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Abstract

We establish anS1-equivariant index theorem for Dirac operators onZ/k-manifolds. As an application, we generalize t
Atiyah–Hirzebruch vanishing theorem forS1-actions on closed spin manifolds to the case ofZ/k-manifolds.To cite this article:
W. Zhang, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Actions du cercle et Z/k variétés.On établit un théorème d’indiceS1-équivariant pour les opérateurs de Dirac sur desZ/k
variétés. On donne une application de ce résultat, qui généralise le théorème d’Atiyah–Hirzebruch sur les actions dS1 aux
Z/k variétés.Pour citer cet article : W. Zhang, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. S1-actions and the vanishing theorem

Let X be a closed connected smooth spin manifold admitting a non-trivial circle action. A classical th
of Atiyah and Hirzebruch [1] states thatÂ(X) = 0, whereÂ(X) is the HirzebruchÂ-genus ofX. In this Note we
present an extension of the above result to the case ofZ/k-manifolds, which were introduced by Sullivan in h
studies of geometric topology. We recall the basic definition for completeness (cf. [6]).

Definition 1.1. A compact connectedZ/k-manifold is a compact manifoldX with boundary∂X, which admits
a decomposition∂X = ⋃k

i=1(∂X)i into k disjoint manifolds andk diffeomorphismsπi : (∂X)i → Y to a closed
manifoldY .

Let π : ∂X → Y be the induced map. In what follows, we will call an objectα (e.g., metrics, connections, etc
of X a Z/k-object if there will be a corresponding objectβ onY such thatα|∂X = π∗β . We make the assumptio
thatX is Z/k oriented,Z/k spin and is of even dimension.
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Let gTX be aZ/k Riemannian metric ofX which is of product structure near∂X. Let RTX be the curvature
of the Levi-Civita connection associated togTX . Let E be aZ/k complex vector bundle overX. Let gE be a
Z/k Hermitian metric onE which is a product metric near∂X. Let ∇E be aZ/k connection onE preserving
gE such that∇E is of product structure near∂X. Let RE be the curvature of∇E . Let DE+ :Γ (S+(T X) ⊗ E) →
Γ (S−(T X) ⊗ E) be the associated Dirac operator onX andDE+,∂X (and thenDE

Y ) be its induced Dirac operato

on ∂X (and then onY ). Let η(DE
Y ) be the reducedη-invariant ofDE

Y in the sense of [2]. Then

Â(k)(X,E)=
∫
X

det1/2
( √−1RTX/4π

sinh(
√−1RTX/4π)

)
tr
[
e(

√−1/2π)RE ] − kη̄
(
DE

Y

)
modkZ (1)

does not depend on (gTX,gE,∇E) and determines a topological invariant inZ/kZ (cf. [2] and [6]). Moreover,
Freed and Melrose [7] have proved a modk index theorem, givingÂ(k)(X,E) ∈ Z/kZ a purely topologica
interpretation. WhenE = C is the trivial vector bundle overX, we usually omit the superscriptE.

Theorem 1.2.If X admits a nontrivial Z/k circle action preserving the orientation and the Spin structure on TX,
then Â(k)(X)= 0. Moreover, the equivariant mod k index in the sense of Freed and Melrose vanishes.

It turns out that the original method in [1] is difficult to extend to the case of manifolds with bounda
prove Theorem 1.2. Thus we will instead make use of an extension of the method of Witten [10]. A
localization techniques developed by Bismut and Lebeau [3, Section 9] and their extensions to manifo
boundary developed in [5] play important roles in our proof.

2. A mod k localization formula for circle actions

We make the assumption that theZ/k circle action onX lifts to a Z/k circle action onE. Without
loss of generality, we may and we will assume that thisZ/k circle action preservesgTX, gE and ∇E . Let
DE+,APS :Γ (S+(T X)⊗E)→ Γ (S−(T X)⊗E) be the elliptic operator obtained by imposing the standard Atiy

Patodi–Singer boundary condition [2] onDE+ .
Let H be the Killing vector field onX generated by theS1 action onX. ThenH |∂X ⊂ ∂X induces a Killing

vector fieldHY on Y . Let LH denote the corresponding Lie derivative acting onΓ (S±(T X) ⊗ E). ThenLH

commutes withDE+,APS.

For anyn ∈ Z, let Fn± be the eigenspaces ofΓ (S±(T X) ⊗ E) with respect to the eigenvalue 2πn of 1√−1
LH .

Let DE+,APS(n) :Fn+ → Fn− be the restriction ofDE+,APS onFn+. ThenDE+,APS(n) is Fredholm. We denote its inde

by ind(DE+,APS(n)) ∈ Z.
Let XH (resp.YH ) be the zero set ofH (resp.HY ) onX (resp.Y ). ThenXH is aZ/k-manifold and there is a

canonical mapπXH : ∂XH → YH induced fromπ . We fix a connected componentXH,α of XH , and we omit the
subscriptα if there is no confusion.

We identify the normal bundle toXH in X to the orthogonal complement ofTXH in TX|XH . ThenTX|XH

admits anS1-invariant orthogonal decompositionTX|XH = Nm1 ⊕ · · · ⊕ Nml ⊕ TXH , where eachNγ , γ ∈ Z,
is a complex vector bundle on whichg ∈ S1 ⊂ C acts by multiplication bygγ . By using the same notatio
as in [8, (1.8)], we simply write thatTX|XH = ⊕

v �=0Nv ⊕ TXH . Similarly, let E|XH admits theS1-invariant
decompositionE|XH = ⊕

v Ev.

Let S(T XH , (detN)−1) be the complex spinor bundle overXH associated to the canonically induced Spc

structure onTXH . It is a Z/k Hermitian vector bundle and carries a canonically inducedZ/k Hermitian
connection.

Recall that by [1, 2.4], one has
∑

v v dimNv ≡ 0 mod 2Z. Following [8, (1.15)], set

R(q)= q1/2
∑

v |v|dimNv
⊗(

Symqv (Nv)⊗ detNv

)⊗
Symq−v (�Nv)⊗

∑
v

qvEv =
⊕
n

Rnq
n,
v>0 v<0
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R′(q)= q−1/2
∑

v |v|dimNv
⊗
v>0

Symq−v (�Nv)
⊗
v<0

(
Symqv (Nv)⊗ detNv

) ⊗
∑
v

qvEv =
⊕
n

R′
nq

n.

Then eachRn (resp.R′
n) is aZ/k Hermitian vector bundle overXH carrying a canonically inducedZ/k Hermitian

connection. For anyn ∈ Z, let DRn

XH ,+ :Γ (S+(T XH , (detN)−1) ⊗ Rn) → Γ (S−(T XH , (detN)−1) ⊗ Rn) be the

canonical twisted Spinc Dirac operator onXH . LetDRn

XH ,+,APS be the corresponding elliptic operator associate
the Atiyah–Patodi–Singer boundary condition [2]. We will use similar notation forR′

n.

Theorem 2.1.For any integer n ∈ Z, the following identities hold,

indDE+,APS(n) ≡
∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,+,APS modkZ, (2)

indDE+,APS(n) ≡
∑
α

(−1)
∑

v<0 dimNv indD
R′
n

XH,α+,APS modkZ. (3)

Proof. For anyT ∈ R, following Witten [10], letDE
T,+ :Γ (S+(T X) ⊗ E) → Γ (S−(T X) ⊗ E) be the Dirac type

operator defined byDE
T,+ =DE+ + √−1T c(H). LetDE

T,+,APS be the corresponding elliptic operator associate

the Atiyah–Patodi–Singer boundary condition [2]. Clearly,DE
T,+,APS also commutes with theS1-action. For any

integern, let DE
T,+,APS(n) be the restriction ofDE

T,+,APS onFn+. ThenDE
T,+,APS(n) is still Fredholm. By an eas

extension of [5, Theorem 1.2] to the current equivariant andZ/k situation, one sees that ind(DE
T,+,APS(n)) modkZ

does not depend onT ∈ R (compare with [9, Theorem 4.2]).
Let DE

T,+,∂X :Γ ((S+(T X) ⊗ E)|∂X) → Γ ((S+(T X) ⊗ E)|∂X) be the induced Dirac type operator ofDE
T,+

on ∂X. For any integern, let DE
T,+,∂X(n) :Fn+|∂X → Fn+|∂X be the restriction ofDE

T,+,∂X on Fn+|∂X. Also, the

induced Dirac operatorsDRn

+,∂XH
andDRn

YH
can be defined in the same way as in Section 1.

Let an > 0 be such that Spec(DRn

YH
) ∩ [−2an,2an] ⊆ {0}. By combining the techniques in [3, Section 9], [

Section 4b]) and [8, Section 1.2], one can prove the following analogue of [4, Theorem 3.9], stating tha
existsT1 > 0 such that for anyT � T1,

#
{
λ ∈ Spect

(
DE

T,+,∂X(n)
)
: −an � λ� an

} = dim
(
kerDRn

+,∂XH

) = k dim
(
kerDRn

YH

)
. (4)

If dim(kerDRn

YH
)= 0, then by (4), one sees that whenT � T1, DE

T,+,∂X(n) is invertible. Then ind(DE
T,+,APS(n))

itself does not depend onT � T1. Moreover, by combining the techniques in [8, Section 1.2] and [5, Sectio
one can further prove that there existsT2 > 0 such that whenT � T2,

ind
(
DE

T,+,APS(n)
) =

∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,+,APS (5)

(compare with [5, (2.13)]). From (5) and the modk invariance of ind(DE
T,+,APS(n)) with respect toT ∈ R, one

gets (2).
In general, dim(kerDRn

YH
) need not be zero, and the eigenvalues ofDE

T,+,∂X(n) lying in [−an, an] are not easy

to control. Thus the above arguments no longer apply directly. Instead, we observe that dim(ker(DRn

YH
− an)) = 0,

and we use the method in [5] to perturb the Dirac type operators under consideration.
To do this, letε > 0 be sufficiently small so thatgTX , gE and∇E are of product structure on[0, ε] × ∂X ⊂X.

Let f :X → R be anS1-invariant smooth function such thatf ≡ 1 on [0, ε/3] × ∂X and f ≡ 0 outside
of [0,2ε/3] × ∂X. Let r denote the parameter in[0, ε]. Let DRn

XH ,−an,+ be the Dirac type operator actin

on Γ (S+(T XH , (detN)−1) ⊗ Rn) defined byDRn

XH ,−an,+ = D
Rn

XH ,+ − anf c(
∂
∂r
). Let D

Rn

XH ,−an,+,APS be the
corresponding elliptic operator associated to the Atiyah–Patodi–Singer boundary condition [2]. By a
extension of [5, Theorem 1.2] (compare with [9, Theorem 4.2]), we see that,
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3 Shelter
∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,−an,+,APS ≡
∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,+,APS modkZ. (6)

For anyT ∈ R, let DE
T,−an,+ :Γ (S+(T X) ⊗ E) → Γ (S−(T X) ⊗ E) be the Dirac type operator defined

DE
T,−an,+ = DE

T,+ − anf c(
∂
∂r
). LetDE

T,−an,+,APS be the corresponding elliptic operator associated to the Atiy

Patodi–Singer boundary condition. LetDE
T,−an,+,APS(n) be its restriction onFn+. ThenDE

T,−an,+,APS(n) is still
Fredholm. By another extension of [5, Theorem 1.2], one has

indDE
T,−an,+,APS(n)≡ indDE

T,+,APS(n) modkZ. (7)

Moreover, sinceDRn

YH
−an, which is the induced Dirac type operator fromDRn

XH ,−an,+ throughπXH , is invertible,
by combining the arguments in [8, Section 1.2] with those in [5, Section 3], one deduces that there existsT3 > 0
such that for anyT � T3, the following analogue of (5) holds,

indDE
T,−an,+,APS(n)=

∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,−an,+,APS. (8)

From (6)–(8) and the modk invariance of ind(DE
T,+,APS(n)) with respect toT ∈ R, one gets (2).

Similarly, by takingT → −∞, one gets (3). ✷
3. Proof of Theorem 1.2

We apply Theorem 2.1 to the caseE = C.
First, if XH = ∅, by Theorem 2.1, it is obvious that for eachn ∈ Z,

ind
(
D+,APS(n)

) ≡ 0 modkZ. (9)

WhenXH �= ∅, we see that
∑

v |v|dimNv > 0 (i.e., at least one of theNv ’s is nonzero) on each connect
component ofXH . Then by (2) and by the definition of theRn’s, we deduce that for any integern � 0, (9) holds.
Similarly, by (3) and by the definition of theR′

n’s, one deduces that (9) holds for any integern � 0.
In summary, for anyn ∈ Z, (9) holds.
From (1) and (9), by the Atiyah–Patodi–Singer index theorem [2], and using the obvious fact that ind(D+,APS)=∑
n ind(D+,APS(n)), one getsÂ(k)(X) = 0. ✷

Remark 1. By combining Theorem 2.1 with the arguments in [8, Sections 2–4], one should be able to pr
extension of the Witten rigidity theorem, of which aK-theoretic version has been worked out in [8], toZ/k-
manifolds. This, together with some other consequences of Theorem 1.2, will be carried out elsewhere.
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