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Abstract

We study exponentially asymptotic behaviors for the trajectories of additive functionals of Harris Markov chains. In th
result, we establish a moderate deviation principle for a pair of additive functionals of different growth rates. Moreo
give explicit formulas for the rate functions which exhibit a non-quadratic behavior. In particular, we achieve the fun
moderate deviations in two different scales. As an application, we obtain a functional law of LIL, which leads to a va
strong limit laws in the spirit of Strassen [Z. Wahr. Geb. 3 (1964) 211–226].
 2003 Elsevier SAS. All rights reserved.

Résumé

Nous étudions dans cet article le comportement asymptotique des trajectoires de fonctionnelles additives de c
Markov Harris récurrentes. Le principal résultat énonce le principe de déviations modérées d’un couple de fonct
additives ayant différentes vitesses de croissance, et donc à deux échelles différentes. De plus, nous donnons
explicites des fonctions de taux, possédant typiquement un caractère non quadratique. En application, nous obt
loi fonctionnelle du logarithme itéré, qui conduisent, en suivant les idées de Strassen [Z. Wahr. Geb. 3 (1964) 2
à différentes lois limites fortes.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction and results on moderate deviations

Let {Xn}n�0 be a Harris recurrent Markov chain with state space(E,E), transition probabilityP(x,A) and
invariant measureπ . Throughout, we always assume that theσ -algebraE is countably generated. By Harr
recurrence we mean that{Xn}n�0 is irreducible and for anyA ∈ E+ and any initial distributionµ,

Pµ{Xn ∈A infinitely often} = 1,

where

E+ = {
A ∈ E; π(A) > 0

}
and the standard notationPµ is for the Markovian probability with initial distributionµ (Naturally,Eµ is for the
correspondent expectation;Px andEx for Pµ andEµ, respectively, asµ= δx is a Dirac measure.). We introduc
Pk(x,A) for thek-step transition of{Xn}n�0. By Harris recurrence, for anyA ∈ E+

τA ≡ inf{n� 1; Xn ∈A}<∞ a.s. (1.1)

Our goal is to establish the moderate deviations for additive functionals of{Xn}n�0 mainly in the case of nul
recurrence (although some of our results also include the case of positive recurrence). The moderate devia
from the needs for tail control in the study of strong limit theorems such as the law of the iterated logarith
for example, Chung and Hunt [11], Erdös and Taylor [19], Kesten [24], Jain and Pruitt [22], Révész [31], M
and Rosen [27], for the results in the context of recurrent Levy processes and random walks, and Touati
[35], Csáki and Salminen [13], de Acosta [2], de Acosta and Chen [3], Gantert and Zeitouni [20], Chen
Guillin [21], Djellout and Guillin [17] for those in the case of recurrent Markov processes (use also Duflo
[5]). Among them, the probability estimate carried out for the law of the iterated logarithm given in Chen
suggests the existence of the non-trivial limits for the sequences

1

bn
logP

{
n∑
k=1

f (Xk)�
√
a

(
n

bn

)
bn

}
, n= 1,2, . . .

and

1

bn
logP

{
n∑
k=1

g(Xk)� a

(
n

bn

)
bn

}
, n= 1,2, . . . ,

where{bn} can be any positive sequence satisfying

bn → ∞ and bn/n→ 0 (n→ ∞), (1.2)

a(·) is the partial Green function given as below,f is centered with respect to the invariant measureπ , g � 0 and
f,g satisfy some regularity conditions. An important special case is the case of local times in which{Xn}n�1 is 1
or 2 dimensional discrete random walk and, the functionsg andf are, respectively, the indicator of a single po
and the difference between two such indicators (see (1.22) and (1.23) below for an example). On the oth
one will see in the later of this section that as the Markov chain is positive recurrent or is close to be po
recurrent, the tail behaviors of the second sequence can not determine full large (moderate) deviation.

We study, at the level of moderate deviations, the asymptotic sample path properties of the additive fun
generated byf and byg, together with asymptotic correlation between these two different types of ad
functionals. To this end, we first introduce some concepts from the book by Revuz [33].

A bounded, non-negative Borel-measurable functiong on (E,E) is called a special function if

sup
x∈E

Ex

τA∑
g(Xk) <+∞ ∀A ∈ E+. (1.3)
k=1
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Given a Harris recurrent Markov chain, the class of special functions is dense in the function spaces
Lp(E,E,π) (p � 1). When the Markov chain takes discrete values, any function with finite support is sp
In particular, local times are generated by special functions. For the Markov chain satisfying certain co
in Feller sense, a typical special function is a function with compact support. Also, ifP is quasi-compact, ever
bounded positive function is special.

A special function isπ -integrable. Indeed, we may choose aA ∈ E+ such thatπ(A) <+∞. Therefore,

π(g)≡
∫
g(x)π(dx)= (π(A))−1

∫
A

π(dx)Ex

τA∑
k=1

g(Xk)� sup
x∈A

Ex

τA∑
k=1

g(Xk) <+∞.

A Borel-measurable functionf on (E,E) is called a charge if|f | is special andπ(f )= 0. By Theorem 1.5 in
Chen [9], for any chargef ,∫

f 2(x)π(dx) <∞ and
∞∑
k=1

∫
f (x)P kf (x)π(dx) converges.

Consequently, the energyσ 2
f given by

σ 2
f =

∫
f 2(x)π(dx)+ 2

∞∑
k=1

∫
f (x)P kf (x)π(dx) (1.4)

is well defined for a chargef . In general,σ 2
f � 0. To make our case interesting, throughout we assume thatσ 2

f > 0.
In Orey [30], a setD ∈ E+ is calledD-set if its indicatorID is special. For a fixedD-setD, write the partial

Green function

a(t)= 1

π(D)

[t ]∑
k=1

νP k(D) (t � 1), (1.5)

whereν is a fixed probability measure on(E,E). By recurrencea(t) ↑ ∞ as t → ∞. According to Theorem 2
Chapter 2 in Orey [30], the asymptotic magnitude (ast → ∞) of a(t) is independent of the choice ofD andν.
Recall (Chen [8]) that a Harris Markov chain{Xn}n�0 is calledp-regular, ifa(t) is regularly varying at∞ with
indexp:

lim
t→∞

a(λt)

a(t)
= λp ∀λ > 0.

Clearly, 0� p � 1 if above equality holds. Note that every positive recurrent Markov chain is 1-regular
concept of regular Markov chain is closely related to Hypothesis (C) introduced in Touati [34]. In the “at
case, thep-regularity with 0< p < 1 is equivalent to the asymptotic stability condition on the hitting time o
atom, which was introduced by Csáki and Csörgö [12].

By convention,C[0,1] is the space of continuous functions on[0,1] andD[0,1] is the space of the function
on [0,1] which are right continuous and have left limits on[0,1]. Under the uniform convergence topolog
C[0,1] andD[0,1] become Banach spaces. We defineC{[0,1],R2} = C[0,1] × C[0,1] andD{[0,1],R2} =
D[0,1] ×D[0,1].

Throughout, we assumef is a charge andg is a special function. DefineD[0,1]-valued random sequenc
{ξn(·)} and{ηn(·)} as

ξn(t)=
[nt ]∑
k=1

f (Xk), 0 � t � 1, n= 1,2, . . . ,

ηn(t)=
[nt ]∑

g(Xk), 0 � t � 1, n= 1,2, . . . .

k=1
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We shall study the moderate deviations associated with theD{[0,1],R2}-valued random sequence{Ξn} defined
by

Ξn(t)=
(

1√
a(nb−1

n )bn

ξn(t),
1

a(nb−1
n )bn

ηn(t)

)
, 0 � t � 1,

wheren= 1,2, . . . and{bn} is a positive sequence satisfying (1.2).
Define the functionΛ∗

p(x, y) on (−∞,∞)× [0,∞):

Λ∗
p(x, y)=


π(g)x2

2σ 2
f y

+ (1− p)

(
ppy

π(g)&(p+ 1)

)(1−p)−1

y > 0,

0 x = y = 0,
+∞ else.

One can verify thatΛ∗
p is lower semi-continuous and convex. Let

Θp =
{
(φ, γ ) ∈ C{[0,1],R2}; φ(0)= γ (0)= 0, φ(t), γ (t) are absolutely continuous,

γ (t) is non-decreasing and

1∫
0

Λ∗
p

(
φ̇(t), γ̇ (t)

)
dt <∞

}
.

Set

Ip(φ, γ )=


1∫

0

Λ∗
p

(
φ̇(t), γ̇ (t)

)
dt if (φ, γ ) ∈Θp,

+∞ otherwise.

(1.6)

Theorem 1.1. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular with0<p < 1 and thatf is
a charge,g is special. Then for any initial distributionµ, {Ξn} satisfies the following moderate deviation princip:
for each closed setC ∈D{[0,1],R2}

lim sup
n→∞

1

bn
logPµ{Ξn ∈ C} � − inf

(φ,γ )∈C
Ip(φ, γ ) (1.7)

and, for each open setO ∈D{[0,1],R2}

lim inf
n→∞

1

bn
logPµ{Ξn ∈O} � − inf

(φ,γ )∈O
Ip(φ, γ ) (1.8)

where the partial Green functiona(·) is given in(1.5), and{bn} can be any positive sequence satisfying(1.2).

The moderate deviations for i.i.d. sequences has a long history (see, e.g., Dembo and Shao [14] for th
self-renormalization and Jiang, Rao, Wang and Li [23] for deterministic normalization). Theorem 1.1 exh
non-standard behavior in the moderate deviations as the rate functions obtained here are not quadratic.
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By the canonical projection(φ, γ ) �→ γ and by the contraction principle (see, e.g., Theorem 4.2.1 in Demb
Zeitouni [15]), from Theorem 1.1 we obtain a moderate deviation principle for the additive functional gen
by the special functiong, with the rate function

Jp(γ )≡ inf
φ∈D[0,1] Ip(φ, γ )=


(1− p)

1∫
0

(
ppγ̇ (t)

π(g)&(p + 1)

)(1−p)−1

dt if γ ∈ Γp,

+∞ otherwise,

(1.9)

where

Γp = {
γ ∈D[0,1]; γ (0)= 0, γ (t) is non-decreasing, absolutely continuous andγ̇ ∈L(1−p)−1[0,1]}.

More precisely, we have

Theorem 1.2. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular with0< p < 1 and thatg is
special. Then for any initial distributionµ, the following moderate deviation principle holds: for each closed se
F ∈D[0,1]

lim sup
n→∞

1

bn
logPµ

{
ηn(·)

/
a
(
nb−1
n

)
bn ∈ F}

� − inf
γ∈F Jp(γ ) (1.10)

and, for each open setG ∈D[0,1]

lim inf
n→∞

1

bn
logPµ

{
ηn(·)

/
a
(
nb−1
n

)
bn ∈G}

� − inf
γ∈GJp(γ ). (1.11)

The casep = 1 can not be included in Theorem 1.1 and Theorem 1.2, due to the singularity of the a
functional generated byg in this situation. As a matter of fact, even at level of the simple moderate deviation
functions can be different from case to case. Although it is pointed out in Chen [10] that

lim
n→∞

1

bn
logP

{
n∑
k=1

g(Xk)� xa

(
n

bn

)
bn

}
=

{
0 if x < π(g),
−∞ if x > π(g),

(1.12)

asp = 1, the full form of the moderate deviation forηn(1) is far more complicated. Indeed, if we take{Xn}n�0 as an
i.i.d. sequence (in which caseπ can be chosen as the common distribution of this sequence, all bounded mea
functions on(E,E) are special, anda(t)∼ t ast → ∞) then by the well known Cramér’s large deviation princip
(see, e.g., Theorem 2.2.3 in Dembo and Zeitouni [15]) for anyε > 0, there is aδ > 0 such that

P

{∣∣∣∣∣1

n

n∑
k=1

g(Xk)− π(g)

∣∣∣∣∣ � ε

}
� e−δn

for largen. Consequently, for every closed setF , and every open setG in the line,

lim sup
n→∞

1

bn
logP

{
ηn(1)

/
a
(
nb−1
n

)
bn ∈ F}

� − inf
y∈F l(y), (1.13)

lim inf
n→∞

1

bn
logP

{
ηn(1)

/
a
(
nb−1
n

)
bn ∈G}

� − inf
y∈Gl(y) (1.14)

as soon as{bn} satisfies (1.2), where the rate functionl(y) is given by

l(y)=
{0 if y = π(g),
+∞ otherwise.
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In Example 1.6 (the caseq = 2) of Chen [9], on the other hand, an 1-regular but null Harris recurrent inte
valued Markov chain{Xn}n�0 is constructed, such that

a(n)≡
n∑
k=1

Pk(0,0)∼ π2

6

n

logn
(n→ ∞).

Define

τ0(0)= 0 and τ0(k + 1)= inf
{
n > τ0(k); Xn = 0

}
(k � 1).

Let g = I0. Then for anyε > 0,

P0

{
ηn(1)� ε

n

logn

}
= P0

{
τ

([
εn

logn

])
� n

}
� P0

( [εn/ logn]⋃
k=1

{
τ0(k)− τ0(k − 1)� n

})
= 1− (

1−P0{τ0 � n})[εn/ logn] ∼ εn

logn
P0{τ0 � n}.

Notice thatE0τ0 = ∞ and thatP {τ0 � n} is regularly varying asn→ ∞. Trivially,

lim
n→∞

1

logn
logP0

{
ηn(1)� ε

n

logn

}
= 0.

In view of (1.12), one has a moderate deviation principle described in (1.13) and (1.14) withbn = logn but with a
different rate function given by

l(y)=
{0 if y � π(g),

+∞ otherwise.

By considering the map(φ, γ ) �→ φ one can get a moderate deviation forξn(·) governed by the rate function

κp(φ)≡ inf
γ∈D[0,1]Ip(φ, γ )=


(2−p)

1∫
0

(
ppφ̇2(t)

2&(p+ 1)σ 2
f

) 1
2−p

dt φ ∈Ψp,

+∞ otherwise,

(1.15)

where

Ψp = {
φ ∈C[0,1]; φ(0)= 0, φ(t) is absolutely continuous anḋφ ∈ L2(2−p)−1[0,1]}

and the equality in (1.15) can be seen from the simple fact that

inf
y>0

Λ∗
p(x, y)= (2− p)

(
ppx2

2&(p+ 1)σ 2
f

) 1
2−p
, x ∈ R. (1.16)

We can do slightly better. Indeed, the casep = 1 can be included.

Theorem 1.3. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular with0<p � 1 and thatf is
a charge. Then for any initial distributionµ, the following moderate deviation principle holds: for each closed se
F ∈D[0,1]

lim sup
n→∞

1

bn
logPµ

{
ξn(·)

/√
a(nb−1

n ) bn ∈ F}
� − inf

φ∈F κp(φ) (1.17)

and, for each open setG ∈D[0,1]
lim inf
n→∞

1
logPµ

{
ξn(·)

/√
a(nb−1

n ) bn ∈G}
� − inf κp(φ). (1.18)
bn φ∈G
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A special case ofp = 1 is when{Xn}n�0 is positive recurrent, which means that the returning time to
A ∈ E+ has finite expectation, or equivalently, the Markov chain has a finite invariant measureπ . In this case we
always makeπ a probability measure by an appropriate normalization. Notice that by the law of large num
a(t)∼ t ast → ∞ and from (1.15)

κ1(φ)=


1

2σ 2
f

1∫
0

φ̇2(t) dt φ ∈Ψ1,

+∞ otherwise.

We have the following classic type of result on moderate deviations.

Corollary 1.4. Assume that the Markov chain{Xn}n�0 is positive recurrent and thatf is a charge. Then for an
initial distributionµ, the following moderate deviation principle holds: for each closed setF ∈D[0,1]

lim sup
n→∞

1

bn
logPµ

{
ξn(·)

/√
nbn ∈ F}

� − inf
φ∈F κ1(φ) (1.19)

and, for each open setG ∈D[0,1]
lim inf
n→∞

1

bn
logPµ

{
ξn(·)

/√
nbn ∈G}

� − inf
φ∈Gκ1(φ). (1.20)

Remark 1.5. First of all, Theorems 1.1, 1.2 and 1.3 can easily be extended to the moderate deviat
C{[0,1],R2} orC[0,1] with ξn andηn being replaced by their continuous versions:

ξcn(t)=
[nt ]∑
k=1

f (Xk)+
(
nt − [nt])f (X[nt ]+1), 0 � t � 1, n= 1,2, . . . ,

ηcn(t)=
[nt ]∑
k=1

g(Xk)+
(
nt − [nt])g(X[nt ]+1), 0� t � 1, n= 1,2, . . . ,

and with the same rate functions. It will be useful for applications in Section 5.

Remark 1.6. From the proof given in Section 3, we can see that the upper bounds given in Theorem 1
uniformly over initial points. So (1.7) can be strengthened into

lim sup
n→∞

1

bn
log sup

x∈E
Px{Ξn ∈ C} � − inf

(φ,γ )∈C
Ip(φ, γ ) (1.21)

for every closed setC ∈D{[0,1],R2}. On the other hand, we do not expect such uniformity for the lower bou
under the conditions given in Theorem 1.1.

Remark 1.7. Note that the casep = 0 is not included in the above theorems. The main difficulty is that the ran
sequence{Ξn} and its components fail to be exponentially tight in their value space asp = 0. As a matter of fact
one can easily see that the level sets of the functionsI0, J0 andκ0 are not compact. However, the simple moder
deviations forΞn(1) in the casep = 0 with rate functionsΛ∗

0 are valid, by the same proof.

Application. We give here an application of our result to the additive functionals of recurrent random wa
the integer latticeZ. Suppose thatSn = ∑n

1 Yk whereYk are iid symmetric integer-valued random variables w
characteristic function

ϕ(λ)=EeiλY1.
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We assume that no proper subgroup ofZ supports{Sn}n�1 and that{Sn}n�1 is in the domain of attraction of
non-degenerate stable distributionGβ with index 1< β � 2, i.e.,

Sn/cn
d→Gβ

where{cn} is a non-decreasing positive sequence regular at∞ with indexβ−1. Then{Sn}n�1 is (Harris) recurren
with the counting measureπ(·) on Z as its invariant measure. By (2.j) in Le Gall and Rosen [25],

a(n)≡
n∑
k=1

P {Sk = 0} ∼ p(0)
n∑
k=1

1

ck
(n→ ∞)

wherep(x) is the density ofGβ . In particular,{Sn}n�1 is p-regular withp = 1− β−1.
The local timeLxn (x ∈ Z, n= 1,2, . . .) is defined as

Lxn = #{1� k � n; Sk = x}.
Let x ∈ Z be fixed. Withf (y)= 10(y)− 1x(y) andg(y)= 10(y) we have

ξn(t)= L0[nt ] −Lx[nt ] and ηn(t)= L0[nt ] 0 � t � 1, n= 1,2, . . . .

The conditions in Theorem 1 are satisfied in this particular case. Notice that

σ 2
f =

∑
y∈Z

π(y)f 2(y)+ 2
∞∑
k=1

∑
y∈Z

π(y)f (y)P kf (y)

= 2+ 4
∞∑
k=1

(
P {Sk = 0} − P {Sk = x})

= 2+ 4
∞∑
k=1

1

π

π∫
0

(1− cosλx)ϕk(λ) dλ

= 4

π

π∫
0

1+ ϕ(λ)

1− ϕ(λ)
(1− cosλx) dλ

and that

Λ∗
p(x, y)=


x2

2σ 2
f y

+ 1

β

(
(1− β−1)1−β−1

y

&(2− β−1)

)β
y > 0,

0 x = y = 0,
+∞ else,

Jp(γ )=


1

β

1∫
0

(
(1− β−1)1−β−1

γ̇ (t)

&(2− β−1)

)β
dt if γ ∈ Γp,

+∞ otherwise,

κp(φ)=


(

1+ 1

β

) 1∫
0

(
(1− β−1)1−β−1

φ̇2(t)

2&(2− β−1)σ 2
f

) β
1+β

dt φ ∈ Ψp,
+∞ otherwise.
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With the rate functions determined as the above, Theorems 1.1, 1.2 and 1.3 hold. In particular, taking the
distribution in Theorems 1.2 and 1.3 and by contraction principle we have

lim
n→∞

1

bn
logP

{
L0
n � λa(nb−1

n )bn
}= − 1

β

(
(1− β−1)1−β−1

λ

&(2 − β−1)

)β
, (1.22)

lim
n→∞

1

bn
logP

{
L0
n −Lxn � λ

√
a(nb−1

n ) bn
} = −

(
1+ 1

β

)(
(1− β−1)1−β−1

λ2

2&(2− β−1)σ 2
f

) β
1+β

(1.23)

for anyλ > 0. Asbn = log logn, such results are essentially needed for the laws of the iterated logarithm gi
Theorem 1.2 in Marcus and Rosen [26].

Unfortunately, we are not able to establish the functional moderate deviations for 2-dimensional
integrable random walks or 1-dimensional random walks within the Cauchy domain as they turn out to be 0-
the case which is not covered here.

The paper will be organized as follows. In the next Section, we give some useful lemmas for the p
Theorem 1.1 presented in Section 3. We then establish the functional law of the iterated logarithm in Se
and derive results for interesting functionals in the spirit of Strassen [32] in Section 5.

Our approach for moderate deviations consists of three steps: First, we establish our results under the as
on existence of an atom. Second, we extend the established conclusion to strongly aperiodic Markov ch
the splitting technology developed by Nummelin [28,29] and by Athreya and Ney [4]. Finally, through a res
approximation argument we push from the case of strongly aperiodic Markov chain further to the full gen
allowed in our theorems.

What makes our situation different from the limit laws established for the marginalsΞn(1), ξn(1) andηn(1)
is the complicated structure of our model. In fact, the trajectoriesΞn, ξn andηn are much more sensitive to tim
shifting than their marginalsΞn(1), ξn(1) andηn(1), which makes Markov property harder to apply. To achi
our goals, we develop some estimates (Lemma 2.1 and (2) of Lemma 2.2) for the upper bounds with unifo
the initial distributions. On the other hand, the evidence suggests that such uniformity does not hold for th
bounds unless the Markov chain is uniformly recurrent. To establish the lower bounds, we develop a treat
controlling the length of hitting time, which turns out to be helpful also in the proof of the functional LIL give
Theorem 4.1.

2. Some lemmas

Probably the most basic and important operation in Markovian systems is time shifting, which is c
associated with the Markov property. From now on, we useθ to denote the shifting operator of the Markov cha
{Xn}n�0.

Lemma 2.1. Letg � 0 be special. Then for eachA ∈ E+, there is anε > 0 such that

sup
x∈E

Ex exp

{
ε

τA∑
j=1

g(Xj )

}
<+∞, (2.1)

where the hitting timeτA is defined as in(1.1).

Proof. The proof modifies some existing idea in literature (see, cf., Nummelin [29]). Without loss of gene
we assume that

supg(x)� 1.

x
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Define

Tm = inf

{
n;

n∑
j=1

g(Xj )�m

}
m= 1,2, . . . .

By (1.3), there is am> 1 such that

sup
x∈E

Px{τA � Tm−1} = sup
x∈E

Px

{
τA∑
j=1

g(Xj )�m− 1

}
� 1

2
.

Note that forN � 1,

TNm + τA ◦ θTNm = inf{k > TNm; Xk ∈A} = τA

on the event{τA � TNm + 1}. Thus,

Px{τA � T(N+1)m} = Px{τA � T(N+1)m, τA � TNm + 1}
� Px

{
τA ◦ θTNm � T(N+1)m − TNm, τA � TNm

}
.

On the other hand, as supg � 1,

T(N+1)m∑
j=TNm+1

g(Xj )� (N + 1)m−
TNm∑
j=1

g(Xj )� (N + 1)m−Nm− 1 =m− 1

which implies that

TNm + Tm−1 ◦ θTNm = inf

{
k � TNm + 1;

k∑
j=TNm+1

g(Xj )�m− 1

}
� T(N+1)m.

Hence, for eachx ∈E,

Px{τA � T(N+1)m} � Px
{
τA ◦ θTNm � Tm−1 ◦ θTNm, τA � TNm

}
� Px{τA � TNm} · sup

y∈E
Py{τA � Tm−1}

� 1

2
Px{τA � TNm}.

Hence we have

sup
x∈E

Px{τA � T(N+1)m} � 1

2N+1 , N = 1,2, . . . .

Thus,

sup
x∈E

Px

{
τA∑
j=1

g(Xj )� (N + 1)m

}
� 1

2N+1 , N = 1,2, . . .

which leads to (2.1). ✷
Recall (see, cf., Nummelin [29]) that a setα ∈ E+ is called an atom of{Xn}n�0 (or its transitionP ) if

P(x, ·)= P(y, ·) ∀x, y ∈ α.
In this paper, results are proved first under the assumption on existence of an atomα. So we adopt the following
notations through the rest of the paper.
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n
First, notice thatPx = Py for all x, y ∈ α on theσ -algebra generated by{Xn}n�1. So we denote the commo
value byPα . Notations likeP(α, ·) andEα are also used in an obvious way. Write

τα(0)= 0 and τα(k + 1)= inf{n > τα(k): Xn ∈ α} (k � 0).

Setτα = τα(1). Because of Harris recurrence,τα(k) <∞ a.s. for allk.
Define

iα(n)=
n∑
k=1

I{Xk∈α}, n= 1,2, . . . .

Lemma 2.2. Letα be an atom andh :E→ R be a measurable function. Write

U0 =
τα∑
j=1

h(Xj ) and V0 =
τα∑
j=1

∣∣h(Xj )∣∣,
l = logEα

(
exp{tU0 − sτα}I{V0�a,τα�b}

)
,

L= logEα exp
{
tU0 − smin{τα,λ}

}
.

(1) For any integern� 1 and real numbersa > 0, b > 0, s > 0, andt ,

Ex

[
exp

{
t

n∑
k=1

h(Xk)− iα(n)l

}
PXn{V0 � a, τα � b}

]
� e−a|t | exp{sn}Ex exp{tU0 − sτα}.

(2) For eachn� 1, s > 0, t , andλ > 0,

Ex exp

{
t

n∑
k=1

h(Xk)− iα(n)L

}
� c−1 exp

{
s(λ+ n)

} ·Ex exp{tU0}

where

c= inf
x
Ex exp

{
t

τα∑
j=1

h(Xj )

}
.

Proof. Notice that underPx , the 3-dimensional random variables(
τα(k+1)∑
j=τα(k)+1

h(Xj ),

τα(k+1)∑
j=τα(k)+1

∣∣h(Xj )∣∣, τα(k + 1)− τα(k)

)
, k = 1,2, . . . ,

form an i.i.d. sequence, to which the random variables

iα(n)+ 1 = inf
{
k � 1; τα(k) > n

}
, n= 1,2, . . . ,

are stopping times. One can see that with respect to the filtration

σ
{
Xj ; 0 � j � τα(k)

}
, k = 1,2, . . . ,

the sequence

Mk = exp

{
t

τα(k)∑
h(Xj )− sτα(k)− (k − 1)l

}
k−1∏

1{∑τα(j+1)
i=τα (j)+1 |h(Xi)|�a, τα(j+1)−τα(j)�b}, k = 1,2, . . . ,
j=1 j=1
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becomes a martingale, where we use the convention that

0∏
j=1

aj = 1

for any sequence{aj } (soM1 = exp(tU0 − sτα) in our case). By the well known Doob’s stopping rule,

Ex

[
exp

{
t

τα(iα(n)+1)∑
j=1

h(Xj )− sτα
(
iα(n)+ 1

)− iα(n)l

}
iα(n)∏
j=1

1{∑τα(j+1)
i=τα(j)+1 |h(Xi)|�a, τα(j+1)−τα(j)�b}

]
=ExM1

=Ex exp{tU0 − sτα}.
Notice thatτα(iα(n))� n < τα(iα(n)+ 1). Hence

Ex

[
exp

{
t

τα(iα(n)+1)∑
j=1

h(Xj )− iα(n)l

}
1{∑τα(iα(n)+1)

i=n+1 |h(Xi)|�a, τα(iα(n)+1)−n�b}

]
� exp{sn}Ex exp{tU0 − sτα}.

By the fact

τα(iα(n)+ 1)= inf{k > n; Xk ∈ α} = n+ τα ◦ θn
and by Markov property, the left hand side is equal to

Ex

[
exp

{
t

n∑
j=1

h(Xj )− iα(n)l

}
EXn

(
exp{tU0}; V0 � a, τα � b

)]

� ea|t |Ex

[
exp

{
t

n∑
j=0

h(Xj )− iα(n)l

}
PXn{V0 � a, τα � b}

]
.

Therefore, we get assertion (1) in Lemma 2.2.
Similarly, applying Doob’s stopping rule to the martingale

exp

{
t

τα(k)∑
j=1

h(Xj )− s

k−1∑
j=0

min
{
τα(j + 1)− τα(j), λ

} − (k − 1)L

}
, k = 1,2, . . . ,

gives

Ex exp

{
t

τα(iα(n)+1)∑
j=1

h(Xj )− s

iα(n)∑
j=0

min
{
τα(j + 1)− τα(j), λ

}− iα(n)L

}
=Ex exp

{
tU0 − smin(τα, λ)

}
�Ex exp{tU0}.

From the fact that

iα(n)∑
min

{
τα(j + 1)− τα(j), λ

}
� τα(iα(n))+ λ� n+ λ.
j=0
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d

t

e

ght by
d

en when

nd then
We have

Ex exp

{
t

τα(iα(n)+1)∑
j=1

h(Xj )− iα(n)L

}
� es(n+λ)Ex exp{tU0}.

By Markov property, the left hand side becomes

Ex

[
exp

{
t

n∑
j=1

h(Xj )− iα(n)L

}
EXn exp

{
tU0

}]
� cEx exp

{
t

n∑
j=1

h(Xj )− iα(n)L

}
.

Hence, we get assertion (2) of Lemma 2.2.✷
The next lemma presents sufficient conditions for LDP inD[0,1], namely the finite dimensional LDP an

exponential tightness inD[0,1]. We refer to Djellout, Guillin and Wu [16] for the proof.

Lemma 2.3. Let(Xn(t)0�t�1)n�0 be a sequence of real right continuous left limit processes defined on(Ω,F ,P ).
Let (λ(n))n�0 be a sequence of positive numbers tending to infinity, andD[0,1] be the space of real righ
continuous left limit functions equipped with the uniform convergence topology. Assume

(i) For every finite partitionP = (t1, . . . , tm) of [0,1], P((Xn(t1), . . . ,Xn(tm)) ∈ ·) satisfies the LDP onRP

with speedλ(n) and with the rate functionIP ;
(ii) ∀δ > 0,

lim
ε→0

sup
0�s�1

lim sup
n→∞

1

λ(n)
logP

(
sup

s�t�s+ε

∣∣Xn(t)−Xn(s)
∣∣> δ) = −∞

(convention: ∀t > 1, Xn(t) :=Xn(1)). ThenP(Xn ∈ ·) satisfies a LDP onD[0,1] w.r.t the uniform convergenc
topology with the same speedλ(n) and with the rate function given by

I (γ )= sup
P
IP

((
γ (t1), . . . , γ (tm)

))
,

where the supremum is taken over all finite partitions of[0,1]. Moreover[I <+∞] is a subset of the spaceC[0,1].

3. Proof of moderate deviations

We only prove Theorem 1.1, for Theorem 1.2 is a corollary of Theorem 1.1 and for the singularity brou
ηn in the casep = 1 will not affect ξn and so we will have Theorem 1.3 if we takeg = 0 in the proof presente
below.

The proof is carried out in three steps. In the first one, we prove the result under an atom assumption, th
the chain has some small set and then the general case.

Step1. The atomic case.
In this step we prove the result under the extra assumption on the existence of an atomα ∈ E+. We will carry

out here the plan of the Lemma 2.3, first establishing the finite dimensional moderate deviation principle a
the exponential continuity (ii).

a) We first assume thatg = Iα . We show that for any finite partitionP on [0,1]: 0 = t0< t1< t2 < · · ·< tm = 1,
and any real numbersA1, . . . ,Am; B1, . . . ,Bm,

lim
n→∞

1

bn
logEµ exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξn(tk)− ξn(tk−1)

)+ 1

a(nb−1
n )

m∑
k=1

Bk
(
ηn(tk)− ηn(tk−1)

)}

=
m∑
(tk − tk−1)Λp(Ak,Bk), (3.1)
k=1
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hen [9])
where

Λp(a, b)=


[
&(p+ 1)

(
a2σ 2

f

2
+ bπ(α)

)]1/p a2σ 2
f

2
+ bπ(α)� 0,

0
a2σ 2

f

2
+ bπ(α) < 0.

Let nk = [ntk] (k = 1,2, . . . ,m). By the estimates∣∣(ξn(tk)− ξn(tk−1)
)− (

ξnk (1)− ξnk−1(1)
)∣∣ � 2‖f ‖∞,∣∣(ηn(tk)− ηn(tk−1)

)− (
iα(nk)− iα(nk−1)

)∣∣ � 2‖g‖∞,

we only need to show

lim
n→∞

1

bn
logEµ exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξnk (1)− ξnk−1(1)

)+ 1

a(nb−1
n )

m∑
k=1

Bk
(
iα(nk)− iα(nk−1)

)}

=
m∑
k=1

(tk − tk−1)Λp(Ak,Bk). (3.2)

By Lemma 2.3 of Chen [9], by Lemma 2.1 (which enables us to give up the imposed boundedness in C
and by the fact (see p. 120 in Chen [9]) thatEαU

2 = π(α)−1σ 2
f , we have that for each 1� k �m ands � 0

logEα exp

{
Ak√

a(nb−1
n )

τα∑
k=1

f (Xk)− sbn

n
τα

}
∼ 1

π(α) · a(nb−1
n )

(
A2
kσ

2
f

2
− sp

&(p+ 1)

)
(n→ ∞).

Let

U =
τα∑
j=1

f (Xj ) and V =
τα∑
j=1

|f (Xj )|.

We therefore have,

ln,k(s)≡ logEα

[
exp

{
Ak√
a(nb−1

n )

τα∑
k=1

f (Xk)− sbn

n
τα

}
; V � ε

√
a(nb−1

n )bn, τα � εn

]

∼ 1

π(α) · a(nb−1
n )

(
A2
kσ

2
f

2
− sp

&(p + 1)

)
(n→ ∞), (3.3)

Ln,k(s)≡ logEα exp

{
Ak√

a(nb−1
n )

τα∑
k=1

f (Xk)− sbn

n
min{τα, εn}

}

∼ 1

π(α) · a(nb−1
n )

(
A2
kσ

2
f

2
− sp

&(p+ 1)

)
(n→ ∞). (3.4)

We will divide the proof of (3.2) in two parts: the upper bound and then the more difficult lower bound.
Upper bound of(3.2).
To establish this upper bound, notice that by Markov property
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Eµ exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξnk (1)− ξnk−1(1)

)+ 1

a(nb−1
n )

m∑
k=1

Bk
(
iα(nk)− iα(nk−1)

)}

�
m∏
k=1

sup
x
Ex exp

{
Ak√

a(nb−1
n )

ξnk−nk−1(1)+
Bk

a(nb−1
n )

iα(nk − nk−1)

}
.

For any 1� k �m, ε > 0 ands > Λp(Ak,Bk), by (3.4),

Ln,k(s) <− Bk

a(nb−1
n )

asn is sufficiently large. Therefore, by Lemma 2.2(2)

sup
x
Ex exp

{
Ak√

a(nb−1
n )

ξnk−nk−1(1)+
Bk

a(nb−1
n )

iα(nk − nk−1)

}

� sup
x
Ex exp

{
Ak√
a(nb−1

n )

ξnk−nk−1(1)− iα(nk − nk−1)Ln,k(s)

}

� c−1
n exp

{
(εn+ nk − nk−1) · sbn

n

}
sup
x
Ex exp

{
Ak√
a(nb−1

n )

U

}

∼ exp

{
(εn+ nk − nk−1) · sbn

n

}
(n→ ∞),

where

cn = inf
x
Ex exp

{
Ak√
a(nb−1

n )

U

}
and the last step follows from Lemma 2.1. Consequently, for each 1� k �m,

lim sup
n→∞

1

bn
logsup

x
Ex exp

{
Ak√

a(nb−1
n )

ξnk−nk−1(1)+
Bk

a(nb−1
n )

iα(nk − nk−1)

}
� (tk − tk−1)Λp(Ak,Bk). (3.5)

Summarizing what we have discussed, we obtain the desired upper bound:

lim sup
n→∞

1

bn
logEµ exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξnk (1)− ξnk−1(1)

)+ 1

a(nb−1
n )

m∑
k=1

Bk
(
iα(nk)− iα(nk−1)

)}

�
m∑
k=1

(tk − tk−1)Λp(Ak,Bk). (3.6)

We may now pass to the proof of the lower bound.
Lower bound of(3.2).
The proof of the lower bound for (3.2) is more delicate. Let

∆k = Ak√
a(nb−1)

(
ξnk (1)− ξnk−1(1)

)+ Bk

a(nb−1
n )

(
iα(nk)− iα(nk−1)

)

n
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=
(

Ak√
a(nb−1

n )

ξnk−nk−1(1)+
Bk

a(nb−1
n )

iα(nk − nk−1)

)
◦ θnk−1 =Wk ◦ θnk−1.

Then for anyε > 0, by Markov property, and recallnm = n,

Im ≡Eµ

(
exp

{
m∑
k=1

∆k

}
; V ◦ θn � ε

√
a(nb−1

n ) bn, τα ◦ θn � εn

)

=Eµ

(
exp

{
m∑
k=1

∆k

}
PXnm

[
V � ε

√
a(nb−1

n ) bn, τα � εn
])

=Eµ

(
exp

{
m−1∑
k=1

∆k

}
EXnm−1

(
exp{Wm}PXnm−nm−1

[
V � ε

√
a(nb−1

n )bn, τα � εn
]))

.

Let 1� k �m, ε > 0. Let us first assume thatΛp(Ak,Bk) > 0 and take then 0< sk <Λp(Ak,Bk) and by (3.3)
we have

ln,k(sk) >− Bk

a(nb−1
n )

for sufficiently largen.
AsΛp(Am,Bm) > 0, from (1) in Lemma 2.2, we have that for anyx ∈E,

Ex

(
exp{Wm}PXnm−nm−1

[
V � ε

√
a(nb−1

n )bn, τα � εn
])

�Ex

(
exp

{
Am√
a(nb−1

n )

ξnm−nm−1(1)− ln,m(sm)iα(nm − nm−1)

}

× PXnm−nm−1

[
V � ε

√
a(nb−1

n )bn, τα � εn
])

� e−εbnEx exp

{
Am√
a(nb−1

n )

τα∑
j=1

f (Xj )− smbn

n
τα

}
exp

{
(nm − nm−1) · smbn

n

}

� exp
{−(

1+ |Am| + sm
)
εbn

}
exp

{
(nm − nm−1) · smbn

n

}
Px

{
V � ε

√
a(nb−1

n )bn, τα � εn
}
. (3.7)

We now establish the inequality (3.7) in the caseΛp(Am,Bm) = 0 for largen (with sm = δ for any fixed but
arbitraryδ > 0). Indeed, by Jensen inequality

Ex

(
exp{Wm}PXnm−nm−1

[
V � ε

√
a(nb−1

n )bn, τα � εn
])

� exp

{
Am√
a(nb−1

n )

Exξnm−nm−1(1)+
Bm

a(nb−1
n )

Exiα(nm − nm−1)

}

×Ex

(
PXnm−nm−1

[
V � ε

√
a(nb−1

n ) bn, τα � εn
])
.

Hence, our claim follows from the following observations (i), (ii) and (iii):
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h

(i). TakingAm = Bm = 0 and applying (1) in Lemma 2.2 give that

Ex

(
PXnm−nm−1

[
V � ε

√
a(nb−1

n )bn, τα � εn
])

� exp{−εbn}Px
{
V � ε

√
a(nb−1

n )bn, τα � εn
}
.

(ii). The sequence{supx∈E |Exξn(1)|}n�1 is bounded (Proposition 5.7, Chapter 6 of Revuz [33]), so that

exp

{
Am√
a(nb−1

n )

Exξnm−nm−1(1)

}
is arbitrarily close to 1 for largen asa(n/bn)→ ∞.

(iii). By the estimate,

Exiα(n)=Ex
(
iα(n)I{τα�n}

) =
n∑
k=1

Ex

(
1+Ex

n∑
j=k+1

I{Xj∈α}

)
I{τα=k} � 1+Eαiα(n)

we have

sup
x∈E

Exiα(n)∼ a(n) (n→ ∞),

see Proposition 5.13(iii) in Nummelin [29]. It enables us to get that for sufficiently largen,

exp

{
Bm

a(nb−1
n )

Exiα(nm − nm−1)

}
� exp

{
−|Bm|a(n)
a(nb−1

n )

}
∼ exp

{−|Bm|bpn
}

� e−δεbn

for some arbitraryδ, which enables us to prove (3.7) in the caseΛp(Am,Bm)= 0 for largen.
Therefore, returning to the proof of our lower bound,

Im � exp
{−(1+ |Am| + sm)εbn

}
exp

{
(nm − nm−1) · smbn

n

}
×Eµ

(
exp

{
m−1∑
k=1

∆k

}
PXnm−1

{
V � ε

√
a(nb−1

n ) bn, τα � εn
})

= exp
{−(1+ |Am| + sm)εbn

}
exp

{
(nm − nm−1) · smbn

n

}
Im−1.

Repeating the procedure we have

Im � Pµ

{
V � ε

√
a(nb−1

n ) bn, τα � εn
}

× exp

{
−εbn

m∑
k=1

(1+ |Ak| + sk)

}
exp

{
bn

n

m∑
k=1

(nk − nk−1)sk

}
for sufficiently largen. Sincesk can be arbitrarily close toΛp(Ak,Bk) for each 1� k �m

lim inf
n→∞

1

bn
logIm � −ε

m∑
k=1

(
1+ |Ak| +Λp(Ak,Bk)

)+
m∑
k=1

(tk − tk−1)Λp(Ak,Bk).

Notice that the left hand side is decreasing inε, while the right hand side is increasing inε. We must have, for eac
ε > 0,

lim inf
n→∞

1

bn
logIm �

m∑
(tk − tk−1)Λp(Ak,Bk). (3.8)
k=1
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ave the

n

3.
Consequently, we obtain the lower bound

lim inf
n→∞

1

bn
logEµ exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξnk (1)− ξnk−1(1)

)+ 1

a(nb−1
n )

m∑
k=1

Bk
(
ηnk (1)− ηnk−1(1)

)}

�
m∑
k=1

(tk − tk−1)Λp(Ak,Bk). (3.9)

Therefore, (3.2) follows from (3.6) and (3.9).
b) Remark now that by (3.1) and Gärtner–Ellis Theorem (see Dembo and Zeitouni [15] and 2.3) we h

moderate deviations for({
1√

a(nb−1
n )bn

(
ξn(tk)− ξn(tk−1)

)}
1�k�m

,

{
1

a(nb−1
n )bn

(
ηn(tk)− ηn(tk−1)

)}
1�k�m

)
with rate function

Λ∗
m

(
(xi), (yi)

) =
m∑
k=1

(tk − tk−1)Λ
∗
p

(
xk

tk − tk−1
,

yk

tk − tk−1

)
.

Indeed, the rate function is defined by

Λ∗
m

(
(x1, . . . , xm), (y1, . . . , ym)

)
= sup
A,B∈Rm

{
〈A,x〉 + 〈B,y〉 −

m∑
k=1

(tk − tk−1)Λp(Ak,Bk)

}

= sup
A,B∈Rm

{
m∑
k=1

(
Akxk +Bkyk − (tk − tk−1)Λp(Ak,Bk)

)}

=
m∑
k=1

(tk − tk−1) sup
A,B∈R

{
Axk

tk − tk−1
+ Byk

tk − tk−1
−Λp(A,B)

}
which gives the result by a direct computation of the Legendre transform ofΛp . We conclude by the contractio
principle (see Theorem 4.2.1 in Dembo and Zeitouni [15]) to deduce the moderate deviations of({

1√
a(nb−1

n )bn

ξn(tk)

}
1�k�m

,

{
1

a(nb−1
n )bn

ηn(tk)

}
1�k�m

)
with rate function

IPp (x, y)=
m∑
k=1

(tk − tk−1)Λ
∗
p

(
xk − xk−1

tk − tk−1
,
yk − yk−1

tk − tk−1

)
.

We have so shown the finite dimensional moderate deviations which are exactly condition (i) of Lemma 2.
c) We now claim that for anyδ > 0

lim
ε→0

sup
s∈[0,1]

lim sup
n→∞

1

bn
logPµ

{
sup

s�t�s+ε
∣∣ξn(t)− ξn(s)

∣∣> δ√a(nb−1
n )bn

}
= −∞, (3.10)

lim
ε→0

sup lim sup
n→∞

1

bn
logPµ

{
sup

∣∣ηn(t)− ηn(s)
∣∣> δa(nb−1

n )bn

}
= −∞. (3.11)
s∈[0,1] s�t�s+ε
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We only prove (3.10), as the proof of (3.11) is analogous (and even simpler due to the monotonicity ofηn(·)).
Notice that (3.10) is equivalent to

lim
ε→0

lim sup
n→∞

1

bn
log max

k�n−εn
Pµ

{
max
l�εn

∣∣∣∣∣
k+l∑

j=k+1

f (Xj )

∣∣∣∣∣> δ
√
a(nb−1

n ) bn

}
= −∞. (3.12)

By Markov property

Pµ

{
max
l�εn

∣∣∣∣∣
k+l∑

j=k+1

f (Xj )

∣∣∣∣∣> δ
√
a(nb−1

n ) bn

}
� sup
x∈E

Px

{
max
l�εn

∣∣∣∣∣
l∑

j=1

f (Xj )

∣∣∣∣∣> δ
√
a(nb−1

n )bn

}
.

Notice that

max
l�εn

∣∣∣∣∣
l∑

j=1

f (Xj )

∣∣∣∣∣ � max
1�k�iα([εn])

∣∣∣∣∣
τα(k)∑
j=1

f (Xj )

∣∣∣∣∣+ max
0�k�iα([εn])

τα(k+1)∑
j=τα(k)+1

∣∣f (Xj )∣∣.
Hence

sup
x∈E

Px

{
max
l�εn

∣∣∣∣∣
l∑

j=1

f (Xj )

∣∣∣∣∣> δ
√
a(nb−1

n )bn

}

� sup
x∈E

Px

{
max

1�k�iα([εn])

∣∣∣∣∣
τα(k)∑
j=1

f (Xj )

∣∣∣∣∣> 2−1δ

√
a(nb−1

n )bn

}

+ a

(
n

bn

)
bn sup

x∈E
Px

{
τα∑
j=1

∣∣f (Xj )∣∣> 2−1δ

√
a(nb−1

n )bn

}
+ sup
x∈E

Px
{
iα
([εn])� a(nb−1

n )bn
}

= (I)+ (II )+ (III ). (say)

In the light of Lemma 2.1 we have that

lim sup
n→∞

1

bn
log(II )= −∞.

Notice that the estimate made in (3.5) actually gives

lim
ε→∞ lim sup

n→∞
1

bn
logsup

x
Ex exp

{
λ√

a(nb−1
n )

ξ[εn](1)
}

= 0, ∀λ ∈ R, (3.13)

lim
ε→∞ lim sup

n→∞
1

bn
logsup

x
Ex exp

{
λ

a(nb−1
n )

iα
([εn])} = 0, ∀λ > 0 (3.14)

(this is where we needp > 0!). By Chebyshev inequality and (3.14) we obtain

lim
ε→0

lim sup
n→∞

1

bn
log(III )= −∞.

By the maximal inequality given in Corollary 3.3, Chapter I of Chen [6],

(I)� (1− un)
−1 sup

x∈E
Px

{∣∣ξ[εn](1)∣∣> 4−1δ

√
a(nb−1

n )bn
}
,

where the sequence
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ma 2.3

ave

ved

ved to

ion

e lower
un ≡ max
1�k�εn

Pα
{∣∣ξk(1)∣∣� 4−1δ

√
a(nb−1

n )bn
}

n� 1

= max
1�k�εn

Pα

(∣∣∣∣ ξk(1)√
a(n)

∣∣∣∣ � 4−1δ

√
a(nb−1

n )

a(n)
bn

)
approaches 0 whenn→ ∞, as a consequence of the central limit theorem given in Theorem 1.5, Chen [9] a
p-regularity of our chain. Therefore, by (3.13) and Chebyshev inequality we have

lim
ε→0

lim sup
n→∞

1

bn
log(I)= −∞.

Summarizing what we have, we obtain (3.12) (and therefore (3.10)). Consequently condition (ii) of Lem
is verified and we thus get the moderate deviations of(Ξn(·)) with rate function supP I

P
p which is easily shown to

be equal toIp (by the convexity ofΛ∗
p and proof of Lemma 5.1.6 in Dembo and Zeitouni [15]). Hence, we h

proved Theorem 1.1 in the caseg = Iα .
d) By the continuous map(φ(·), γ (·)) �→ (φ(·), λγ (·)) and contraction principle, one can extend the achie

conclusion to the case wheng = λIα for any constantλ � 0. For any given special functiong, notice that the
functiong − π(g)π(α)−1Iα is a charge. Applying the upper bound of the moderate deviation we have pro
the sequenceξn(·) with f being defined asg− π(g)π(α)−1Iα , we have

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣ηn(t)− ζn(t)
∣∣ � r

√
a

(
n

bn

)
bn

}

� − inf
max0�t�1 |φ(t)|�r κp(φ)� −

(
ppr2

2&(p+ 1)σf

) 1
2−p
,

where

ζn(t)= π(g)π(α)−1
[nt ]∑
k=1

Iα(Xk), 0 � t � 1, n= 1,2, . . . .

Consequently,

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣ηn(t)− ζn(t)
∣∣ � εa

(
n

bn

)
bn

}
= −∞

for everyε > 0. By Theorem 4.2.13 in Dembo and Zeitouni [15], our conclusion is true for any special functg.
By now, we have proved Theorem 1.1 in the atomic case.

Remark 3.1. To establish the Strassen invariance principle given in next section, we need to sharpen th
bound into

lim inf
n→∞

1

bn
logPµ

{
Ξn ∈ O, τα ◦ θn � εn

}
� − inf

(φ,γ )∈O
Ip(φ, γ ) (3.15)

for any open setO ⊂D{[0,1],R2} and anyε > 0. Indeed, from (3.8) we have

lim inf
n→∞

1

bn
logEµ

[
exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξnk (1)− ξnk−1(1)

)

+ 1

a(nb−1
n )

m∑
Bk

(
iα(nk)− iα(nk−1)

)} ∣∣∣∣ τα ◦ θn � εn

]

k=1
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ns:

ey [4]

ions
t

lowing
�
m∑
k=1

(tk − tk−1)Λp(Ak,Bk).

On the other hand, takingf = g = 0 in (3.8) gives

lim
n→∞

1

bn
logPµ

{
τα ◦ θn � εn

} = 0. (3.16)

Hence from (3.6), (3.10) and (3.11) we have, respectively,

lim sup
n→∞

1

bn
logEµ

[
exp

{
1√

a(nb−1
n )

m∑
k=1

Ak
(
ξnk (1)− ξnk−1(1)

)

+ 1

a(nb−1
n )

m∑
k=1

Bk
(
iα(nk)− iα(nk−1)

)} ∣∣∣∣ τα ◦ θn � εn

]

�
m∑
k=1

(tk − tk−1)Λp(Ak,Bk),

lim
ε→0

sup
s∈[0,1]

lim sup
n→∞

1

bn
logPµ

{
sup

s�t�s+ε

∣∣ξn(t)− ξn(s)
∣∣> δ√a(nb−1

n ) bn | τα ◦ θn � εn
}

= −∞

and

lim
ε→0

sup
s∈[0,1]

lim sup
n→∞

1

bn
logPµ

{
sup

s�t�s+ε
∣∣ηn(t)− ηn(s)

∣∣> δa(nb−1
n )bn | τα ◦ θn � εn

} = −∞.

By carrying out the same procedure, we obtain the same moderate deviation for the conditional distributio

Lµ
(
Ξn | τα ◦ θn � εn

)
, n= 1,2, . . . .

Its lower bound, together with (3.16), implies our claim in Remark 3.1.

Step2. The small set case.
We now prove our result under the assumption that there existsC ∈ E+ and a probability measureν on (E,E)

such that

P(x,A)� bIC(x)ν(A), x ∈E, A ∈ E . (3.17)

According to the construction of split chain, which was initiated by Nummelin [28,29] and Athreya and N
(see also Meyn and Tweedie [26] and Duflo [18]), under the minorization (3.17) the Markov chain{Xn}n�0 can
be augmented into (without changing distribution) a Harris recurrent Markov chain{(Xn,Yn)}n�0 with state space
E×{0,1} and the atomα∗ = C×{1}. Further,{(Xn,Yn)}n�0 has the same regularity. When viewed as the funct
onE×{0,1}, f andg are charge and special function, respectively, with respect to{(Xn,Yn)}n�0. Therefore, wha
we established in the previous step remains valid under (3.17).

Step3. The general case.
We finally come to the general case. According to Theorem 5.2.1 in Meyn and Tweedie [26], the fol

weaker version of (3.17) holds:

Pm(x,A)� bIC(x)ν(A), x ∈E, A ∈ E (3.18)

holds for somem� 1 with the possibility thatm can not be reduced to 1.
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Our approach is resolvent approximation, which has been used in Chen [8,9]. Let 0< λ < 1 be fixed and le

{δn}n�1 be a sequence of i.i.d. Bernoulli random variables with common law

P {δ1 = 0} = 1− P {δ1 = 1} = λ.

We assume independence between{δn}n�1 and{Xn}n�0. Define the renew sequence{σk}k�0:

σ0 = 0 and σk+1 = inf{n > σk; δn = 1}.
Then{σk − σk−1}k�1 is an i.i.d. sequence with the common law

P {σ1 = n} = (1− λ)λn−1, n= 1,2, . . . .

By (5.9) in de Acosta [1], the random sequence{Xσn}n�0 is a Markov chain with the transition

Pλ(x,A)= (1− λ)

∞∑
k=1

λk−1Pk(x,A), x ∈E, A ∈ E

which is Harris recurrent with the same regularity. As a matter of fact, anyD-setD of P is also aD-set ofPλ with

aλ(n)≡
n∑
k=1

νP kλ (D)∼ (1− λ)1−pa(n) (n→ ∞), (3.19)

which can be easily shown by taking the expectations and passing to the limit in the following equality

n∑
k=1

1D(Xσ(k))=
σ(n)∑
k=1

δk1D(Xk)

for someD-setD. Clearly,Pλ has the same invariant measureπ . Further,f andg are charge and special functio
respectively, with respect toPλ and,

σ 2
f,λ ≡

∫
f 2(x)π(dx)+ 2

∞∑
k=1

∫
f (x)P kλ f (x)π(dx)

=
∫
f 2(x)π(dx)+ 2(1− λ)

∞∑
k=1

∫
f (x)P kf (x)π(dx). (3.20)

In view of (3.18), the transitionPλ satisfies (3.17). Define

ξ̄n(t)=
[nt ]∑
k=1

f (Xσk ), 0 � t � 1, n= 1,2, . . . ,

η̄n(t)=
[nt ]∑
k=1

g(Xσk ), 0 � t � 1, n= 1,2, . . . ,

and

�Ξn(t)=
(

1√
a(nb−1

n )bn

ξ̄n(t),
1

a(nb−1
n )bn

η̄n(t)

)
, 0 � t � 1.

Applying what has been proved in Step 2 to the resolvent chainPλ and taking (3.19) and (3.20) into account g
that for each closed setC ∈D{[0,1],R2}

lim sup
1

logP { �Ξn(·) ∈ C} � − inf Īp(φ, γ ) (3.21)

n→∞ bn (φ,γ )∈C
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and, for each open setO ∈D{[0,1],R2}

lim inf
n→∞

1

bn
logP

{�Ξn(·) ∈ O
}

� − inf
(φ,γ )∈O

Īp(φ, γ ) (3.22)

where

Īp(φ, γ )=


1∫

0

Λ̄∗
p

(
φ̇(t), γ̇ (t)

)
dt if (φ, γ ) ∈Θp,

+∞ otherwise

with Λ̄∗
p being given as

Λ̄∗
p(x, y)=

π(g)x2

2σ 2
f,λy

+ (1− p)

(
ppy

π(g)(1− λ)p&(p + 1)

)(1−p)−1

, (x, y) ∈ R × R+.

Let

ξ̂n(t)=
[nt ]∑
k=1

δkf (Xk), 0 � t � 1, n= 1,2, . . . ,

η̂n(t)=
[nt ]∑
k=1

δkg(Xk), 0 � t � 1, n= 1,2, . . . .

We claim that for anyδ > 0,

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣ξ̄[n(1−λ)](t)− ξ̂n(t)
∣∣ � δ

√
a(nb−1

n )bn

}
= −∞, (3.23)

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣η̄[n(1−λ)](t)− η̂n(t)
∣∣ � δa(nb−1

n )bn
} = −∞. (3.24)

Due to the similarity, we only prove (3.23). Write

l(0)= 0 and l(n)= δ1 + · · · + δn, n= 1,2, . . . .

Notice that,

ξ̂n(t)=
l([nt ])∑
i=1

f (Xσi ), 0 � t � 1, n= 1,2, . . . .

We have that for any 0< ε < λ,

max
0�t�1

∣∣ξ̄[n(1−λ)](t)− ξ̂n(t)
∣∣ � max

0�t�1

∣∣∣∣∣
[n(1−λ)t ]∑
i=1

f (Xσi )−
l([nt ])∑
i=1

f (Xσi )

∣∣∣∣∣
� max

1�j�[n(1−λ)]
max

j�k�j+εn

∣∣∣∣∣
k∑

i=j+1

f (Xσi )

∣∣∣∣∣
� max

|s−t |�ε
∣∣ξ̄n(s)− ξ̄n(t)

∣∣
on the event{max0�t�1 |l([nt])− [n(1− λ)t]| � εn}.
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eitouni

e

On the other hand, by Mogulskii’s functional large deviation (see, cf., Theorem 5.1.2 in Dembo and Z
[15]), there existu= u(ε) > 0, such that

P
{

max
0�t�1

∣∣l([nt])− [
n(1− λ)t

]∣∣ � εn
}

� e−un

for sufficiently largen.
To have (3.23), therefore, we only need

lim
ε→0

lim sup
n→∞

1

bn
logP

{
max

|s−t |�ε
∣∣ξ̄n(s)− ξ̄n(t)

∣∣ � δ

√
a(nb−1

n ) bn

}
= −∞. (3.25)

Indeed, takingC = {(φ, γ ): max|s−t |�ε |ξ̄n(s)− ξ̄n(t)| � δ} in (3.21) gives, in view of (1.15), that

lim sup
n→∞

1

bn
logP

{
max

|s−t |�ε
∣∣ξ̄n(s)− ξ̄n(t)

∣∣ � δ

√
a(nb−1

n ) bn

}

� − inf
max|s−t|�ε |φ(s)−φ(t)|�δ

1∫
0

(
ppφ̇2(t)

2(1− λ)p&(p+ 1)σ 2
f,λ

) 1
2−p

dt

� −
(

ppδ2ε−p

2(1− λ)p&(p+ 1)σ 2
f,λ

) 1
2−p

(3.26)

which leads to (3.25).
Let

Ξ̂n(·)=
(

1√
a(nb−1

n )bn

ξ̂n(·), 1

a(nb−1
n )bn

η̂n(·)
)
, n= 1,2, . . . .

According to Theorem 4.2.13 in Dembo and Zeitouni [15], (3.22) and (3.23) imply that{Ξ̂n} obeys the sam
moderate deviation that holds for{ �Ξ[(1−λ)n]}. By (3.21) and (3.22) (withn being replaced by[n(1−λ)]), therefore,
for each closed setC ∈D{[0,1],R2}

lim sup
n→∞

1

bn
logP

{
Ξ̂n(·) ∈ C

}
� − inf

(φ,γ )∈C
Îp(φ, γ ) (3.27)

and, for each open setO ∈D{[0,1],R2}

lim inf
n→∞

1

bn
logP

{
Ξ̂n(·) ∈ O

}
� − inf

(φ,γ )∈O
Îp(φ, γ ) (3.28)

where

Îp(φ, γ )=


1∫

0

Λ̂∗
p

(
φ̇(t), γ̇ (t)

)
dt if (φ, γ ) ∈Θp,

+∞ otherwise

with Λ̂∗
p being given as

Λ̂∗
p(x, y)=

π(g)x2

2σ 2 y
+ (1− p)

(
ppy

π(g)(1− λ)&(p + 1)

)(1−p)−1

(x, y) ∈ R × R+.

f,λ
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except

nce of

take
Let

ξ̃n(t)=
[nt ]∑
k=1

(1− δk)f (Xk), 0� t � 1, n= 1,2, . . . ,

η̃n(t)=
[nt ]∑
k=1

(1− δk)g(Xk), 0 � t � 1, n= 1,2, . . . .

Replacing{δn}n�1 by {1 − δn}n�1 gives us the same moderate deviation as described in (2.25) and (2.26),
thatλ is replaced by 1− λ in the construction of the rate function. Applying its upper bound to the set{

(φ, γ ): max
0�t�1

∣∣φ(t)∣∣ � ε
}

and taking (1.15) into account we have that for anyε > 0,

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣ξ̃n(t)∣∣ � ε

√
a(nb−1

n )bn

}

= −(2− p) inf
max

0�t�1
|φ(t)|�ε

1∫
0

(
ppφ̇2(t)

2λ&(p+ 1)σ 2
f,1−λ

) 1
2−p
dt

� −
(

ppε2

2λ&(p + 1)σ 2
f,1−λ

) 1
2−p
.

Consequently,

lim sup
λ→0+

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣ξ̃n(t)∣∣ � ε

√
a(nb−1

n )bn

}
= −∞. (3.29)

Similarly,

lim sup
λ→0+

lim sup
n→∞

1

bn
logP

{
max

0�t�1

∣∣η̃n(t)∣∣ � εa(nb−1
n )bn

} = −∞. (3.30)

Notice that

ξn(·)= ξ̂n(·)+ ξ̃n(·) and ηn(·)= η̂n(·)+ η̃n(·), n= 1,2, . . . . (3.31)

By Theorem 4.2.16 in Dembo and Zeitouni [15], Theorem 1.1 follows from (3.27)–(3.31), the converge
the rate functions being here readily done asσ 2

f,λ → σ 2
f whenλ→ 0. ✷

4. A functional law of the iterated logarithm

We now apply our results to obtain a functional law of the iterated logarithm. From now on, we
bn = log logn. Recall that

Ξn(·)=
(
ξn(·)

/√
a(

n

log logn
) log logn, ηn(·)

/
a

(
n

log logn

)
log logn

)
, n= 1,2, . . . .

We also need some related notations. Given a metric spaceX with the distanced(· , ·) and sequencexn ∈ X
(n � 1), we useC({xn}) to denote the cluster set of the sequence{xn}. Given a subsetK ⊂ X , we say that{xn}
converges toK, or write

xn →K



114 X. Chen, A. Guillin / Ann. I. H. Poincaré – PR 40 (2004) 89–124

e

4.1
if

C({xn})=K and lim
n→∞ d(xn,K)= 0

whered(x,K)= infy∈K d(x, y).
Given a rate functionI onB, we write

K(I)= {
x ∈ B; I (x)� 1

}
.

Theorem 4.1. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular and thatf is a charge,g is
special.

(1) When0<p < 1,

Ξn(·)→K(Ip) a.s. (4.1)

ηn(·)
/
a

(
n

log logn

)
log logn

a.s.−→K(Jp). (4.2)

(2) When0<p � 1,

ξn(·)
/√

a

(
n

log logn

)
log logn

a.s.−→K(κp). (4.3)

Remark 4.2. According to Theorem 17.3.2 in Meyn and Tweedie [26], the algebraA of the sets invariant under th
shifting θ is almost surely trivial when{Xn}n�0 is Harris recurrent: For everyA ∈ A, Pµ(A)= 1 for every initial
distributionµ, or Pµ(A)= 0 for every initial distributionµ. Consequently, the strong laws stated in Theorem
and in the theorems given in the next section are independent of the choice of initial distributionµ.

Proof of Theorem 4.1. Due to similarity, we only prove (4.1). Fixρ > 1 and letnk = [ρk]. Write

ck =
√
a

(
nk

log lognk

)
log lognk and dk = a

(
nk

log lognk

)
log lognk

wherek = 1,2, . . . .
We use‖ · ‖ to denote the sup-norm inD[0,1], i.e.,

‖φ‖ = sup
0�t�1

∣∣φ(t)∣∣, φ ∈D[0,1].

Without causing any confusion, we also use‖ · ‖ for the norm onD{[0,1],R2}, i.e.,

‖(φ, γ )‖ = ‖φ‖ + ‖γ ‖, (φ, γ ) ∈D{[0,1],R2}.
We first show that

lim
n→∞d

(
Ξn,K(Ip)

)= 0 a.s. (4.4)

By the upper bounds given in Theorem 1.1, for anyε > 0,

lim sup
n→∞

1

log logn
logPµ

{
d
(
Ξn,K(Ip)

)
� ε

}
� − inf

d((φ,γ ),K(Ip))�ε
Ip(φ, γ ) <−1.

Consequently,∑
Pµ

{
d
(
Ξnk ,K(Ip)

)
� ε

}
<∞.
k
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ic case
By Borel–Cantelli lemma,

lim
k→∞d

(
Ξnk ,K(Ip)

) = 0 a.s. (4.5)

Givennk � n� nk+1,

‖Ξn −Ξnk‖ � 1

ck
‖ξn − ξnk‖ + 1

dk
‖ηn − ηnk‖ +

(
ck+1

ck
− 1

)
1

ck+1
‖ξnk+1‖ +

(
dk+1

dk
− 1

)
1

dk+1
‖ηnk+1‖.

By (4.5), there is a constantC > 0 independent ofρ > 1 such that

lim sup
k→∞

1

ck+1
‖ξnk+1‖ � C and lim sup

k→∞
1

dk+1
‖ηnk+1‖ � C a.s.

Notice that

‖ξn − ξnk‖ � max
|s−t |�ε

∣∣ξnk+1(s)− ξnk+1(t)
∣∣

eventually holds for anyε > 1− ρ−1 and the simple fact that

inf
{
κp(φ); max

|s−t |�ε
∣∣φ(s)− φ(t)

∣∣ � δ
} → ∞

asε→ 0. By the upper bound in Theorem 1.3, therefore, givenδ > 0, we have

lim sup
k→∞

1

log lognk
logPµ

{
max

nk�n�nk+1

‖ξn − ξnk‖ � δck
}
<−1

asρ > 1 is sufficiently close to 1, see upper bound (3.26). Therefore,∑
k

Pµ
{

max
nk�n�nk+1

‖ξn − ξnk‖ � δck
}
<∞.

By Borel–Cantelli lemma,

lim sup
k→∞

1

ck
max

nk�n�nk+1

‖ξn − ξnk‖ � δ a.s.

Similarly, asρ > 1 is sufficiently close to 1 we have

lim sup
k→∞

1

dk
max

nk�n�nk+1

‖ηn − ηnk‖ � δ a.s.

Summarizing what we have observed, we obtain

max
nk�n�nk+1

‖Ξn −Ξnk‖ � 2δ+ 2(ρ − 1)C a.s.

In view of (4.5), we have

lim sup
n→∞

d
(
Ξn,K(Ip)

)
� 2δ+ 2(ρ − 1)C a.s.

Lettingρ → 1+ and thenδ→ 0+ gives (4.4).
From (4.4) we have thatC({Ξn})⊂K(Ip) a.s. Notice that{(φ, γ ); Ip(φ, γ ) < 1} is dense inK(Ip). It remains

to prove that for any(φ, γ ) ∈D{[0,1],R2} with Ip(φ, γ ) < 1,

lim inf
n→∞

∥∥Ξn − (φ, γ )
∥∥ = 0 a.s. (4.6)

In view of the procedure we carry out in Section 3, which extends the moderate deviation from the atom
to its full generality, we may assume that{Xn}n�0 has an atomα. Let δ > 0 be fixed and define

Ak =
{∥∥∥∥ 1

ξnk − φ

∥∥∥∥< δ, ∥∥∥∥ 1
ηnk − γ

∥∥∥∥< δ, τα ◦ θnk � nk

}
, k = 1,2, . . . .
ck dk
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By Remark 3.1,

lim inf
k→∞

1

log lognk
logPα(Ak)� −Ip(φ, γ ) >−1.

Hence∑
k

Pα(Ak)= ∞. (4.7)

Givenλ > 0, define

T = inf

{
k;

k∑
j=1

IAj � λ

}
.

Then for any integerN � 1, real numberM > 0,

Pα

{
N∑
k=1

IAk � 3λ+M + 1

}
= Pα

{
N∑
k=1

IAk � 3λ+M + 1, T �N

}

=
N∑
j=1

Pα

{
N∑
k=1

IAk � 3λ+M + 1, T = j

}

�
N−1∑
j=1

Pα

{
T = j,

N∑
k=j+1

IAk � 2λ+M

}
.

For anyj < k �N , notice that

ξnk (t) ◦ θnj+τα◦θnj =
nj+τα◦θnj+[nkt ]∑
i=1+nj+τα◦θnj

f (Xi), 0 � t � 1.

Hence, on the event{τα ◦ θnj � nj },

∥∥ξnk ◦ θnj+τα◦θnj − ξnk
∥∥ �

∣∣∣∣∣
nj+τα◦θnj∑

i=1

f (Xi)

∣∣∣∣∣+ max
0�t�1

∣∣∣∣∣
nj+τα◦θnj+[nkt ]∑

i=[nkt ]+1

f (Xi)

∣∣∣∣∣
� 2 max

|t−s|�2ρ−1

∣∣ξ2nk (t)− ξ2nk (s)
∣∣

asρ > 2, where the second step follows from the estimate(
nj + τα ◦ θnj + [nkt]

)− [nkt] = nj + τα ◦ θnj � 2nj � 2ρ−1nk

for all k � j + 1.
Similarly,∥∥ηnk ◦ θnj+τα◦θnj − ηnk

∥∥ � 2 max
|t−s|�2ρ−1

∣∣η2nk (t)− η2nk (s)
∣∣.

Define

Bk =
{∥∥∥∥ 1

ck
ξnk − φ

∥∥∥∥< 4δ,

∥∥∥∥ 1

dk
ηnk − γ

∥∥∥∥< 4δ

}
,

B̃k =
{∥∥∥∥ 1

ξnk ◦ θnj+τα◦θnj − φ

∥∥∥∥< 4δ,

∥∥∥∥ 1
ηnk ◦ θnj+τα◦θnj − γ

∥∥∥∥< 4δ

}
,

ck dk
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Ck = {
max

|t−s|�2ρ−1

∣∣ξ2nk (t)− ξ2nk (s)
∣∣ � δck

}
,

Dk = {
max

|t−s|�2ρ−1

∣∣η2nk (t)− η2nk (s)
∣∣ � δdk

}
,

wherek = 1,2, . . . . Notice that

{T = j } ⊂Aj ⊂ {τα ◦ θnj � nj }.
From the above discussion, for anyj < k �N ,

Pα

{
T = j,

N∑
k=j+1

IAk � 2λ+M

}

� Pα

{
T = j,

N∑
k=j+1

IB̃k∪Ck∪Dk � 2λ+M

}

� Pα

{
T = j,

N∑
k=j+1

IB̃k �M

}
+ Pα

{
T = j,

N∑
k=j+1

ICk � λ

}
+ Pα

{
T = j,

N∑
k=j+1

IDk � λ

}
.

Notice that by Markov property the first term on the right hand side is equal to

Pα{T = j }Pα
{

N∑
k=j+1

IBk �M

}
� Pα{T = j }Pα

{ ∞∑
k=1

IBk �M

}
.

Thus, for anyλ > 0

Pα

{
N∑
k=1

IAk � 3λ+M + 1

}

� Pα{T �N}Pα
{ ∞∑
k=1

IBk �M

}
+

N∑
j=1

Pα

{
T = j,

∞∑
k=1

ICk � λ

}
+

N∑
j=1

Pα

{
T = j,

∞∑
k=1

IDk � λ

}

� Pα

{
N∑
k=1

IAk � λ

}
Pα

{ ∞∑
k=1

IBk �M

}
+ Pα

{ ∞∑
k=1

ICk � λ

}
+ Pα

{ ∞∑
k=1

IDk � λ

}
.

Therefore

N∑
k=1

Pα(Ak)=
∞∫

0

Pα

{
N∑
k=1

IAk � λ

}
dλ

�M + 1+ 3

∞∫
0

Pα

{
N∑
k=1

IAk � 3λ+M + 1

}
dλ

�M + 1+ 3Pα

{ ∞∑
k=1

IBk �M

} ∞∫
0

Pα

{
N∑
k=1

IAk � λ

}
dλ

+ 3

∞∫
Pα

{ ∞∑
k=1

ICk � λ

}
dλ+ 3

∞∫
Pα

{ ∞∑
k=1

IDk � λ

}
dλ
0 0
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in

e notice
=M + 1+ 3Pα

{ ∞∑
k=1

IBk �M

}
N∑
k=1

Pα(Ak)+ 3
∞∑
k=1

Pα(Ck)+ 3
∞∑
k=1

Pα(Dk).

Hence we have(
1− 3Pα

{ ∞∑
k=1

IBk �M

})
N∑
k=1

Pα(Ak)�M + 1+ 3
∞∑
k=1

Pα(Ck)+ 3
∞∑
k=1

Pα(Dk).

On the other hand, asf → sup|t−s|<δ |f (t) − f (s)| is a continuous mapping, by the upper bounds
Theorems 1.2 and 1.3, one can see that asρ > 1 is sufficiently large,

lim sup
k→∞

1

log lognk
logPα(Ck) <−1 and lim sup

k→∞
1

log lognk
logPα(Dk) <−1,

indeed, use the upper bound (3.26). Consequently,

∞∑
k=1

Pα(Ck) <∞ and
∞∑
k=1

Pα(Dk) <∞.

In view of (4.7) we must have

Pα

{ ∞∑
k=1

IBk �M

}
� 1

3
.

LetM → ∞ gives that

Pα

{∥∥∥∥ 1

ck
ξnk − φ

∥∥∥∥< 4δ,

∥∥∥∥ 1

dk
ηnk − γ

∥∥∥∥< 4δ i.o.

}
� 1

3
.

Notice thatδ > 0 can be arbitrarily small. We have that

Pα
{
lim inf
n→∞

∥∥Ξn − (φ, γ )
∥∥ = 0

}
� 1

3
.

By Theorem 17.3.2 in Meyn and Tweedie [25], (4.6) holds.✷

5. The LIL for some interesting functionals

Given a continuous mapψ from a metric spaceX to another metric spaceY andxn ∈X (n� 1) with xn →K

for someK ⊂X , we haveψ(xn)→ψ(K). If ψ is a continuous function onB, then

lim sup
n→∞

ψ(xn)= sup
x∈K

ψ(x).

By considering various functionals, we obtain some direct consequences from Theorem 4.1. First, w
that the two dimensional random variableΞn(1) takes values in the metric spaceX = (−∞,+∞)× [0,∞). By
considering the continuous map(φ, γ ) �→ (φ(1), γ (1)) we have

Theorem 5.1. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular with0<p < 1 and thatf is
a charge,g is special. Then

Ξn(1)→K(Λ∗
p) a.s. (5.1)

Consequently, for eachβ � 1/2,
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lim sup
n→∞

a

(
n

log logn

)− 1
2+β

(log logn)−1+β ξn(1)

[ηn(1)]β

= σf

π(g)β

√
2(1− 2β)(1−2β)(1−p)&(p + 1)1−2β

pp(1−2β)(1+ (1− 2β)(1−p))1+(1−2β)(1−p) a.s. (5.2)

where we adopt the convention that00 = 1 asβ = 1/2.

Remark 5.2. The LIL given in (5.2) can be viewed as a connection between the self-normalized LIL (β = 1/2)

lim sup
n→∞

ξn(1)
/√

2ηn(1) log logn= σf√
π(g)

a.s.,

a form close to those given in Chen [7], and the deterministic normalized LIL (β = 0)

lim sup
n→∞

ξn(1)
/√

a

(
n

log logn

)
log logn= σf

√
2&(p+ 1)

pp(2− p)2−p a.s.

which is obtained in Chen [9].

Proof of Theorem 5.1. First we claim that for any(x, y) ∈ X ≡ (−∞,∞)× [0,∞),

Λ∗
p(x, y)= inf

{
Ip(φ, γ ); φ(1)= x andγ (1)= y

}
. (5.3)

Indeed, for any(φ, γ ) ∈Θp with φ(1)= x andγ (1)= y, by Jensen’s inequality,

1∫
0

Λ∗
p

(
φ̇(t), γ̇ (t)

)
dt �Λ∗

p

( 1∫
0

φ̇(t) dt,

1∫
0

γ̇ (t) dt

)
=Λ∗

p(x, y).

On the other hand, the equality holds ifφ(t)= xt andγ (t)= yt .
By (5.3),{(

φ(1), γ (1)
); Ip(φ, γ )� 1

}= {
(x, y); Λ∗(x, y)� 1

}
.

Hence (5.1) follows from Theorem 4.1.
Let ρ be the constant given on the right hand side of (5.2). By simple calculus,

sup
(x,y)∈K(Λ∗

p)

x

yβ
= sup

{
x

yβ
; Λ∗

p(x, y)= 1

}
= ρ. (5.4)

Further, one can find(xo, yo) such thatΛ∗
p(xo, yo)= 1 andxo/y

β
o = ρ. Although the functionϕ(x, y)= x/yβ is

not continuous onX , it is continuous in a small neighborhood of(xo, yo). By (5.1), therefore,

lim sup
n→∞

ϕ
(
(Ξn(1)

)
� ϕ(xo, yo)= ρ a.s.

Or,

lim sup
n→∞

a

(
n

log logn

)− 1
2+β

(log logn)−1+β ξn(1)

[ηn(1)]β � ρ a.s.

On the other hand, for givenε > 0, define the set

A= {
(x, y) ∈ X ; x � (ρ + ε)yβ

}
.
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SinceA is closed, and by (5.4)A andK(Λ∗
p) are disjoint, there is a continuous functionψ : X → [0,1] such that

ψ(A)= 1 andψ(K(Λ∗
p))= 0. From (5.1),

lim sup
n→∞

IA(Ξn)� lim sup
n→∞

ψ(Ξn)= sup
(x,y)∈K(Λ∗

p)

ψ(x, y)= 0 a.s.

Hence we have

lim sup
n→∞

a

(
n

log logn

)− 1
2+β

(log logn)−1+β ξn(1)

[ηn(1)]β � ρ + ε a.s.

Sinceε > 0 can be arbitrarily small

lim sup
n→∞

a

(
n

log logn

)− 1
2+β

(log logn)−1+β ξn(1)

[ηn(1)]β � ρ a.s. ✷
LetF be an absolutely continuous functionF on[0,1] and consider the linear continuous functionψ onC[0,1]:

ψ(φ)= F(1)φ(1)−
1∫

0

φ(t) · F ′(t) dt, φ ∈ C[0,1].

By integration by parts and Hölder inequality one can see that

sup
φ∈K(κp)

ψ(φ)= σf

√
2&(p+ 1)

pp(2− p)2−p

( 1∫
0

∣∣F(t)∣∣2/p dt)p/2

and that ifF is non-negative,

sup
φ∈K(Jp)

ψ(φ)= &(p+ 1)π(g)

pp(1− p)1−p

( 1∫
0

F 1/p(t) dt

)p
.

On the other hand, by integration by parts,

ψ(ξcn)= n

n∑
k=1

f (Xk)

k
n∫

k−1
n

F (t) dt ∼
n∑
k=1

F

(
k

n

)
f (Xk), n→ ∞,

ψ(ηcn)= n

n∑
k=1

g(Xk)

k
n∫

k−1
n

F (t) dt ∼
n∑
k=1

F

(
k

n

)
g(Xk), n→ ∞,

whereξcn andηcn are the continuous versions (Remark 1.5) ofξn andηn, respectively.
Therefore, we have the following theorem:

Theorem 5.3. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular and thatf is a charge,g is
special. Let the functionF(t) be absolutely continuous on[0,1].

(1) When0<p < 1 andF is non-negative,
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lim sup
n→∞

n∑
k=1

F

(
k

n

)
g(Xk)

/
a

(
n

log logn

)
log logn

= &(p + 1)π(g)

pp(1− p)1−p

( 1∫
0

F 1/p(t) dt

)p
a.s. (5.5)

(2) When0<p � 1,

lim sup
n→∞

n∑
k=1

F

(
k

n

)
f (Xk)

/√
a

(
n

log logn

)
log logn

= σf

√
2&(p+ 1)

pp(2− p)2−p

( 1∫
0

∣∣F(t)∣∣2/p dt)p/2 a.s. (5.6)

Let q � 1. By considering the continuous functionalψ onD[0,1]:

ψ(φ)=
1∫

0

∣∣φ(t)∣∣q dt, φ ∈D[0,1]

we obtain

Theorem 5.4. Assume that the Harris recurrent Markov chain{Xn}n�0 is p-regular and thatf is a charge,g is
special. Letq � 1.

(1) When0<p < 1,

lim sup
n→∞

n∑
k=1

η
q
k (1)

/
naq

(
n

log logn

)
(log logn)q

= (1+ pq)−1
(

1+ pq

1− p

)q(1−p)(π(g)qp&(p+ 1
q
)

&( 1
q
)

)q
a.s. (5.7)

(2) When0<p � 1,

lim sup
n→∞

n∑
k=1

∣∣ξk(1)∣∣q/naq( n

log logn

)
(log logn)q

= 2

2+ pq

(
2+ pq

p(2− p)

) q(2−p)
2

(
σf &(

p
2 + 1

q
)
√

2qp&(p+ 1)

&(
p
2 )&(

1
q
)

)q
a.s. (5.8)

Proof. It remains to prove

sup
γ∈K(Jp)

1∫
0

γ q(t) dt = (1+ pq)−1
(

1+ pq

1− p

)q(1−p)(π(g)qp&(p + 1
q
)

&( 1
q
)

)q
, (5.9)

sup
γ∈K(κp)

1∫ ∣∣γ (t)∣∣q dt = 2

2+ pq

(
2+ pq

p(2− p)

) q(2−p)
2

(
σf &(

p
2 + 1

q
)
√

2qp&(p + 1)

&(
p
2 )&(

1
q
)

)q
. (5.10)
0
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trassen

nctions
We now evaluate the variation in (5.9). The idea is the Lagrange multiplier, which has been used in S
[32] for the application of his well known invariance principle. SinceK(Jp) is compact inC[0,1], the supremum
can be achieved at someγ ∈K(Jp). Fix a such functionγ . One can easily see thatγ satisfies the equation

(1− p)

1∫
0

(
ppβ̇(t)

π(g)&(p + 1)

)(1−p)−1

dt = 1. (5.11)

Notice that the supremum given in (5.9) is also the supremum of the same functional over the set of fu
β ∈ C[0,1] satisfying (5.11) withβ(0)= 0 (β(t) does not have to be non-decreasing or non-negative).

Applying the Lagrange multiplier one can see that there is a real numberλ such that for all suchβ ,

q

1∫
0

γ q−1(t)β(t) dt = λ
1

1−p

1∫
0

γ̇ p(1−p)−1
(t)β̇(t) dt.

Performing integration by parts on the left hand side gives

q

1∫
0

[ 1∫
t

γ q−1(s) ds

]
β̇(t) dt = λ

1

1− p

1∫
0

γ̇ p(1−p)−1
(t)β̇(t) dt.

Hence, we must have

q

1∫
t

γ q−1(s) ds = λ
1

1− p
γ̇ p(1−p)−1

(t).

In particular,γ has continuous second derivative,γ̇ (t) > 0 as 0� t < 1 andγ̇ (1) = 0. Taking derivative on the
both sides of the above equation gives

−qγ q−1(t)= λ
p

(1− p)2

(
γ̇ (t)

) 2p−1
1−p γ̈ (t).

Multiplying both sides byγ̇ and integrating we obtain

γ q(t)= −λ p

1− p

[
γ̇ (1−p)−1

(t)− γ̇ (1−p)−1
(0)

]
.

Recall thatγ̇ (1)= 0. As t = 1,

γ q(1)= λ
p

1−p
γ̇ (1−p)−1

(0).

Therefore,

λ
p

1− p
γ̇ (1−p)−1

(t)= γ q(1)− γ q(t). (5.12)

Integrating both side of (5.12) and taking (5.11) into account we have

λ
p

(1− p)2

(
π(g)&(p+ 1)

pp

)(1−p)−1

= γ q(1)−
1∫

0

γ q(t) dt. (5.13)

From (5.12),

dt =
(

λp
)1−p(

γ q(1)− γ q(t)
)p−1

dγ (t).

1− p



X. Chen, A. Guillin / Ann. I. H. Poincaré – PR 40 (2004) 89–124 123

ative

tivated

11 (1998)
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999).
Hence,

1∫
0

γ q(t) dt =
(

λp

1− p

)1−p γ (1)∫
0

γ q
(
γ q(1)− γ q

)p−1
dγ

=
(

λp

1− p

)1−p
γ (1)1+pq

1∫
0

uq
(
1− uq

)p−1
du

=
(

λp

1− p

)1−p
γ (1)1+pq 1

1+ pq

1∫
0

(
1− uq

)p−1
du, (5.14)

where the last step follows from integration by parts. Similarly,

1=
(

λp

1− p

)1−p γ (1)∫
0

(
γ q(1)− γ q

)p−1
dγ

=
(

λp

1− p

)1−p
γ (1)1+q(p−1)

1∫
0

(
1− uq

)p−1
du. (5.15)

Combining (5.13), (5.14) and (5.15) gives

1∫
0

γ q(t) dt = (1+ pq)−1
(

1+ pq

q(1− p)

)q(1−p)(
π(g)&(p + 1)

p

)q( 1∫
0

(
1− uq

)p−1
du

)−q

= (1+ pq)−1
(

1+ pq

1− p

)q(1−p)(π(g)qp&(p+ 1
q
)

&( 1
q
)

)q
.

The proof of (5.10) is similar to that of (5.19), for the maximizer of the variation in (5.10) is a non-neg
function. ✷
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