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Geometric Anosov flows of dimension 5
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Abstract

We show that for a smooth Anosov flow on a closed five dimensional manifold, if it hasC∞ Anosov splitting and preserve
a C∞ pseudo-Riemannian metric, then up to a special time change and finite covers, it isC∞ flow equivalent either to the
suspension of a symplectic hyperbolic automorphism ofT4, or to the geodesic flow on a three dimensional hyperbolic manif
To cite this article: Y. Fang, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous classifions les flots d’Anosov lisses sur des variétés fermées de dimension 5, qui préservent une métriqu
Riemannienne lisse et dont les distributions d’Anosov sontC∞. A un changement du temps spécial et un revêtement fini p
un tel flot estC∞ conjugué ou bien, à une suspension d’un automorphisme hyperbolique symplectique deT4, ou bien à un
flot géodésique sur une variété hyperbolique de dimension 3.Pour citer cet article : Y. Fang, C. R. Acad. Sci. Paris, Ser. I 336
(2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

LetM be aC∞-closed manifold with a Riemannian metric. AC∞ flow, φt , generated by a non-singular vec
field X is called an Anosov flow, if there exists aφt -invariant splittingTM = RX ⊕E+ ⊕ E− and two positive
numbersa andb, such that

∀u± ∈E±, ∀ t � 0,
∥∥Dφ∓t

(
u±)∥∥ � a e−bt∥∥u±∥∥.

In general, the subbundlesE+ andE− are only continuous and rarely smooth (see [4] and [2]). IfE+ andE− are
smooth andφt preserves in addition aC∞ pseudo-Riemannian metric, then the flow is calledgeometric.

Let φt be ageometricAnosov flow, preserving a pseudo-Riemannian metricg. The flow preserves aC∞
1-form λ, such thatλ(X) = 1 andλ(E±) = 0. Let J be the section of(TM)∗ ⊗ TM, such thatJ (X) = 0 and
J (u±)= ±u±. Thenω := g(J ·, ·) is aφt -invariant 2-form withRX as kernel. SinceE± are both Lagrangian fo
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ω|E+⊕E− , then dimE+ = dimE− =: n. The volume formλ∧(∧nω) is preserved byφt . So the flow is topologically
transitive.

Definition. rank(φt ) := 2(max{k � 0 | ∧kdλ �≡ 0}).

This even number is called therankof the flow. We have obviously 0� rank(φt )� 2n. By combining the results
of [3] and [6], we easily get the following:

Theorem 1.LetM be aC∞-closed manifold of dimension2n+ 1, andφt be a geometric Anosov flow onM, we
have

(i) if rank(φt )= 0, then, up to a constant change of time scale,φt is C∞ flow equivalent to the suspension o
hyperbolic infranilautomorphism;

(ii) if rank(φt )= 2n, then, up to finite covers,φt isC∞ flow equivalent to a canonical perturbation of the geode
flow on a locally symmetric Riemannian manifold of strictly negative curvature.

A canonical perturbation of a geodesic flow with generatorX is (by definition) the flow of the field
X/(1+ α(X)), whereα is aC∞ closed 1-form such that 1+ α(X) > 0.

In the case of dimension 5, we prove the following

Theorem 2.LetM be a closed manifold of dimension5, andφt be a geometric Anosov flow onM, then

(i) either, up to a constant change of time scale and finite covers,φt isC∞ flow equivalent to the suspension o
symplectic hyperbolic automorphism ofT4;

(ii) or, up to finite covers,φt is C∞ flow equivalent to a canonical perturbation of the geodesic flow on a th
dimensional Riemannian manifold of constant negative curvature.

2. Proof of Theorem 2

By Theorem 1, we need only eliminate the case of rank 2, i.e., dλ �≡ 0 and dλ∧ dλ≡ 0. Suppose on the contra
the existence of such a flowφt . In this section, this flow will be proved to be homogeneous. Then in the follow
sections, we shall eliminate the possible homogeneous models by some dynamical and Lie theoretical arg

DefineU := {x ∈M | dλ(x) �= 0},E1 := {y ∈E+ ⊕E− | iy dλ= 0}. Since dλ �≡ 0 and dλ∧ dλ≡ 0, thenE1 is
a 2-dimensionalC∞ subbundle ofTM|U . Denote the probability of the volume formλ∧ ω ∧ω by ν.

Lemma 2.1.The Lyapunov decomposition ofφt , with respect toν, is smooth.

Proof. If b is a Lyapunov exponent ofφt , then so is−b. If φt has two positive Lyapunov exponents,E1 ∩ E±
coincide with two of the Lyapunov subbundles on a conull subset. To get the others, we take their dual with
to ω. ✷

Now we can introduce aC∞ connection∇ onM, adapted to the Lyapunov decomposition ofφt , such that

∇X = 0, ∇ω = 0, ∇E±
i ⊆E±

i ,

∇Z±
j
Z∓
i = P∓

i

[
Z±
j ,Z

∓
i

]
, ∇XZ

±
i = [

X,Z±
i

] ± αiZ
±
i ,

whereE±
i are Lyapunov subbundles with Lyapunov exponents±αi , andP±

i are the projections ofTM ontoE±
i .
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Lemma 2.2.Let M̃ be the universal cover ofM, then the group of diffeomorphisms of̃M , which preservẽX, ω̃
and the lifted Lyapunov decomposition, is a Lie group and acts transitively onM̃ .

Proof. By the definition of∇, ∇R = 0, ∇T = 0 and∇ is complete (see [5]). ✷
Denote the previous Lie group byG. Fix a pointx ∈ M̃ and denote the isotropy group ofx byH . ThenG/H is

a reductive homogeneous space with∇ as its canonical connection. Letg andh be the Lie algebras ofG andH ,
theng ∼= h ⊕ TxM̃ . By the linear isotropy representation,h is seen to be isomorphic toR or R2. We deduce thatG
is simply connected. Denote the fundamental group byΓ , then up to finite covers, we can suppose thatΓ ⊆Ge,
whereGe denotes the connected component of the unit ofG. ∇ induces a connection∇+ on ∧2E+. Denote the
connection form and the curvature form of∇+ by β+ andΩ+.

Lemma 2.3.dλ∧Ω+ = 0,Ω+ ∧Ω+ = 0, Ω+ ∧ω = 0.

3. Suppose at first thatφt has two positive Lyapunov exponents. Then by the previous lemma,Ω+ = 0.

3.1. If dim(h)= 1, then by a direct calculation and [1], up to finite covers,M̃ is diffeomorphic toR2 � ˜SL(2,R)
andΓ is identified to a cocompact lattice of this group. Here the semi-direct product is given by the linear

But we can easily see thatR2 � ˜SL(2,R) admits no cocompact lattice. So this case is impossible.

3.2. If dim(h)= 2, then by a direct calculation,Ge
∼= (R2 � R)× ˜SL(2,R)× R. The space of weak unstab

leaves is seen to beR2. Using the density of periodic orbits ofφt inM, we can find an elementγ ∈ Γ ∩(Cent(Ge))
c,

which acts with a saddle on the space of weak unstable leaves. But it is impossible (see [2], 5).

4. Suppose thatφt has only one positive Lyapunov exponent and dλ∧ω �≡ 0.

4.1. If dim(h)= 2, then by the linear isotropy representation ofH ,Ω+ = 0. In this case, we get the same grou
Ge andHe as in 3.2. So the same arguments prove the non-existence of this case.

4.2. If dim(h)= 1, thenM̃ can be identified toR2 × Heis, where Heis is the 3-dimensional Heisenberg gro
In this case, we can find a group of automorphisms ofR2 × Heis, which is isomorphic toR2 and acts oñM as the
isometries of the geometric structure(X̃, Ẽ±, ω̃). We deduce that dim(h)� 2, which is a contradiction.

5. Suppose thatφt has one positive Lyapunov exponent and dλ∧ω ≡ 0. If dim(h)= 1, then the same argume
as in 4.2. gives a contradiction. So we suppose that dim(h)= 2. By Lemma 2.3,∃c ∈ R, such thatΩ+ = c · dλ.

LetJ be the section of(TM)∗ ⊗TM defined in the introduction. Construct a new connection∇1 := ∇− c
2λ⊗J ,

thenΩ+
1 = 0, whereΩ+

1 is the curvature form of the induced connection of∇1 on∧2E+. We have also∇1R
∇1 = 0,

∇1T
∇1 = 0, and∇1ω = 0. LetG be the isometry group of(X̃, Ẽ±, ω̃) andH be the isotropy subgroup ofx as

above. Then using the horizontal distribution of∇1, we get another identificationg ∼= TxM̃ ⊕ h.

Now by a direct calculation and the Anosov property,M̃ is identified to(R3 � ˜SO0(1,2))/R, where SO0(1,2)
is the connected component of Id of the isometry group of the quadratic form:−dx2 + dy2 + dz2. The semi-
direct product is given by the natural linear action andR is the 1-parameter subgroup generated by((0,0,1),0) ∈
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R3 � so(1,2). Γ is identified with a discrete subgroup ofR3 � ˜SO0(1,2). We finish the proof of Theorem 2 b
proving

Lemma 5.1. R3 � ˜SO0(1,2) admits no discrete subgroup, which acts properly, freely, and cocompact

(R3 � ˜SO0(1,2))/R.

Proof. Suppose the existence of such a discrete subgroup, denoted byΓ1. ThenΓ1 is seen to be non-solvable. Sin

the action of ˜SO0(1,2) on R3 is irreducible, thenΓ1 is Zariski-dense inR3 � ˜SO0(1,2). Let∆ be the projection

of Γ1 into ˜SO0(1,2). Then by [7],∆ is discrete in ˜SO0(1,2). We deduce thatR3 acts properly onR3/R, which is
absurd. ✷
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