

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 336 (2003) 377-380

Number Theory

Triviality of $X_{\text{split}}(N)(\mathbb{Q})$ for certain congruence classes of N

Trivialité de $X_{\text{split}}(N)(\mathbb{Q})$ pour certaines classes de congruence de N

Pierre Parent

A2X, U.F.R de mathématiques et d'informatique, Université de Bordeaux I, 351, cours de la libération, 33405 Talence cedex, France Received 31 October 2002; accepted after revision 30 January 2003

Presented by Jean-Pierre Serre

Abstract

We give a criterion to check if, given a prime number N, the only rational points of the modular curve $X_{split}(N)$ are trivial (i.e., cusps or points furnished by complex multiplication). We then prove that this criterion is verified for large enough N satisfying some explicit congruences. *To cite this article: P. Parent, C. R. Acad. Sci. Paris, Ser. I 336 (2003).* © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Soit N un nombre premier. On donne un critère permettant de vérifier si les points rationnels de la courbe modulaire $X_{split}(N)$ sont triviaux (c'est-à-dire des pointes ou des points fournis par la multiplication complexe). On montre ensuite que ce critère est satisfait si N est assez grand et vérifie certaines congruences explicites. *Pour citer cet article : P. Parent, C. R. Acad. Sci. Paris, Ser. I 336 (2003).*

© 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Introduction

For any prime number N, let $X_{\text{split}}(N)$ be the modular curve over \mathbb{Q} corresponding to the congruence subgroup $\Gamma_{\text{split}}(N) := \{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), b \equiv c \equiv 0 \mod N \text{ or } a \equiv d \equiv 0 \mod N \}$. This curve deprived from its cusps is the coarse moduli space over \mathbb{Q} of the isomorphism classes of elliptic curves equipped with an unordered pair of independent *N*-isogenies. We say a point of $X_{\text{split}}(N)(\mathbb{Q})$ is trivial if it is a cusp, or if the isomorphism class of elliptic curves defined by it has complex multiplication over $\overline{\mathbb{Q}}$. The goal of this Note is to make progress in the problem of showing that, if N is large enough, $X_{\text{split}}(N)$ has only trivial rational points. It is known that this result would be a step toward an affirmative answer to Serre's question about uniform surjectivity of the Galois

E-mail address: Pierre.Parent@math.u-bordeaux.fr (P. Parent).

¹⁶³¹⁻⁰⁷³X/03/\$ – see front matter © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. doi:10.1016/S1631-073X(03)00078-5

representations furnished by division points of elliptic curves (without complex multiplication) over \mathbb{Q} ([11], p. 299, [4], Introduction). Set $\mathcal{A} := \{$ primes which are simultaneously a square mod 3, mod 4, mod 7, and a square mod at least five of the following: 8, 11, 19, 43, 67, 163 $\}$ (\mathcal{A} has density 7.2⁻⁹ \simeq 0.013...). We prove the following:

Theorem 1.1. If N > 433 and $N \notin A$, then $X_{\text{split}}(N)(\mathbb{Q})$ is trivial.

At the moment we are unable to prevent a positive density of primes from escaping our method, which uses quadratic imaginary orders of trivial class number. We hope to overcome this problem in the future.

2. The criterion

Let *S* be the set of supersingular invariants of elliptic curves in characteristic *N*, and denote by Δ_S the group of divisors of degree 0 with support on *S*. Let \mathbb{T} be the subring of $\operatorname{End}(J_0(N))$ generated by the Hecke operators. Denote by $X_0(N)^{\operatorname{sm}}$ the smooth part of the regular minimal model of $X_0(N)$ over \mathbb{Z} . The group Δ_S is endowed with an action of the ring \mathbb{T} , deduced for instance from the action of the Hecke correspondences on the supersingular points of the fiber at *N* of $X_0(N)$. The $\mathbb{T} \otimes \mathbb{Q}$ -module $\Delta_S \otimes \mathbb{Q}$ is free of rank one ([9,8]). We will identify Δ_S , as a \mathbb{T} -module, with the character group of the neutral component of the fiber at *N* of the Néron model of $J_0(N)$, as in [9]. Define the winding quotient $J_e = J_0(N)/I_e J_0(N)$ as in [5]. Set $v := \operatorname{num}((N-1)/2)$; it is the order of $J_0(N)_{\mathbb{F}_N}$'s component group. If *F* is a number field of ring of integers \mathcal{O}_F and *P* is a *F*-rational point of $X_0(N)$, denote by Φ_P the morphism over *F* obtained by composing the morphism from $X_0(N)_F$ to $J_0(N)_F$ which maps *Q* to v(Q - P) with the canonical surjection $J_0(N) \to J_e$. If *P* is ordinary above *N*, we consider the canonical extension of Φ_P (deduced from the universal property of Néron models) from $X_0(N)_{\mathcal{O}_F}^{\operatorname{sm}}$ to the zero-component of J_e 's Néron model on \mathcal{O}_F .

Proposition 2.1. Suppose that, for every P in $X_0(N)^{sm}(\mathbb{Z})$, the morphism Φ_P is a formal immersion at $P(\operatorname{Spec}(\overline{\mathbb{F}}_N))$. Then $X_{\operatorname{split}}(N)(\mathbb{Q})$ is trivial.

Proof. Suppose $(E, \{A, B\})$ corresponds to a non-cuspidal point of $X_{\text{split}}(N)$ with values in \mathbb{Q} , where *E* is a rational elliptic curve endowed with a rational unordered pair of independent *N*-isogenies *A*, *B*. We will show that *E* has complex multiplication. Galois action on the set $\{A, B\}$ factorises through the Galois group of a quadratic number field *K*. The Néron model of *E* is ordinary at *N* ([10], Corollary 1.4), so (*E*, *A*) comes from an element of $X_0(N)^{\text{sm}}(\mathcal{O}_K)$ (and $w_N(E, A)$ too). Moreover *N* splits in *K* (loc. cit., Lemma 3.2). Thus if P := (E/B, E[N]/B)), Φ_P extends to a morphism from $X_0(N)_{\mathcal{O}_K}^{\text{sm}}$ to J_{e/\mathcal{O}_K} . The class in $J_0(N)$ of the divisor $(1 - w_N)((E, A) - (E/B, E[N]/B))$ is \mathbb{Q} -rational. By the Kolyvagin–

The class in $J_0(N)$ of the divisor $(1 - w_N)((E, A) - (E/B, E[N]/B))$ is Q-rational. By the Kolyvagin– Logachev theorem, the group $J_e(\mathbb{Q})$ is finite ([3]). Since $(1 + w_N)$ belongs to I_e , one has $(1 - w_N)((E, A) - (E/B, E[N]/B)) = 2((E, A) - (E/B, E[N]/B))$ in $J_e(\mathbb{Q})$, so $\Phi_P(E, A)$ is torsion. Now if $k \simeq \mathbb{F}_N$ is any of the two residue fields of \mathcal{O}_K at N, Proposition 3.3 of [10] asserts that $\Phi_P(E, A)_k = 0_k$, and a well-known specialization lemma gives us that $\Phi_P(E, A) = 0$. The hypothesis that Φ_P be a formal immersion at $(E, A)_k$ implies (E, A) = (E/B, E[N]/B). Therefore E has a nontrivial endomorphism. \Box

Proposition 2.2. Suppose that, for every j in $\mathbb{F}_{N^2} \setminus S$, there exists $v = (v_E)_{j_E \in S}$ in $\Delta_S[I_e]$ such that $\sum_{j_E \in S} v_E/(j - j_E) \neq 0$. Then for each ordinary P, the morphism Φ_P of 2.1 is a formal immersion at $P(\operatorname{Spec}(\overline{\mathbb{F}}_N))$.

(Note this is very close to [6], Proposition 4; see also [7]. The slight difference is that our maps Φ_P go to a quotient of $J_0(N)$, not a subvariety.) To prove Proposition 2.2, we need the following lemma, which one can prove by using the rigid-analytic description of $J_0(N)_{/\mathbb{Q}_N}$ (a variety with purely toric reduction), and by interpreting the character group as a cotangent space as in [9], 1.4.5.

Lemma 2.3. Let Δ_e be the character group of J^0_{e/\mathbb{F}_N} . The natural map $\Delta_e \to \Delta_S$ extends to an isomorphism: $\Delta_e \otimes \mathbb{Z}_{(N)} \simeq (\Delta_S \otimes \mathbb{Z}_{(N)})[I_e]$, where $\mathbb{Z}_{(N)}$ is the localization of \mathbb{Z} at N.

Proof of Proposition 2.2. Suppose $P_{\overline{\mathbb{F}}_N}$ is an element of $X_0(N)^{\operatorname{sm}}(\overline{\mathbb{F}}_N)$. We have to show that the map induced by $\Phi_{P_{\overline{\mathbb{F}}_N}}$ on cotangent spaces (at $0_{\overline{\mathbb{F}}_N}$ and $P_{\overline{\mathbb{F}}_N}$ respectively) is nonzero. Identify $P_{\overline{\mathbb{F}}_N}$'s component with $(\mathbb{P}^1 \setminus S)_{\overline{\mathbb{F}}_N}$ via *j*-invariant. Let v be the element as in the proposition and χ be the character of $J_0(N)_{\overline{\mathbb{F}}_N}^0$ associated to v. After multiplication of v by a prime-to-N rational integer, if necessary, Lemma 2.3 allows us to suppose that the morphism $\Psi : X_0(N)_{\overline{\mathbb{F}}_N}^{\operatorname{sm}} \to J_0(N)_{\overline{\mathbb{F}}_N}^0 \to \mathbb{G}_{m,\overline{\mathbb{F}}_N}$, which maps a point Q to $\chi(\nu(Q - P_{\overline{\mathbb{F}}_N}))$, factorizes through $\Phi_{P_{\overline{\mathbb{F}}_N}}$. Therefore it is sufficient to show that the cotangent map deduced from Ψ is nonzero. Now if we restrict Ψ on $P_{\overline{\mathbb{F}}_N}$'s component, then we see that on structural sheaves $\Psi^{\sharp}(j) = \prod_{j_E \in S} (j_E - j)^{\nu \cdot v_E}$ ([9], 1.4.4, Proposition 16), therefore $(d\Psi^{\sharp}(j_{P_{\overline{\mathbb{F}}_N}})/\Psi^{\sharp}(j_{P_{\overline{\mathbb{F}}_N}})) \neq 0$. \Box

3. Using Gross' formula

We recall the theory of Gross ([2,12]). If M is a \mathbb{Z} -module, define $\widehat{M} := M \otimes \widehat{\mathbb{Z}}$. Let B be the quaternion algebra over \mathbb{Q} which is ramified precisely at N and ∞ . Choose a maximal order R of B, and let $\{R_1 := R, \ldots, R_n\}$ be a set of maximal orders in B corresponding to representatives for $\operatorname{Cl}(B) = \widehat{R}^* \setminus \widehat{B}^* / B^*$ as in [2], Section 3. Recall that $\operatorname{Cl}(B)$ can be identified with the set of supersingular invariants of elliptic curves in characteristic N. The order R_i associated to an invariant j_{E_i} is such that $R_i \simeq \operatorname{End}_{\mathbb{F}_{N^2}}(E_i)$.

If *L* is a quadratic number field, *L* embeds in *B* if and only if its localization at ramification primes for *B* is a field. Then, for an order \mathcal{O} of *L*, a morphism of algebras $\sigma : L \hookrightarrow B$, and a maximal order \mathcal{R} of *B*, the pair (σ, \mathcal{R}) is said to be an optimal embedding of \mathcal{O} in \mathcal{R} if $\sigma(L) \cap \mathcal{R} = \sigma(\mathcal{O})$. If *d* is a negative integer, let h(d) be the class number of the quadratic order \mathcal{O}_d with discriminant *d* (if it exists), and $h_i(d)$ be the number of optimal embeddings of \mathcal{O}_d in \mathcal{R}_i . For any (positive) integer *D*, we define the element:

$$e_D := \frac{1}{2} \sum_{i=1}^n \left(\sum_{-D = da^2} \frac{1}{u(d)} h_i(d) \right) [R_i],$$

where $u(d) = (\operatorname{card}(\mathcal{O}_d^*))/2$; we consider it as an element of $\frac{1}{12}\mathbb{Z}^S$. Finally, if $(x_E)_{E\in S}$ is the canonical basis of \mathbb{Q}^S , one defines a scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{Q}^S by $\langle x_E, x_{E'} \rangle = (\operatorname{card}(\operatorname{End}_{\mathbb{F}_N}(E)^*)/2) \cdot \delta_{j_E, j'_E}$ (where δ is the Kronecker symbol).

Now let f be a newform of weight 2 for $\Gamma_0(N)$. For D a positive integer as above, call ε_D the (nontrivial) quadratic character associated to $\mathbb{Q}(\sqrt{-D})$, and $f \otimes \varepsilon_D$ the twist of f by ε_D . Let $(\Delta_S \otimes \overline{\mathbb{Q}})^f$ be the $\mathbb{T}_{\overline{\mathbb{Q}}}$ -eigenspace associated to f, $e_{f,D}$ be the component of e_D on $(\Delta_S \otimes \overline{\mathbb{Q}})^f$, (\cdot, \cdot) be the Petersson product, and extend $\langle \cdot, \cdot \rangle$ to $\overline{\mathbb{Q}}^S$.

Theorem 3.1 (Gross). One has $L(f, 1)L(f \otimes \varepsilon_D, 1) = \frac{(f, f)}{\sqrt{D}} \langle e_{f,D}, e_{f,D} \rangle$.

(See [2] Corollary 11.6. Actually, in [2] the formula is proven only if D is the discriminant of a maximal order; see [1], Theorem 1.1, for a proof in a more general case.) This formula allows us to reduce the proof of Theorem 1.1 to the verification of next lemma's elementary condition (2).

Lemma 3.2. Let *E* be the sub- $\mathbb{T} \otimes \mathbb{Q}$ -module of $\Delta_S \otimes \mathbb{Q}$ generated by the orthogonal projections (relatively to $\langle \cdot, \cdot \rangle$) of the elements $e_D \otimes 1$ for $D \in \mathbb{N}$. Then:

- (1) $E \subseteq (\Delta_S \otimes \mathbb{Q})[I_e];$
- (2) if there exists $v \in E$ which has exactly two nonzero integer components in the canonical basis of \mathbb{Q}^S , then v satisfies the hypothesis of Proposition 2.2 for every j in $\mathbb{F}_{N^2} \setminus S$.

Proof. If $e_{f,D} \neq 0$, Gross' formula implies that $L(f, 1) \neq 0$, and in that case $I_e \cdot f = 0$, implying $I_e \cdot e_{f,D} = 0$. Since the projection of e_D on $\Delta_S \otimes \mathbb{Q}$ is $\sum_f e_{f,D}$ (where f runs through the newforms), one concludes that $I_e \cdot e_D = 0$ and therefore (1) is true. To prove (2), we use Proposition 2.1, and Proposition 2.2 with v (whose two nonzero components may be supposed to be ± 1): the function $j \mapsto \sum_{j_E \in S} v_E/(j_E - j)$ is nowhere zero on each component of $X_0(N)(\overline{\mathbb{F}}_N)$'s ordinary locus, for the supersingular invariants are all distinct. \Box

Matching all this up, we can conclude the proof of Theorem 1.1 with the following.

Lemma 3.3. Suppose that N > 433. If $N \equiv -1 \mod 4$, define $v := e_{16} - 3e_4$. Else, if N is not a square modulo p for some $p \in \{3, 7\}$, set $v := e_{4p} - (u(-p) + 1)e_p$. Else, if N is a nonsquare modulo two distinct elements p and q of $\{8, 11, 19, 43, 67, 163\}$, set $v := e_p - e_q$. Then v verifies the conditions of Lemma 3.2.

Proof. It suffices to check that the *v*'s of the lemma have no more than two coordinates in the canonical basis of \mathbb{Z}^S , and are nonzero. Eichler proved that $\sum_{i=1}^n h_i(d)$ is equal to (1 - (d/N))h(d) if N^2 does not divide *d*, and 0 if it does (see e.g. [2], p. 122). This implies that the support of *v* in *S* has zero or two elements. (Note that $\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-7})$ each have several orders with class number one: this explains the particular role that the discriminants -4, -3 and -7 play in our statement.) Now we prove *v* is nontrivial. Each vertex of the graph corresponding to a maximal order R_i in which there is an optimal embedding of an order \mathcal{O} with trivial class group may be lifted to the *j*-invariant of an elliptic curve over \mathbb{Q} which has complex multiplication by \mathcal{O} . The list of these invariants is well-known; for N > 433, each pair of those we consider in the definition of the *v*'s are made of distinct elements mod N. \Box

References

- [1] M. Bertolini, H. Darmon, A rigid Gross-Zagier formula and arithmetic applications, Ann. of Math. (2) 146 (1997) 111–147. With an appendix by B. Edixhoven.
- [2] B. Gross, Heights and the special values of L-series, in: Canadian Math. Soc. Conference Proceedings, Vol. 7, American Mathematical Society, Providence, RI, 1987, pp. 115–187.
- [3] V.A. Kolyvagin, D.Yu. Logachev, Finiteness of the Shafarevich–Tate group and the group of rational points for some modular Abelian varieties, Leningrad Math. J. 1 (5) (1990).
- [4] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978) 129-162.
- [5] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996) 437-449.
- [6] L. Merel, Sur la nature non-cyclotomique des points d'ordre fini des courbes elliptiques, avec un appendice de E. Kowalski et Ph. Michel, Duke Math. J. 110 (1) (2001) 81–119.
- [7] L. Merel, W.A. Stein, The field generated by the points of small prime order on an elliptic curve, Internat. Math. Res. Notices 20 (2001) 1075–1082.
- [8] J.-F. Mestre, La méthode des graphes : exemples et applications, in: Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, Katata, 1986, Nagoya University, Nagoya, 1986, pp. 217–242.
- [9] J.-F. Mestre, J. Oesterlé, Courbes elliptiques de conducteur premier, Manuscript.
- [10] F. Momose, Rational points on the modular curves $X_{\text{split}}(p)$, Compositio Math. 52 (1984) 115–137.
- [11] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972) 259-331.
- [12] V. Vatsal, Uniform disribution on Heegner points, Invent. Math. 148 (1) (2002) 1-46.