A general Choquet-Deny theorem for nilpotent groups

Albert Raugi
IRMAR, université de Rennes I, campus de Beaulieu, 35042 Rennes cedex, France
Received 2 December 2002; accepted 10 June 2003
Available online 18 May 2004

Abstract

Let G be a locally compact second countable nilpotent group. Let μ be a probability measure on the Borel sets of G. We prove that any bounded continuous function h on G solution of the convolution equation

$$
\forall g \in G, \quad \int_{G} h(g x) \mu(d x)=h(g)
$$

verifies $h(g x)=h(g)$ for all $(g, x) \in G \times \operatorname{supp} \mu$.
© 2004 Elsevier SAS. All rights reserved.

Résumé

Soient G un groupe nilpotent localement compact à base séparable et μ une mesure de probabilité sur les boréliens de G. Nous montrons que toute fonction continue bornée h sur G solution de l'équation fonctionnelle

$$
\forall g \in G, \quad \int_{G} h(g x) \mu(d x)=h(g)
$$

admet pour période tous les points du support de μ.
© 2004 Elsevier SAS. All rights reserved.
Keywords: Random walk; Harmonic functions

1. Introduction

1.1. Let G be a locally compact second countable (lcsc) group with identity element e. Let μ be a probability measure on the Borel- σ-algebra $\mathcal{B}(G)$ of G. A bounded Borel function h on G is called μ-harmonic if it satisfies the mean value property

$$
\forall g \in G, \quad h(g)=\int_{G} h(g x) \mu(d x)
$$

[^0]We denote by \mathcal{H}_{c} the family of bounded continuous μ-harmonic functions. We said that a probability measure μ is aperiodic if the closed subgroup of G generated by the support of μ is equal to G. To prove the stated result, we are brought to show that, for all aperiodic probability μ, \mathcal{H}_{c} is reduced to constant functions.

Blackwell [3] has proved the result for a discrete abelian group with a finite number of generators. Later Choquet and Deny [4] have extended it to all abelian groups.

A significant improvement of this result, with a very simple proof, is the following. Let $(S,+)$ be an algebraic abelian semi-group equipped with a σ-algebra \mathcal{S}. We assume that the application from $S \times S$ to S which sends (x, y) to $x+y$ is measurable. Let μ be a probability measure on \mathcal{S}. Then any bounded μ-harmonic function h satisfies: for all $x \in S$, for μ-almost every $y \in S, h(x+y)=h(x)$. (Consider the sequence of functions defined by:

$$
u_{1}(x)=\int_{S}\left(h\left(x+y_{1}\right)-h(x)\right)^{2} \mu\left(d y_{1}\right)
$$

and for all $n \geqslant 2$,

$$
u_{n}(x)=\int_{S}\left(h\left(x+y_{1}+\cdots+y_{n}\right)-h\left(x+y_{2}+\cdots+y_{n}\right)\right)^{2} \mu\left(d y_{1}\right) \ldots \mu\left(d y_{n}\right)
$$

One easily sees that the sequence $\left(u_{n}\right)_{n \geqslant 0}$ is increasing (Cauchy-Schwarz theorem) and, for all $x \in S$, the series $\sum_{n \geqslant 0} u_{n}(x)$ is a telescopic convergent series $\left(u_{n}(x)=\int_{S} h^{2}(x+y) \mu^{n}(d y)-\int_{S} h^{2}(x+y) \mu^{n-1}(d y)\right)$. Hence the result.)

Dynkin and Malyutov [6] have proved that \mathcal{H}_{c} is reduced to the constant functions for a discrete nilpotent group with a finite number of generators. Azencott [1] has obtained this result for a class of groups, containing the connected nilpotent groups, when μ is a spread out probability (i.e. there exists an integer $n \geqslant 1$ such that the n-fold convolution $\mu^{* n}$ of μ by itself is nonsingular with respect to a Haar measure on G). In [15] it is pointed out that, in the work of Azencott, the spread out assumption is only necessary for ensuring that any bounded μ-harmonic function is right uniformly continuous and Azencott's result extends to general μ if we restrict our study to bounded right continuous μ-harmonic functions. Guivarc'h [9] has proved the result for a class of groups, containing nilpotent groups, for which there exists a compact neighborhood V of the identity generating G such that the series $\sum n^{a} \mu\left(V^{n+1}-V^{n}\right)$ converges for an $a>0$. He also obtained the result for general aperiodic probability μ when G is a nilpotent group of order two. Avez [2] has showed the result for a group with nonexponential growth carrying an aperiodic probability with finite support. Other references on this subject, for other types of groups, are ([5,8,10-13,16]).

In this paper we are proving the result for a nilpotent group and for a general aperiodic probability μ.

2. Bounded harmonic function on nilpotent groups

2.1. Theorem. Let G be a nilpotent locally compact second countable group. Let μ be an aperiodic probability measure on G. Then any continuous bounded μ-harmonic function on G is constant.

The remaining of this section is devoted to the demonstration of this theorem.

Preliminaries

2.2. Let m be a right Haar measure on G. For all $f \in \mathbb{L}^{\infty}(G, m)$ and all $\alpha \in \mathbb{L}^{1}(G, m)$ the function $f^{\alpha}: g \rightarrow$ $\int_{G} f(x g) \alpha(x) m(d x)$ is left uniformly continuous (l.u.c.) on G. That is,

$$
\sup _{x \in G}\left|f^{\alpha}(g x)-f^{\alpha}(x)\right| \leqslant\|f\|_{\mathbb{L}^{\infty}(G, m)}\left\|\alpha\left(\cdot g^{-1}\right)-\alpha(\cdot)\right\|_{\mathbb{L}^{1}(G, m)}
$$

and $\delta(g)=\left\|\alpha\left(\cdot g^{-1}\right)-\alpha(\cdot)\right\|_{\mathbb{L}^{1}(G, m)}$ is a continuous function on G satisfying $\delta(e)=0 . f^{\alpha}$ is μ-harmonic when f is. Let $\left(\alpha_{n}\right)_{n \geqslant 0}$ be a sequence of functions on G forming an approximate identity in $\mathbb{L}^{1}(G, m)$. That is, for all $n \geqslant 0, \alpha_{n}$ is a continuous non-negative function, satisfying $\int_{G} \alpha_{n}(x) m(d x)=1$ and with a support contained in a compact neighborhood V_{n} of e such that $\bigcap_{n \geqslant 0} V_{n}=\{e\}$. Then, for all continuous and bounded function f on $G, f^{\alpha_{n}}$ converges uniformly on compact sets to f. We shall denote by $\mathcal{H}_{\text {l.u.c. }}$ the family of all l.u.c. μ-harmonic function on G. To show the theorem it is enough to prove that any element of $\mathcal{H}_{l . \text {.u.c. }}$ is constant.
2.3. We denote by λ the probability measure $\sum_{k \geqslant 0} 2^{-(k+1)} \mu^{* k}$. Any μ-harmonic function is also a λ-harmonic function. The support supp λ of the probability λ is equal to the closure T_{μ} of the semigroup $\bigcup_{k \in \mathbb{N}}(\operatorname{supp} \mu)^{k}$. Replacing, if necessary, μ by λ we can suppose that the support of μ is the semigroup T_{μ} of G, all the convolutions $\mu^{k *}, k \geqslant 1$, are equivalent measures and $\mu^{k *}(\{e\})>0$.

If H_{1} and H_{2} are two subgroups of G we denote by [H_{1}, H_{2}] the closed subgroup of G generated by the commutators $[x, y]=x y x^{-1} y^{-1},(x, y) \in H_{1} \times H_{2}$. We call r the nilpotence order of G and we denote by

$$
G_{0}=G \supset G_{1}=[G, G] \supset \cdots \supset G_{r+1}=\left[G, G_{r}\right]=\{e\}
$$

the lower central series of G. For all $q \in\{1, \ldots, r+1\}$, we call π_{q} the natural map from G onto the quotient group G / G_{q}.
2.4. By the right random walk of law μ we mean the sequence of products

$$
X_{0}=e \quad \text { and } \quad \forall n \geqslant 1, X_{n}=Y_{1} \cdots Y_{n}
$$

where $\left(Y_{n}\right)_{n \geqslant 1}$ is a sequence of i.i.d. G-valued random variables, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, whose common distribution is μ.

Proof of Theorem 2.1

Let $h \in \mathcal{H}_{\text {l.u.c. }}$. We denote by H the period group of h; i.e. the closed normal subgroup of G defined by:

$$
H=\left\{g \in G: \forall(x, y) \in G^{2}: h(x g y)=h(x y)\right\}
$$

We reason ad absurdum, assuming that H is not equal to G.
If π is the natural map from G onto G / H, we have $h=\tilde{h} \circ \pi$ for a left uniformly continuous $\pi(\mu)$-harmonic function on G / H. Replacing the triplet (G, μ, h) by $(G / H, \pi(\mu), \tilde{h})$ we can suppose that $H=\{e\}$.

First stage. We will need the following important lemma.
2.5. Lemma. Let H be a closed normal subgroup of G and π the natural map from G onto G / H. Let μ be a probability measure on the Borel sets of G. The following assertions are equivalent:
(i) There exists a Borel subset W of G^{2} with $\mu \otimes \mu(W)=1$ such that for μ-almost every u, (u, u) belongs to W and for all $(u, v) \in W$ verifying $\pi(u)=\pi(v)$, we have $u=v$.
(ii) There exists a Borel map $s: G / H \rightarrow G$ such that for μ-almost every $u, u=s \circ \pi(u)$.
(iii) There exists a Borel subset V of G of μ-measure 1 such that for all $(u, v) \in V^{2}$ verifying $\pi(u)=\pi(v)$ we have $u=v$.

Proof. The only nonobvious implication is (i) \Rightarrow (ii).
From hypothesis on W, it follows that there exists a Borel set V with $\mu(V)=1$ such that for any $u \in V$ there exists a Borel set W_{u} of μ-measure 1 , such that $u \in W_{u},\{u\} \times W_{u} \subset W$ and $W_{u} \times\{u\} \subset W$.

For all $u \in G$ we denote by \bar{u} the element $\pi(u)$ of G / H. We consider a disintegration of μ along the classes modulo H. For all bounded Borel functions f on G and g on G / H, we can write,
(i) $\int_{G} f(u) g(\bar{u}) \mu(d u)=\int_{G} P f(\bar{u}) g(\bar{u}) \mu(d u)$,
where P is a transition probability from G / H to G (i.e. an application from $G / H \times \mathcal{B}(G)$ to [0,1] satisfying the two following conditions
(ii) for all $\bar{u} \in G / H, P(\bar{u}, \cdot)$ is a probability measure on the Borel sets of G,
(iii) for all Borel set B of G, the map $\bar{u} \rightarrow P(\bar{u}, B)$ is $\mathcal{B}(G / H)$-measurable.)

We choose a sequence $\left(\mathcal{P}_{n}\right)_{n \geqslant 0}$ of Borel countable partitions of G / H such that: each member of \mathcal{P}_{1} is bounded; for all $n \in \mathbb{N}$, each member of \mathcal{P}_{n} is the union of some subfamily of \mathcal{P}_{n+1} and

$$
\lim _{n \rightarrow+\infty} \sup \left\{\operatorname{diam}(A): A \in \mathcal{P}_{n}\right\}=0
$$

If g is a bounded Borel function on G / H, we know [7, Theorems 2.8.19 and 2.9.8] that for all $\pi(\mu)$-almost every $y \in G / H, \forall n \in \mathbb{N}, \pi(\mu)\left(A_{n, y}\right)>0$ and

$$
\lim _{n \rightarrow+\infty}\left(\int_{A_{n, y}} g(x) \pi(\mu)(d x) / \pi(\mu)\left(A_{n, y}\right)\right)=g(y)
$$

where, for all $n \in \mathbb{N}, A_{n, y}$ is the member of the partition \mathcal{P}_{n} containing y. (Remark that the σ-algebras generated by the partitions are increasing. If we know that the union of these σ-algebras generate the Borel σ-algebra, this result is a consequence of the convergence μ-a.e of the martingale $\left(\mathbb{E}_{\mu}\left[f \mid \sigma\left(\mathcal{P}_{n}\right)\right]\right)_{n \in \mathbb{N}}$ to $\mathbb{E}_{\mu}[f \mid \mathcal{B}(G)]=f$.)

Let f be a non-negative function of $C_{K}(G)$, the space of continuous function on G with compact support. We consider the Borel subset U, with $\mu(U)=1$, defined by:

$$
U=\left\{u \in V: \forall n \in \mathbb{N}, \pi(\mu)\left(A_{n, \bar{u}}\right)>0 \text { and } \lim _{n \rightarrow+\infty}\left(\int_{A_{n, \bar{u}}} P f(x) \pi(\mu)(d x) / \pi(\mu)\left(A_{n, \bar{u}}\right)\right)=P f(\bar{u})\right\}
$$

Let $u_{0} \in U$ and $\varepsilon>0$. As any probability measure on a polish topological space is regular [14, Proposition II-7-3] and the Borel subsets $A_{n, \bar{u}_{0}}, n \in \mathbb{N}$, are decreasing, we can find a decreasing sequence $\left(K_{n}\right)_{n} \geqslant 0$ of compact subsets of G such that $K_{n} \subset \pi^{-1}\left(A_{n, \bar{u}_{0}}\right) \cap W_{u_{0}}$ and $\mu\left(K_{n}\right) \geqslant(1-\varepsilon) \pi(\mu)\left(A_{n, \bar{u}_{0}}\right)$. Then we have:

$$
\int_{G} f(u) 1_{A_{n, \bar{u}_{0}}}(\bar{u}) \mu(d u) / \pi(\mu)\left(A_{n, \bar{u}_{0}}\right) \geqslant(1-\varepsilon) \int_{G} f(u) 1_{K_{n}}(u) \mu(d u) / \mu\left(K_{n}\right)
$$

However $\bigcap_{n \in \mathbb{N}} K_{n}=\left\{u_{0}\right\}$ (if x belongs to $\bigcap_{n \in \mathbb{N}} K_{n}$, then $\bar{x}=\bar{u}_{0}$ and $x \in K_{0} \subset W_{u_{0}}$, thus $x=u_{0}$). For all open balls $B\left(u_{0}, r\right)$ of center u_{0} and radius $r>0$, it follows that $\bigcap_{n \in \mathbb{N}}\left(K_{n} \cap B\left(u_{0}, r\right)^{c}\right)=\emptyset$ and there exists $p \in \mathbb{N}$ such that $K_{p} \cap B\left(u_{0}, r\right)^{c}=\emptyset$. We deduce that, for all $r>0$,

$$
\lim _{n \rightarrow+\infty} \int_{B\left(u_{0}, r\right)^{c}} 1_{K_{n}}(u) \mu(d u) / \mu\left(K_{n}\right)=0
$$

and therefore

$$
\lim _{n \rightarrow+\infty} \int_{G} f(u) 1_{K_{n}}(u) \mu(d u) / \mu\left(K_{n}\right)=f\left(u_{0}\right)
$$

By what precedes, it results that for all $u_{0} \in U, f\left(u_{0}\right) \leqslant \operatorname{Pf}\left(\bar{u}_{0}\right)$. As $\int_{G} f(u) \mu(d u)=\int_{G} P f(\bar{u}) \mu(d u)$ and $C_{K}(G)$ is separable for the uniform norm, it follows that, there exists a Borel set X with $\mu(X)=1$ such that, for
all $u \in X: \forall f \in C_{K}(G), f(u)=P f(\bar{u})$ and therefore $P(\bar{u}, \cdot)=\delta_{u}$. One can assume that X is a countable union of compact subsets; then $\pi(X)$ is a Borel set of G / H. For any $y \in \pi(X)$ denote by $s(y)$ the support of the Dirac measure $P(y, \cdot)$. For all Borel subsets B of G, we have

$$
\pi(X) \cap s^{-1}(B)=\pi(X) \cap\left\{1_{B} \circ s=1\right\}=\pi(X) \cap\left\{P 1_{B}=1\right\}
$$

which shows that s is a Borel map from X to G. We extend s to a Borel map from G / H to G.
From equalities (i) above, it follows that on one hand, for $\pi(\mu)$-almost every $y \in G / H, y=\pi(s(y))$ and on the other hand $s(\pi(\mu))=\mu$. Consequently, for μ-almost all $u \in G, u=s(\pi(u))$.

Second stage. By downward induction we prove that for all $q \in\{1, \ldots, r+1\}$ there exists a Borel subset V_{q} of G with $\mu\left(V_{q}\right)=1$ such that $V_{q} V_{q}^{-1} \cap G_{q}=\{e\}$.

For $q=r+1$, we can take $V_{r+1}=G$. Let us assume the result true for some $q \in\{2, \ldots, r+1\}$. Consider the right random walk $\left(X_{n}\right)_{n \geqslant 0}$ on G. We denote by \mathcal{F}_{0} the trivial σ-algebra $\{\emptyset, \Omega\}$ and, for all $n \geqslant 1, \mathcal{F}_{n}$ the σ-algebra generated by the random variables Y_{1}, \ldots, Y_{n}. For all $g \in G$, the sequence of random variables $\left(h\left(g X_{n}\right)\right)_{n \geqslant 0}$ is a bounded martingale with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n} \geqslant 0$. Therefore it converges \mathbb{P}-a.e. and in norm $\mathbb{L}^{s}(\Omega, \mathcal{F}, \mathbb{P})$, for all $s \in[1,+\infty[$;

$$
\forall n \geqslant 0, \forall g \in G, \quad h(g)=\mathbb{E}\left[h\left(g X_{n}\right)\right]=\mathbb{E}\left[\lim _{p \rightarrow+\infty} h\left(g X_{p}\right)\right]
$$

Moreover we have:

$$
\sum_{n \in \mathbb{N}} \int_{T_{\mu}} \mathbb{E}\left[\left(h\left(g X_{n} x\right)-h\left(g X_{n}\right)\right)^{2}\right] \mu(d x) \leqslant \sum_{n \in \mathbb{N}}\left(\mathbb{E}\left[h^{2}\left(g X_{n+1}\right)\right]-\mathbb{E}\left[h^{2}\left(g X_{n}\right)\right]\right) \leqslant\|h\|_{\infty}^{2}<+\infty
$$

It follows that for all $g \in G$ and for μ-almost every $x \in G$, the sequences $\left(h\left(g X_{n}(\omega) x\right)\right)_{n \geqslant 0}$ and $\left(h\left(g X_{n}(\omega)\right)\right)_{n \geqslant 0}$ converge, for \mathbb{P}-a.e. $\omega \in \Omega$, to the same limit.

As h is left uniformly continuous, we deduce that there exists a Borel set U, with $\mu(U)=1$, such that, for all $(g, x) \in G \times U$, the sequences $\left(h\left(g X_{n}(\omega) x\right)\right)_{n \geqslant 0}$ and $\left(h\left(g X_{n}(\omega)\right)\right)_{n \geqslant 0}$ converge, for \mathbb{P}-a.e. $\omega \in \Omega$, to the same limit.

Now let us define:

$$
W=\left\{(u, v) \in U \times U: \text { for } \mu \text {-almost all } x \in G, u x v(v x u)^{-1} \in V_{q} V_{q}^{-1}\right\}
$$

As μ^{3} and μ are equivalent measures, the Borel subset W of G^{2} has $\mu \otimes \mu$-measure 1 . In the same way, for μ-almost all $u \in V_{q},(u, u) \in W$ and for all $(u, v) \in W$, for μ-almost all $t,(u t, v t) \in W$.

For $(u, v) \in W$ such that $\pi_{q-1}(u)=\pi_{q-1}(v)$, we have \mathbb{P}-a.e.,

$$
\begin{aligned}
\lim _{n} h\left(u X_{n}\right) & =\lim _{n} h\left(u X_{n} v\right)=\lim _{n} h\left(\left(u X_{n} v\right)\left(v X_{n} u\right)^{-1} v X_{n} u\right) \\
& =\lim _{n} h\left(v X_{n} u\right)=\lim _{n} h\left(v X_{n}\right),
\end{aligned}
$$

because $\left(u X_{n} v\right)\left(v X_{n} u\right)^{-1}=\left[u v^{-1}, v X_{n}\right] \in V_{q} V_{q}^{-1} \cap G_{q}=\{e\}$ and therefore

$$
h(u)=\mathbb{E}\left[\lim _{n} h\left(u X_{n}\right)\right]=\mathbb{E}\left[\lim _{n} h\left(v X_{n}\right)\right]=h(v) .
$$

From the continuity of h and the last property of W, it follows that

$$
\forall(u, v) \in W \text { such that } \pi_{q-1}(u)=\pi_{q-1}(v), \forall t \in T_{\mu}, h(u t)=h(v t)
$$

Applying this result to the left translates $h^{g}: x \rightarrow h(g x)(g \in G)$ of h, we obtain

$$
\forall g \in G, \forall(u, v) \in W \text { such that } \pi_{q-1}(u)=\pi_{q-1}(v), \forall t \in T_{\mu}, h(g u t)=h(g v t) .
$$

Now setting $H=\left\{x \in G: \forall g \in G, \forall t \in T_{\mu}, h(g x t)=h(g t)\right\}$, we obtain a closed subgroup of G. From next Lemma 2.6, it follows that H is a normal subgroup of G contained in the period group of h. Consequently $u^{-1} v$ is a period of h and $u=v$. Then, from Lemma 2.5, we deduce that there exists a Borel subset V_{q-1} of G, with $\mu\left(V_{q-1}\right)=1$ and $V_{q-1} V_{q-1}^{-1} \cap G_{q-1}=\{e\}$.

Last stage. Finally, for $q=1$, we obtain a Borel subset V_{1} with $\mu\left(V_{1}\right)=1$ such that $V_{1} V_{1}^{-1}=e$. It follows that $T_{\mu} T_{\mu}^{-1}=e$. However $T_{\mu} T_{\mu}^{-1}$ is a subgroup [1, Lemme IV 11] dense in G because μ is aperiodic, hence $G=\{e\}$ and we end to a contradiction.
2.6. Lemma. Let G be a lcsc nilpotent group and H a subgroup of G. For all $t \in G$,

$$
t^{-1} H t \subset H \quad \Rightarrow \quad t^{-1} H t=H
$$

Proof. We proceed by induction on the order of nilpotence r of G. If $r=1$ the property is trivial. Assume the property true for a nilpotent group of order $r \geqslant 1$ and let G a nilpotent group of order $r+1$.

We take again the notations of Section 2.3 and note π instead of π_{r+1}. We have $\pi(t)^{-1} \pi(H) \pi(t) \subset \pi(H)$. However $\pi(H)$ is a closed subgroup of the nilpotent group G / G_{r+1} of order r. Therefore $\pi(t)^{-1} \pi(H) \pi(t)=$ $\pi(H)$.

Consequently, if $y \in H$, then there exists $x \in H$ such that $\pi(y)=\pi\left(t^{-1} x t\right)$. It follows that $z=y^{-1} t^{-1} x t$ belongs to $G_{r+1} \cap H$ and therefore $y=t^{-1} x t z^{-1}=t^{-1} x z^{-1} t$. Hence the result.

3. Other result

3.1. Definitions. An element g of G is said recurrent if for all neighborhood V of $g, \sum_{n \geqslant 0} 1_{V}\left(X_{n}\right)=+\infty$, \mathbb{P}-a.e.. If g is recurrent then, for \mathbb{P}-almost all $\omega \in \Omega$, the sequence $\left(X_{n}(\omega)\right)_{n \geqslant 0}$ admits g as a closure value. It is well-known that (see for example [17, Chapter 3, §4]):
(i) If one element of G is recurrent then all the elements of G are recurrent. In this case we say that the random walk $\left(X_{n}\right)_{n \geqslant 0}$ on G is recurrent. In the contrary case, we say that the random walk $\left(X_{n}\right)_{n \geqslant 0}$ on G is transient.
(ii) The random walk $\left(X_{n}\right)_{n \geqslant 0}$ on G is recurrent if and only if $\sum_{n \geqslant 0} \mu^{* n}(V)=+\infty$ for all nonempty open set V.
(iii) The random walk $\left(X_{n}\right)_{n \geqslant 0}$ on G is transient if and only if $\sum_{n \geqslant 0} \mu^{* n}(V)<+\infty$ for all relatively compact open set V.

Let H be a lcsc group on which G acts by automorphisms. For all $g \in G$, we denote by $A(g)$ the automorphism of H associated to g. We call $\bar{A}(G)$ the closure of the subgroup $A(G)=\{A(g): g \in G\}$ in the group Aut (H) of all automorphisms of H. We shall say that the action of the pair (G, μ) on H is recurrent if the random walk $\left(A\left(X_{n}\right)\right)_{n \geqslant 0}$ is recurrent in $\bar{A}(G)$. In other words, for all $u \in H$, the set of closure values of the sequence $\left(A\left(X_{n}\right) u\right)_{n \geqslant 0}$ is the closure of $A(G) u, \mathbb{P}$-a.e.
3.2. Theorem. Suppose that the pair (G, μ) acts, by interior automorphisms, in a recurrent way on the subgroup $H=[G, G]$. Then \mathcal{H}_{c} is reduce to constants.

Proof. It is enough to prove the result for $h \in \mathcal{H}_{\text {l.u.c. }}$. We denote by π the natural map from G to G / H. We consider the Borel set U of second stage of the proof of Theorem 2.1. For all $(g, x) \in G \times U$, the sequences $\left(h\left(g X_{n}(\omega) x\right)\right)_{n \geqslant 0}$ and $\left(h\left(g X_{n}(\omega)\right)\right)_{n \geqslant 0}$ converge, for \mathbb{P}-a.e. $\omega \in \Omega$, to the same limit. For $u, v \in U$ such that $\pi(u)=\pi(v)$, we have, \mathbb{P}-a.e.,

$$
\begin{aligned}
\lim _{n} h\left(u X_{n}\right) & =\lim _{n} h\left(u X_{n} v\right)=\lim _{n} h\left(u X_{n} v u^{-1} u\right) \\
& =\lim _{n} h\left(\left(u X_{n} v u^{-1} X_{n}^{-1} u^{-1}\right) u X_{n} u\right)=\lim _{n} h\left(v X_{n} u\right)=\lim _{n} h\left(v X_{n}\right)
\end{aligned}
$$

(Remark that $\left(u X_{n} v u^{-1} X_{n}^{-1} u^{-1}\right) u X_{n} u$ and $v X_{n}$ are two elements of G such that

$$
\left|h\left(\left(u X_{n} v u^{-1} X_{n}^{-1} u^{-1}\right) u X_{n} u\right)-h\left(v X_{n} u\right)\right| \leqslant\|h\|_{\infty} \delta\left(\left(u X_{n} v u^{-1} X_{n}^{-1} u^{-1}\right) u v^{-1}\right)
$$

that converges to zero along a subsequence.)
It follows that for all $(u, v) \in U^{2}$ verifying $\pi(u)=\pi(v)$,

$$
h(u)=\mathbb{E}\left[\lim _{n} h\left(u X_{n}\right)\right]=\mathbb{E}\left[\lim _{n} h\left(v X_{n}\right)\right]=h(v) .
$$

We deduce that there exists a measurable function \tilde{h} on G / H such that $\forall u \in U, h(u)=\widetilde{h}(\pi(u))$ and

$$
\forall u \in \pi(U), \quad \tilde{h}(u)=\int_{G / H} \tilde{h}(u g) \pi(\mu)(d g)
$$

As G / H is an abelian group, by taking again the arguments quoted in the introduction to obtain a generalization of the Choquet-Deny theorem in abelian semi-groups, we obtain, for all $n \geqslant 1$,

$$
u_{n}=\int_{G / H}\left(\tilde{h}\left(y_{1}+y_{2}+\cdots+y_{n}\right)-\tilde{h}\left(y_{2}+\cdots+y_{n}\right)\right)^{2} \mu\left(d y_{1}\right) \ldots \mu\left(d y_{n}\right)=0
$$

It follows that $\tilde{h}(\cdot)=\tilde{h}(e), \mu$-a.e., then $h(\cdot)=h(e), \mu$-a.e. and finally $\forall u \in T_{\mu}, h(u)=h(e)$. The application of this equality to the left translates $h^{g}: x \rightarrow h(g x)(g \in G)$ of h, gives us the required result.
3.3. Example. $G=\mathbb{R} \times \mathbb{R}^{d}$ with product $(a, x)(b, y)=\left(a+b, x+e^{a} y\right)$. Denote by π the projection on \mathbb{R}. A pair (G, μ) acts on \mathbb{R}^{d}, in a recurrent way, if and only if the random walk $\pi\left(X_{n}\right)=\pi\left(Y_{1}\right)+\cdots+\pi\left(Y_{n}\right)$ is recurrent. This assumption is satisfied when $\mathbb{E}\left[\left|\pi\left(Y_{1}\right)\right|\right]<+\infty$ and $\mathbb{E}\left[\pi\left(Y_{1}\right)\right]=0$. If the random variables $\pi\left(Y_{1}\right)$ and $-\pi\left(Y_{1}\right)$ have the same distribution, this assumption is satisfied [8] if $\lim _{t \rightarrow+\infty} t \mathbb{P}\left[\left\{\pi\left(X_{1}\right)>t\right\}\right]=0$.

References

[1] R. Azencott, Espaces de Poisson des groupes localement compacts, in: Lecture Notes in Math., vol. 148, Springer, Berlin, 1970.
[2] A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, CRAS Sér. A 279 (1974) 25-28.
[3] D. Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Stat. 26 (1955) 654-658.
[4] G. Choquet, J. Deny, Sur l'équation de convolution $\mu=\mu * \sigma$, CRAS Sér. A 250 (1960) 799-801.
[5] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Lecture Notes in Math., vol. 1210, Springer, Berlin, 1986, pp. 241-284.
[6] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl. 2 (1961) $399-402$.
[7] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin.
[8] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. Math., Ser. 277 (1963) 335-386.
[9] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333-379.
[10] W. Jaworski, Random walks on almost connected locally compact groups: boundary and convergence, J. Anal. Math. 74 (1998) $235-273$.
[11] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups. Boundary and entropy, Ann. Probab. 11 (1983) 457-490.
[12] V.A. Kaimanovich, Poisson Boundaries of Random Walks on Discrete Solvable Groups, Plenum, New York, 1991, pp. $205-238$.
[13] F. Ledrappier, Poisson boundaries of discrete groups of matrices, CRAS Sér. I 2978 (16) (1984) 393-396.
[14] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, 1970.
[15] A. Raugi, Périodes des fonctions harmoniques bornées, Séminaire de Probabilités de Rennes, 1978.
[16] A. Raugi, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math. France 54 (1977) 5-118.
[17] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1975.

[^0]: E-mail address: raugi@univ-rennes1.fr (A. Raugi).

