Lower bounds for the counting function of resonances for a perturbation of a periodic Schrödinger operator by decreasing potential

Mouez Dimassia, Maher Mnifb
a Institut Galilée, avenue Jean-Baptiste-Clément, 93430 Villetaneuse, France
b I.P.E.I.S., boîte postale 805, Sfax 3000, Tunisie
Received 1 October 2002; accepted 15 October 2002
Note presented by Jean-Michel Bony.

Abstract
We are interested here in the counting function of resonances $N(h)$ for a perturbation of a periodic Schrödinger operator P_0 by decreasing potential $W(hx)$ ($h \downarrow 0$). We obtain a lower bound for $N(h)$ near some singularities of the density of states measure, associated to the unperturbed Hamiltonian P_0. To cite this article: M. Dimassi, M. Mnif, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1013–1016.
© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Des minorations de la fonction de comptage de résonances pour une perturbation d’un opérateur de Schrödinger périodique par un potentiel décroissant

Résumé
© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The purpose of this paper is to give a lower bound for the counting function of resonances for the perturbed periodic Schrödinger operator:

$$P(h) = P_0 + W(hx), \quad P_0 = -\Delta + V(x) \quad (h \downarrow 0).$$

Here V is C^∞, real-valued and Γ-periodic with respect to a lattice $\Gamma = \bigoplus_{i=1}^m \mathbb{Z} e_i$ in \mathbb{R}^n. The potential W is real-valued and satisfies:

\textit{E-mail addresses:} dimassi@math.univ-paris13.fr (M. Dimassi); maher.mnif@ipeis.rnu.tn (M. Mnif).
© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés
S 1631-073X (02) 02600-6/FLA
(H1) there exist positive constants a and C such that W extends analytically to $\Gamma(a) := \{ z \in C^n; |\Im(z)| \leq a |\Re(z)| \}$ and

$$|W(z)| \leq C(z)^{-\tilde{n}}, \quad \text{uniformly on } z \in \Gamma(a), \tilde{n} > n.$$ (1)

where $\langle z \rangle = (1 + |z|^2)^{1/2}$. Here $\Re(z)$, $\Im(z)$ denote respectively the real part and the imaginary part of z.

For $k \in \mathbb{R}^n$, we define the operator P_k on $L^2(\mathbb{R}^n/\Gamma)$ by:

$$P_k := (D_y + k)^2 + V(y).$$

The Floquet eigenvalues are the eigenvalues $\lambda_1(k) \leq \lambda_2(k) \leq \cdots$ of P_k (enumerated according to their multiplicities). It is well known that [3]:

$$\sigma(P_0) = \sigma_{\text{ac}}(P_0) = \bigcup_{j \geq 1} \Lambda_j, \quad \Lambda_j = \lambda_j(\mathbb{R}^n/\Gamma^*).$$

Here Γ^* is the dual lattice corresponding to Γ.

For $f \in C_0^\infty(\mathbb{R})$, we set

$$\langle \mu, f \rangle = \int [f(W(x)) - f(0)] \, dx,$$ (2)

$$\langle \omega, f \rangle = \sum_{j \geq 1} \int_{E^*} \int_{\mathbb{R}^n} [f(W(x) + \lambda_j(k)) - f(\lambda_j(k))] \, dk \, dx,$$ (3)

where E^* is a fundamental domain of \mathbb{R}^n/Γ^*.

Proposition 1. – The functionals operators ω and μ are distributions on \mathbb{R} of order ≤ 1. Moreover, in $\mathcal{D}'(\mathbb{R})$, we have

$$\omega = d\rho * \mu.$$ (4)

Here

$$\rho(\lambda) := \frac{1}{(2\pi)^n} \sum_{j \geq 1} \int_{E^*} \int_{\mathbb{R}^n} \chi_{\{k \in E^*; \lambda_j(k) \leq \lambda\}} \, dk,$$ (5)

is the density of states measure associated to the unperturbed Hamiltonian P_0.

Proof. – Applying Taylor’s formula to the r.h.s. of (2), we obtain

$$|\langle \mu, f \rangle| \leq \sup |f'| \int |W(x)| \, dx,$$

which together with (1) implies that μ is a distribution of order ≤ 1, with

$$\text{supp} \mu \subset [\inf W(x), \sup W(x)].$$

Consequently, $d\rho * \mu$ is well defined in $\mathcal{D}'(\mathbb{R})$. Using (2), (5) and the definition of the convolution we get easily (4).

When $V = 0$, it was proved by Sjöstrand [4] that if $0 < E \in \text{singsupp}_\mu(\mu)$, then the operator $P(h) = -\Delta + W(hx)$ has at least $C_\Omega r^{-n}$ resonances in any h-independent complex neighborhood Ω of E. Here $\text{singsupp}_\mu(\mu)$ denotes the analytic singular support of the distribution μ.

Now let I be an open bounded interval. Assume that for all $\lambda \in I$ the following assumption holds.
(H2) For all $k_0 \in \mathbb{R}^n / \Gamma^*$ with $\lambda_j(k_0) = \lambda$, the eigenvalue $\lambda_j(k_0)$ is simple and $d_\lambda(k_0) \neq 0$.

The case $V \neq 0$ was recently studied by Dimassi and Zerzeri [1]. Under the assumption (H2) they obtained the same lower bound as in [4] near $E \in \text{singsupp}_a(\omega) \cap I$. Surely, in this case ρ is more complicated and $\text{singsupp}_a(\omega)$ will depend on both $\text{singsupp}_a(d\rho)$ and $\text{singsupp}_a(\rho(\lambda))$.

We recall that, when $V = 0$, $\rho(\lambda) = (2\pi)^{-n} \text{vol}(B_{R_0}(0, 1)) \max(\lambda, 0)^{n/2}$. This fact permitted to Sjöstrand to prove that $\text{singsupp}_a(d\rho \ast \mu) = \text{singsupp}_a(\rho(\lambda))$.

In this Note we will use the simple representation of ω given by Proposition 1 to get a lower bound near some singularities of $\rho(\lambda)$. More precisely we study resonances generated by analytic singularities of μ near the edge of bands or near some singularities of ρ due to the band crossings.

2. Lower bounds of the counting function near the edges of bands

The following result is a consequence of Morse lemma.

Lemma 2. Let $e_0 \in \sigma(P_0)$. We assume that:

(i) If $\lambda_j(k) = e_0$, then $\lambda_j(k)$ is a simple eigenvalue of P_k.

(ii) There exist i_0 and k_0 such that $\lambda_{i_0}(k_0) = e_0$, $\nabla \lambda_{i_0}(k_0) = 0$, $\pm \partial^2 \lambda_{i_0}(k_0) > 0$ and $\nabla \lambda_{i_0}(k) \neq 0 \forall k \in E^*$, $k \neq k_0$.

(iii) For all $k \in \lambda_j^{-1}[e_0]$ and all $i \neq i_0$, $\nabla \lambda_i(k) \neq 0$.

Then there exists an open connected neighborhood J of e_0 such that

$$\rho(e) = f(e - e_0) + H((e - e_0) \sqrt{e - e_0}), \quad \forall e \in J,$$

where f and g_{\pm} are C^∞ and $g_{\pm}(0) = 0, \ldots, g_{\pm}^{(n-1)}(0) = 0 \notin (n, g_{\pm}^{(n)}(0) \neq 0$. Here, $+(-)$ corresponds to a local minimum (maximum respectively).

Using (4) and Lemma 2, we obtain:

Theorem 3. Let e_0 and J be as above, and let $\lambda \in (e_0 + \text{singsupp}_a(\mu))$. We assume that λ satisfies (H2) and that $(\lambda - \text{supp}(\mu)) \subset J$. Then for all h-independent complex neighborhoods Ω of λ, there exist $h_0 = h(\Omega) > 0$ sufficiently small and $C = C(\Omega) > 0$ such that for $h \in [0, h_0]$,

$$\# \{z \in \Omega; z \in \text{Res}(P(h)) \} \geq C h^{-n}.$$

Remark 4. The assumption $(\lambda - \text{supp}(\mu)) \subset J$ ensures that, in the study of $d\rho \ast \mu$ near λ, one only needs the value of ρ in J given by (6). Hence, using (6) and Proposition 1, we show that $\lambda \in \text{singsupp}_a(\omega)$. Therefore, Theorem 3 follows from the result of Dimassi and Zerzeri [1].

3. Lower bounds near singularities due to band crossings

In this subsection we study resonances near singularities of $\rho(\lambda)$ generated by a band crossings. We will only consider the two dimensional case. With similar assumptions, one can treat the case $n \geq 2$.

We assume that λ_j is a double eigenvalues $\lambda_{j-1}(k_0) < \lambda_j(k_0) = e_0 = \lambda_{j+1}(k_0) < \lambda_{j+2}(k_0)$ and that for all $k \neq k_0$ such that $\lambda_j(k) = e_0$, $\lambda_j(k)$ is simple and $\nabla \lambda_j(k) \neq 0$.

Since P_k is analytic in k, this implies that for $|k - k_0| \leq \delta$ (with δ small enough), the span $V(k)$, of the eigenvectors of P_k corresponding to eigenvalues in the set $\mathcal{E}; |e - e_0| \leq \delta$ has a basis $\psi_j(x, k), \psi_{j+1}(x, k)$, which is orthonormal and real analytic in k. The restriction of P_k to $V(k)$ has the matrix

$$\begin{pmatrix}
a(k) & b(k) \\
b(k) & \beta(k)
\end{pmatrix}.$$
which can be written

\[
\begin{pmatrix}
 a(k) + c(k) & b_1(k) - ib_2(k) \\
 b_1(k) + ib_2(k) & a(k) - c(k)
\end{pmatrix},
\]

where \(a(k) = \alpha(k) + \beta(k)/2 \), \(c(k) = \alpha(k) - \beta(k)/2 \), \(b_1(k) \) and \(b_2(k) \) are real valued. Next, the periodic potential is assumed to have the symmetry \(V(x) = V(-x) \). This symmetry is typical of metals. This symmetry forces \(b(k) \) to be real valued (i.e., \(b_2(k) = 0 \)). Consequently, near \(k_0 \) we have

\[
\lambda_j(k) = a(k) - \sqrt{c_2^2(k) + b_2^2(k)}, \quad \lambda_{j+1}(k) = a(k) + \sqrt{c_2^2(k) + b_2^2(k)}.
\]

We assume that \(\nabla b(k_0), \nabla c(k_0) \) are independent. Since \(n = 2 \), \((\nabla b(k_0), \nabla c(k_0)) \) is a basis in \(\mathbb{R}^2 \). Set \(\nabla a(k_0) = \alpha_1 \nabla b(k_0) + \alpha_2 \nabla c(k_0) \).

The following result was proved in [2].

Lemma 5 ([2]). If \(\alpha_1^2 + \alpha_2^2 < 1 \), then there exist an open connected neighborhood \(J \) of \(e_0 \) and \(C^\infty \) functions \(f \) and \(g \) such that

\[
\rho(e) = f(e) + \left(H(e - e_0) - H(-(e - e_0)) \right) g(e),
\]

with \(g''(e_0) \neq 0 \), \(\forall e \in J \).

Theorem 6. Let \(J \) be an open interval in which (7) is valid. Let \(\lambda \in (e_0 + \text{supp}(\mu)) \) be satisfying (H2). We assume that \((\lambda - \text{supp}(\mu)) \subset J \). Then for all \(h \)-independent complex neighborhoods \(\Omega \) of \(\lambda \), there exist \(h_0 = h(\Omega) > 0 \) sufficiently small and \(C = C(\Omega) > 0 \) such that for \(h \in [0, h_0] \),

\[
\# \{ z \in \Omega; z \in \text{Res}(P(h)) \} \geq C h^{-n}.
\]

References

