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Note presented by Charles-Michel Marle.

Abstract We show that aff(n), the Lie agebra of affine transformations of R”, is formally and
analytically nondegenerate in the sense of A. Weinstein. This means that every analytic
(resp., formal) Poisson structure vanishing at a point with a linear part corresponding to
aff(n) islocally anayticaly (resp., formally) linearizable. To citethisarticle: J.-P. Dufour,
N.T. Zung, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 1043-1046.
0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Non-dégénérescence del’algebre de Lie aff(n)

Résumé Nous montrons que toute structure de Poisson analytique (resp., formelle), qui s annule en
un point et dont la partie linéaire correspond a I’ algebre aff(n) des transformations affines
sur R”, est localement analytiquement (resp., formellement) linéarisable. Pour citer cet
article: J.-P. Dufour, N.T. Zung, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 1043-1046.
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1. Introduction

Following Weinstein [9], we will say that aLie agebrag isformally (resp. anaytically, smoothly) non-
degenerateif any formal (resp. analytic, smooth) Poisson structure IT vanishing at a point, with alinear part
D corresponding to g, is formally (resp. analytically, smoothly) linearizable. An interesting and largely
open question in Poisson geometry is to find and classify nondegenerate Lie algebras in the above senses.
Upto now, only few nondegenerate Lie algebras are known. Theseinclude: the nontrivial 2-dimensional Lie
algebra aff(1) (see appendix of [1] on Poisson structures and densities); semisimple Lie algebras [9,2,3];
acomplete list of nondegenerate Lie algebrasin dimensions 3 [4] and 4 [6], direct products of semisimple
algebraswith R (or C) [6], and direct products of n copies of aff(1) [5].

Recent works by A. Wade, Ph. Monnier and the second author on Levi decomposition of Poisson
structures[7,8,10] open anew way of linearizing Poisson structures by first looking for a semi-linearization
associated to a L evi decomposition of their linear part. We will recall this method in Section 2. Using it, we
obtain the following result:
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THEOREM 1.1.— For any natural number n, the Lie algebra aff(n, K) = gl(n, K) x K" of affine
transformations of K", where K = R or C, isformally and analytically nondegenerate.

The above theorem provides a new entry in a very short list of known examples of nondegenerate
Lie algebras. Moreover unlike previously known examples, aff(n) for n > 2 is neither reductive nor
solvable. We remark that the main sisters of aff(n), namely the algebra e(n) = so(n) x R" of Euclidean
transformations and the algebra saff(n) = sl(n) x K" of volume preserving affine transformations, are
unfortunately degeneratefor n = 2 or 3, as simple polynomial non-linearizable examples show (we suspect
that they are degeneratefor n > 2 aswell).

Another interesting feature about aff(n) isthat it is a Frobenius Lie algebra, in the sense that thereis a
dense open subset in the dual of aff(n) where the corresponding linear Poisson structure is nondegenerate.
The existence of an open coadjoint orbit probably plays a role in the nondegeneracy of aff(n) and some
other Frobenius Lie lagebras. However, being Frobenius does not guarantee nondegeneracy: aready in
dimension 4 there are counter-examples, which can be seen from the list givenin [6].

Therest of this Note is organized as follows:. in Section 2 we obtain an improved version of the analytic
semi-linearization result of [10], which works not only for aff(n) but for many other Lie algebras as well.
Then in Section 3 we give a proof of Theorem 1.1 based on this improved semi-linearization and using a
trick involving Casimir functions for gl(n). For simplicity of exposition, we will restrict our attention to
the analytic case. The formal case is absolutely similar, if not smpler. In Section 4 we show that the Lie
algebras saff(2) and ¢(3) are degenerate (formally, analytically and smoothly).

2. Semi-linearization for aff(n)

Denote by g = s x t aLevi decomposition for a (real or complex) Lie algebra g, where s is semisimple
and ¢ is the solvable radical. Let IT be an analytic Poisson structure vanishing at a point O in a manifold
whose linear part at O corresponds to g. According to the main result of [10] (caled the analytic Levi
decomposition theorem), there exists a local analytic system of coordinates (x1, ..., Xm, y1,..., yq4) ina
neighborhood of 0, where m = dims and d = dimt, such that in these coordinates we have

iy =Y cx (=) aly’, D

where cf.‘j are structural constants of s and 4], are constants. This gives what we call a semi-linearization
for T1. Note that the remaining Poisson brackets {y,, y;} are nonlinear in general .

We now restrict our attention to the case where g = aff(n), m =n® —1,d =n+1, s = sl(n),t =
K(d) x K" where Id acts on K" by the identity map. The following lemma says that we may have
a semi-linearization associated to the decomposition aff(n) = gl(n) x K" (which is better than the Levi
decomposition).

LEMMA 2.1.— There are local analytic coordinates x1, ..., x,2_1, Yo, ¥1, - - -, Yo Which satisfy rela-
tions (1), with the following extra properties. {yo, v} =y, for r =1, ..., n; {x;, yo} =0Vi.

Proof. — We can assume that the coordinates y, are chosen so that relations (1) are already satisifed, and
yo corresponds to Id in K(ld) x K". Then the Hamiltonian vector fields X, are linear and form a linear
action of sl(n). Because of (1), we have that {x;, yo} = 0, which implies that [X,,, X,,]1 =0, i.e, X, is
invariant under the sl(n) action. Moreover we have X,,(x;) =0 (i.e., X,, does not contain components
8/0x;), and X ,, =7 vid/dy;+ nonlinear terms. Hence we can use (the parametrized equivariant version
of) Poincaré linearization theorem to linearize X, in a sl(n)-invariant way. After this linearization, we
have that Xy, = > 7 yid/dy;. In other words, relations (1) are still satisfied, and moreover we have
{vo.yi} = Xyo(yi) =yi. DO
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The significance of the above lemmais that we can extend the analytic semi-linearization of [10] from
sl(n) to gl(n) = sl(n) ® K . Hereafter we will redenote yo in the above lemma by x,2. Then relations (1)
are still satisfied.

Remark. —LemmaZ2.1 till holdsif we replace aff(n) by any Lie algebraof thetype (s & Keg) x n where
s issemisimple and ep acts on n by the identity map (or any matrix whose corresponding linear vector field
is nonresonant and satisfies a Diophantine condition).

3. Linearization for aff(n)

We will work in a coordinate system x1, ..., x,2, y1, ..., ¥, provided by Lemma 2.1. We will fix the
variables x1, ..., x,2, and consider them as linear functionson gl*(n) (they give a Poisson projection from
our (n? + n)-dimensional spaceto gl*(n)). Denote by Fi, ..., F, the n basic Casimir functionsfor gl*(n)
(if we identify gl(n) with its dua via the Killing form, then Fy, ..., F, are basic symmetric functions
of the eigenvalues of n x n matrices). We will consider F1(x), ..., F,(x) as functionsin our (n? + n)-
dimensional space, which do not depend on variables y;. Denote by X1, ..., X,, the Hamiltonian vector
fieldsof Fy,..., F,.

LEMMA 3.1.— Thevector fields X1, ..., X,, do not contain componentsd/dx;. They form a system of n
linear commuting vector fieldson K” (thespaceof y = (y1, ..., y,)) with coefficientswhich are polynomial
inx = (x1,...,x,2). The set of x such that they are linearly dependent everywhere in K" is an analytic
space of complex codimension greater than 1 (when K = C).

Proof. — The fact that the X; are y-linear with x-polynomial coefficients follows directly from
relations (1). Since F; are Casimir functions for gl(n), we have X; (xx) = {F;, x¢} = 0, and [X;, X ;] =
X(F;. ;) =0.

Onéchecksthat, foragivenx, X1 A...A X, =0identically on K" if and only if x isasingular point for
themap (F1, ..., F,) from g[*(n) to K. The set of singular points of the map (Fy, ..., F,,) inthe complex
caseis of codimension greater than 1 (in fact, it isof codimension 3). O

LEMMA 3.2.— Write the Poisson structure IT in the form IT = IT® + 1, where TT® is the linear part
and IT denote the higher order terms. Then IT is a Poisson structure which can be written in the form

ﬁszini/\Xj’ (2)

i<j

where the functions f;; are analytic functions which depend only on the variables x, and they are Casimir
functionsfor gl*(n) (if we consider the variables x aslinear functionson gl*(n)).

Proof. —We work first locally near a point (x, y) where the vector fields X, are linearly independent
point-wise. AsI1 isa 2-vector field in K" = {y} (with coefficient depending on x) we have alocal formula
M=>"_; fijXi N X where f;; areanalytic functionsin variables (x, y). Since X are Hamiltonian vector
fields for IT and also for [TV, we have [ X, T1] = [ Xk, T1] — [Xx, T®P]=0fork =1, ...,n. Thisleadsto
X (fij) =0Vk,i, j. Hence, because the X, generate K", the functions f;; are locally independent of y.
Using analytic extension, Hartog's theorem and the fact that the set of x such that X1, ..., X, arelinearly
dependent point-wise everywhere in K" is of complex codimension greater than 1, we obtain that f;; are
local analytic functionsin a neighborhood of 0 which depend only on the variables x. The fact that Misa
Poisson structure, i.e., [IT, TT] = 0, is now evident, because X (f;;) =0and [X;, X;]=0.

Relations [Xy,, [T] = [Xy;, 1] — [X,,, 1] = 0 imply that X, (f;;) = 0, which means that f;; are
Casimir functionsfor gl*(n). O
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Remark. —Lemma 3.2 is till valid in the formal case. In fact, every homogeneous component of I
satisfies arelation of type (2).

LEMMA 3.3.— There exists a vector field Y of theform Y = )" ; &; X;, where the analytic functions
a; depend only on the variables x and are Casimir functionsfor gl*(n), such that

[v,nP]=-m, [r,0O]=0 3)

Proof. —Since the functions f;; of Lemma 3.2 are analytic Casimir functions for gl(n), we have
fij =¢ij(F1, ..., Fp) where ¢;; (z1, . . ., z,) are analytic functions of n variables. On the other hand, since

n®, T and T = ND + IT are Poisson structures, they are compatible, i.e., we have [T®, 1] = 0.

Decomposing this relation, we get ‘Z"ikf + d‘P’k + a¢k' =0Vi, j, k. Thisis equivaent to the fact that the

2-form¢ := 3", ¢ij dz; Adz; isclosed. By Pomcare slemmaweget ¢ =do withan1-forma =, o; dz;.
Thenweput Y := >, o (F1,..., F,)X;. An elementary caculation proves that Y is the desired vector
field. O

Proof of - Theorem 1.1. — Consider a path of Poisson structures given by 1, := 1@ + 1. As we have
[Y,,]=M= dtl’It, the time-1 map of the vector field ¥ moves TT™Y = I into IT = IT;. This shows that
IT islocally analytically linearizable, thus proving our theorem. 0O

4. Degeneracy of saff(2) and ¢(3)

The linear Poisson structure corresponding to saff(2) has the form I = 2¢9h A de — 2fdh A df +
hde NOf +y10h Ady1— y20h Ady2+y10e Ady2+y2df A dy1 inanatural system of coordinates. Now put
I =W 4+ T with TT = (k%2 4 4ef)dy1 A dy2. Then IT is a Poisson structure, vanishing at the origin, with
alinear part corresponding to saff(2). For I the set wherethe rank is less or equal to 2 is a codimension
2 subspace (given by the equations y1 = 0 and y, = 0). For I the set where the rank is less or equal to 2
isa 2-dimensional cone (the cone given by the equations y; = 0, y» = 0 and 42 + 4ef = 0). So these two
Poisson structures are not isomorphic, even formally.

The linear Poisson structure corresponding to ¢(3) has the form I = x19x5 A dx3 + x20x3 A 9x1 +
x30x1 A dx2 + y10x2 A 8y3 + y23x3 A 0y1 + y30x1 A dyz in a natural system of coordinates. Now put
N=0® 4+ withIl= (x1 +x5 +x§)(x18y2 A 0y3+x20y3 A dy1+x30y1 A dy2). For D the set where
therank isless or equal to 2 isadimension 3 subspace (given by the equation y; = y> = y3 = 0), while for
IT the set wherethe rank isless or equal to 2 isthe origin.

References

[1] V.I. Arnold, Geometrica Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York,
1988.

[2] J.F. Conn, Normal forms for analytic Poisson structures, Ann. of Math. (2) 119 (3) (1984) 577-601.

[3] J.F. Conn, Normal forms for smooth Poisson structures, Ann. of Math. (2) 121 (3) (1985) 565-593.

[4] J.-P. Dufour, Linéarisation de certaines structures de Poisson, J. Differential Geom. 32 (2) (1990) 415-428.

[5] J.-P. Dufour, J-Ch. Malinier, Une nouvelle famille d’ algebres de Lie non dégénérées, Indag. Math. (N.S.) 6 (1)
(1995) 67-82.

[6] J.-C. Molinier, Linéarisation de structures de Poisson, Thése, Montpellier, 1993.

[7] P. Monnier, N.T. Zung, Levi decomposition of smooth Poisson structures, Preprint, 2002, math.DG/0209004.

[8] A. Wade, Normalisation formelle de structures de Poisson, C. R. Acad. Sci. Paris, Sériel 324 (5) (1997) 531-536.

[9] A. Weinstein, Theloca structure of Poisson manifolds, J. Differential Geom. 18 (3) (1983) 523-557.

[10] N.T. Zung, Levi decomposition of analytic Poisson structures and Lie agebroids, Preprint, 2002,

math.DG/0203023.

1046



