

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 419-422

Differential Geometry Geometric Anosov flows of dimension 5 Flots d'Anosov géométriques de dimension 5

Yong Fang

Laboratoire de mathématique d'Orsay, UMR 8628 du CNRS, Université Paris-Sud, France Received 20 January 2003; accepted 30 January 2003 Presented by Jean-Michel Bismut

Abstract

We show that for a smooth Anosov flow on a closed five dimensional manifold, if it has C^{∞} Anosov splitting and preserves a C^{∞} pseudo-Riemannian metric, then up to a special time change and finite covers, it is C^{∞} flow equivalent either to the suspension of a symplectic hyperbolic automorphism of \mathbb{T}^4 , or to the geodesic flow on a three dimensional hyperbolic manifold. *To cite this article: Y. Fang, C. R. Acad. Sci. Paris, Ser. I 336 (2003).*

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Nous classifions les flots d'Anosov lisses sur des variétés fermées de dimension 5, qui préservent une métrique pseudo-Riemannienne lisse et dont les distributions d'Anosov sont C^{∞} . A un changement du temps spécial et un revêtement fini près, un tel flot est C^{∞} conjugué ou bien, à une suspension d'un automorphisme hyperbolique symplectique de \mathbb{T}^4 , ou bien à un flot géodésique sur une variété hyperbolique de dimension 3. *Pour citer cet article : Y. Fang, C. R. Acad. Sci. Paris, Ser. I 336* (2003).

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

Let *M* be a C^{∞} -closed manifold with a Riemannian metric. A C^{∞} flow, ϕ_t , generated by a non-singular vector field *X* is called an Anosov flow, if there exists a ϕ_t -invariant splitting $TM = \mathbb{R}X \oplus E^+ \oplus E^-$ and two positive numbers *a* and *b*, such that

$$\forall u^{\pm} \in E^{\pm}, \ \forall t \ge 0, \quad \left\| D\phi_{\mp t} \left(u^{\pm} \right) \right\| \leqslant a \, \mathrm{e}^{-bt} \left\| u^{\pm} \right\|.$$

In general, the subbundles E^+ and E^- are only continuous and rarely smooth (see [4] and [2]). If E^+ and E^- are smooth and ϕ_t preserves in addition a C^{∞} pseudo-Riemannian metric, then the flow is called *geometric*.

Let ϕ_t be a *geometric* Anosov flow, preserving a pseudo-Riemannian metric g. The flow preserves a C^{∞} 1-form λ , such that $\lambda(X) = 1$ and $\lambda(E^{\pm}) = 0$. Let J be the section of $(TM)^* \otimes TM$, such that J(X) = 0 and $J(u^{\pm}) = \pm u^{\pm}$. Then $\omega := g(J, \cdot)$ is a ϕ_t -invariant 2-form with $\mathbb{R}X$ as kernel. Since E^{\pm} are both Lagrangian for

E-mail address: fangyong1@yahoo.fr (Y. Fang).

¹⁶³¹⁻⁰⁷³X/03/\$ – see front matter © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. doi:10.1016/S1631-073X(03)00096-7

 $\omega|_{E^+\oplus E^-}$, then dim $E^+ = \dim E^- =: n$. The volume form $\lambda \wedge (\wedge^n \omega)$ is preserved by ϕ_t . So the flow is topologically transitive.

Definition. rank(ϕ_t) := 2(max{ $k \ge 0 \mid \wedge^k d\lambda \ne 0$ }).

This even number is called the *rank* of the flow. We have obviously $0 \le \operatorname{rank}(\phi_t) \le 2n$. By combining the results of [3] and [6], we easily get the following:

Theorem 1. Let *M* be a C^{∞} -closed manifold of dimension 2n + 1, and ϕ_t be a geometric Anosov flow on *M*, we have

- (i) if rank(ϕ_t) = 0, then, up to a constant change of time scale, ϕ_t is C^{∞} flow equivalent to the suspension of a hyperbolic infranilautomorphism;
- (ii) if rank(ϕ_t) = 2n, then, up to finite covers, ϕ_t is C^{∞} flow equivalent to a canonical perturbation of the geodesic flow on a locally symmetric Riemannian manifold of strictly negative curvature.

A canonical perturbation of a geodesic flow with generator X is (by definition) the flow of the field $X/(1 + \alpha(X))$, where α is a C^{∞} closed 1-form such that $1 + \alpha(X) > 0$.

In the case of dimension 5, we prove the following

Theorem 2. Let M be a closed manifold of dimension 5, and ϕ_t be a geometric Anosov flow on M, then

- (i) either, up to a constant change of time scale and finite covers, ϕ_t is C^{∞} flow equivalent to the suspension of a symplectic hyperbolic automorphism of \mathbb{T}^4 ;
- (ii) or, up to finite covers, ϕ_t is C^{∞} flow equivalent to a canonical perturbation of the geodesic flow on a threedimensional Riemannian manifold of constant negative curvature.

2. Proof of Theorem 2

By Theorem 1, we need only eliminate the case of rank 2, i.e., $d\lambda \neq 0$ and $d\lambda \wedge d\lambda \equiv 0$. Suppose on the contrary the existence of such a flow ϕ_t . In this section, this flow will be proved to be homogeneous. Then in the following sections, we shall eliminate the possible homogeneous models by some dynamical and Lie theoretical arguments.

Define $U := \{x \in M \mid d\lambda(x) \neq 0\}$, $E_1 := \{y \in E^+ \oplus E^- \mid i_y d\lambda = 0\}$. Since $d\lambda \neq 0$ and $d\lambda \wedge d\lambda \equiv 0$, then E_1 is a 2-dimensional C^{∞} subbundle of $TM|_U$. Denote the probability of the volume form $\lambda \wedge \omega \wedge \omega$ by ν .

Lemma 2.1. The Lyapunov decomposition of ϕ_t , with respect to v, is smooth.

Proof. If *b* is a Lyapunov exponent of ϕ_t , then so is -b. If ϕ_t has two positive Lyapunov exponents, $E_1 \cap E^{\pm}$ coincide with two of the Lyapunov subbundles on a conull subset. To get the others, we take their dual with respect to ω . \Box

Now we can introduce a C^{∞} connection ∇ on M, adapted to the Lyapunov decomposition of ϕ_t , such that

$$\begin{aligned} \nabla X &= 0, \qquad \nabla \omega = 0, \qquad \nabla E_i^{\pm} \subseteq E_i^{\pm}, \\ \nabla_{Z_i^{\pm}} Z_i^{\mp} &= P_i^{\mp} \big[Z_j^{\pm}, Z_i^{\mp} \big], \qquad \nabla_X Z_i^{\pm} = \big[X, Z_i^{\pm} \big] \pm \alpha_i Z_i^{\pm} \end{aligned}$$

where E_i^{\pm} are Lyapunov subbundles with Lyapunov exponents $\pm \alpha_i$, and P_i^{\pm} are the projections of TM onto E_i^{\pm} .

420

Lemma 2.2. Let \widetilde{M} be the universal cover of M, then the group of diffeomorphisms of \widetilde{M} , which preserve \widetilde{X} , $\widetilde{\omega}$ and the lifted Lyapunov decomposition, is a Lie group and acts transitively on \widetilde{M} .

Proof. By the definition of ∇ , $\nabla R = 0$, $\nabla T = 0$ and ∇ is complete (see [5]). \Box

Denote the previous Lie group by *G*. Fix a point $x \in \widetilde{M}$ and denote the isotropy group of *x* by *H*. Then *G*/*H* is a reductive homogeneous space with ∇ as its canonical connection. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of *G* and *H*, then $\mathfrak{g} \cong \mathfrak{h} \oplus T_x \widetilde{M}$. By the linear isotropy representation, \mathfrak{h} is seen to be isomorphic to \mathbb{R} or \mathbb{R}^2 . We deduce that *G* is simply connected. Denote the fundamental group by Γ , then up to finite covers, we can suppose that $\Gamma \subseteq G_e$, where G_e denotes the connected component of the unit of *G*. ∇ induces a connection ∇^+ on $\wedge^2 E^+$. Denote the connection form and the curvature form of ∇^+ by β^+ and Ω^+ .

Lemma 2.3. $d\lambda \wedge \Omega^+ = 0$, $\Omega^+ \wedge \Omega^+ = 0$, $\Omega^+ \wedge \omega = 0$.

3. Suppose at first that ϕ_t has two positive Lyapunov exponents. Then by the previous lemma, $\Omega^+ = 0$.

3.1. If dim(\mathfrak{h}) = 1, then by a direct calculation and [1], up to finite covers, \widetilde{M} is diffeomorphic to $\mathbb{R}^2 \rtimes SL(2, \mathbb{R})$ and Γ is identified to a cocompact lattice of this group. Here the semi-direct product is given by the linear action. But we can easily see that $\mathbb{R}^2 \rtimes SL(2, \mathbb{R})$ admits no cocompact lattice. So this case is impossible.

3.2. If dim(\mathfrak{h}) = 2, then by a direct calculation, $G_e \cong (\mathbb{R}^2 \rtimes \mathbb{R}) \times \widetilde{SL(2, \mathbb{R})} \times \mathbb{R}$. The space of weak unstable leaves is seen to be \mathbb{R}^2 . Using the density of periodic orbits of ϕ_t in M, we can find an element $\gamma \in \Gamma \cap (\operatorname{Cent}(G_e))^c$, which acts with a saddle on the space of weak unstable leaves. But it is impossible (see [2], 5).

4. Suppose that ϕ_t has only one positive Lyapunov exponent and $d\lambda \wedge \omega \neq 0$.

4.1. If dim(\mathfrak{h}) = 2, then by the linear isotropy representation of H, $\Omega^+ = 0$. In this case, we get the same groups G_e and H_e as in 3.2. So the same arguments prove the non-existence of this case.

4.2. If dim(\mathfrak{h}) = 1, then \widetilde{M} can be identified to $\mathbb{R}^2 \times$ Heis, where Heis is the 3-dimensional Heisenberg group. In this case, we can find a group of automorphisms of $\mathbb{R}^2 \times$ Heis, which is isomorphic to \mathbb{R}^2 and acts on \widetilde{M} as the isometries of the geometric structure ($\widetilde{X}, \widetilde{E}^{\pm}, \widetilde{\omega}$). We deduce that dim(\mathfrak{h}) ≥ 2 , which is a contradiction.

5. Suppose that ϕ_t has one positive Lyapunov exponent and $d\lambda \wedge \omega \equiv 0$. If $\dim(\mathfrak{h}) = 1$, then the same argument as in 4.2. gives a contradiction. So we suppose that $\dim(\mathfrak{h}) = 2$. By Lemma 2.3, $\exists c \in \mathbb{R}$, such that $\Omega^+ = c \cdot d\lambda$.

Let *J* be the section of $(TM)^* \otimes TM$ defined in the introduction. Construct a new connection $\nabla_1 := \nabla - \frac{c}{2}\lambda \otimes J$, then $\Omega_1^+ = 0$, where Ω_1^+ is the curvature form of the induced connection of ∇_1 on $\wedge^2 E^+$. We have also $\nabla_1 R^{\nabla_1} = 0$, $\nabla_1 T^{\nabla_1} = 0$, and $\nabla_1 \omega = 0$. Let *G* be the isometry group of $(\widetilde{X}, \widetilde{E}^{\pm}, \widetilde{\omega})$ and *H* be the isotropy subgroup of *x* as above. Then using the horizontal distribution of ∇_1 , we get another identification $\mathfrak{g} \cong T_x \widetilde{M} \oplus \mathfrak{h}$.

Now by a direct calculation and the Anosov property, \widetilde{M} is identified to $(\mathbb{R}^3 \rtimes SO_0(1, 2))/\mathbb{R}$, where $SO_0(1, 2)$ is the connected component of Id of the isometry group of the quadratic form: $-dx^2 + dy^2 + dz^2$. The semidirect product is given by the natural linear action and \mathbb{R} is the 1-parameter subgroup generated by $((0, 0, 1), 0) \in$ $\mathbb{R}^3 \rtimes \mathfrak{so}(1,2)$. Γ is identified with a discrete subgroup of $\mathbb{R}^3 \rtimes \widetilde{SO_0(1,2)}$. We finish the proof of Theorem 2 by proving

Lemma 5.1. $\mathbb{R}^3 \rtimes \widetilde{SO_0(1,2)}$ admits no discrete subgroup, which acts properly, freely, and cocompactly on $(\mathbb{R}^3 \rtimes \widetilde{SO_0(1,2)})/\mathbb{R}$.

Proof. Suppose the existence of such a discrete subgroup, denoted by Γ_1 . Then Γ_1 is seen to be non-solvable. Since the action of $SO_0(1, 2)$ on \mathbb{R}^3 is irreducible, then Γ_1 is Zariski-dense in $\mathbb{R}^3 \rtimes SO_0(1, 2)$. Let Δ be the projection of Γ_1 into $SO_0(1, 2)$. Then by [7], Δ is discrete in $SO_0(1, 2)$. We deduce that \mathbb{R}^3 acts properly on \mathbb{R}^3/\mathbb{R} , which is absurd. \Box

Acknowledgements

The author would like to thank P. Foulon, P. Pansu, Y. Benoist, and F. Labourie for discussions and help.

References

- Y. Benoist, P. Foulon, F. Labourie, Flots d'Anosov à distributions de Liapounov différentiables, I, Ann. Inst. H. Poincaré 53 (1990) 395– 412.
- [2] Y. Benoist, P. Foulon, F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 5 (1992) 33-74.
- [3] Y. Benoist, F. Labourie, Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math. 111 (1993) 285–308.
- [4] R. Feres, A. Katok, Anosov flows with smooth foliations and rigidity of geodesic flows on three-dimensional manifolds of negative curvature, Ergodic Theory Dynamical Systems 10 (1990) 657–670.
- [5] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, II, Interscience, New York, 1963.
- [6] J.F. Plante, Anosov flows, Amer. J. Math. 94 (1972) 729-754.
- [7] M.S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, Berlin, 1972.