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Abstract

We use sum rules of a special form to study spectral properties of Jacobi matrices. As a consequence of the main theoren
we obtain a discrete counterpart of a result by Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195-213).
To citethisarticle: S. Kupin, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
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Résumé

Nous appliquons les régles de sommation de Case a I'étude de propriétés spectrales de matrices de Jacobi d’un certain typ
Nous obtenons un analogue discret d’un résultat de Molchanov, Novitskii and Vainberg (Comm. Math. Phys. 216 (2001) 195—
213) comme un des corollaires du théoréeme principalir citer cet article: S. Kupin, C. R. Acad. Sci. Paris, Ser. | 336
(2003).
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1. Introduction

Recently, the Case sum rules [1,2] were efficiently used to relate properties of elements of a Jacobi matrix
of certain class with its spectral properties and vice versa. For instance, spectral data of Jacobi matrices being
Hilbert—Schmidt perturbation of the free Jacobi matfix(see (1)) were characterized in [4]. Different classes of
Jacobi matrices were studied in [5,6]. However, the sum rules become more and more complex with increasing
order. In this note, we suggest a modification of the method that permits us to work with higher order sum rules. In
particular, we obtain sufficient conditions for a Jacobi matrix to satisfy certain constraints on its spectral measure
(see Theorem 1.1).
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Let
bo a O 0 1 0
J=J@@a,b)y=|a by .|, Jo=|1 0 - (1)
o . . 0

be Jacobi matrices and= {ax}, ar > 0, b = {by}, bx € R. A scalar spectral measuse= o (J) of the matrixJ is
defined by the relation

((J = 2)eo, €o) =/
R
with z € C \ R. AssumingJ to be a compact perturbatiofy, we have that the absolutely continuous spectrum
o0 (J) of J fillsin [—2, 2], and the discrete spectrum consists of two sequem;'é}swith propertieij‘ < -2,
xj_ — =2, andxj.' > 2,xj.' — 2.
Letda = {ar — ax—1}. For a giveru and ak € N, we construct a sequengg(a) by formula

do (x)

X —2Z

(Vk(a))j = Oé]j- — O Ojk—1,
wherea =a — 1 and 1 is a sequence of units.
Theorem 1.1. LetJ = J(a, b) be a Jacobi matrix described above. If
(i) a—L1bel™? da,0bel? (i) w)el’, k=3 [m/2+1], (2)

then

2
(i) /Ioga’(x) (4= > 00, (i) Y (P-4 <, 3)
) J
Whenm = 1, the theorem gives a half of [4], Theorem 1.
Of course, relation (2)(ii) is true in the case of a discrete Schrédinger operator, i.e. Jwhdiil, b).
Corollary 1.2. LetJ = J(1, b). If b € I"*1, 3b € I?, then inequalitie$3) hold.

Note also that assumptions of Theorem 1.1 may be slightly weakened in this setting. Namely, the corollary is
still true if b € "2, m being even. The corollary is a direct counterpart of a result from [7] for a “continuous”
Schrédinger operator on a half-line.

2. Proof of Theorem 1.1

The main tool used in the proof is a sum rule of a special type, see [4,6,8,9] in this connection. First, we obtain
it assuming rank/ — Jo) < co. The passage to the limit is carried out later.
Applying methods of [9], we see that

2
E/Iog ) dx+;Gm(xj)_t1/m(J),
2

wherew,,(J) = ¥,,(a, b), andG,, (x) = (—=1)"t1Co(x2 — 4" +1/2 4 O((x2 — 4)"+3/2) with x e R\ [—2, 2], Co
being a positive constant. An elementary, but long and tedious computation gives that
o (—DFE 2m — D!

_ ~2k—1 ( 72k 2k
wm(J)_tr{I;WCZm_l(J — &5 ~amn 194 (4)
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whereA = diaglax} andCk = #’;,,k,, Notationk!! is used for “even” or “odd” factorials.

The following lemma plays a central role in the whole proof.
Lemma2.l. LetJ = J(a,b). We have

[m/2+41]
|wm<J>|<cl<||a—1||ﬁii+||b||zii+||aa||%+||ab||%+ > ||yk<a>||1>, (5)
k=3
whereCy depends ofila — Lllco, 15 ]lco, 13allos, and |85 ]co.

Above, normg| - ||, refer to the standari® -space norms. With exception of the lemma, the proof of Theorem 1.1
goes along standard lines (see [4—6,8]). We quote only its main steps.

Proof of Theorem 1.1. Define®,,(J) as

D (J) =Py (0) = Py 1(0) + Py 2(0) = o / Iogm (4-x9) dx + ;Gm(xj ).
-2
We have to show thab,, (J) < co. We putay = {(ay)i} anda)y, = {(aj,)«}, where

(a ) __ ) @k, nga (a/) . 1, kSN,
NE=11, k>N, NKE= NV ar, k> N.

Define sequencédsy, b, in the same way (of course, with 1's replaced by 0's). Igt= J (an, by) andoy be its
spectral measure. As we readily seg,— 1, by, — 0, da), db), — 0, andy,(aj,) — 0 in corresponding norms,
asN — oco. By Lemma 2.1, we have fa¥ ' = N —m

|9 (J) = W (IN)] < [Py, By

< Cl()laﬁw — iy oy Iy + a2+ b 5+ 3| yk(a}v’)Hl>’
k

or, ¥, (Jy) = ¥, (J), asN — oo. On the other hand,Jy —z) ™t — (J —z)~%, forz € C\ R, and, consequently,
oy — o weakly. Looking at [4], Corollary 5.3 and Theorem 6.2, we @&} 1(c) < liminfy @, 1(on),
My 00 P 2(on) = §y 2(0). Estimating quantity®,, »(J)| with the help of [3], Theorem 2, we end up with

@, (o) <limsupd,, (on) =limsup?,, (Jy) = Iim ¥, (Jy) =¥, (J).
N N N—o0
The proof is complete. O

3. Sketch of the proof of Lemma 2.1

We begin with considering expressione/t# — Jgk), arising in (4). Definingy = J — Jo= J(a — 1, b), we
have

2k
r(JZ—JF)=ud" > VIV
p=Lii++ip=2k—p
We prove Lemma 2.1 in two steps. First, we reduce the situation to a commutative one. To do this, we
bound expressionrstr(VJél e VJ(;" — Vl’Jozk_”)| using properties of the commutatpv, Jo] = VJo — JoV.
On the second stage, we exploit specificalgf(J) to get straightforward estimates of terms obtained after the
“commutation”.

Lemma3.1. Leti = (i1, ...,ip) and)_ i; =n. Then
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. Mi,p
VI VI = VPIg+ Y CpdftVi[ViR ISRV IR+ Y AV, Jol BilV, JolCr,
l1+1lo+3=p, k

p1t+pa2+p3=n
wherep = (p1, p2, p3), | = (1, I2,I3), and Ay, By, Ci are some bounded operators.

This proposition leads to the following lemma.

Lemma 3.2. Let " iy = 2k — p. We haveltr(VJi... VI — VPIEP) < Ca(ldal? + 110b]2) with some
constamCZ.

The lemma exactly says that, modulo bounded terms, we may assume op®ratutgy to commute. Turning
back to (4), we see that the problem is reduced to estimating’),

, 2m 2m — ! i
W' (J)=tr le’F,,(Jo) i log(I + &)1, (6)
p=
wherea = diag{ax} = A — I, and
D e
Fp(JO) = Z WCZm—lcgk JO p'

k=[(p+1)/2]
Here,C,f is a usual binomial coefficient. Observe that fop m + 1 we have tr(V? F, (Jo)| < [|Fp (Jo IV Pls;, <

Ca(lla — 1||$ﬁ + ||b||$jj), where| - || s, is the norm in the class of nuclear operators. Hence, it remains to bound
the firstm terms in (6). Setlp , to be a symmetric matrix with 1's op-th auxiliary diagonals and O’s elsewhere.

Surprisingly, the following lemma holds.
Lemma 3.3. We have

2m—p
(2m — !
Fp(Jo) = (—1)p+lm Jo,p + E , dp.sJo,s
D 1" Nt

for some coefficient$, ; andp = 1, m.

Combining this with explicit form oft’? and a standard series expansion for(fog¢ &), we get the required
bound (5).
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