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Abstract

The paper derives a functional central limit theorem for the empirical distributions of a system of strongly cor
continuous martingales at the level of the full trajectory space. We provide a general class of functionals for which t
convergence to a centered Gaussian random field takes place. An explicit formula for the covariance is establish
characterization of the limit is given in terms of an inductive system of SPDEs. We also show a density theorem for a S
type class of functionals on the space of continuous functions.
 2003 Elsevier SAS. All rights reserved.

Résumé

L’article présent dérive d’un théorème limite centrale fonctionnelle au niveau de l’espace de toutes les tra
continues pour les distributions empiriques d’un système de martingales fortement corrélées. Nous fournissons u
générale de fonctions pour lesquelles est établie la convergence faible vers un champ aléatoire gaussien centré. U
explicite pour la covariance est determinée et on offre une charactérisation de la limite à l’aide d’un système
d’équations aux dérivées partielles stochastiques. On démontre également que l’espace de fonctions pour les
champ des fluctuations converge est dense dans une classe de fonctionnelles de type Sobolev sur l’espace des
continues.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The classical law of large numbers for empirical measures states that, given a sequence of independen
variablesZ1,Z2, . . . with values in a Polish spaceE and common distributionα(dx) ∈ M(E), the random
measuresN−1∑N

i=1 δZi converge weakly in probability toα(dx) asN→∞. Furthermore, the fluctuation rando
field ξN = N−1/2∑N

i=1(δZi − α(dx)) converges to a centered Gaussianξ in the sense that, for any test functi
g ∈ Cb(E), the space of bounded continuous functions onE,(

g,
1√
N

N∑
i=1

(
δZi − α(dx)

))
(1.1)

converges in distribution to a normal random variable with mean zero and varianceσ 2
ξ (g, g)=Covα(g, g).

We are interested in deriving a central limit theorem whenE is the path spaceΩ = C([0, T ],R) up to time
T > 0 and the random variablesZ1,Z2, . . . are replaced with correlated processes. More precisely, the ra
field (1.1) can be calculated for the random variablesZi = zNi (·), designating the trajectory of a Markovian syste
of coupled particles at timest ∈ [0, T ], which can be viewed as path valued random variables. A first st
to extend the notion of fluctuation random field to functionals of the pathω(·) ∈ C([0, T ],R) up to the time
horizonT > 0 of the particles, that is, at a minimum, to functionals depending of finitely many time marg
G(ω(·))= g(ω(t0),ω(t1), . . . ,ω(tm)) for some positive integerm� 1 andg smooth.

The central limit theorem for empirical measures is well known for independent random variables and h
studied as a distribution valued continuous process for the case of Brownian motions by Itô in [9]. In [7], Hol
Stroock introduce the theory of generalized Ornstein–Uhlenbeck processes and prove the central limit t
for various interacting particle systems. Other limits concerning fluctuation random fields from the hydrod
profile of interacting particle systems can be found in [4] for zero range processes in equilibrium, a non-equ
result for symmetric simple exclusion appears in [14] and [2] solves the problem for Ginzburg–Landau
models. In all these results the limiting random field is a time-indexed continuous Markovian process with
in the space of tempered distributions, that is, can be obtained for the special casem = 0 andg ∈ C∞(R) of
Schwartz class.

The result which appears to be the closest in spirit to the present work is [16]. The limit is an infinite dime
random field, but the coefficients individually satisfy a one-dimensional central limit theorem, a feature du
mean field character of the model.

Because of the strong correlations (2.8) we cannot keep the bounded continuous functions onΩ as index set
A natural answer is to use the class of functions with bounded smooth derivativesC1

b(Ω) given in Definition 1.
A price paid for the generalization is that we adopt an example of correlated continuous martingales desc
(2.8) in order to have access to concrete calculations. However, this example provides an additional ben
the derivation of an explicit formula for the covariance function (2.12). The paper has an important cons
component since Sections 2, 3 and the imbedding Theorem 5 are laying the ground for an infinite dime
result in a general setting. Here they are used in establishing the main result, Theorem 3.

The immediate motivation of the present work is the scaling limit for the Brownian motions with
interaction on the unit circleS1 from [5]. After calculating explicitly the asymptotic law of a single particle in
random environment provided by the rest of the interacting system (the tagged particle problem) and establishing
that finite subfamilies of particles become independent in the scaling limit (propagation of chaos) one has an
immediate weak law of large numbers for the empirical measures associated to the process at the level o
trajectory spaceC([0, T ], S1). The process has a product uniform invariant measure and the actual law of the
particle process in that case is the Wiener measure on the unit circle with uniform initial distribution. A n
question is whether one can determine the limit for the fluctuation field from the mean, at least in equilibriu

There is another reason why we need a result at the level of the full path space. Due to the symm
interacting diffusions in [5], the hydrodynamic limit and the fluctuation random field from the weak solution
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heat equation describing the trajectory of the empirical measures indexed by time are the same as in th
independent Brownian motions. The quantities present are, from our viewpoint, just one-dimensional marg
the objects we are interested in. The interaction surfaces only at the level of the path space, or when co
between configurations observed at consecutive times are taken into account (the history of the proce
different formulation, the interaction becomes apparent when we consider a multi-color version of the pro
coloring is a weak form of tagging (see, in that sense, the comments in [6] and the approach used in [12]
for symmetric simple exclusion).

The proof of this particle model offers a hint into the nature of the scaling needed for the fluctuation
Through a path transformation, the system of particles can be converted into a family of martingales
Skorohod space, adapted to the filtration of the original process. Since the correlations are of the ord
inverse of the number of particles, they survive in the limit. This provides the correct scaling limit (which i
the natural one from the classic CLT).

Unfortunately, even though the path transformation has a smooth asymptotic value which is invertible pa
it is discontinuous before the limit and the error from the continuum limit is once again of the order
square root of the number of particles, a finite but still too large a perturbation in order to establish a C
Theorem 3. For our present purposes, one can summarize the example of the induced martingales with the
construction.

Let λ and ρ̄ be two positive constants. For everyN ∈ Z+ we consider a set ofN2 independent Brownian
motions on a probability space(W,F ,P ), adapted to a filtration{Ft }t�0, as follows. We shall have, for 1� i �N

a collectionβi(·), plus another family ofN(N − 1) independent Brownian motionswij (·), with 1 � i �= j � N

such that{βi(0)}1�i�N are i.i.d. with common probability distributionµ(dx) andwij (0)= 0 P -almost surely. Let

zNi (t)= βi(t)+
(

ρ̄

λ+ ρ̄

)
1

N

∑
j �=i

(
βj (t)− βi(t)

)+( √λρ̄
λ+ ρ̄

)
1√
2N

∑
k �=i

(
wik(t)−wki(t)

)
. (1.2)

The quadratic variation is〈
zNi , z

N
i

〉
(t)= λ

λ+ ρ̄
t +O

(
1

N

)
t

and the cross variation processes fori �= j are〈
zNi , z

N
j

〉
(t)= 1

N

(
ρ̄

λ+ ρ̄

)
t +O

(
1

N2

)
t .

It is clear that the construction satisfies assumptions (2.13) and (2.14). The martingales generated in the
problem emulate the interacting diffusions very well and in equilibrium they have identical limit of the emp
measures (in the sense of Theorem 1). In the context of [5], the parameterρ̄ represents the average density of
particles on the unit circle andλ controls the intensity of the interaction.

The present paper determines the fluctuation limit in the case of correlated Brownian motions like in the e
from above. The discussion following the main results Theorems 2 and 3 and especially Remark 2 after Th
are helpful in completing the present discussion.

Naturally under weak conditions (Assumption 1), a finite-dimensional CLT will hold, that is, for smooth cy
test functions. It is remarkable that the covariance can be given in a closed explicit formula (2.12). This fac
generalized if the limiting one-particle processQ has a time-only dependent generator, but cannot be done
the same lines in the presence of path or spatial coordinate dependence. The passage from cylinder func
convenient larger space needs much more stringent conditions (Assumption 2), as it can be seen from Se

Even though the correlated martingales are far from the complexities occurring in interacting particle
one hopes that, at least in equilibrium, formula (2.12) will be the same. The function spaceC1

b (Ω) introduced in
Definition 1 is a natural candidate for test functions if only we look at the one-dimensional case, for instanc
the inductive construction presented in Sections 3 and 4 can be adapted to essentially any Markovian mo
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We give an outline of the way the paper is organized. Section 2 introduces the spaces of cylinder func
particular the special cylinder functions of exponential or Schwartz typeE(Ω), respectivelyS(Ω), in Definition 3.
The Banach spaceH(Ω,Q) presented in Definition 6 allows us to link the space of cylinder functions and
space of test functionsC1

b (Ω) (Definition 1) over which Theorem 3 (the infinite dimensional case) is establi
through an imbedding result – Theorem 5, Section 5. In addition, a few examples of relevant test funct
provided in the remarks after Definition 6 and further down in Proposition 2.

Section 3 lays out an inductive characterization of the random fields through Theorem 4, paired with an in
characterization of the covariance function in Proposition 3.

Propositions 5 and 6 in Section 4 prove Theorem 2, the central limit theorem for cylinder functio
(S ∪ E)(Ω). In particular, Proposition 5 and 6 show that the one-dimensional marginal of the limiting Ga
random fieldξ is a time-continuous distribution-valued Markov process solving an Ornstein–Uhlenbeck S
which is consistent with [7] and [9]. BecauseS(Ω) is a linear space we obtain that, for any linear combina∑

l clGl of functionsGl ∈ S(Ω), the random variables
∑

l cl(Gl, ξ
N) converge to a Gaussian(

∑
l clGl, ξ). The

actual covariance of the limit is obtained after matching the inductive characterization with the actual s
which is done in Proposition 4. This identification offers an example of a nontrivial solution of the inductive
associated to the half Laplacian and a specific bilinear formq̌(·, ·) in the sense of (3.4) in Definition 14.

Section 5 is based on Theorem 5 proved in Appendix A and the asymptotic uniform bound (5.7
Proposition 9. The latter needs (2.13)–(2.14) from Assumption 2 in order to complete a martingale repres
(2.15) through the series of Lemmas 1, 2.

Finally, Appendix A proves non-probabilistic results generally valid in function spaces as well as Theo
which is a trivial hydrodynamic limit in this context.

2. Definition and results

LetΩ = C([0, T ],X) be the space of continuous paths up to timeT > 0 onX which will be either the real line
R or the unit circleS1. The uniform norm onX will be denoted by‖ · ‖.

Definition 1. Let C be the set of complex numbers and letG ∈ C(Ω)= C(Ω,C) be the space of complex value
continuous functions andω ∈Ω be fixed. Assume there exists a continuous linear mappingη→∇ηG(ω), for all
η ∈Ω , and a functionc(G,h) depending only onG andh such that, for anyη ∈Ω andh ∈R∣∣G(ω+ hη)−G(ω)− h∇ηG(ω)

∣∣� c(G,h)‖η‖2 (2.1)

with limh→0(c(G,h)/h)= 0. The Fréchet derivative will have the strong norm∥∥∇·G(ω)∥∥= sup
η �=0

|∇ηG(ω)|
‖η‖ . (2.2)

We shall say thatG ∈ C1
b (Ω) if G(ω), ∇·G(ω) are uniformly bounded onΩ . The spaceC1

b (Ω) is a normed linea
space with the norm

‖G‖C1
b
= sup

ω∈Ω
(∣∣G(ω)∣∣+ ∥∥∇·G(ω)∥∥). (2.3)

The mappings∇·G(ω) are signed measures on[0, T ] depending onω and the norm defined by (2.2) is the to
variation norm.

Definition 2. We shall denote byE(R) the set all exponential functions of the formx→ eiαx , with α ∈R, by C(R)
the set of bounded infinitely differentiable functions onR with bounded derivatives and byS(R) the Schwartz
class of functions rapidly decreasing at infinity.
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Definition 3. The functionalG ∈ C1
b (Ω) on the path spaceΩ will be said to beC-class cylinder function

on Ω (respectively ofS-class orE-class) if there exist a positive integerm, an increasing sequence of tim
0 � t1 < t2 < · · ·< tm and a family of functionsgl(x) ∈ C(R) (respectively ofS-class orE-class), 1� l �m such
thatG(ω)=∏m

l=1gl(ω(tl )). The space of such functions will be denoted byCcyl(Ω) and the linear span of suc
functions will be denoted byC(Ω). In the same way, the space(E ∪ S)(Ω) is the linear span of cylinder function
with factors belonging either toE(Ω) or S(Ω).

ForG ∈ Ccyl(Ω) we definea(ω(·))=∏m−1
l=1 gl(ω(tl )) andt ′ = tm−1 � 0. We denoteMs = σ [ω(u): 0� u� s]

theσ -algebra generated by the continuous paths up to times ∈ [0, T ]. Thena(ω(·)) is aMt ′-measurable functiona
onΩ . We shall look at the test functiona(ω(·))g(ω(t)) for t � t ′ which we shall call the associate marginal proc
of G starting att = t ′. We denote by

G(ω, t)= a
(
ω(·))g(ω(t)), t � t ′ = tm−1,

∂G(ω, t)= a
(
ω(·))g′(ω(t)) and ∂2G(ω, t)= a

(
ω(·))g′′(ω(t)) (2.4)

the (inductive) cylindrical decomposition ofG and its derivatives. In the same time, anyG ∈ C(Ω) can be written
as the sum of functions fromCcyl(Ω) with the samem > 0 by considering the union of all timest from all the
terms inG and formally factoring in some constant functions (provided thattm is indeed the largest time prese
in G). This allows us to extend the definitions (2.4) to anyG ∈ C(Ω).

We consider a probability space(W,F ,P ), whereF is a filtration{Ft }0�t�T onW and takeσ 2 > 0.

Definition 4. We shall denote by{Q} the family of laws of the diffusion processesQν on Ω with respect to

(W,F ,P ), adapted to an extension of{Ft }t�0, with generatorσ
2

2
d2

dx2 and initial distributionν(dx), whereν(dx)

is a probability measure onX. In the following,Q0 will designate the Brownian motion with diffusion coefficie
σ 2 starting at zero andQ=Qµ (without superscript) for simplicity.

Definition 5. ForG ∈C1
b (Ω) we define the linear functional onΩ

η→〈∇ηG〉Q =
∫
Ω

∇ηG(ω)dQ(ω). (2.5)

Remark. This definition is consistent pointwise since the gradient ofG is bounded by‖η‖. The lawQ of the
diffusion is the Wiener measure on the path spaceΩ andω(·,w) is a random variable measurable with respec
(W,F), distributed according toQ.

Definition 6. We shall denote byH(Ω,Q) the Banach space obtained by completion of the spaceC1
b (Ω) under

the norm‖ · ‖H defined as

‖G‖2
H =

∫
Ω

∣∣G(ω)∣∣2dQ(ω)+ ∫
Ω

∥∥∇·G(ω)∥∥2
dQ(ω). (2.6)

Remark 1.H(Ω,Q) is not a Hilbert space. However, for finite-dimensional marginals, that is for cylinder func
g with m ∈ Z+, we obtainH 1(Rm+1).

Remark 2. Proposition 2 provides a general class of examples of functionals inH(Ω,Q) (cylinder functions).
Also, an important case of test functionG which belongs toH(Ω,Q) but not toS(Ω) is G(ω(·)) = ω(t), the
projection at a given timet . See also the remark after Corollary 1.

Remark 3. If b(· , ·) ∈C0,2([0, T ],X), the functionalG(ω)= ∫ t b(s,ω(s)) ds belongs toC1(Ω).
0 b
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Proposition 1.The linear functional〈∇ηG〉Q is square integrable with respect toQ0 and∫
Ω

∣∣〈∇ηG〉Q∣∣2dQ0(η)� (2σ 2T )‖G‖2
H. (2.7)

Proof.

∣∣〈∇ηG〉Q∣∣2= ∣∣∣∣ ∫
Ω

(∇ηG(ω)
‖η‖

)
‖η‖dQ(ω)

∣∣∣∣2

�
∣∣∣∣ ∫
Ω

∥∥∇·G(ω)∥∥‖η‖dQ(ω)∣∣∣∣2 �
(∫
Ω

∥∥∇·G(ω)∥∥2
dQ(ω)

)
‖η‖2.

We can take the expected value with respect toQ0(η) and obtain (2.7) using Doob’s inequality (see in [15]).✷
We would like to know how largeH(Ω,Q) is. The setS(Ω) of Schwartz class cylinder functions is a subse

the set of smooth cylinder functionsC(Ω) which is included inH(Ω,Q). Theorem 5 and Proposition 7 will sho
thatS(Ω) is dense inH(Ω,Q).

Proposition 2. Let m ∈ Z+ and g(x0, x1, . . . , xm) be a function in the spaceH 1(Rm+1), that is withg and its
derivative in the sense of distributions square integrable with respect to the Lebesgue measure. Ifµ(dx), the initial
distribution ofQ, is absolutely continuous with respect to the Lebesgue measure and the densityρ(x) defined as
µ(dx) = ρ(x) dx is bounded, thenG(ω) = g(ω(t0), . . . ,ω(tm)) ∈ H(Ω,Q). Also, ifG does not depend on th
initial time t = 0 the statement is valid for arbitraryµ(dx) as long asG depends on a finite number of times.

Proof. Any function g ∈ H 1(Rm+1) can be approximated bygS ∈ C(Rm+1) in theH 1 norm. The statement i
proven if we can show it for a Schwartz class function. The preceding lemma has shown that, for any twoω,η ∈Ω
we have

∇ηG(ω)=
m∑
i=0

(
∂xi g

(
ω(t0), . . . ,ω(tm)

))
η(ti).

We see that

∣∣∇ηG(ω)∣∣� (
m∑
i=0

(
∂xi g

(
ω(t0), . . . ,ω(tm)

))2)1/2( m∑
i=0

(
η(ti)

)2)1/2

� (m+ 1)1/2
∥∥∇x̄g(ω(t0), . . . ,ω(tm))∥∥Rm+1‖η‖.

The conditions from the proposition make the joint probability density function of the random var
(ω(t0), . . . ,ω(tm)) be a bounded function onRm+1. The formula for the joint density is[

µ(y0)

m∏
i=1

p(ti − ti−1, yi − yi−1)

]
dy0dy1 · · ·dym

with p(t, y) the kernel of the heat equationut = (σ 2/2)uxx . Since the heat equation semigroup produces sm
bounded functions for anyt > 0 irrespective of the initial distributionµ(dx) the inequalityp(ti− ti−1, yi−yi−1)�
Constσ−1(ti − ti−1)

−1/2 for i � 2 finishes the proof. ✷
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We need to introduce the general setting for Gaussian processes. LetX be a Banach space with norm‖ · ‖X .
For any complex numberz we denote byz its complex conjugate.

Definition 7. A continuous bilinear form onX is a mappingq :X × X → C such that, for anyF,G ∈ X ,
q(·,G) andq(F, ·) are linear and there exists a constantc(q), independent fromF andG, such that|q(F,G)|�
c(q)‖F‖X ‖G‖X . We shall writeq ∈ B(X ). The bilinear form is called symmetric ifq(F,G) = q(G,F) ,
nonnegative ifq(G,G)� 0 and positive ifq(G,G) > 0 if G �= 0.

A random process indexed byA is, by definition, a collection of real-valued random variables{ξ} = {ξa}a∈A
on a probability space(W,F ,P ). The sub-algebra7 generated by

Ca1,a2,...,an,B =
{
w ∈W:

(
ξa1(w), . . . , ξan(w)

) ∈ B} ∈F ,

wheren ∈ Z+, a1, a2, . . . , an ∈A andB ∈ B(Rn) are arbitrary, allows us to define a probability measure onRA

with theσ -field generated by the finite dimensional projections. For any finite setA0 = {a1, a2, . . . , an} ⊆ A we
define the probability measure onRF , called the finite dimensional distribution ofξ onA0 by

P̃A0(B)= P
((
ξa1(w), . . . , ξan(w)

) ∈B).
The consistency condition of the finite dimensional distributions is respected. For any two finite subsets ofA such
thatA′

0⊆A0 we defineπA′
0

the projection ofRA0 ontoR
A′

0 and then

P̃A0 ◦ π−1
A′

0
= P̃A′

0
.

Kolmogorov’s extension theorem shows that under these circumstances there exists a probability measuRA

and theσ -field generated by the finite dimensional cylinder functions denoted byP̃ such that, ifF is a finite subse
of A andπA0 is the projection ofRA ontoRA0, then

P̃ ◦ π−1
A0

= P̃A0.

Definition 8. Let ξN = {ξNa }a∈A defined for allN > 0 and a separateξ = {ξa}a∈A be random processes index
byA. We shall say thatξN converges toξ asN →∞ if the finite dimensional distributions ofξN converge weakly
to the finite dimensional distributions ofξ .

Definition 9. The random processξ indexed byA is called Gaussian (centered Gaussian) if all linear combina
of ξa with a ∈A are Gaussian (centered Gaussian).

Definition 10. Let X be a Banach space. The random processξ indexed byF ∈ X with the property that the
mappingF → ξF belongs toX ′, the space of linear functionals onX , is called a random field onX and we shall
write ξF = (F, ξ). In case the random process defined this way is Gaussian (centered Gaussian) we shal
ξ is a Gaussian (centered Gaussian) random field.

ForX equal to the spaceH(Ω,Q) andq(· , ·) a nonnegative continuous symmetric bilinear form onH(Ω,Q),
there exists a centered Gaussian random fieldξ = ξ(w) on X with covarianceq(F − 〈F 〉Q,G− 〈G〉Q) for any
two F,G ∈H(Ω,Q). Here and in the following〈G〉Q =

∫
Ω GdQ(ω). In this case we shall denote the varian

by σ 2(· , ·).
ξ
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We are now ready to formulate the assumptions needed for our results. For every positive integerN , we consider
a family of N continuous square-integrable martingales with respect toP and {Ft }0�t�T , taking values inX,
denoted by{zNi (·,w)}1�i�N . The cross variation processes{〈zNi , zNj 〉(t,w)}t�0, 1� i, j �N can be written as

〈
zNi , z

N
i

〉
(t,w)=

t∫
0

σ 2
N,i (s,w) ds and

〈
zNi , z

N
j

〉
(t,w)=

t∫
0

k
ij
N (s,w) ds, (2.8)

whereσ 2
N,i(·,w) and|kijN(·,w)| are time-integrable a.s. with respect toP .

Equivalently, by the martingale representation theorem, possibly by extending theσ -fieldF , one can define th
N -dimensional Brownian motion{z(·,w)} by

dzi(t,w)=
L∑
l=1

r il (t,w) dwl(t,w), 1 � i �N, 1 � l � L,

where L ∈ Z+ and {w(·,w)} = {wl(·,w)}1�l�L is an L-dimensional Brownian motion adapted toF and
R(t,w)R∗(t,w) = (

∑
l r il(t,w)r lj (t,w))ij is the correlation matrix of{z(·,w)} with elements given by th

integrands from (2.8).
In order to derive a finite-dimensional central limit theorem for the empirical measures associated to the

of martingales{zNi (·)}1�i�N we shall only need the following condition.

Assumption 1(Finite dimensional CLT). There existσ 2 > 0 andγ >−1 such that

lim
N→∞E

[ T∫
0

N∑
i=1

(
σ 2
N,i(s,w)− σ 2)2ds]= 0 (2.9)

and

lim
N→∞E

[ T∫
0

1

N2

∑
1�i �=j�N

(
Nk

ij

N (s,w)− σ 2γ
)2
ds

]
= 0. (2.10)

Theorem 1.Under Assumption1, if there exists a probability measureµ(dx) onX such that the initial empirica
measuresN−1∑N

i=1 δzNi (0)
converge weakly toµ(dx) in probability, then the empirical measureN−1∑N

i=1 δzi(·)
converges weakly toQ in probability.

The proof of Theorem 1 is in Appendix A.

Theorem 2.Under Assumption1, where(2.9) and (2.10)are satisfied withγ >−1 and the initial values of the
martingaleszN1 (0), . . . , z

N
N(0) are independent with distributionµ(dx) onX, the random field

ξN = 1√
N

N∑
i=1

(
δzNi (·)−Q

)
(2.11)

onScyl(Ω) converges in the sense of Definition8 to a centered Gaussian random fieldξ onScyl(Ω)with covariance

σ 2
ξ (F,G)=

∫
Ω

(
F(ω)− 〈F 〉Q

)(
G(ω)− 〈G〉Q

)
dQ(ω)+ γ

∫
Ω

〈∇ηF 〉Q〈∇ηG〉Q dQ0(η) (2.12)

for anyF,G ∈ Scyl(Ω).
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A stronger set of condition is adopted for an infinite dimensional central limit theorem.

Assumption 2 (Infinite dimensional CLT). There existσ 2 > 0 and γ > −1, as well as constantsC(σ,N),
C(γ,N), for all N � 1 independent fromw ∈ W and t ∈ [0, T ], with the property limN→∞C(σ,N) = 0 and
limN→∞C(γ,N)= 0 such that properties (2.13) and (2.14) are validP -almost surely:

√
N max

1�i�N

[
sup

0�t�T

∣∣σ 2
N,i(t,w)− σ 2

∣∣]� C(σ,N) (2.13)

and

max
1�i,j�N

[
sup

0�t�T

∣∣NkijN (t,w)− σ 2γ
∣∣]� C(γ,N). (2.14)

Remark 1. Lemma 1 ensures the existence of a system of martingales with these properties, in other wo
the covariance matrix of the martingales stays positive definite.

Remark 2. Assumption 2 implies Assumption 1.

Remark 3. In the following we shall omit the random elementw when not necessary.

Theorem 3.Under Assumption2, where(2.13)and (2.14)are satisfied withγ >−1 and the initial values of the
martingaleszN1 (0), . . . , z

N
N(0) are independent with distributionµ(dx) onX, the random field(2.11)onC1

b (Ω)

converges in the sense of Definition8 to a centered Gaussian random fieldξ onC1
b (Ω) with covariance(2.12)for

anyF,G ∈ C1
b (Ω). Furthermore, since the covariance(2.12) is continuous with respect to the norm‖ · ‖H, the

limit ξ can be extended to a centered Gaussian random field onH(Ω,Q).

Remark 1. The random fieldξN is in fact a random measure onΩ for anyN > 0. As a consequence,ξN has
values in(H(Ω,Q))′ almost surely. However, one cannot carry out the limit uniformly overG ∈ H(Ω,Q) to
prove that the limitξ has values in(H(Ω,Q))′ even in the independent case. Still, if we drop the requirem
that the measure on(H(Ω,Q))′ be countably additive (no longer a measure in the proper sense) we can d
so-calledcylindrical measure(see [1], Section 3.9).

Remark 2.Suppose we keep the correspondenceσ 2= λ/(λ+ ρ̄) andγ = ρ̄/λ, in view of the example (1.2). The
we can see that, in the strong interacting case whenλ→ 0, the first term of the covariance (2.12), correspond
to the classical central limit theorem (noncorrelated case) will vanish, while the second part, correspondin
correlation, will tend to one. This can be seen because, as the measureQN converges to a degenerate meas
the factorEQ0[(〈∇ηG〉Q)2] ∼ EQ0[‖η‖2], which is of the order ofλ. Multiplied by γ = ρ̄/λ we obtain a limit
of order one. This is natural when the particles are, in fact, moving deterministically. The remaining rand
originates from the classical CLT for the initial positions of the particles. On the other hand, the case of ve
particlesρ̄→ 0 eliminates correlation. The weak interaction caseλ→∞ pushes the diffusion coefficient to on
(independent Brownian motions) and the asymptotic correlation vanishes again.

Theorem 3 extends the finite dimensional result of Theorem 2 to the infinite dimensional spaceC1
b (Ω).

Theorem 5 imbeds the space of cylinder functions intoH(Ω,Q), providing a density theoremS(Ω)H ⊇ C1
b (Ω),

where the subscript designates the norm (2.6). In order to make use of this imbedding, we need an unifor
(also a tightness estimate) with respect toN on the second moments of the random fieldξN . This is done through
(5.7) from Proposition 9. In order to understand better Assumption 2 we have to write

zNi (t)= yNi (t)+
1√ dNi (t), 1 � i �N, (2.15)

N
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as in Lemma 2, where{yNi (·)}1�i�N are independent Brownian motions and the continuous marting
{dNi (·)}1�i�N have asymptotically bounded moments of some orderr > 2. The construction can be viewed
an orthonormalization procedure. Assumption 2 is sufficient for this construction as well as for a certain sim
of the result. Following the proof of Proposition 9 and Lemmas 1 and 2 one can try to relax the assumption
(2.14) to

E

[ T∫
0

(
σ 2
N,i(s,w)− σ 2)2ds +∑

j �=i

T∫
0

(
k
ij
N (s,w)−

σ 2γ

N

)2

ds

]
∼ o

(
1

N

)
(2.16)

uniformly in 1� i �N . However, this weaker set of conditions complicates the proof of Proposition 8. We
not pursue this direction in the present paper.

3. Inductive characterization of a random field

The following definitions formulate the main conditions needed for the characterization of a centered G
random field by induction on the maximum number of timesm appearing in the test functions fromC(Ω). We
recall thatQ is a Brownian motion as in Definition 4.

Definition 11. Let q(·, ·) ∈ B(C1
b (Ω)) be symmetric, nonnegative and continuous in theH(Ω,Q) norm as in

Definition 7. For any pair of functionalsF,G ∈ C1
b (Ω) of the form

F
(
ω(·))= f

(
ω(0)

)
and G

(
ω(·))= g

(
ω(0)

)
(3.1)

with f,g ∈ C1
b (X), the bilinear formq0(f, g)= q(F,G) is well defined, symmetric, nonnegative and continu

with respect to the induced norm‖ · ‖H(X,µ) on H(X,µ). This one-dimensional bilinear form will be called th
one-dimensional marginal ofq(· , ·) at t = 0.

Definition 12. A bilinear form u(· , ·) ∈ B(C1
b (Ω)) is said translation invariant ifu(F + c,G) = u(F,G) and

u(F,G+ c)= u(F,G) for anyc ∈ C.

Definition 13. Let q̌(· , ·) ∈ B(C1
b (Ω)) be a positive symmetric bilinear form continuous with respect to

H(Ω,Q) norm. We shall say thatu(· , ·) solves inductively the differential equation for the operator(σ 2/2)>
and the bilinear form̌q(· , ·) with initial marginal at timet = 0 denoted byq0(· , ·) if

u
(
F(ω, t),G(ω, t)

)− u
(
F(ω, t ′),G(ω, t ′)

)
= σ 2

2

t∫
t ′

(
u
(
∂2F(ω, s),G(ω, s)

)+ u
(
F(ω, s), ∂2G(ω, s)

)+ 2q̌
(
∂F (ω, s), ∂G(ω, s)

))
ds (3.2)

for all F,G ∈ E(Ω) andu0(F,G)= q0(F,G) as in Definition 11.

Proposition 3. Let q̌(· , ·) ∈ B(C1
b (Ω)) be a positive continuous symmetric bilinear form andq0(· , ·) is its

one-dimensional marginal. If there exists a translation invariant bilinear formu(· , ·) on C1
b (Ω) starting at

q0(f − 〈f 〉µ,g − 〈g〉µ) in the sense of Definition11satisfying the inductive equation(3.2), thenu(· , ·) is unique.

Remark 1.The inductive partial differential equation is valid for all smooth cylinder functions. What Proposit
and later Theorem 4 imply is that it is enough to verify it for theE-class cylinder functions. Given thatq(· , ·) is
continuous in the‖ · ‖H norm, we can go fromE(Ω) to S(Ω) and finally toH(Ω,Q).



I. Grigorescu / Ann. I. H. Poincaré – PR 40 (2004) 167–196 177

rm

ns and

e

that
Remark 2. Proposition 3 is valid if we assume Eq. (3.2) is verified for pairs(F,G) with F =G.

Proof of Proposition 3. The differencev(· , ·) of two solutions of (3.2) is a translation invariant bilinear fo
starting at zero and is a solution of the same Eq. (3.2) where the term inq̌(· , ·) is cancelled, namely a solution to

v
(
F(ω, t),G(ω, t)

)− v
(
F(ω, t ′),G(ω, t ′)

)
= σ 2

2

t∫
t ′

(
v
(
∂2F(ω, s),G(ω, s)

)+ v
(
F(ω, s), ∂2G(ω, s)

))
ds. (3.3)

We want to show that such a solution is zero. To prove this fact, we concentrate on purely cylindrical functio
proceed by induction on the number of factors present. For allG ∈ S(Ω) one can writeG(ω(·))=∑l Gl(ω(·)),
where we made the assumption that the summation runs through a finite set, withGl ∈ Scyl(Ω). Any functionGl

can be written, according to (2.4), in the formGl(ω, t) = aG,l(ω(·))gG,l(ω(t)) wheret � t ′ is the largest time
variable present inG andt ′ is the next time smaller thant . This implies that

G(ω, t)=
∫
R

∑
l

[(
aG,l(ω)exp

(
iαω(t)

))
ĝG,l(α)

]
dα,

for α ∈R and the analogous formulas are valid forF ∈ S(Ω). Then, we replaceF(ω, t) by
∫

R
aF (ω)eiαω(t)ĝF (α)dα

andG(ω, t) by
∫

R
aG(α̃)eiα̃ω(t)ĝG(α̃) dα̃ where(α, α̃) ∈R

2.
We first prove the uniqueness in the case ofFα(ω, t) = aF (ω)eiαω(t) andGα̃(ω, t) = aG(ω)eiα̃ω(t). We look

at (3.3) as an ordinary differential equation with unknownq(Fα(ω, t),Gα̃(ω, t)). We can calculate explicitly th
solution which is unique and equal to zero as long as the induction hypothesis on the values at timet = t ′ is satisfied.
The solutions will be bounded and hence we can write the full formula in terms ofFα(ω, t) = aF (ω)eiαω(t) and
Gα̃(ω, t)= aG(ω)eiα̃ω(t) as

v
(
F(ω, t),G(ω, t)

) = ∫
R

∫
R

v
(
Fα(ω, t),Gα̃(ω, t)

)
ĝF (α)ĝG(α̃) dα dα̃

by using the bilinearity ofv(· , ·) and passing to the limit in the Riemann integral overR2, which proves our
assertion. The extension to allF,G ∈ S(Ω) is granted by linearity. Theorem 5 and Proposition 7 show us
S(Ω) is dense inH(Ω,Q) in the‖ · ‖H norm. This is enough to extend the result toH(Ω,Q), under the‖ · ‖H
norm since we know that the unique solution to (3.3) is continuous in the‖·‖H norm. This concludes the proof.✷
Definition 14. Let q̌(· , ·) ∈ B(C1

b (Ω)) a nonnegative symmetric continuous bilinear form onC1
b (Ω) andξ(w) a

random field onC1
b (Ω), measurable with respect to(W,F ,P ). Assume that for anyG ∈ Ccyl(Ω) there exists a

standard Brownian motion{β(t,w)}t�0 adapted to the filtration{Ft}t�0 such that, ifG(ω(·)) is writtenG(ω, t)=
a(ω(·))g(ω(t)) as in (2.4), the process{(G(ω, t), ξ(w))}t�t ′ starting att = t ′ from (a(ω(·))g(ω(t ′)), ξ(w)) ∈Ft ′
(also called the associate marginal process ofG) satisfies the SPDE

d
(
G(ω, t), ξ(w)

)= σ 2

2

(
∂2G(ω, t), ξ(w)

)
dt + σ

√
q̌
(
∂G(ω, t), ∂G(ω, t)

)
dβ(t,w). (3.4)

Then we shall say thatξ satisfies the inductive SPDE (3.4) with correlationq̌(· , ·) with respect toQ.

Remark 1.For any timet the functional ofω(·) equal toG(ω, t)= a(ω(·))g(ω(t)) belongs toCcyl(Ω) if a(·), g(·)
belong to the continuous class (respectivelyEcyl(Ω) if a(·), g(·) belong to the exponential class) so(G(ω, t), ξ(w))
is well defined.
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Remark 2. For proving our main result we only needq̌(· , ·) defined in (4.2). However, Theorem 4 is true fo
generalC1

b (Ω)-valued bilinear formq̌(· , ·).

Theorem 4.Let q̌(· , ·) ∈B(C1
b (Ω)) be a positive symmetric bilinear form continuous with respect to theH(Ω,Q)

norm. Assume also thatq(· , ·) ∈ B(C1
b (Ω)), a positive symmetric bilinear form continuous with respect to

H(Ω,Q) norm, solves inductively Eq.(3.2)for q̌(· , ·)with initial marginalq0(· , ·) as in Definition13. If Z =Z(w)

is a random field onC1
b (Ω), measurable with respect toF , such that

(i) the one-dimensional restrictionZ0 ofZ at timet = 0 is a centered Gaussian with covarianceq0(f −〈f 〉µ,g−
〈g〉µ) and

(ii) Z satisfies the inductive SPDE(3.4) for all G ∈ E(Ω),
thenZ can be uniquely extended to a centered Gaussian random field onH(Ω,Q) with covariance

σ 2
Z(F,G)= q

(
F − 〈F 〉Q,G− 〈G〉Q

)
,

for any twoF,G ∈H(Ω,Q).

Remark 1. The condition thatZ be a random field onC1
b (Ω) is weaker thanZ be indexed by the Banach spa

H(Ω,Q). However, the iterated SPDE, Theorem 5 and the fact thatq(· , ·) can be extended toB(H(Ω,Q)) will
show thatZ is a random field onH(Ω,Q).

Remark 2. This is a uniqueness theorem only. For the covariance prescribed in our problem (2.11)–(2.
existence is proven by direct verification of the conditions of Theorem 4 applied toq(·, ·) from (2.12) withq̌(·, ·)
given in (4.2). We note that in the proof of Proposition 4 the bilinear formq̌(·, ·) is split in two components (4.3
and (4.4) corresponding to the “independent” and “coupled” parts of the covariance.

Proof of Theorem 4. Let’s denote the value of(G(ω, t),Z(w)) by Z(G(ω, t)) for cylinder functionsG ∈
(E ∪ S)(Ω). In general, we shall suppressw in the following. We shall apply the Itô formula to the functio
φ(Z(G(ω, t)), with φ(x)= x2 and obtain, after taking the expected value, that

dE
[
Z
(
G(ω, t)

)2]= (σ 2E
[
Z
(
G(ω, t)

)
Z
(
∂2G(ω, t)

)]+ σ q̌
(
∂G(ω, t), ∂G(ω, t)

))
dt.

This proves thatE[Z(G(ω, t))Z(F (ω, t))] satisfies (3.2) by polarization. Next, the uniqueness argume
Proposition 3 implies that

E
[
Z
(
F(ω, t)

)
Z
(
G(ω, t)

)]= q
(
F − 〈F 〉,G− 〈G〉)� C‖F‖H‖G‖H.

We need to show thatZ(G(ω, t)) is a centered Gaussian. For allG ∈ S(Ω) one can writeG(ω(·)) =∑
l Gl(ω(·)), where we made the assumption that the summation runs through a finite set, withGl ∈ Scyl(Ω).

This implies thatG(ω, t)= ∫
R

∑
l[(al(ω)exp(iαω(t)))ĝl(α)]dα exactly as detailed in the proof of Proposition

Then, Eq. (3.4) gives the SPDE satisfied by the process{Z(G(ω, t))}t�t ′ starting att = t ′ fromZ(a(ω(·))g(ω(t ′)))
(also called the associate marginal process ofG)

dZ
(
G(ω, t)

)= σ 2

2
Z
(
∂2G(ω, t)

)
dt + σ

√
q̌
(
∂G(ω, t), ∂G(ω, t)

)
dβ(t). (3.5)

The inductive SPDE (3.4) for a function of typeal(ω)exp(iαω(t)) reduces to a classical Ornstein–Uhlenbe
process. We know by the induction hypothesis that at startt = t ′ the process was a centered Gaussian. Let’s de
by Z(Gα,l(ω, t)) the solution to (3.4) forGα,l(ω, t) = al(ω)exp(iαω(t)). The first two terms of the equation a
linear. The quadratic formq(· , ·) has the property

q
(
∂Gα,l(ω, t), ∂Gα,l(ω, t)

)= |α|2q̌(Gα,l(ω, t),Gα,l (ω, t)
)
.
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Z
(
Gα,l(ω, t)

)−Z
(
Gα,l(ω, t

′)
)+ α2σ 2

2

t∫
t ′
Z
(
Gα,l(ω, s)

)
ds − |α|σ

t∫
t ′

√
q̌
(
Gα,l(s),Gα,l(s)

)
dβ(s)= 0.

The initial Z(G(ω, t ′)) is a mean zero normal random variable by the induction hypothesis. We integra
Ornstein–Uhlenbeck SDEt→Z(G(ω, t)) and obtain

Z
(
G(ω, t)

)= ∫
R

∑
l

Z
(
Gα,l(ω, t)

)
ĝl(α) dα

=
∫
R

∑
l

Z
(
Gα,l(ω, t

′)
)
exp

(
−α2σ 2

2
(t − t ′)

)
ĝl(α) dα

+ σ

t∫
t ′

∫
R

∑
l

exp

(
−α2σ 2

2
(t − s)

)(√
q̌
(
Gα,l(s),Gα,l(s)

))|α|ĝl (α) dα dβ(s). (3.6)

We need to justify the integration along the real line of the solutionsZ(Gα,l(ω, t)). Let G ∈ Ccyl(Ω), G(ω, t) =
a(ω)g(ω(t)) such thata(ω) ∈ C(Ω), g ∈ S(X) and, for anyr ∈ Z+, let

Rr

(
G(ω, t)

)= a(ω)
∑

−r2�k�r2

eiαkω(t)ĝ(αk)(αk+1− αk) (3.7)

be the Riemann sum for the partition>r obtained by dividing the interval[−r, r] into 2r2 equal subintervals with
partition points denoted byαk ,−r2 � k � r2. Then,Rr(G(ω, t)) ∈ C(Ω) and

lim
r→∞

∥∥Rr

(
G(ω, t)

)−G(ω, t)
∥∥
H = 0.

This follows from the properties of the inverse Fourier transform on the real line, sincea(ω) is a bounded smoot
functional.

The real integral

G(ω, t)=
∫
R

(∑
l

(
al(ω)exp

(
iαω(t)

))
ĝl(α)

)
dα (3.8)

is the‖ · ‖H-limit of Riemannian sumsRm(
∑

l Gl(ω, t)) (Eq. (3.7)). Since there exists a constantC such that
E[Z(G)2]� C‖G‖2

H, we can derive that the sequence{Z(∑l Rm(Gl(ω, t)))}m�1 is tight with limit Z(G(ω, t)).
A similar reasoning proves that the last integral involving the bilinear formq̌(· , ·) can be integrated alongα ∈ R

as a consequence of Plancherel’s identity forg′(x).
We notice that if

V (ω, t ′)=E

[∑
l

al(ω)gl
(
ω(t)

)|Ft ′
]

then ∫
R

∑
l

Z
(
Gα,l(ω, t

′)
)
exp

(
−α2σ 2

2
(t − t ′)

)
ĝl(α) dα = 2πZ

(
V (ω, t ′)

)
which implies from the induction hypothesis that the first term in (3.6) is a zero mean Gaussian measura
respect toFt ′ .V (ω, t ′) is indeed inS(Ω) as the summation of convolutions of functions inS(Ω)with the transition
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probability ofQ from time t ′ to time t . The second term is a stochastic integral of a deterministic function of
depending onG against a Brownian motion on[t ′, t], that is a process with independent increments. The si
fields they are supported on are independent. This concludes the induction step needed to prove that the
a mean zero normal random variable.

By piecing together the time marginals present in anyG ∈ S(Ω) we have shown that there exists a unique m
zero Gaussian random field satisfying the inductive SPDE (3.4) for anyG ∈ S(Ω) provided we start at timet = 0
with a random field compatible withq(· , ·), that is, having the one-dimensional bilinear form equal to the marg
bilinear form ofq(F − 〈F 〉µ,G− 〈G〉µ) at t = 0 (Definition 11). It has been shown in the first part of the pr
that the covariance is exactlyq(F − 〈G〉Q,F − 〈G〉Q). This and the continuity ofq(· , ·) with respect to theH
norm enables us to extendZ to H(Ω,Q), which concludes the proof.✷
Corollary 1. Let q(· , ·), q̌(· , ·) andq0(f − 〈f 〉µ,g − 〈g〉µ) be exactly like in Theorem4. If there exists a random
fieldZ onC1

b (Ω) such that the restrictionZ0 of Z to one-dimensional functionals of the type(3.1) is a centered
Gaussian with covarianceq0(f − 〈f 〉µ,g − 〈g〉µ) and for anyF,G ∈ E(Ω) the processes

Z
(
G(ω, t)

)−Z
(
G(ω, t ′)

)− σ 2

2

t∫
t ′
Z
(
∂2G(ω, s)

)
ds

and

Z
(
F(ω, t)

)
Z
(
G(ω, t)

)−Z
(
F(ω, t ′)

)
Z
(
G(ω, t ′)

)
− σ 2

2

t∫
t ′

(
Z
(
∂2F(ω, s)

)
Z
(
G(ω, s)

)+Z
(
F(ω, s)

)
Z
(
∂2G(ω, s)

)+ 2q̌
(
∂F (ω, s), ∂G(ω, s)

))
ds

are (Ft , P )-martingales, thenZ is unique and has covarianceq(F − 〈F 〉Q,G− 〈G〉Q).

Remark. It is easy to see thatG(ω)= πt(ω)= ω(t) belongs toH(Ω,Q) for any timet � 0. The corollary implies
thatZ(πt(ω)) is a Brownian motion with respect to the filtration of the process.

4. The proof for a special class of functions

The proof of Theorem 2 is the main result of this section.

Proposition 4.The bilinear formq(· , ·) ∈B(H(Ω,Q)), defined in(2.12)as

q(F,G)=
∫
Ω

(
F(ω)− 〈F 〉Q

)(
G(ω)− 〈G〉Q

)
dQ(ω)+ γ

∫
Ω

〈∇ηF 〉Q〈∇ηG〉Q dQ0(η)

is symmetric, nonnegative, translation invariant and satisfies the inductive equation(3.2) starting atq0(f, g) =
Cov(f, g) for anyf,g ∈C1

b (X), where

Cov(f, g)=
∫
X

(
f (x)− 〈f 〉µ

)(
g(x)− 〈g〉µ

)
µ(dx) (4.1)

with correlation

q̌(F,G)=
∫
F(ω)G(ω)dQ(ω)+ γ

∫
〈∇ηF 〉Q〈∇ηG〉Q dQ0(η). (4.2)
Ω Ω
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Proof. Let

q1(F,G)=EQ
[(
F(ω)− 〈F 〉)(G(ω)− 〈G〉 )] (4.3)

and

q2(F,G)=EQ0[(〈∇ηF 〉Q)(〈∇ηG〉Q )]. (4.4)

We want to show that both satisfy the inductive equation (3.2) with

q̌1(∂F, ∂G)=EQ
[(
∂F (ω)

)(
∂G(ω)

)]
and

q̌2(∂F, ∂G)=
(
EQ

[
∂F (ω)

])(
EQ

[
∂G(ω)

])
.

The equation fořq1(∂F, ∂G) is obtained as in the case of uncorrelated martingales by Itô formula. We lo
q2(· , ·) only. Let G(ω, t) = aG(ω)gG(ω(t)) andF(ω, t) = aF (ω)gF (ω(t)). Then, if 〈·〉ω denotes the expecte
value with respect toQ,

〈∇ηG〉Q =
〈∇ηaG(ω)gG(ω(t))〉ω + 〈aG(ω)g′G(ω(t))〉ωη(t), (4.5)

d

dt

〈∇ηaG(ω)gG(ω(t))〉ω = σ 2

2

〈∇ηaG(ω)g′′G(ω(t))〉ω,
d

dt

〈
aG(ω)g

′
G

(
ω(t)

)〉
ω
= σ 2

2

〈
aG(ω)g

′′′
G

(
ω(t)

)〉
ω
.

(4.6)

The analogous formulas hold forF . Thedt term from the quadratic variation of the Brownian motionη(·) is

σ 2(〈aF (ω)g′F (ω(t))〉ω〈aG(ω)g′G(ω(t))〉ω)dt,
equal toσ 2q̌2(∂F (ω, t), ∂G(ω, t)) dt . We superpose the two solutions and obtain (3.2) for our random fieldξ . ✷
Remark. An alternate way to prove the proposition is to consider a pair of i.i.d. Brownian motionsω1(·), ω2(·)
with law Q = Qµ and another independent Brownian motionη(·) with law Q0, write the Itô formula for (4.3)
(4.4) (before averaging) for the three-dimensional system, and finally take the expected value.

Proposition 5. For any G ∈ (E ∪ S)(Ω), that is such that there exists a positive integerm and a function
g(x0, x1, . . . , xm) in the linear span of cylinder functions obtained as products of eitherS(R) or E(R) for which
G(ω)= g(ω(t0), . . . ,ω(tm)),

lim sup
N→∞

E
∣∣(G,ξN )∣∣2 � c(G) (4.7)

with c(G) depending only ong andT .

Proof. We shall proceed by induction to show (4.7). Ifm= 1 andt0= 0 we have the classical central limit theore
Assume (4.7) is valid forG depending on at mostm−1 times. In general we only need to do the proof for cylin
functions since the extension to the general class of functions needed in the proposition is done by linea
depends, as required, only ong andT . To make things preciseg(x0, x1, . . . , xm)=∏m

i=0gi(xi) and the constan
c(g,T ) corresponding to

∏m−1
i=0 gi(xi) is denoted byc(g,m− 1, T ). Also we denotetm−1 by t ′. Even though we

needg(x) in the Schwartz class, we shall investigate first the caseg(x)= exp(iαx) where i=√−1. We shall use
the notationG(ω, t)=Gα(ω, t) for such a test function later on in the proof when needed.
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For any F,G ∈ C(Ω) we can write the generalized Itô formula for stochastic integrals with respe
martingales (see [8]) for the product{(F (ω, t), ξN )(�G(ω, t), ξN )}t�t ′ . We recall that for every finiteN the random
fieldsξN are finite random measures on the path spaceΩ and

∂

∂t

〈
G(ω, t)

〉
Q
= σ 2

2

〈
∂2G(ω, t)

〉
Q
.

Then(
F(ω, t), ξN

)(�G(ω, t), ξN )− (F(ω, t ′), ξN )(�G(ω, t ′), ξN )
= 1

2N

t∫
t ′

∑
1�i,j�N

[(
σ 2
N,i(s)∂

2F
(
zi(·), s

)− σ 2〈∂2F 〉Q
)(�G(zi(·), s)− 〈�G〉Q)

+ (F (zi(·), s)− 〈F 〉Q)(σ 2
N,j (s)∂

2�G(zj (·), s)− σ 2〈∂2�G〉Q
)]

× 2

t∫
t ′

[
1

N

∑
1�i�N

(
∂F
(
zi(·), s

))(
∂�G(zi(·), s))(σ 2

N,i(s)
)]
ds

×
[

1

N2

∑
1�i,j�N

(
∂F
(
zi(·), s

))(
∂�G(zj (·), s))(NkijN (s))]ds +MN(t), (4.8)

whereMN(t) is a martingale. We can re-write the above formula as(
F(ω, t), ξN

)(�G(ω, t), ξN )− (F(ω, t ′), ξN )(�G(ω, t ′), ξN )
= σ 2

2

1

N

t∫
t ′

( ∑
1�i,j�N

[(
∂2F

(
zi(·), s

)− 〈∂2F 〉Q
)(�G(zj (·), s)− 〈�G〉Q)

+ (∂2�G(zj (·), s)− 〈∂2�G〉Q
)(
F
(
zi(·), s

)− 〈F 〉Q)]
× 2

[
1

N

∑
1�i�N

(
∂F
(
zi(·), s

))(
∂�G(zi(·), s))])ds

+ σ 2γ

t∫
t ′

[
1

N2

∑
1�i,j�N

(
∂F
(
zi(·), s

))(
∂�G(zj (·), s))]ds +MN(t)+ EN(t).

The error term is

∣∣EN(t)∣∣� C(F,G)
1

N

N∑
i=1

t∫
t ′

(√
N
∣∣σ 2
N,i(s)− σ 2

∣∣)ds + 1

N2

∑
1�i,j�N

t∫
t ′

∣∣Nki,jN (s)− γ σ 2
∣∣ds, (4.9)

whereC(F,G) is a constant depending on the supremum overΩ of the functionsF , ∂F , ∂2F and the analogu
values forG. More preciselyEN(t)=

∫ t
t ′ eN(s) ds with

lim sup
N→∞

E
[
E2(t)

]
� TE

[ T∫
0

e2
N(s) ds

]
(4.10)

by Schwarz inequality for the time integral. The latter bound goes to zero asN →∞ from formula (4.9) plus
Assumption 1, Eqs. (2.9), (2.10), and once more by Schwarz applied to the average overN .
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Let F =G= a(ω)g(ω(t)) with g(x)= exp(iαx). If we denoteuN(t)=E|(G(ω, t), ξN )|2 we derive

uN(t)− uN(t
′)=−α2σ 2

t∫
t ′
uN(s)− q

(
G(ω, s),G(ω, s)

)
ds + EN(t) (4.11)

where we denote, for simplicity,

q(s)= q
(
G(ω, s),G(ω, s)

) = ∫
Ω

G(ω, s)�G(ω, s) dQ(ω)

+ γ

(∫
Ω

G(ω, s) dQ(ω)

∫
Ω

�G(ω, s) dQ(ω)
)

� 2
(

sup
x̄∈Rm+1

∣∣g(x̄)∣∣)2.
We differentiate, solve the ODE and obtain

uN(t)= uN(t
′)exp

(−α2σ 2(t − t ′)
)+ α2σ 2

t∫
t ′
q(s)exp

(−α2σ 2(t − s)
)
ds

+
t∫

t ′
eN(s)exp

(−α2σ 2(t − s)
)
ds. (4.12)

This shows that

lim sup
N→∞

uN(t)� lim sup
N→∞

uN(t
′)+ α2σ 2T cm(g)= c(g,m− 1, T )+ α2σ 2T cm(g), (4.13)

where we denoted 2(sup̄x∈Rm+1 |g(x̄)|)2 by cm(g).
Since lim supN→∞ uN(t

′) � c(g,m − 1, T ) by the induction hypothesis, relation (4.12) proves the tightn
of {(G(ω, t), ξN )}N in the special caseg(x) = exp(iαx). Let g(x) be a function in the Schwartz space and
g(x)= ∫

R
ĝ(α)exp(iαx) dα whereĝ(α) ∈ S(C) as well. Before passing to the limit asN →∞ the random fields

ξN are finite random measures onΩ . The integration over the real line ofα can be viewed as the limit of finit
Riemann sums converging in the uniform norm onCb(Ω), since, for a finiteN , the random fieldsξN are finite
measures onΩ . We can write(

G(ω, t), ξN
)= ∫

R

(
Gα(ω, t), ξ

N
)
ĝ(α) dα.

The sequence will be tight if lim supN→∞E|(G(ω, t), ξN )|2 <∞. We calculate

E
∣∣(G(ω, t), ξN )∣∣2=E

∣∣∣∣ ∫
R

(
Gα(ω, t), ξ

N
)
ĝ(α) dα

∣∣∣∣2 �
∫
R

E
∣∣(Gα(ω, t), ξ

N
)∣∣2ĝ2(α) dα.

Then, according to Eq. (4.13),

lim sup
N→∞

E
∣∣(G(ω, t), ξN )∣∣2 �

∫
R

(
c(g,m− 1, T )+ α2σ 2T cm(g)

)
ĝ2(α) dα � c(g,m,T ).

The very last step is to consider a general functionG which will be a finite sum of cylinder functions. The bou
we obtain will depend on the number of terms inG, determined exclusively by the test functiong and the endpoin
T of the time interval. ✷
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Proposition 6.For any pairF,G ∈ (E ∪ S)(Ω) as in Proposition5, the families of processes{(F (ω, ·), ξN )}N>0

and {(G(ω, ·), ξN )}N>0 defined fort � t ′ (as in formula(2.4)) are tight and any pair of limit points, denoted b
Z(F(ω, ·)) andZ(G(ω, ·)) respectively, satisfy the inductive SPDE(3.4)with correlation form(4.2).

Proof. Them= 0 andt = 0 case is the classic central limit theorem. At timet = t ′ the functionals(G(ω, t ′), ξN)
are uniformly square integrable inN either by the induction hypothesis or directly from Proposition 5.
differences(G(ω, t), ξN )− (G(ω, s), ξN ) will be treated analogously with (4.8).

(
G(ω, t), ξN

)− (G(ω, s), ξN )= 1

2
√
N

t∫
s

∑
1�j�N

(
σ 2
N,j (u)∂

2G
(
zj (·), u

)− σ 2〈∂2G(ω,u)
〉
Q

)

+ 1√
N

t∫
s

∑
1�j�N

∂G
(
zj (·), u

)
dzj (u) (4.14)

which can be written as

(
G(ω, t), ξN

)− (G(ω, s), ξN )= σ 2

2
√
N

t∫
s

∑
1�j�N

(
∂2G

(
zj (·), u

)− 〈∂2G(ω,u)
〉
Q

)

+ 1√
N

t∫
s

∑
1�j�N

∂2G
(
zj (·), u

)
dzj (u)+

t∫
s

eN (G,u) du (4.15)

with error term less than (4.9). We compute the square of the expectation of the difference. The right-ha
terms behave as follows

lim sup
N→∞

E

∣∣∣∣∣ 1√
N

t∫
s

∑
1�j�N

(
∂2G

(
zj (·), u

)− 〈∂2G(ω,u)
〉
Q

)
du

∣∣∣∣∣
2

�
t∫

s

lim sup
N→∞

E
∣∣(∂2G(ω,u), ξN

)∣∣2 du� (t − s)C(∂2G)

according to Proposition 5 (we recall thatC(∂2G) did not depend on any particular timet). The martingale term
will satisfy a similar inequality due to Lemma A.1, Eq. (A.2). We use the fact that

(
1√
N

t∫
s

∑
1�j�N

∂G
(
zj (·), u

)
dzj (u)

)2

− 1

N

t∫
s

∑
1�j�N

(
∂G
(
zj (·), u

))2
σ 2
N,i(u) du

− 1

N2

t∫
s

∑
1�i �=j�N

(
∂G
(
zi(·), u

))(
∂G
(
zj (·), u

))
(NkNi,j )(u) du (4.16)

is a martingale. We can substituteσ 2
N,i(u) with σ 2 andNkNi,j (u) by γ σ 2 due to (4.9) and (4.10). In the limit a

N →∞, the law of large numbers (Proposition 5) yields a quadratic variation equal to exactlyσ 2(∂F, ∂G).
ξ
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We have shown, based on Proposition 5, that for anyF,G ∈ C(Ω) we can consider a weak limit of(F, ξN ) and
(G, ξN ) denoted byZ(F) andZ(G), respectively. Formulas (4.15) and (4.16) imply thatZ(G(ω, t)) satisfies the
inductive SPDE:

Z
(
G(ω, t)

)−Z
(
G(ω, t ′)

)= σ 2

2

t∫
t ′
Z
(
∂2G(ω, s)

)
ds + σ

t∫
t ′

√
q̌
(
∂G(s), ∂G(s)

)
dβ(s) (4.17)

with q(F,G) defined in (4.2). The calculations involved in determining the covariance are direct conseque
Proposition 4. The analogous formula holds forF and the product̄u(F,G)= Z(F(ω, t))Z(G(ω, t)) satisfies the
inductive property that

ū
(
F(ω, t),G(ω, t)

)− ū
(
F(ω, t ′),G(ω, t ′)

)
− σ 2

2

t∫
t ′

(
ū
(
∂2F(ω, s),G(ω, s)

)+ ū
(
F(ω, s), ∂2G(ω, s)

)+ 2q̌
(
∂F (ω, s), ∂G(ω, s)

))
ds (4.18)

is an(P,Ft )-martingale. Taking the expected value, Eq. (4.18) becomes (3.2).✷
Proof of Theorem 2. Proposition 5 proves that the fluctuation random fields{ξN }N>0 are tight in the weak*
topology over the space of special functions(E ∪ S)(Ω). Proposition 6 proves the conclusion of the theorem
functions in the special class(E ∪S)(Ω) based on Theorem 4 in Section 3 after identifying the covariance fun
from Proposition 4. ✷

5. Extension toC1
b (Ω)

This section proves Theorem 3 via Proposition 10. Suppose we can figure out the covariance of the
random field in the central limit theorem for cylinder functions. If the covariance is continuous in some no
C1
b (Ω), then we can define directly the limit as a Gaussian on the completion of the new space. Identifying t

in Theorem 2 does not provide us with a class of functions for which the central limit theorem takes place
for Schwartz or exponential class cylinder functions, which may be a rather poor space. However, Propo
together with the density result from the next theorem overcome this difficulty and enable us to prove The
in an infinite dimensional setting using the test function spaceC1

b (Ω).
The proof of Proposition 9 requires that we evaluate theL2 norm of the renormalized differences (amplified

a factor of
√
N ) between the martingales{zi(·)}1�i�N and the limiting Brownian motions distributed according

Q from the decomposition Lemma 2, which is the missing link between Theorem 5 and Proposition 9 – see
comment related to (2.15). It seems hard to connect the supremum norm of the path spaceΩ and the expectation o
its square except by assuming that the error terms are essentially martingales with quadratic variation of(1/N)
and using Doob’s inequality with an exponential bound guaranteed by Proposition 8. Proposition 10, which
the proof of Theorem 3 is based on Proposition 9.

Theorem 5.LetG ∈ C1
b (Ω). If K is a compact withK ⊆Ω , then for anyε > 0 there exists a functionGS

ε ∈ S(Ω)

such that‖GS
ε ‖C1

b
� 2‖G‖C1

b
and

sup
ω∈K

{(∣∣G(ω)−GS
ε (ω)

∣∣+ ∥∥∇·G(ω)−∇·GS
ε (ω)

∥∥)}< ε (5.1)

The proof of Theorem 5 is in Appendix A.

Proposition 7.The spaceS(Ω) is dense inH(Ω,Q).
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Proof. Q is a Brownian motion hence it is supported on the countable union of compacts of the formKα =Ω0 ∩
B(0, α), whereB(0, α) is the ball of radiusα centered atω = 0 andα > 0 converges to∞ meanwhileΩ0 is the
set of Hölder continuous pathsω ∈Ω with exponent̃ν ∈ (0, 1

2). These sets are equicontinuous and bounded in
supremum norm, which implies they are compact by Arzelà’s theorem. The functionsG ∈C1

b (Ω) have finite‖ ·‖H
norm. For everyG the measures(|G(ω)|2+ ‖∇·G(ω)‖2) dQ(ω) are absolutely continuous with respect toQ and∫

Ω0

∣∣G(ω)∣∣2+ ∥∥∇·G(ω)∥∥2
dQ(ω)=

∫
Ω

∣∣G(ω)∣∣2+ ∥∥∇·G(ω)∥∥2
dQ(ω),

hence

lim
α→∞

∫
Kc
α

∣∣G(ω)∣∣2+ ∥∥∇·G(ω)∥∥2
dQ(ω)= 0

by dominated convergence. This implies that there is a compactKα0 with the property∫
Kc
α0

dQ(ω) < ε and
∫
Kc
α0

∣∣G(ω)∣∣2+ ∥∥∇·G(ω)∥∥2
dQ(ω) < ε.

Finally, for this compact we pick aGS
ε ∈ S(Ω) such that (5.1) and‖GS

ε ‖C1
b
� 2‖G‖C1

b
are satisfied. This and th

Schwartz inequality imply that

‖G−GS
ε ‖2

H �
∫
Kα0

[∣∣G(ω)−GS
ε (ω)

∣∣2+ ∥∥∇·(G(ω)−GS
ε (ω)

)∥∥2]
dQ(ω)

+ 2ε+ 2‖GS
ε ‖2

C1
b

∫
Kc
α0

dQ(ω)�
(
3+ 8‖G‖2

C1
b

)
ε.

The claim is proven. ✷
Lemma 1 is an independent result valid in any inner product space. It is not essential that the space be

(hence Hilbert). We shall use the standard notation‖ · ‖ for the norm. This should not be confused with t
supremum norm onΩ the path space of continuous functions. The heuristic argument relating it to our
is that the inner product is analogous to the quadratic variation.

Lemma 1. Let X̃ be an inner product space with inner product denoted by(· , ·). The associated norm will b
denoted by‖ · ‖. For any positive integerN ∈ Z+ we shall consider a family of vectors{vNi }1�i�N with the
property that there exist two numbersσ > 0 andγ >−1, independent ofN such that

lim
N→∞

√
N max

1�i�N

∣∣(vNi , vNi )− σ 2
∣∣= 0 (5.2)

and

lim
N→∞ max

1�i,j�N

∣∣N(vNi , vNj )− γ σ 2
∣∣= 0. (5.3)

Then, forN sufficiently large, the matrixVN with elementsV N
ij = (vNi , v

N
j ) is positive definite and there exists

orthonormal system ofN vectors{wN
i }1�i�N and a constantC, independent ofN , such that

max
1�i�N

∥∥vNi − σwN
i

∥∥2 � C

N
.

Proof. The proof of Lemma 1 is in Appendix A.
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Lemma 2. Assume that conditions(2.13) and (2.14) are met. Then, for anyN ∈ Z+ there existN (P,Ft )-
martingales{yNi (·)}1�i�N such that{σ−1yNi (·)}1�i�N is a standardN -dimensional Brownian motion wit
the property that the renormalized differencesdNi (·) =

√
N(zNi (·) − yNi (·)) are continuous square-integrab

martingales with quadratic variations〈dNi , dNi 〉(·) for which there exists a constantC, independent ofN , the
time t ∈ [0, T ] and the indices1� i �N , such that

0� d

dt

〈
dNi , d

N
i

〉
(t)� C (5.4)

P -almost surely.

Remark. The martingale representation theorem implies that the quadratic variation process of a square-in
martingale relative to the filtration{Ft }t�0 is absolutely continuousP -almost surely with respect to the Lebesg
measure.

Proof of Lemma 2. The martingale representation theorem (in [8], p. 84) and the fact that the cova
matrix of the martingales{zNi (·)}1�i�N is positive definite (Lemma 1) ensure the existence of a systemN
independent Brownian motionsβ1(·), . . . , βN(·) on (W,P,F), adapted to the original filtration{Ft }t�0, and a set
of progressively measurable square integrable system of functionsψN

il (t), with 1� l �N and 1� i �N such that,
P -almost surely,

zNi (t)= zNi (0)+
N∑
l=1

t∫
0

ψN
il (s) dβl(s).

LetHN be the subspace generated by the martingales{βi(·)}1�i�N in L2(Ω,P ), that is, the completion unde
theL2(W,P ) norm of the martingales of the form

M(t)=M(0)+
N∑
l=1

t∫
0

rl(s) dβl(s) (5.5)

with rl(s), 1� l �N , a family of bounded progressively measurable functions with respect to{Ft }t�0. LetM(·)
be an element fromHN . M(t) can be written in terms of square integrable functionsrl(s) as in (5.5). For every
u ∈ [0, T ] we shall define the mappingSu fromHN to R

N by

Su
(
M(·))= (r1(u), . . . , rN (u)).

If M1(·) andM2(·) are two elements ofHN , the quadratic variation will be the time integral of the Euclid
inner product onRN for the vectorsSu(M1(·)) andSu(M2(·)). The martingale representation theorem imp
that any square-integrable martingale will have an absolutely continuous quadratic variationP -almost surely. As a
consequence, we can evaluate the derivative of the quadratic variation process for any martingale inHN directly
from the Euclidian norm of the vectorSu(M(·)). Let N−1/2dNi (·), for 1 � i � N be the differences betwee
the original martingales and the orthonormal set of martingales produced by Lemma 1. All the transform
involved in the procedure are progressively measurable. We always can start our orthonormal set of ma
and the original set of martingales from the same points so that the differences actually start at zero. Assu
(2.13) and (2.14) imply that the conditions of Lemma 1 are satisfied with nonrandom bounds independentN

and the indices 1� i �N for all {Su(zNi (·))}. This implies that the difference processes{dNi (·)}1�i�N will satisfy
the property

0� d

du

〈
dNi , d

N
i

〉
(u)� C (5.6)

P -almost surely for some universal constantC. This proves the lemma.✷
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Proposition 8. Let {mN(·)}N be a family of continuous square integrable martingales with respec
(P, {Ft�0}t�0) starting from a sequence of uniformly bounded valuesmN(0). For anyN ∈ Z+ there exist random
functionsaN(t) and a constantK > 0 independent fromN , such that the cross-variation process ofmN(·) satisfies

〈
mN,mN

〉
(t)=

t∫
0

aN(s) ds

with |aN(t)|�K P -almost surely. Then, for anyt > 0 andG ∈R,

lim sup
N→∞

E
[
exp

(
G
∣∣mN(t)

∣∣)]<∞.

Proof. Since exp(|z|) � exp(z)+ exp(−z) it is enough to check what happens for exp(GmN(t)) with G ∈ R. We
apply the Itô formula to the functionz→ exp(Gz) and obtain

exp
(
GmN(t)

)− exp
(
GmN(0)

)− G2

2

t∫
0

exp
(
GmN(s)

)
aN(s) ds

is a martingale with respect to the same filtration andP . The expected value shows that if we denotewN(t) =
E[exp(GmN(t))] then

wN(t)�wN(0)+ KG2

2

t∫
0

wN(s) ds

which, in its turn, proves thatwN(t) � wN(0)exp(KG2t/2) for all 0 � t � T . SincewN(0) and t are bounded
quantities we are done.✷
Remark. Proposition 8 is much stronger than what we need, that is ther-integrability ofmN(t) for somer � 4.

Proposition 9.There exists a constantC depending only onT such that for anyG ∈ C1
b (Ω)

lim sup
N→∞

E
[∣∣(G,ξN )∣∣2]� C‖G‖2

H. (5.7)

Proof. Let yNi (·), 1� i �N , be the independent Brownian motions from Lemma 2.

1√
N

N∑
1

(
G
(
zNi (·)

)− 〈G〉Q)= 1√
N

N∑
1

(
G
(
zNi (·)

)−G
(
yNi (·)

))+ 1√
N

N∑
1

(
G
(
yNi (·)

)− 〈G〉Q).
Let’s denotedNi (·)=

√
N(zNi (·)− yNi (·)). We decompose the first term into

(I)= 1√
N

(
N∑
1

G
(
zNi (·)

)−G
(
yNi (·)

)− 1√
N
∇GdNi (·)

(
yNi (·)

))
and

(II )= 1

N

N∑
∇dNi (·)G

(
yNi (·)

)
.

1
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(5.8)

n upper
e

Again, we look at the two terms in this formula separately. We recall (2.1) from Definition 1 and see that
write an upper bound for|(I)| as

1√
N

N∑
1

∣∣∣∣G(zNi (·))−G
(
yNi (·)

)− 1√
N
∇GdNi (·)

(
yNi (·)

)∣∣∣∣�√
Nc

(
G,

1√
N

)(
1

N

N∑
1

∥∥dNi (·)∥∥2

)
.

This quantity goes to zero asN →∞ as soon as the martingalesdNi (·) have a finite second moment. This
guaranteed by Proposition 8 (the uniformity inN andj ) and Doob’s maximal inequality regarding anyLr norm
of martingales (r > 1) for all 1� i �N :(

E
[∣∣∣ sup

0�t�T

di(t)

∣∣∣r])1/r
� r

r − 1

(
E
[∣∣di(T )∣∣r])1/r . (5.8)

The term

E
[∣∣(II )∣∣2]=E

[
1

N

N∑
1

∇√N(zNi (·)−yNi (·))G(y
N
i (·))

‖√N(zNi (·)− yNi (·))‖
· ∥∥√N(zNi (·)− yNi (·)

)∥∥]2

can be estimated if we expand the square after taking the supremum norm for the linear operators∇·G(yNi (·)) (as
in Definition 1)

E

[
1

N

N∑
1

∥∥∇·G(yi(·))∥∥∥∥dNi (·)∥∥
]2

�E

[
1

N2

N∑
1

(∥∥∇·G(yi(·))∥∥∥∥dNi (·)∥∥)2
]

+ 1

N2

∑
1�i �=j�N

E
[(∥∥∇·G(yi(·))∥∥∥∥∇·G(yj (·))∥∥)(∥∥dNi (·)∥∥∥∥dNj (·)∥∥)]. (5.9)

The first term can be bounded by using the supremumc1(G) of all ‖∇·G(ω(·))‖ (Definition 1). The bound is

c1(G)
2 1

N2

∑
1�i �=j�N

E
[(∥∥dNi (·)∥∥2)]=O

(
1

N

)
.

The second term can be bounded in terms of theL2 norm of‖∇·G(yi(·))‖ due to the crucial fact thatyi(·) and
yj (·) are independent Brownian motions by construction. The upper bound is obtained by Schwarz’s inequ

1

N2

∑
1�i �=j�N

(
E
[(∥∥∇·G(yi(·))∥∥2∥∥∇·G(yj (·))∥∥2)])1/2(

E
[(∥∥dNi (·)∥∥∥∥dNj (·)∥∥)2])1/2

� ‖G‖2
H

1

N2

∑
1�i �=j�N

DiDj ,

whereDi = (E[‖di(·)‖4])1/4 for all 1 � i � N . These norms are bounded. We use again Doob’s inequality
and Proposition 8 to ensure uniformity in bothN andi. Finally

lim sup
N→∞

E

[
1√
N

N∑
1

(
G
(
yNi (·)− 〈G〉Q

))]2

�E
[
G2− (E[G])2]� 2‖G‖2

H

due to the central limit theorem variance for independent random variables. The last two bounds provide a
bound of the formC · ‖G‖2

H with the constant independent fromN andG. This concludes the proof of th
proposition. ✷
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Proposition 10.Let {ξN }N>0 be a family of random fields onC1
b (Ω) defined in(2.11)andq(· , ·) ∈ B(H(Ω,Q))

be the bilinear form(2.12). Then, for any pairFS,GS ∈ S(Ω)

(i) (F S, ξN) and (GS, ξN) converge weakly to mean zero normal random variables with covarianceq(FS −
〈FS 〉Q,GS − 〈GS〉Q).

(ii) lim N→∞E[(F S, ξN )(GS, ξN )] = q(FS − 〈FS〉Q,GS − 〈GS〉Q).
(iii) For anyG ∈ C1

b (Ω), the sequence{(G, ξN)}N>0 is tight, and ifF,G ∈ C1
b (Ω) then the random variable

(F, ξN ), (G, ξN) converge weakly to centered Gaussians with covarianceq(F − 〈F 〉Q,G − 〈G〉Q). As a
consequence, the unique limitξ of the sequence{ξN }N>0 is a centered Gaussian random field onH(Ω,Q) with
the same covariance.

Proof. Proposition 6 and Theorem 4 show that the sequence{(GS, ξN)}N>0 converges weakly to a centered norm
random variableZ(GS). Moreover,Z(GS) has variance equal toq(GS − 〈GS〉Q,GS − 〈GS〉Q). This proves (i)
and (ii).

Let l ∈ Z+. Theorem 5 and Proposition 7 indicate that for anyG ∈ C1
b (Ω) we can choose the appropriateGS

ε

for ε = 1/l, which we shall denote byGS
l , such that∥∥G−GS

l

∥∥2
H � 1

l
. (5.10)

Eq. (5.10) implies that liml→∞‖GS
l −G‖H = 0, which also guarantees thatGS

l are uniformly square integrabl
hence the sequence of centered Gaussian random variables{Z(GS

l )}l∈Z+ is tight. LetZS(G) be a limit point. This
has to be a centered Gaussian (we can look at the characteristic function of the Gaussians) and its varian
(see [15])

σ 2(ZS(G)
)= lim

l→∞q
(
GS
l −

〈
GS
l

〉
Q
,GS

l −
〈
GS
l

〉
Q

)= q
(
G− 〈G〉Q,G− 〈G〉Q

)
. (5.11)

We already know from (5.7) that{(G, ξN)}N>0 is tight as well. LetZ(G) be a limit point of{(G, ξN)}N>0. We
can restrict ourselves without loss of generality to subsequences of{l} and{N} such thatZ(GS

l )⇒ ZS(G) and
(G, ξN )⇒ Z(G).

Forα ∈R we consider∣∣E[e−iαZS(G)] −E[e−iαZ(G)]∣∣ (5.12)

�
∣∣E[e−iαZS(G)] −E[e−iαZ(GS

l )]∣∣+ ∣∣E[e−iαZ(GS
l )] −E[e−iα(GS

l ,ξ
N )]∣∣

+ ∣∣E[e−iα(GS
l ,ξ

N )] −E[e−iα(G,ξN)]∣∣+ ∣∣E[e−iα(G,ξN)] −E[e−iαZ(G)]∣∣. (5.13)

The third term in (5.13) has the upper bounds∣∣E[e−iα(GS
l ,ξ

N )
]−E

[
e−iα(G,ξN)]∣∣

�E
[∣∣e−iα(G−GS

l ,ξ
N ) − 1

∣∣]
� 2E

[
sin

(
(G−GS

l , ξ
N)

2

)]
�E

[∣∣(G−GS
l , ξ

N
)∣∣]�E

[∣∣(G−GS
l , ξ

N
)∣∣2]1/2.

If we letN →∞ we obtain that (5.12) is less than∣∣E[e−iαZS(G)
]−E

[
e−iαZ(GS

l )
]∣∣+√C ∥∥G−GS

l

∥∥
H,

whereC is the constant in (5.7). We obtain thatE[e−iαZS(G)] = E[e−iαZ(G)] after l→∞. The left hand term is
the Fourier transform of a centered Gaussian, which proves that the right hand side is a centered Gaussia
for any limit point of(G, ξN )N>0 and anyG ∈C1(Ω). On the other hand, we have shown thatZ(G) has the same
b
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distribution asZS(G), a weak limit of GaussiansZ(GS
l ) asl→∞, which implies that the variance of the limit

the limit of the variances (5.11). We can repeat this reasoning forG= c1G1+ c2G2 with arbitrary constantsc1, c2
andG1,G2 ∈ C1

b (Ω) and conclude the proof by polarization.✷
Proof of Theorem 3. We only have to apply Proposition 10 to the random fields{ξN }N>0 from Theorem 2 from
Section 4. ✷
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Appendix A

Proof of Theorem 1. In this case simple product functions are sufficient to prove the theorem. We may c
them inS(Ω) without any loss of generality. We shall proceed by induction on the numberm of time marginals
present inG. For m = 1 the martingale part vanishes asN →∞ in Itô formula. The integrand of thedt term
is uniformly bounded by the supremum norm of∂2G. The error terms have bounds of order inferior toN−1, as
prescribed by (4.9). This implies the tightness. Any limit point will be deterministic, since the martingal
vanishes asN →∞ and we can easily check that it must verify the same weak PDE (the heat equati
E[G(ω, t)]. The details of the proof of this type of result can be found, for example, in [11] in Chapter 4
also in [5]. The same reasoning applies when we perform the induction step overm, since we are allowed to sta
over from an arbitrary initial profile at timet ′ = tm−1. We can pass to functions ofCb(Ω) class due to the fact tha

lim sup
N→∞

E

[∣∣∣∣∣ 1

N

N∑
i=1

(
G
(
zNi (·)

)− 〈G〉Q)
∣∣∣∣∣
2]

� 2
(

sup
ω∈Ω

∣∣G(ω)∣∣)2
. (A.1)

This concludes the proof.✷
Lemma A.1.For anyG ∈ C(Ω) as in(2.4)

lim
N→∞E

[
sup

t ′�t�T

∣∣∣∣∣ 1

N

N∑
i=1

(
G
(
zNi , t

))− 〈G(ω, t)〉
Q

)∣∣∣∣∣
2]
= 0. (A.2)

Proof. Because of (A.1), it is sufficient to prove the lemma for cylinder functionsG ∈ Scyl(Ω). We write
G(ω(·)) = g(ω(t0), . . . ,ω(tm)) with g in the Schwartz class onRm+1 and lettm be denoted byt and tm−1 by
t ′ for simplification.

With the convention of notation from (2.4), we first establish (A.2) for a fixed timet ∈ [t ′, T ]. This is a
consequence of the inductive proof from Theorem 1. Since the test function is uniformly bounded and the q
variation of the martingale part vanishes asN →∞ we can adapt the same argument by squaring the differe
and show (A.2) for every fixed time. In order to prove uniformity, assume that there is a sequence of times s
the absolute value in (A.2) exceeds a constantc > 0. Since the interval[0, T ] is compact, there is a subsequence
times converging to somet ′′ ∈ [0, T ]. However, the functionals are continuous in time att ′′ andG(ω, t) approaches
the value att ′′ according to the estimate
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lim sup
N→∞

E

[∣∣∣∣∣ 1

N

N∑
i=1

(
G
(
zNi , t

))− 〈G(ω, t)〉
Q

)− 1

N

N∑
i=1

(
G
(
zNi , t

′′))− 〈G(ω, t ′′)〉
Q

)∣∣∣∣∣
2]

� 2 lim sup
N→∞

{
sup
x̄

|∂G|2E
[

1

N

N∑
i=1

∣∣zNi (t)− zNi (t
′′)
∣∣2]+ 2T σ 2c1(G)|t − t ′′|

}
� c2(G,T )σ

2|t − t ′′|.
The error is independent ofN and of the order of magnitude oft − t ′′. The error obtained is arbitrarily small,
contradiction with the fact that the absolute value in (A.2) exceeds a constantc > 0. This concludes the proof.✷
Proof of Theorem 5. Let m ∈ Z+. The mappingTm :Ω→Ω is defined for eachω as the new continuous pa
obtained by linear interpolation between the valuesω(ti), for all 0 � i � m, at the pointsti = iT /m. It follows
that Tm is linear and continuous with‖Tm‖ � 1 in the supremum norm. SinceTm is linear and continuous it i
differentiable and∇ηTmω = Tmη. We shall define the finite-dimensional norm onω ∈Ω as

‖ω‖m = max
0�i�m

∣∣ω(ti )∣∣. (A.3)

Any compact set inΩ is uniformly bounded and equicontinuous by Arzelà–Ascoli theorem as in [3]. We
assume that|ω(t)|�M for all t ∈ [0, T ] and allω ∈K. The fact thatG ∈C1

b (Ω) (Definition 1) andK is a compact
in Ω implies that for anyε > 0 there exists aδ = δ(ε) such that∣∣G(ω)−G(ω′)

∣∣+ ∥∥∇·G(ω)−∇·G(ω′)∥∥< ε

if ω′(·) andω(·) are inK and sup0�t�T |ω(t)− ω′(t)|< 3δ. We are free to chooseδ < min(ε/2, ε/‖G‖C1
b
). For

anyδ > 0 there exists anm ∈ Z+ such that

|t − s|< 1

m
⇒ ∣∣ω(t)−ω(s)

∣∣< δ (A.4)

uniformly in ω ∈K.
For ε > 0 we shall choose a coveringK ⊆⋃ω∈K B(ω, δ) of the compactK with balls of radiusδ = δ(ε) in

the uniform norm topology ofΩ and extract a finite subcovering with centers atωj (·), j ∈ Jε, whereJε is a finite
set depending only onK andε. For everyx̄ = (x0, x1, . . . , xm) ∈ Rm+1 we determine the pathωx̄ as the linear
interpolation between the values (for 0� i � m), that isωx̄(ti ) = xi . Let Kx

δ,j = {x̄: ‖ωx̄ − ωj‖m � δ} be the

Rm+1-cube of size 2δ andKx
δ =

⋃
j∈Jε K

x
δ,j . We shall construct a functiongε(x̄) onRm+1 by piecing together the

following mappings. Form as in (A.4) andj ∈ Jε, let

gm,j (x̄)=G(ωj )+∇Tm(ωx̄−ωj )G(ωj ) (A.5)

on eachRm+1-cubeKx
δ,j and zero everywhere else. Then, we define

gε(x̄)= gm,j (x̄) if ‖ωx̄ −ωj‖m = min
j ′∈Jε

‖ωx̄ −ωj ′ ‖m (A.6)

with the understanding that if a point falls on the hypersurface where two or more indices achieve the ma
we select the smaller indexj ′. This fact will not affect the construction due to the mollification we do next.
functiongε(x̄) is piecewise smooth and uniformly bounded by∣∣gm,j (x̄)∣∣� sup

ω∈Ω
∣∣G(ω)∣∣+ sup

ω∈Ω
∥∥∇·G(ω)∥∥δ � ‖G‖C1

b
.

The gradient ofgε(x̄) can only be one of the linear mappings onRm+1 from the finite family of bounded linea
operators∇Tm(ωx̄−ωj )G(ωj ). They are naturally bounded in the supremum norm of continuous linear operat
Rm+1 by supω∈Ω ‖∇·G(ω)‖. One can write that

sup
m+1

(∣∣gε(x̄)∣∣+ ∥∥∇gε(x̄)∥∥)� sup
∣∣G(ω)∣∣+ 2

∥∥∇·G(ω)∥∥ (A.7)

x̄∈R ω∈Ω
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and
wherever the gradient is defined and note thatsupp(gε(x̄)) is a compact included inKx
δ ⊆ [−M − 1,M + 1]m+1

in R
m+1.

For an arbitraryρ > 0 we can construct a regularized version ofgε(x̄) by convolution withφm,ρ(x̄) =
ρ−m−1φ(ρ−1‖(x̄)‖Rm+1) whereφ(x)= k0 exp(1/(x2− 1)) if |x|< 1 and identically zero outside the unit interv
and‖ · ‖Rm+1 is the Euclidian norm onRm+1. The constantk0 normalizesφ(x) so that the integral equals one. L

gSε (x̄)= (gε ∗ φm,ρ)(x̄). (A.8)

We chooseρ = ρ(ε) < δ/2 to make sure that the functiongε(x̄) vanishes outside the compactKx
2δ ⊆ Rm+1. We

shall use the observation that the convolution withφm,ρ is a contraction in the following sense. Ifg(x̄) is a piecewise
smooth function onRm+1 andgS(x̄)= (g ∗ φm,ρ)(x̄) then, for any pair of points̄x ′ andx̄ ′′ from Rm+1,∣∣gS(x̄ ′)− gS(x̄ ′′)

∣∣� sup
ȳ ′∈B(x̄ ′,ρ),ȳ ′′∈B(x̄ ′′,ρ)

∣∣g(ȳ ′)− g(ȳ ′′)
∣∣ (A.9)

and ∥∥∇gS(x̄ ′)−∇gS(x̄ ′′)∥∥� sup
ȳ ′∈B(x̄ ′,ρ), ȳ ′′∈B(x̄ ′′,ρ)

∥∥∇g(ȳ ′)−∇g(ȳ ′′)∥∥. (A.10)

This property equally allows us to estimate both∣∣gS(x̄)∣∣� sup
ȳ∈B(x̄,ρ)

∣∣g(ȳ)∣∣, ∥∥∇gS(x̄)∥∥� sup
ȳ∈B(x̄,ρ)

∥∥∇g(ȳ)∥∥.
We define

G̃S
ε (ω)= gSε

(
ω(t0), . . . ,ω(tm)

)
. (A.11)

The functiongSε is of Schwartz class onRm+1 but not of cylinder type. Any such function can be approxima
uniformly including its derivatives on any compact by a linear combination of cylinder-type functions of Sch
class. We shall show this fact at the end of the proof. The norm‖ω‖m determines a family of setsBm(ωj , δ) =
{ω: ‖ω−ωj‖m � δ} (not proper balls inΩ). We have to estimate the differences

sup
ω∈K

∣∣G̃S
ε (ω)−G(ω)

∣∣� max
j∈Jδ

{
sup

ω∈Bm(ωj ,δ)∩K

∣∣G̃S
ε (ω)− G̃S

ε (ωj )
∣∣+ ∣∣G̃S

ε (ωj )−G(ωj )
∣∣

+ sup
ω∈Bm(ωj ,δ)∩K

∣∣G(ωj )−G(ω)
∣∣}

and

sup
ω∈K

∥∥∇·G̃S
ε (ω)−∇·G(ω)

∥∥� max
j∈Jδ

{
sup

ω∈Bm(ωj ,δ)∩K
∥∥∇·G̃S

ε (ω)−∇·G(ωj )
∥∥+ ∥∥∇·G̃S

ε (ωj )−∇·G(ωj )
∥∥

+ sup
ω∈Bm(ωj ,δ)∩K

∥∥∇·G(ωj )−∇·G(ω)∥∥}
where we always choose to placeω in the ballBm(ωj , δ) for which the center is the closest element fromω among
the finite collection of pointsωj ∈ Jε. The uniform continuity onK guarantees that the third terms on the right-h
side of both inequalities are of orderε. To estimate the differences|G̃S

ε (ωj )−G(ωj)| and‖∇·G̃S
ε (ωj )−∇·G(ωj )‖

we need to look at the values ofgε(x̄) and∇gε(x̄) in a neighborhoodKx
δ,j ′ , j

′ ∈ Jε, and compare to the values atωj .

The values ofgSε (ωj ) are the result of convolution withφm,ρ of values ofgε for somex̄ with ‖ωx̄ − ωj‖m < ρ.
The worst case scenario is that the value ofgε at x̄ is a value ofgm,j ′ on an adjacent ballKx

δ,j ′ to Kx
δ,j (this fact

grants that‖ωj −ωj ′ ‖m < 2δ < 3δ) and then|G̃S
ε (ωj )−G(ωj )|� |gm,j ′(x̄)−G(ωj ′)|+ |G(ωj ′)−G(ωj )| which

is of orderε by construction. The same is valid for‖∇·G̃S
ε (ωj )−∇·G(ωj )‖, bounded above by

sup
x̄∈Kx ′

∥∥∇·gm,j ′ (x̄)−∇·G(ωj ′)∥∥+ ∥∥∇·G(ωj ′ )−∇·G(ωj )∥∥,

δ,j
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of orderε as well.
We need to estimate the first terms on the right-hand side of the inequalities.|G̃S

ε (ω) − G̃S
ε (ωj )| and

‖∇·G̃S
ε (ω) − ∇·G̃S

ε (ωj )‖ are bounded above by the supremum value of the differences|gε(x̄ ′) − gε(x̄
′′)| and

‖∇·gε(x̄ ′) − ∇·gε(x̄ ′′)‖, respectively, where‖ωx̄ ′ − ω‖m � ρ and‖ωx̄ ′′ − ωj‖m � ρ. Assume the value at̄x ′ is
given bygm,j ′ on a ballKx

δ,j ′ and the value at̄x ′′ is given bygm,j ′′ on a ballKx
δ,j ′′ . At this point we intercalate th

values of the functions atωj ′ , ωj andωj ′′ . The differences between values in the same domainKx
δ,l , for anyl ∈ Jε

are of orderε. We only have to compare the values atωj ′ andωj ′′ with ωj . The distance betweenωj ′′ andωj is
less thanδ+ ρ. First,

‖ωj ′′ −ωj‖m � sup
x̄∈Kx

δ,j ′′
‖ωj ′′ −ωx̄ ′′ ‖m + ‖ωx̄ ′′ −ωj‖m � δ+ ρ < 3δ

which implies that the error is of orderε. We know thatωj is the closest of allωl , with l ∈ Jε from ω.
Hence‖ω − ωj‖m � ‖ω − ωj ′ ‖m. In the same time‖ω − ωx̄ ′ ‖m � ρ and‖ωx̄ ′ − ωj ′ ‖m � δ. We conclude tha
‖ω − ωj ′ ‖m � δ + ρ which implies that‖ωj ′ − ωj‖m � 2δ + 2ρ < 3δ. The difference will be of orderε once
again. We obtained a functionGS

ε (ω)= gSε (ω(t0), . . . ,ω(tm)) wheregSε (x̄) ∈C∞0 (Rm+1) within distanceCε from
G inside the compactK in the uniform norm, whereC is independent fromG andK, and bounded by 2‖G‖C1

b
.

The numberm depends onε and the compactK.
We still have to prove that we can approximateG̃S

ε with a functionG ∈ S(Ω). For a givenε and a compactK,
the functiongSε (x̄) andm are fixed. The functiongSε has support included in the compact[−M − 1,M + 1]m+1⊆
(−M − 3,M + 3)m+1 ⊆ Rm+1. Let K ′ = [−M − 2,M + 2]m+1. It is known (for example from [10]) that fo
any r ∈ Z+, a functionf ∈ Cr(Rm+1) and all its derivatives can be approximated uniformly on any com
with polynomials inRm+1. The class of polynomials is of cylinder type, in the sense that it is the linear
of products of functions (in this case, polynomials of one variable) of the variablesx0, x1, . . . , xm. The problem
is that these functions are not of Schwartz class. The indicator function of the compactK ′ is the product of the
indicator functions of the interval[−M − 2,M+ 2], hence of cylinder type. The product of the indicator functio
with each polynomial will be of cylinder type. We can consider the convolution withφm,ρ(x̄), with ρ < 1

2. Let
ε′ be the accuracy of the approximation in the supremum norm. The functionφm,ρ(x̄) is of cylinder type as well
A consequence of this will be that the result of the convolution will be of classC∞0 (Rm+1), will be of cylinder
type (as the convolution of two cylinder type functions, that is for which the variables decouple in the conv
integral), and will stay within distanceε′ uniformly together with all the derivatives.

We chooseε′ = ε/(m+ 1) and lethε′(x̄) be the sum of cylinder functions with compact support approxima
gSε (x̄). The functionGS

ε (ω)= hε′(ω(t0), . . . ,ω(tm)) is in S(Ω) and|GS
ε (ω)− G̃S

ε (ω)|� ε′ < ε. We conclude the
proof by noticing that∥∥∇·GS

ε (ω)−∇·G̃S
ε (ω)

∥∥�
∑

0�i�m

sup
x̄∈Rm+1

∥∥∂xihε′(x̄)−∇xi gSε (x̄)∥∥� (m+ 1)ε′ = ε.

Proof of Lemma 1. We can re-write the matrixV N = (V N
ij ) as

VN
ii = σ 2+ cNi (σ )√

N
with max

1�i�N

∣∣cNi (σ )∣∣� cN(σ) (A.12)

and

VN
ij =

γ σ 2

N
+ cNij (γ )

N
with max

1�i,j�N

∣∣cNij (γ )∣∣� cN(γ ) (A.13)

where limN→∞(cN(σ )+ cN(γ ))= 0.
We first prove the positive definiteness. Letx̄ = (x1, x2, . . . , xN) be an arbitraryN -dimensional vector. If

S =∑1�i�N xi
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nd
t

s

nt

rm
(x̄,V N x̄)=
∑

1�i,j�N

VN
ij xixj =

∑
1�i�N

(
Viixi +

∑
j �=i

Vij xj

)
xi

=
∑

1�i�N

(
σ 2+ cNi (σ )√

N

)
x2
i +

∑
1�i,j�N,j �=i

(
γ σ 2

N
+ cNij (γ )

N

)
xjxi

= σ 2
( ∑

1�i�N

x2
i +

γ

N
(S − xi)xi

)
(A.14)

+
∑

1�i�N

cNi (σ )√
N

x2
i +

∑
1�i,j�N,i �=j

cNij (γ )

N
xjxi. (A.15)

We can bound (A.15) in absolute norm by

‖x̄‖2
[(

cN(σ)√
N

+ cN(γ )

N

)
+ cN(γ )

(
(
∑

1�i�N |xi |)2
N‖x̄‖2

)]
while this can be bounded above by Schwarz’s inequality

‖x̄‖2
[
cN(σ)√

N
+ cN(γ )

(
1+ 1

N

)]
∼ o(1). (A.16)

The main term (A.14) is zero if‖x‖ = 0, but otherwise it is equal to

σ 2
(

1− γ

N

)
‖x̄‖2+ γ σ 2

N
S2 = σ 2‖x̄‖2

((
1− γ

N

)
+ γ

S2

N‖x̄‖2

)
.

If γ � 0 a lower bound isσ 2‖x̄‖2(1− γ
N
) of order O(1) and if γ < 0 we can use Schwarz’s inequality again a

obtain the lower boundσ 2‖x̄‖2(1+ γ − γ
N
). This proves that(x̄,V N x̄) � σ 2‖x̄‖2C′ with C′ > 0 independen

of N . The only condition needed to ensure a lower bound uniformly inN is γ >−1.
We proceed to the proof of the existence of{wN

i }1�i�N . We first write{vNi }1�i�N in an orthonormal basi
{ei}1�i�N with the matrixR = (rkl) such thatvi = ∑

1�k�N rikek . With this notationV = RR∗ and since

RR∗ = (
√
V )2 and we have already shown thatV is positive definite, there exists a unitary matrixU = (ukl)

defined directly byU = (
√
V )−1R. We writeR =√VU . Let

wi = σ
∑

1�k�N

uikek. (A.17)

We have to show that the elements of the diagonal of(R − σU)(R − σU)∗ are uniformly bounded by a consta
of order O(N−1). Since(R − σU) can be written asσ(σ−1

√
V − I)U we have∣∣((σ−1

√
V − I)UU∗(σ−1

√
V − I)ei, ei

)∣∣= ∥∥(σ−1
√
V − I)ei

∥∥2 �
∥∥(σ−2V − I)ei

∥∥2

by contraction. To see this, we denoteyi = (σ−1
√
V − I)ei for all 1 � i �N andA= σ−1

√
V + I . The positive

definiteness ofV implies thatA−1 is a contraction. If(δij ) denotes the unit matrix, the bound for the diagonal te
of R − σU is∥∥(V − σ 2I)ei

∥∥2=
∑

1�k�N

(Vik − σ 2δik)
2.

We recall that the diagonal term is of order O(N−1/2) and all the non-diagonal terms are of order O(N−1),
uniformly over the set of indices 1� i, j �N . This concludes the proof.✷
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