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Abstract

Following the approach of Gromov and Witten, we construct invariants under deformation of real rational symplectic
4-manifolds. These invariants provide lower bounds for the number of real ratiemalomorphic curves in a given homology
class passing through a given real configuration of polrdite this article: J.-Y. Welschinger, C. R. Acad. Sci. Paris, Ser. |
336 (2003).
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Résumé

Suivant I'approche de Gromov et Witten, nous construisons des invariants par déformation des variétés symplectiques réelle:
rationnelles de dimension quatre. Ces invariants fournissent des bornes inférieures pour le nombre dé-tmlobasrphes
rationnelles réelles de classe d’homologie donnée passant par une configuration réelle de pointsPdanreder cet

article: J.-Y. Welschinger, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
0 2003 Académie des sciences/Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.

1. Theinvariant x

Let (X, w, cx) be areal symplecticA-manifold that is a triple made of a 4-manifold, a symplectic fornw
on X and an involutiorcx on X such thatcyw = —w, all of them being of clas€*°. The fixed point set of x
is called thereal part of X and is denoted bR X. It is assumed here to be non-empty. et H>(X;Z) be a
homology class satisfyingi (X)d > 0, wherec1(X) is the first Chern class of the symplectic 4-manifoi] w).
From Corollary 1.5 of [5], we know that the existence of such a class forces the 4-makKiitolde rational or
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ruled, as soon ag is not the class of an exceptional divisor. Hence, from now on, we will asgiin®) to be
rational. Letx ¢ X be areal configurationof points, that is a subset invariant undet, made ofc1(X)d — 1
distincts points. Denote by the number of such points which are real. IL&t be the space of almost complex
structures ofX tamed byw and which are of Holder clags’-® wherel > 2 and« € 10, 1[ are fixed. This space
is a contractible Banach manifold of cla€§%. Denote byR.7,, C 7, the subspace consisting of thases 7,,
for which ¢y is J-antiholomorphic. It happens to be a contractible Banach submanifold of €lgsef 7. If
J € RJ, is generic enough, then there are only finitely manrlgolomorphic rational curves i passing through
x in the homology clasg (see Theorem 3.1). These curves are all nodal and irreducible. The total number of their
double points is§ = %(d2 —c1(X)d + 2). Let C be such a curve which is assumed to be real. The real double
points of C are of two different natures. They are either the local intersection of two real branches, or the local
intersection of two complex conjugated branches. In the first case they are maiddolatedand in the second
case they are callddolated We define thenassof the curveC to be the number of its real isolated double points,
it is denoted bym(C). For every integem ranging from 0 tos, denote byn,(m) the total number of real -
holomorphic rational curves of massin X passing through and realizing the homology clags Then define:
X0, J) = Y0, o(=1)"na(m).

The main result to be presented in this Note is:

Theorem 1.1. Let (X, w, cx) be a real rational symplectid-manifold, andd € Ho(X; Z). Letx C X be a real
configuration ofc1 (X)d — 1 distincts points and be the cardinality ok NRX. Finally, letJ € R.7, be an almost
complex structure generic enough, so that the integx, J) is well defined. Then, this integgf (x, J) neither
depends on the choice @fnor on the choice of (provided the cardinality of N RX is r).

For convenience, this integer will be denotedjfy; and when- does not have the same parity@sX)d — 1,
we puty? to be 0. We then denote by (T) the polynomiaEflz(g)d_lel T" € Z[T]. It follows from Theorem 1.1
that the functiony :d € Ha(X; Z) — x%(T) € Z[T] only depends on the real symplectic 4-manifod w, cx)
and is invariant under deformation of this real symplectic 4-manifold. As an application of this invariant, we obtain
the following lower bounds:

Corollary 1.2. Under the hypothesis of Theoredni, the integenxf’| gives a lower bound for the total number of
real rational J-holomorphic curves ok in the homology clasg passing through, independently of the choice
of a genericJ € R7,.

Note that this number of real curves is always bounded from above by the total nuvpbef rational
J-holomorphic curves o passing through in the homology clasg, which does not depend on the choice
of J. This numberN,; is a Gromov-Witten invariant of the symplectic 4-manifgii, ») and was computed by
Kontsevich in [4]. One of the main problems of real enumerative geometry nowadays is, in this context, to know
if there exists a generic real almost-complex structureRR 7, such that all these rationdlholomorphic curves
are real. The following corollary provides a criterium for the existence of such a structure.

Corollary 1.3. Under the hypothesis of Theoreini, assume thag¢ > 0 (resp.x¢ < 0). Assume that there exists
a genericJ € RJ, such thatX has%(Nd — x4y real J-holomorphic curves of od@tesp. evehmass passing
throughx in the homology clasg. Then, all of the rational/-holomorphic curves oX passing through in the
homology clasd are real.

Example 1. Let (X, w, cx) be the complex projective plane equipped with its standard symplectic form and
real structure. We denote the homology classe€ Bf by integers. Theryx) = 1, x2 =1 andx2 = r for an

evenr in between 0 and 8. The latter can be obtained computing the Euler caracteristic of the real part of the
blown up projective plane at the nine base points of a pencil of cubics, as was noticed by V. Kharlamov (see [1],
Proposition 4.7.3, or [7], Theorem 3.6).



J.-Y. Welschinger / C. R. Acad. Sci. Paris, Ser. | 336 (2003) 341-344 343

Example 2. Let (X, w, cx) be the real maximal smooth cubic surface®3, and! be the homology class of a
line. Thenx) = 27.

Further computations of this invariaptseem to require some recursion formula analogous to the one obtained
by Kontsevich in [4]. Also, is it possible to obtain similar invariants for any real symplectic 4-manifold using higher
genus curves?

2. Theinvariant 0

Now, lety = (y1, ..., Yey(x)a—2) be areal configuration @f (X)d — 2 distinct points ofX, ands be the number
of those which are real. We assume thatxs—2 is real, so that does not vanish. I¥ € RJ, is generic enough,
then there are only finitely many-holomorphic rational curves i in the homology clasg passing througly
and having a node at, x)s—2. These curves are all nodal and irreducible. For every integanging from 0 tas,
denote by%;;(m) (resp.iy; (m)) the total number of these curves which are real, of maasd with a non-isolated

(resp. isolated) real double points)af(x)s—2. Define thendd (y, J) = 30 _o(=D™ (i} (m) — i (m)).

Theorem 2.1. Let (X, w, cx) be a real rational symplectid-manifold, andd € H2(X; Z). Lety C X be a real
configuration ofc1(X)d — 2 distincts points and # 0 be the cardinality ofy N RX. Finally, let J € R7, be an
almost complex structure generic enough, so that the integer, J) is well defined. Then, this integéf (v, J)
neither depends on the choicebhor on the choice of (provided the cardinality of NRX is s).

Once more, for convenience, the integéry, J) will be denoted by?, and we pub? = 0 whens does not
have the same parity ag(X)d. This invariant makes it possible to give relations between the coefficients of the
polynomial x4, namely:

Theorem 2.2. Let (X, w, cx) be a real rational symplectid-manifold,d € H2(X;Z) and r be an integer in
betweerD andc1(X)d — 3. Theny? , = x? + 207 ;.

3. Outline of the proof of Theorem 1.1

First, we construct the moduli spaa‘e(g(x) of genus 0 pseudo-holomorphic curves in the homology alass
passing through. This space is equipped withZy 2Z-action induced by the real structurg. The fixed point set
RMg(x) of this action is a Banach submanifoIdMg(x) consisting of the real curves, that is of the curves which
are invariant undery. The index zero Fredholm projectian: Mg’(x) — Jw I8 Z/27Z-equivariant and induces an
index zero Fredholm projectiong : RMg(x) — RJ7,. We first prove the following theorem.

Theorem 3.1. The set of regular values of the projectian Mg’(x) — J, intersectsR7,, in a dense set of the
second category @t.7,,.

This theorem follows from the fact that a pointMg(x) (resp. oﬂRMg(x)) is regular forz (resp. forng) if
and only if it corresponds to an immersed curve (see [2,3]) and from the following proposition.

Proposition 3.2. The submanifold®.7,, of 7, is transversal to the restriction of to Mg(x) \IR{Mg(x).

It is — essentially — a consequence of Theorem 3.1 that the intgders J) andesd(y, J) are well defined, as
soon as/ € RJ, is generic enough.

Then, letJy, J1 € RJ, be two regular values of the projectian Mg(x) — J, such that the integep@f’(x, J1)
andyx? (x, Jo) are well defined. Ley : [0, 1] — R, be a path transversal to the projectians: RMg(x) —RJ,
and 7 : (M@ (x) \ RMd(x)) — J., (see Proposition 3.2), joinindo to Ji. Thus,RM, = zgt(Im(y)) is a
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submanifold of dimension one NMg’(x), equipped with a projection, : RM,, — [0, 1] induced byrr. Using
genericity arguments, we prove that the patltan be chosen in order that every elemenRd#, is a nodal

curve, except a finite number of them which may have a unique real ordinary cusp, a unique real triple point or a
unique real tacnode. Moreover, this path can be chosen so that when a sequence of eleRigfifsaoinverges

in Gromov topology to a reducible curve &f, then this curve has only two irreducible components, both real,
and only nodal points as singularities. Finally, this path can be chosen so that the critical points of the projection
m,, which correspond to the cuspidal curves, are all non-degenerate. To obtain these genericity results, we make
strong use of the results and techniques developed in [3] and [6].

At this point, the integeyf’(x, y (¢)) is well defined for all but a finite number of valuesrfand is obviously
constant between these parameters. The only thing to prove is that it also does not change while crossing thes
values which correspond to a real triple point or tachode, to a cuspidal curve, or to a reducible curve. In the case
of a curve having a real triple point or a real tacnode, it is not hard to check. In the case of a reducible curve, it
follows from the following proposition.

Proposition 3.3. Let Cg be a real reducible/p-holomorphic curve oKX passing through and limit of a sequence
of elements oRM,, . Let Jo = y (o) for 1p € 10, 1] and C1, C> be the two irreducible components@j. Let R be
the number of real intersection points betw&gnand Cz. Then there exist a neighborho@d of Cg in the Gromov

compactificatioﬁRMg(x) andn > 0 such that for every € Jto — n, 10 + n[ \ {to}, ny‘l(t) N W consists exactly
of R real y (t)-holomorphic curves, each of them obtained topologically by smoothing a different real intersection
point of C1 N Ca.

Finally, in the case of a cuspidal curve, it follows from the following proposition.

Proposition 3.4. Let Co € RM,, be a critical point ofr,, which is a local maximur{resp. minimuh Then there
exist a neighborhooW of Cg in RM,, andn > 0 such that for every € 11g— 7, o[ (resp. for every € lto, to+ n[),
ny‘l(t) N W consists of two curves;” andC;” satisfyingn(C;") = m(C;”) + 1, and for every € Jto, 1o+ n[ (resp.
for everyr € Jio — . t0l), 7, 2(t) "W = 0.

In Proposition 3.4, the curv€yp has a unique cuspidal point which is a real ordinary cusp. Thus@btand
C; have areal node in a neighborhood of this cusp. To get Proposition 3.4, one has to prove that for one of these
curves, this real node is non-isolated and for the other one, it is isolated. Note that in contrast to the previous cases
the coefficien{—1)™ in the definition ofxrd plays here a crucial réle to get the invariance.

The proofs of Theorems 2.1 and 2.2 are based on the same kind of arguments.
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