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Abstract

A recent body of work introduced new tight-frames ofcurvelets E. Candès, D. Donoho, in: (i) Curvelets – a suprisin
effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt U
Press, Nashville, 2000, pp. 105–120; (ii) http://www.acm.caltech.edu/~emmanuel/publications.html, 2002 to add
problems in approximation theory and image processing. This paper shows that curvelets essentially provide optima
representations of Fourier Integral Operators.To cite this article: E. Candès, L. Demanet, C. R. Acad. Sci. Paris, Ser. I 336
(2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Une série de récents articles ont introduit l’analyse encurvelets E. Candès, D. Donoho, in : (i) Curvelets – a surprisin
effective nonadaptive representation for objects with edges (A. Cohen, C. Rabut, L. Schumaker (Eds.)), Vanderbilt U
Press, Nashville, 2000, pp. 105–120 ; (ii) http://www.acm.caltech.edu/~emmanuel/publications.html, 2002 : les curvele
une représentation multi-échelle qui ouvre de nouvelles perspectives pour l’analyse de problèmes importants en
l’approximation et en traitement de l’image. Cet article montre que les curvelets permettent une représentation op
la classe des opérateurs intégraux de Fourier. Par « optimale », nous entendons par exemple, la plus économe.Pour citer cet
article : E. Candès, L. Demanet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

This paper is concerned with the representation of a large class of operators, namely, Fourier Integral O
(FIOs) in the newly introduced tight frames ofcurvelets [3,4]. Curvelets are a new multiscale construct
for representing bivariate functions and were originally introduced in connection with central proble
approximation theory and statistical estimation; since then, curvelets have also made their way in image pr
as an alternative to other classical image representations. Recall that a collection of functions(fµ)µ is said to be a
tight frame forL2(R

2) if it obeys the Parseval relation

E-mail addresses: emmanuel@acm.caltech.edu (E. Candès), demanet@acm.caltech.edu (L. Demanet).
1631-073X/03/$ – see front matter 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
doi:10.1016/S1631-073X(03)00095-5
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∣∣〈f,fµ〉∣∣2 = ‖f ‖2
L2(R

2)
, ∀f ∈L2

(
R

2). (1)

This relation implies, by standard arguments, that we have available the reconstruction formulaf = ∑
µ〈f,fµ〉fµ,

with equality holding in anL2 sense.
To introduce the concept of representation of a linear operator, suppose we are given a linear transformT

acting on square integrable functionsf ∈ L2(R
2). We may want to think ofT via its action on the frame elemen

fµ and introduce the infinite matrix

TF (µ,µ
′)= 〈fµ,Tfµ′ 〉; (2)

in other words,TF maps the coefficients of an objectf into those ofTf . Needless to say, the datum of the mat
TF (µ,µ

′) completely specifies the operatorT as an operator fromL2(R
2) to itself since(fµ)µ is a tight frame for

L2(R
2).

An operatorT is said to be a Fourier Integral Operator (FIO) if it is of the form

Tf (x)=
∫

eiΦ(x,ξ)a(x, ξ)f̂ (ξ)dξ. (3)

HereΦ is a phase function anda is an amplitude which we suppose obey the following standard assumption
phaseΦ(x, ξ) isC∞, homogeneous of degree 1 inξ , i.e.,Φ(x,λξ)= λΦ(x, ξ) for λ > 0, and withΦxξ = ∇x∇ξΦ,
obeys the nondegeneracy condition|detΦxξ (x, ξ)|> c > 0, uniformly inx andξ ; the amplitudea is a symbol of

orderm, which means thata isC∞, and obeys|∂αξ ∂βx a(x, ξ)| � Cαβ(1+ |ξ |)m−α .
Wavelets are known to provide sparse representations of pseudo-differential operators; that is when t

functionΦ is linear in both variablesx andξ ,Φ(x, ξ)= x · ξ . It is also known that both Fourier and wavelet ba
do not provide sparse representations of FIOs.

2. Curvelets

By now, there are several types of curvelet frames [3,4] and we now briefly discuss the curvelet fr
introduced in [5,4]. We letµ be the triple(j, �, k): here,j = 0,1,2, . . . is a scale parameter;�= 0,1, . . . ,2�j/2� −1
is an orientation parameter (�x� is the integer part ofx); andk = (k1, k2), k1, k2 ∈ Z, is a translation paramete
Introduce

(1) theparabolic scaling matrixDj = diag(2j ,2�j/2�) which is diagonal and whose entries are 2j and 2�j/2�;
(2) therotation angle θJ = 2π · 2−�j/2� · �, with J indexing the scale/angle pairJ = (j, �);
(3) and thetranslation parameter kδ = (k1 · δ1, k2 · δ2) (δ1, δ2 are some universal numerical quantities, e

δ1 = 14/3 andδ2 = 10π/9, see [4] for details).

With these notations, we define curvelets as functions ofx ∈ R
2 by γµ(x)= 23j/4γ(j)(DjRθJ x − kδ). The profile

γ(j) actually depends on the scale parameterj but in a non essential way; for eachj , γ(j) is smooth and oscillator
in the horizontal direction and bell-shaped (nonoscillatory) along the vertical direction and is well-locali
space; e.g., for eachm= 0,1, . . . , γ(j)(x) and its derivatives obey|γ(j)(x)| � Cm(1+ |x|)−m, uniformly in j .

The frequency-side description of a curvelet is equally important to understand our main results. In the fre
domain, curvelets are compactly supported and each elementγ̂µ is localized near the symmetric wedge

WJ = { ± ξ, 2j � |ξ | � 2j+1, |θ − θJ | � π · 2−�j/2�}, (4)

i.e., curvelets are supported inside symmetric wedges of length about 2j and width about 2j/2. This explains their
oscillatory nature: at scale 2−j , a curvelet is a little needle whose envelope is a specified ‘ridge’ of effective le
2−j/2 and width 2−j , and which displays an oscillatory behavior across the main ‘ridge’. Note that this freq
localization idea is known in the literature as the the Second Dyadic Decomposition, see [6].
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As in wavelet theory, we also have coarse scale elements which are of the formϕk1,k2(x)= ϕ(x−kδ), k1, k2 ∈ Z,
i.e., translates of a waveformϕ(x1, x2) that we shall take to be bandlimited and rapidly decaying. Augme
with this layer of coarse scale elements, the system(γµ)µ obeys the Parseval relation (1) and the correspon
reproducing formula.

3. Main result

A distinguished feature of the curvelet transform is that the action of an FIO on curvelet elements is i
sense very ‘simple’. Roughly speaking, a curveletγµ is mapped into another curvelet at a corresponding indext (µ).

There are many ways to establish a formal index correspondence and we only present a possible appr
γµ be a curvelet with scale 2−jµ , locationxµ and codirectionξµ (the unit vector in the frequency plane along wh
γ̂µ is supported); andT be an FIO with phaseΦ. Now let the subscriptsx andξ denote partial differentiation an
define

φµ(x)=Φξ(x, ξµ), yµ = φ−1
µ (xµ), and Aµ =Φxξ (yµ, ξµ), (5)

and putτµ =AT
µξµ/‖AT

µξµ‖. With these notations, we introduce the index mappingt defined as follows:µ′ = t (µ)

with (1) jµ′ = jµ, (2) ξµ′ is the closest point toτµ on our discrete lattice, and (3)xµ′ is the closest point toyµ on
the Cartesian lattice induced by the pair(jµ′ , θµ′).

Finally, introduce the notional distanceω between pairs of indices(µ,µ′):∣∣ω(µ,µ′)
∣∣ = 2|jµ−jµ′ | · (1+ min

(
2jµ,2jµ′ )[|θµ − θµ′ |2 + |xµ − xµ′ |2 + ∣∣〈ξµ, xµ − xµ′ 〉∣∣]). (6)

We see thatω increases as the distance between the scale, angular, and location parameters increases.
the extra term|〈ξµ, xµ− xµ′ 〉| induces a non-Euclidean notion of distance betweenxµ andxµ′ . Equipped with this
definition, we may now state the main results of this paper.

Theorem 3.1. Let T be a FIO with a symbol of order m= 0 so that T is a bounded L2-operator which obeys the
above assumptions. Then for each N � 0, the matrix entries in a curvelet frame obey∣∣TF (µ,µ′)

∣∣ � CN · ∣∣ω(
µ, t (µ′)

)∣∣−N, (7)

for some constant CN > 0.

A corollary of this result is as follows:

Theorem 3.2. Under the same assumptions of Theorem 3.1, the matrix T maps boundedly �p into �p for every
0<p � ∞. For p � 1, this says that

‖TF ‖p�p→�p
= sup

µ′

∑
µ

∣∣TF (µ,µ′)
∣∣p � C

p
p . (8)

We give an equivalent formulation of (8). Let(aµ) be either a row or a column ofTF , and|a|(n) be then-largest
entry of the sequence|aµ|. Then for eachr > 0, |a|(n) obeys|a|(n) � Cr · n−r , where the constantCr does not
depend on the row or column index. In short, the row or column entries of the matrixTF decay nearly exponentially
i.e., faster than any negative polynomial.

The above two theorems say that the curvelet matrix is bothsparse andwell-organized. Roughly speaking, i
we think about the wavelet matrix of a pseudo-differential operator as beingalmost diagonal, then we may think o
the curvelet matrix of an FIO as beingalmost a permutation. Mathematically speaking, consider the approxim
or ‘compressed’ operatorT B with at mostB elements per row and column – those indices which are the cl
to t (µ) in the sense of (6) – and setting the others to zero. Then it is not hard to conclude thatT B would obey
‖T −T B‖L2→L2 � Cm ·B−m for eachm> 0. Note that our results do not imply a characterization of the oper
for which the decay estimates (7), (8) would hold.
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4. Importance of the parabolic scaling

Because of space constraints, we cannot possibly give a proof of Theorems 3.1 and 3.2 and refer the rea
companion paper [2]. However, there is a very interesting phenomenon which occurs here and we now h
Instead of curvelets, we may want to consider general scaling matrices of the formDj = diag(2j ,2jα), 0� α � 1.
We would then obtain tight frames whose elements would be needles with length about 2−jα and width 2−j . We
might then consider representing a FIO with basis elements exhibiting such arbitrary scaling ratios. The po
is that no scaling other thanα = 1/2 yields sparse representations of FIOs. To understand this fact, consid
the action of an FIO on a curveletγµ is that of a pseudo-differential operator followed by a smooth chang
coordinates (which are both index-dependent); and curvelets provide sparse decompositions of pseudo-d
operators and smooth change of coordinatessimultaneously. Such sparse decompositions hold, if and only if,
scaling is indeed parabolic.

5. Discussion

The potential for sparsity is of course wide-ranging. Let us only mention that it may allow the design
matrix multiplication and fast matrix inversion algorithms. For instance, [1] had a large impact by showin
to use the wavelet transform to compute certain types of singular integrals in a number of operations of t
of C(ε) ·N logN whereC(ε) is a constant depending upon the desired accuracyε. Fourier Integral Operators ar
also tightly connected to linear hyperbolic partial differential equations. In some sense the solution opera
such equations are almost FIO’s and turn out to be equally sparse in a curvelet frame. Work in progress at
exploit this feature to develop fast multiscale solvers (based on fast digital curvelet transforms) for classes
propagation problems. We hope to report on this in a future publication.

While working on this project, we became aware of the work of Smith [7,8] which addresses topics s
the description of Hardy spaces for FIOs and the construction of parametrices for nonsmooth second-ord
wave equations. Especially, [8] alludes to estimates similiar to those developed in Theorem 3.1 although
not been able to find proofs of such results. We find the connection with this line of research in pure ha
analysis nevertheless stimulating. Our agenda is of course very different here and corresponds to the vie
Computational Harmonic Analysis: namely, we are interested in a remarkable mathematical statement wh
that curvelets provide optimally sparse representations of FIOs.
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