Available online at www.sciencedirect.com e, COMPIES RENDS
£ SN
C £, %
SCIENCE DIRECT?® 1‘_16 \:

Yaiso® MATHEMATIQUE

ELSEVIER C.R. Acad. Sci. Paris, Ser. | 336 (2003) 773-778

Probability Theory

A type of time-symmetric forward—backward
stochastic differential equations

Shige Pend, Yufeng Shi*

School of Mathematics and System Sciences, Shandong University, Jinan 250100, China
Received 4 June 2002; accepted after revision 1 April 2003
Presented by Paul Malliavin

Abstract

In this Note, we study a type of time-symmetric forward—backward stochastic differential equations. Under some
monotonicity assumptions, we establish the existence and uniqueness theorem by means of a method of continuation. W
also give an applicatiorTo citethisarticle: S. Peng, Y. Shi, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Résumé

Un type d’équations différentielles stochastiques progressives—rétrogrades symétriques par rapport au tempsous
étudions dans cette Note un type d’équations différentielles stochastiques progressives—rétrogrades symeétriques par rapport
temps. Sous certaines conditions de monotonie, nous donnons un théoreme d’existence et unicité des solutions des équatio
par une méthode de continuation. Ensuite nous présentons une appliationiter cet article: S. Peng, Y. Shi, C. R. Acad.
Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Version frangaise abrégée

Dans cette Note, nous étudions un type d’équations différentielles stochastiques progressives—rétrograde
symétriques par rapport au temps. Précisément, nous considérons les équations suivantes :

dy; = f(t, v, Ye, 20, Ze) At + g(t, yi, Yo 20, Z) AWy — 2, dB;,  yo=x, 1)
dY, =F(t,y, Y, 20, Z) At + G(t, y1, Yy, 2, Z1)AB; + Z, AW, Y7 =D (y7),

ou {W:log: et {B:logs sont deux mouvements browniens indépendantsid#f,) est une integrale de Itd
(standard) progressive, tandis quB;) est une integrale de It6 rétrograde commencég egt inverse en temps.
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Cela généralise les types d’équations différentielles stochastiques progressive—rétrogrades qui ont été auparava
étudiés. Par une méthode de continuation, on a le résultat suivant :

Théoréme.On suppose | es hypothéses (H1)—(H4) satisfaites. Alors, pour chaque x € R”, I’ Eq. (1) a une solution
unique dans M2(0, T; Rrntnxi+nxdy

1. Introduction

Since a series of research by Antonelli [1] and specially by Ma, Protter and Yong [6], with applications
in finance, forward—backward stochastic differential equations (FBSDE in short) have been deeply investigated
(see[4]). One of these directions was initialized by Hu and Peng [5] and developed by Peng and Wu [12], Yong [13],
Peng and Shi [11] and Peng [10], which generalized stochastic Hamiltonian systems introduced by Bismut [3] in
1973 and then systematically investigated by Bensoussan [2]. In general, a FBSDE consists of a forward SDE of
Itd’s type, and a backward SDE of Pardoux—Peng’s type (see [7]). They are coupled with each other. However, this
type of FBSDE is not symmetric with respect to time. In this paper we will study a type of time-symmetric FBSDE,
i.e., the forward equation is “forward” with respect to a standard stochastic intéjrahd well as “backward” with
respect to a backward stochastic integrB);dhe coupled “backward equation” is “forward” under the backward
stochastic integral B, and “backward” under the forward one. In other words, both the forward equation and the
backward one are types of SDEs introduced by Pardoux and Peng [8] under the name “backward doubly SDE”
with different directions of stochastic integral. We will also discuss the corresponding time-symmetric stochastic
Hamiltonian systems.

Let (£2, F, P) be a probability space, arifl, 7] be a fixed arbitrarily large time duration throughout this paper.

Let {W;; 0<t < T}and{B;; 0<t < T} be two mutually independent standard Brownian motions defined on
(82, F, P), with values respectively iiR? and inR’. Let A/ denote the class aP-null elements ofF. For each

t € [0, T1, we defineF, = FW v]—'tBT, whereFV = N'va{W, — Wo; 0<r <1}, ]—'tBT =NVa{B —B;; t<

r < T}. Note that the collectlom}}, t € [0, T} is neither increasing nor decreasmg and it does not constitute
a filtration. Let M?(0, T; R™) denote the space of all (classes @t & dr a.e. equalR"-valued F;-measurable
stochastic processé¢s;; ¢ € [0, T]} which satisfyE fOT |v,|2dr < co. ObviouslyM2(0, T; R") is a Hilbert space.

For a giveru € M2(0, T; R?) andv € M?(0, T; R), one can define the (standard) forward Itd's integal, dW

and the backward I1td’s integrg(IT vs dBy. They are both in?(0, T'; R). (See [8] for details.)
Under this framework, we consider the following type of time-symmetric forward—backward stochastic
differential equations (SFBSDE in short)

t t t
)’tzx‘l'/f(sa)’s, Ys,Zs,Zs)dS‘F/g(S’)’s’ szmzs)de_/stBSa
0 T 0 0 T (1)

YtZ(D(YT)‘i‘/F(S, Vs, Yy, Zs, Zs)ds‘l'/G(S, Vs, Y, Zs, Zs)st‘l'/stWv-

t t t

T

In the case when (1) does not involve the term of backward Itd’s integral, that is, @he@ and f, g, F are
independent of, this system will degenerate to the FBSDE which has been studied by Hu and Peng [5] and so
on. On the other hand, a new kind of backward stochastic differential equations, called backward doubly stochastic
differential equations, has been introduced by Pardoux and Peng [8]. The aim of this Note is to combine the above
two types of results, to study the existence and uniqueness of a solution to (1). Under some monotonicity conditions
(see (H1) and (H2)), we will apply the method of continuation to solve (1). This method was introduced by Peng
in [9] for solving backward stochastic differential equations (BSDE in short) with random terminal time and then
in [5] and [12] and [13] for solving FBSDE.



S Peng, Y. Shi / C. R. Acad. ci. Paris, Ser. | 336 (2003) 773-778 775

It is an interesting open problem to learn how to connect this type of SFBSDE to some nonlinear stochastic
partial differential equations in order to generalize the well-known nonlinear Feynman-Kac formula to the
stochastic case. In the interest of studying stochastic viscosity solutions for nonlinear stochastic PDEs by means o
this type of SFBSDE, it is indispensable to some types of comparison theorems of SFBSDE. It is worth noting that
the comparison theorem of SFBSDE is interesting in its own right, as it seems not to naturally derive from the one
of FBSDE; as a result the collectidf; }; [0, 77 is not a natural filtration. We hope to be able to address this issue
in our future publications.

This Note is organized as follows: in the next section we present our main results; in Section 3 we provide some
a priori estimates; the estimates will be applied to prove the existence and uniqueness theorem in Section 4; finally
in Section 5 we will apply the above result to a doubly stochastic Hamiltonian system.

For the simplicity of notations, we only consider the case wheaadY take the same dimension. But using
the techniques introduced by Peng and Wu [12], we can also treat some more general cases.

2. Setting of the problem and the main results
Consider the following type of time-symmetric forward—backward stochastic differential equations

dy; = f(t, v, Ye 20, Ze) Ot + g(t, yi, Yo 20, Z) AW, — 2, dB;,  yo=x, @)
dY; = F(t,y:, Yi. 20, Z) At + G(¢t, ys, Yi, 20, Z1)AB; + Z, dW;, Y7 =@ (y7),

wherex e R”,
F:02 x[0,T] x R" x R" x R x R™4 5 R",
F12x[0,T] x R" x R" x R x R"™4 5 R,
G:2 x[0,T] x R" x R" x R™/ x R _ R/
g2 x[0,T] x R" x R" x R™! x R"™*d 5 Rrxd,
@:2 xR" > R".

Let us introduce some notations= (y, Y, z, Z), A(t,¢) = (F, f, G, g)(t, ). We use the usual inner product
(-, ) and Euclidean norrh | in R, R"*/ andR"*¢. All the equalities and inequalities mentioned in this paper are
in the sense ofdx dP almost surely oif0, 7'] x £2.

Definition 2.1. A quadruple of F;-measurable stochastic processesY, z, Z) € M2(0, T; Rrtntnxi+nxd) jg
called a solution of SFBSDR?), if (2) is satisfied.

The following monotonicity conditions are our main assumptions:

(H1) There exists a constant> 0, such that

Iz —¢I?,

Y,2,Z) eR" x R" x R™ x R, vr € [0, T].

Ve =(y,Y,2,2), ¢ = (7,
We also assume that
(H3) For each; e Rutninxi+nxd - A(. r) is a F,-measurable vector process defined[6nT] with A(-,0) €

M?(0, T; Rrtntnxitnxdy and for eachy € R*, ®(y) is a Fr-measurable random vector with(0) €
L%(2, Fr, P;RY).
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(H4) A(t, ¢) and®(y) satisfy Lipschitz conditionthere exists a constaht> 0, such that
A, 0) =A@ D <kl =l Ve, ¢ e R Ty e 10, T,
|®(») —®()| <kly—7JI, Vy,yeR"

Our main result is as follows.

Theorem 2.2. Under assumptions (H1)—(H4), for each x € R”, (2) has a unique solution in M2(0, T
Rn+n+nxl+n><d).

3. A priori estimates

In order to prove the existence and uniqueness result for (2), we need the following lemmas. They involve a
priori estimates of solutions of the following family of SFBSDEs parametrized byO0, 1].

{dyz =[f*(t,U) + fo()]dr —z,dB, + [g* (¢, Up) + go(®) | dW;,  yo=x, @)
dy, = [Fa(ﬁ Un) + FO(t)] dt + Z,dW; + [Ga(ﬁ Un) + GO(I)] dB,, Yr=o%yr)+o,
whereU = (y, 7Y, z, Z) and for any giver € [0, 1],
[y, Y, 2, 2)=aft,y,Y,2,2) - 1-a)Y, g%, 3.V, 2. 2)=ag(t,y,Y,2,2) - (1-a)Z,
F(t,y,Y,z,Z)=aF(t,y,Y,2,2) — (1—a)y, G*(t,y,Y,z2,Z)=aG(t,y,Y,2,Z) — (1—a)z,
QU(y)=a®@(y) + (1 —a)y.
Observe that whea = 0, (3) is written in the following simple form
{d)’t = (=Y + fo®))dr + (= Z; + go(1)) dW; — 2, dB;,  yo=x, @
dy; = (—y, + Fo(t)) dr + (—Zz + GO(’)) dB; + Z,dW;, Yr=yr+o¢.

We have the following lemma:

Lemma 3.1.For any x € R", (Fo, fo, Go, g0) € M?(0, T; R 4xtmxd) g ¢ L2(2, Fr, PiR"), (4) has a
unique solution (y, Y, z, Z) in M?(0, T; Ri+n+nxidnxdy,

Proof. The proof of unigueness is similar to the one of Theorem 2.2 below. We only need to find a solution for (4).
We consider the following linear backward doubly stochastic differential equations

T T T
Y, =¢— / [Ys + Fo(s) — fo(s)]ds — / [2Z, — go(s)] dW, — / Go(s) dB;. (5)
t t t

By the result of [8], the above equation has a unique solufiarZ). Then we can solve the following SDE

t t t
Ye=x+ / [—ys — T+ fos)]ds + / [~ Z, + go(s)] AWy — / . dB,. (6)
0 0 0

Due to the result in [8], the above equation has a unique solatich). And settingl = y+Y, Z=7, z=12, we
easily see thaty, Y, z, Z) is a solution to (4). Thus the existence is proved

The following a priori lemma is a key step in the proof of the method of continuation. It shows that, if for a
fixeda = ag € [0, 1], (3) can be solved, then it can also be solvedfar[wg, xo + o], for some positive constant
8o independent od.
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Lemma 3.2.Under assumptions (H1)—(H4), there exists a positive constant §p such that if, a priori, for some
ap € [0, 1), and for each x € R", ¢ € L2(82, Fr, P;R"), (Fo, fo. Go, g0) € M?(0, T; Rrtntnxitnxdy " (3) hag
a unique solution, then for each o« € [, oo + 8ol, and x € R", ¢ € L3, Fr, P;R"), (Fo, fo, Go, g0) €
M?(0, T; Rrtntnxitnxdy (3) alsp hasa unique solution in M2(0, T'; Rr+ntnxi4nxdy

Proof. Since for anyr € R", (Fo, fo. Go. go) € M2(0, T; RrHtnxlinxdy - e 12(Q, Fr, P;R"), there exists a
unique solution t@3) for o = ag, thus foreacl/ = (3,7, z, Z) € M?(0, T; R"*ntnxi+nxd) there exists a unique
quadruplel/ = (v, Y, z, Z) € M?(0, T; R"+7+nxl+nxdy satisfying the following equations
dy, = [f%@, Up) + 8(f (1. Up) + Y7) + fo(0)]dt — 2, dB, + [0 (1, Up) + 8(g(t, Up) + Z;) + go(1) | dW,,
dY; = [Feo@t, Uy) + 8(F(t, Up) + y:) + Fo(®)] dt + Z, dW, + [G* (1, U;) + 8(G (1, Up) + Z) + Go(1) | dB;,
yo=x, Yr=2%(yr)+8(@(Gr)—yr)+e.
wheres is a positive number independent @ and less than 1. We will prove that the mapping defined by
U = loors(U) : M?(0, T; Rrntnxttnxdy _ pp2(Q, T; Rrminxltnxd) js contractive for a small enough Let
U = ()—)/7 Y/7 2/7 Z/) c MZ(O, T; Rn+n+nxl+n><d) andlU’ = (y/7 Y/7 Z/7 Z/) — Iao+6(U/): and
) = (,)_} _5)/5?_ 7’72 _Z/a 7_ 7/)5
):(y—y’,Y— Y/,z—z’,Z—Z/).
Applying Itd’s formula to($, Y) on [0, T] and by virtue of (H1) and (H4), we have, sinEgg =0
E($7.a0(® (yr) — @(3p)) + (L — a0)r + 8(®(Fr) — D (G7) — yr))

T
t .

—~ S(k+1
<E/[(ao—uao—1)|ut|2+ k+D .

2

i +

Then by virtue of (H2) and (H4), we can derive that— 2*FDE (110,12 dr < 24 DE 1 U, 12dr + 8k + 1)
El$7!|y7], where 6 = min(1, 1). Applying Ité’s formula to |$]2 on [0, T] and by virtue of (H4), by a
standard method of estimation, we can derive that there exists a comstadt which depends only on,
such thatE|y7|? < cE]OT |U; |2 dt +£8cEfOT |U,|2dr. We now choosesy = W—ib(kﬂ)' Then for any

5 € 10. 0], E Jy 10:dr < A(E [y 1U2dt + Ely7[%). Sincedo < 4, we have for any < [0, ol, Eljr|? <
%(E fOT |U,;|%dt + E|y7|?). It follows that, for each fixeds € [0, o], the mappingly,+s5 IS contractive in the
following senseE [ |U;|2ds + El7[? < 3(E f, 1U,2dr + E|371?). Thus this mapping has a unique fixed point
U= (y,Y.z, Z)in M?(0, T; Rrmtnxitnxdy \which is the solution of (3) for = g + 8, asé € [0, 8o]. The proof

is complete. O

4. The proof of Theorem 2.2
Now we can give the proof of Theorem 2.2 — the existence and uniqueness theorem of (2).

Proof. Uniqueness. Let U = (y,Y,z,Z) and U’ = (y/,Y’, 7/, Z") be two solutions of (2). We use the same
notations as in Lemma 3.2. Applying 1t6’s formula(p, Y) on|[O, T], we haveE(yr, $(yT)) = EfOT(A(t, Uy —
A, U)), U,) d. By virtue of (H1) and (H2), it follows that.E fOT |U; —U/|?dt < 0. ThusU = U'. The uniqueness
is proved.

Existence. By Lemma 3.1, for anyk € R”, (Fo, fo, Go, go) € M?(0, T; Rntntnxl4nxdy o, e [2(Q Fr, P;
R™), (3) has a unique solution il2(0, T'; R*t7+nxl+nxdy g5 — 0,
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It follows from Lemma 3.2 that there exists a positive conssant 3o(k, 1) such that for any < [0, §o] and
x R, ¢ e L3(2, Fr, P;R"), (Fo, fo, Go, g0) € M?(0, T; Rrtntnxi+nxdy (3) has a unique solution far= §.
Sincedp depends only ok and i, we can repeat this process frtimes with 1< Nég < 1+ 3o. In particular,
for o = 1 with (Fo, fo, Go, g0) = 0 andg = 0, (3) has a unique solution l#2(0, T'; R**+nxl+nxdy The proof
is complete. O

Remark 1.In the case where the initial conditiog = x € L2(£2, Fo, P; R"), all the results in this paper still hold
true.

5. Example: a doubly stochastic Hamiltonian system
Consider the following doubly stochastic Hamiltonian system

dyt:Hyd[+HZth_thBta yo=x,
dY, = —H,dt — H.dB; + Z,dW;, Yr =®,(y7),

whereH(y,Y,z,Z):R*— R, ®(y):R— R; Hy = VyH, @, = V,®. The Brownian motiongW;; 0 <t < T}
and{B;; 0<t < T} are both assumed to be 1-dimensional. Assume that both the derivatives of 2-ociiandf
the derivatives of 1-order ap are boundedH is concave orn(Y, Z) and convex or(y, z) in the following sense
(u>0):
—Hy,y, —Hy -Hy,, —Hyz
Hyy, Hyy Hy, Hyz
_HZY —Hy —H; —Hz
Hzy  Hzy Hz; Hzz
and @ is convex on(y): @y, > 0, Yy € R. By Theorem 2.2, we know that this doubly stochastic Hamiltonian
system (7) has a unique solution Y, z, Z) in M2(0, T; R%).

(7)

g_lj,l, V(y5 Y7Z5Z)ER47
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