C1

√
κρδ

) + Cρδ−1 + Cρδ−1.

We summarize this in the following

Lemma 1.Let âκ,ρ andāκ,ρ be the matrices defined in(27)and(30), respectively. Then, the difference(āκ,ρ − âκ,ρ)

admits the bound

E
∣∣āκ,ρ − âκ,ρ

∣∣2 � Cκ−1 exp
(−C1

√
κρδ

) + Cρδ−1.

Our next step is to estimate the difference betweenāκ,ρ andāρ defined in (30) and (13) respectively. To this e
we rewrite Eq. (21) as follows

−div
(
a(ρx,ω)∇wρ

0

) = diva(ρx,ω) in S1,

wρ
0 |∂S1 = 0.

(38)

Equivalently, this equation can be written in the form

−div
(
a(ρx,ω)∇(

wρ
0 + x

)) = 0.

This equation is a particular case of problem (4); thus it can be homogenized in a standard way, andwρ
0 converges

asρ → ∞, to a solution of the effective problem

−div
(
â∇(

w∞
0 + x

)) = 0, w∞
0 |∂S1 = 0.

Clearly,w∞
0 ≡ 0, and according to [24], Theorem 3.1,

E
∥∥wρ

0

∥∥2
(L2(S1))

d = E
∥∥wρ

0 − w∞
0

∥∥2
(L2(S1))

d � Cρ−β . (39)

Subtracting (38) from the second equation in (35) gives

−div
(
a(ρx,ω)∇(

wκ,ρ
0 − wρ

0

)) + ρ2κ
(
wκ,ρ

0 − wρ
0

) = −ρ2κwρ
0 . (40)

In view of (39), an energy estimate yields

E
∥∥∇wκ,ρ

0 − ∇wρ
0

∥∥2
(L2(S1))

d2 � Cρ2−βκ.

Therefore, with the definitions (37) and (13) we have

E
∣∣āκ,ρ − āρ

∣∣2 � Cρ2−βκ. (41)

Now, combining (28), (41), and the estimate of Lemma 1, we arrive at the inequality

E
∣∣â − āρ

∣∣2 � C

([
κβ + (

κρ2)−β1

(
log

1

κ

)β2
]

+ [
κ−1 exp

(−C1
√
κρδ

) + ρδ−1] + ρ2−βκ

)
.

It remains to selectκ andδ. If we setκ = ργ−2 with sufficiently smallγ > 0, then

E
∣∣â − āρ

∣∣2 � C
([
ρ−β(2−γ ) + ρ−γβ1 logρ

] + [
ρ2−γ exp

(−C1ρ
γ
2 −1+δ

) + ρδ−1] + ργ−β
)
.
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32). Let

umann
eriodic

”

Lettingγ = β
2 andδ = 1− β

8 , we obtain

E
∣∣â − āρ

∣∣2 � C
([
ρ−β(2− β

2 ) + ρ− β
2β1 logρ

] + [
ρ2− β

2 exp
(−C1ρ

β
8
) + ρ− β

8
] + ρ− β

8
)
.

Finally, the following statement holds

Theorem 4.Under the mixing condition(23), the difference between the homogenized matrixâ given by(7) and
its approximation̄aρ given by(13), satisfies the estimate

E
∣∣â − āρ

∣∣2 � Cρ−β3, β3 > 0,

with β3 = β3(θ, λ, d).

To make the proof of Theorem 4 complete, we proceed now to the Green function estimate used in (
A = ∂

∂xi
aij (x)

∂
∂xj

+ c(x) be a uniformly elliptic operator inRn such that

Λ−1I � a(x)� ΛI, c(x) � −µ, µ> 0.

In a bounded domainQ ⊂ R
n consider a Dirichlet problem

Au= 0, u|∂Q = φ(x). (42)

The proof of the following result can be found in [16], p. 61.

Proposition 1. Suppose that0 � φ(x) � 1 for all x ∈ ∂Q. Then the solutionu(x) of problem(42) satisfies the
estimate

u(x)� c0 exp
(−c1

√
µdist(x, ∂Q)

)
, (43)

with constantsc0 > 0 andc1 > 0 only depending onΛ andn.

The other two models introduced in Section 1, namely Periodic Approximation and Approximation by Ne
problem, can be studied in a similar way. We proceed with a brief description of the results for the p
approximation. In this case the following statement holds

Theorem 5.Under the mixing condition(23) the discrepancy(â − ãρ) with â given by(7) and its approximation
ãρ given by(10), satisfies the estimate

E
∣∣â − ãρ

∣∣2 � Cρ−β3, β3 > 0,

with β3 = β3(θ, λ, d).

We give only a sketch of the proof. We introduce a functionχκ,ρ being aSρ -periodic solution of the “penalized
equation

−div
(
a(z,ω)∇χκ,ρ

) + κχκ,ρ = diva(z,ω), (44)

and define an intermediate approximation of effective coefficients by

ãκ,ρ = ρ−d

∫
Sρ

a(z,ω)
(∇χκ,ρ(z,ω)+ I

)
dz. (45)

The estimates for the fundamental solution of (44) imply the bound∣∣χκ,ρ(z,ω)
∣∣ � Cκ−1 (46)
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6 (1994)
with a nonrandom constantC. Denoteχκ,ρ
0 (x,ω) = 1

ρ
χκ,ρ(ρx,ω). In the same way as above one can estimate

difference of matriceŝaκ,ρ andãκ,ρ defined in (27) and (45) respectively:

Lemma 2.Let âκ,ρ andãκ,ρ be the matrices defined in(27)and(45), respectively. Then, the difference(âκ,ρ − ãκ,ρ)

admits the bound

E
∣∣âκ,ρ − ãκ,ρ

∣∣2 � C
(
κ−1 exp

(−C1
√
κρδ

) + ρδ−1).
Then we compareχκ,ρ

0 and aS1-periodic solution of the equation

−div
(
a(ρx,ω)

(∇χ
ρ
0 + I

)) = 0,

which is just a vector form of Eq. (17). As was shown in the proof of Theorem 1,χ
ρ
0 converges toχ∞

0 ≡ 0 in
(L2(S1))

d , asρ → ∞. Moreover, the analysis of proof of Theorem 3.1 in [24] shows that the statement o
theorem remains valid for a problem with periodic boundary condition instead of Dirichlet condition. There

E
∥∥χ

ρ
0

∥∥2
(L2(S1))

d � Cρ−β

with β > 0. The rest of the proof or Theorem 5 is just the same as that of Theorem 4, and we skip the deta
Similar result also holds for approximation by means of Neumann problem.

Theorem 6.Under mixing condition(23) the discrepancy between the homogenized matrixâ given by(7) and its
Neumann problem approximationǎρ given by(15), satisfies the estimate

E
∣∣â − ǎρ

∣∣2 � Cρ−β3, β3 > 0,

with β3 = β3(θ, λ, d).

Remark 2. In order to construct the Dirichlet or Neumann problem Approximations one can deal with homo
dilatations of a regular bounded domain instead of the cubic samples used herein. In addition, any mixed b
condition could have been used for the truncated problem, instead of pure Dirichlet or Neumann bo
conditions, as soon as these boundary conditions are satisfied by the functionη · z. In all those cases the techniqu
of this work also apply and similar convergence results and error bounds would have been obtained.
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