
C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1043–1046

Géométrie différentielle/Differential Geometry

Nondegeneracy of the Lie algebra aff(n)

Jean-Paul Dufour a, Nguyen Tien Zung b

a GTA, UMR 5030 CNRS, Département de mathématiques, Université Montpellier II,
34095 Montpellier cedex 5, France

b Laboratoire Emile Picard, UMR 5580 CNRS, UFR MIG, Université Toulouse III,
31062 Toulouse cedex 4, France

Received 24 September 2002; accepted 15 October 2002
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Abstract We show that aff(n), the Lie algebra of affine transformations of Rn, is formally and
analytically nondegenerate in the sense of A. Weinstein. This means that every analytic
(resp., formal) Poisson structure vanishing at a point with a linear part corresponding to
aff(n) is locally analytically (resp., formally) linearizable. To cite this article: J.-P. Dufour,
N.T. Zung, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1043–1046.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Non-dégénérescence de l’algèbre de Lie aff(n)

Résumé Nous montrons que toute structure de Poisson analytique (resp., formelle), qui s’annule en
un point et dont la partie linéaire correspond à l’algèbre aff(n) des transformations affines
sur Rn, est localement analytiquement (resp., formellement) linéarisable. Pour citer cet
article : J.-P. Dufour, N.T. Zung, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1043–1046.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Following Weinstein [9], we will say that a Lie algebra g is formally (resp. analytically, smoothly) non-
degenerate if any formal (resp. analytic, smooth) Poisson structure � vanishing at a point, with a linear part
�(1) corresponding to g, is formally (resp. analytically, smoothly) linearizable. An interesting and largely
open question in Poisson geometry is to find and classify nondegenerate Lie algebras in the above senses.
Up to now, only few nondegenerate Lie algebras are known. These include: the nontrivial 2-dimensional Lie
algebra aff(1) (see appendix of [1] on Poisson structures and densities); semisimple Lie algebras [9,2,3];
a complete list of nondegenerate Lie algebras in dimensions 3 [4] and 4 [6], direct products of semisimple
algebras with R (or C) [6], and direct products of n copies of aff(1) [5].

Recent works by A. Wade, Ph. Monnier and the second author on Levi decomposition of Poisson
structures [7,8,10] open a new way of linearizing Poisson structures by first looking for a semi-linearization
associated to a Levi decomposition of their linear part. We will recall this method in Section 2. Using it, we
obtain the following result:
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THEOREM 1.1. – For any natural number n, the Lie algebra aff(n,K) = gl(n,K) � Kn of affine
transformations of Kn, where K = R or C, is formally and analytically nondegenerate.

The above theorem provides a new entry in a very short list of known examples of nondegenerate
Lie algebras. Moreover unlike previously known examples, aff(n) for n � 2 is neither reductive nor
solvable. We remark that the main sisters of aff(n), namely the algebra e(n) = so(n) � Rn of Euclidean
transformations and the algebra saff(n) = sl(n) � Kn of volume preserving affine transformations, are
unfortunately degenerate for n = 2 or 3, as simple polynomial non-linearizable examples show (we suspect
that they are degenerate for n > 2 as well).

Another interesting feature about aff(n) is that it is a Frobenius Lie algebra, in the sense that there is a
dense open subset in the dual of aff(n) where the corresponding linear Poisson structure is nondegenerate.
The existence of an open coadjoint orbit probably plays a role in the nondegeneracy of aff(n) and some
other Frobenius Lie lagebras. However, being Frobenius does not guarantee nondegeneracy: already in
dimension 4 there are counter-examples, which can be seen from the list given in [6].

The rest of this Note is organized as follows: in Section 2 we obtain an improved version of the analytic
semi-linearization result of [10], which works not only for aff(n) but for many other Lie algebras as well.
Then in Section 3 we give a proof of Theorem 1.1 based on this improved semi-linearization and using a
trick involving Casimir functions for gl(n). For simplicity of exposition, we will restrict our attention to
the analytic case. The formal case is absolutely similar, if not simpler. In Section 4 we show that the Lie
algebras saff(2) and e(3) are degenerate (formally, analytically and smoothly).

2. Semi-linearization for aff(n)

Denote by g = s � r a Levi decomposition for a (real or complex) Lie algebra g, where s is semisimple
and r is the solvable radical. Let � be an analytic Poisson structure vanishing at a point 0 in a manifold
whose linear part at 0 corresponds to g. According to the main result of [10] (called the analytic Levi
decomposition theorem), there exists a local analytic system of coordinates (x1, . . . , xm, y1, . . . , yd) in a
neighborhood of 0, where m = dim s and d = dim r, such that in these coordinates we have

{xi, xj } =
∑

ck
ij xk, {xi, yr} =

∑
as
iry

s, (1)

where ck
ij are structural constants of s and as

ir are constants. This gives what we call a semi-linearization
for �. Note that the remaining Poisson brackets {yr, ys} are nonlinear in general.

We now restrict our attention to the case where g = aff(n), m = n2 − 1, d = n + 1, s = sl(n), r =
K(Id) � Kn where Id acts on Kn by the identity map. The following lemma says that we may have
a semi-linearization associated to the decomposition aff(n) = gl(n) � K

n (which is better than the Levi
decomposition).

LEMMA 2.1. – There are local analytic coordinates x1, . . . , xn2−1, y0, y1, . . . , yn which satisfy rela-
tions (1), with the following extra properties: {y0, yr } = yr for r = 1, . . . , n; {xi, y0} = 0 ∀i .

Proof. – We can assume that the coordinates yr are chosen so that relations (1) are already satisifed, and
y0 corresponds to Id in K(Id) � Kn. Then the Hamiltonian vector fields Xxi are linear and form a linear
action of sl(n). Because of (1), we have that {xi, y0} = 0, which implies that [Xxi ,Xy0] = 0, i.e., Xy0 is
invariant under the sl(n) action. Moreover we have Xy0(xi) = 0 (i.e., Xy0 does not contain components
∂/∂xi), and Xy0 = ∑n

1 yi∂/∂yi+ nonlinear terms. Hence we can use (the parametrized equivariant version
of) Poincaré linearization theorem to linearize Xy0 in a sl(n)-invariant way. After this linearization, we
have that Xy0 = ∑n

1 yi∂/∂yi . In other words, relations (1) are still satisfied, and moreover we have
{y0, yi} = Xy0(yi) = yi . ✷
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The significance of the above lemma is that we can extend the analytic semi-linearization of [10] from
sl(n) to gl(n) = sl(n) ⊕ K . Hereafter we will redenote y0 in the above lemma by xn2 . Then relations (1)
are still satisfied.

Remark. – Lemma 2.1 still holds if we replace aff(n) by any Lie algebra of the type (s⊕Ke0)� n where
s is semisimple and e0 acts on n by the identity map (or any matrix whose corresponding linear vector field
is nonresonant and satisfies a Diophantine condition).

3. Linearization for aff(n)

We will work in a coordinate system x1, . . . , xn2, y1, . . . , yn provided by Lemma 2.1. We will fix the
variables x1, . . . , xn2 , and consider them as linear functions on gl∗(n) (they give a Poisson projection from
our (n2 + n)-dimensional space to gl∗(n)). Denote by F1, . . . ,Fn the n basic Casimir functions for gl∗(n)

(if we identify gl(n) with its dual via the Killing form, then F1, . . . ,Fn are basic symmetric functions
of the eigenvalues of n × n matrices). We will consider F1(x), . . . ,Fn(x) as functions in our (n2 + n)-
dimensional space, which do not depend on variables yi . Denote by X1, . . . ,Xn the Hamiltonian vector
fields of F1, . . . ,Fn.

LEMMA 3.1. – The vector fields X1, . . . ,Xn do not contain components ∂/∂xi . They form a system of n

linear commuting vector fields on Kn (the space of y = (y1, . . . , yn)) with coefficients which are polynomial
in x = (x1, . . . , xn2). The set of x such that they are linearly dependent everywhere in Kn is an analytic
space of complex codimension greater than 1 (when K = C).

Proof. – The fact that the Xi are y-linear with x-polynomial coefficients follows directly from
relations (1). Since Fi are Casimir functions for gl(n), we have Xi(xk) = {Fi, xk} = 0, and [Xi,Xj ] =
X{Fi,Fj } = 0.

One checks that, for a given x , X1 ∧ . . .∧Xn = 0 identically on Kn if and only if x is a singular point for
the map (F1, . . . ,Fn) from gl∗(n) to Kn. The set of singular points of the map (F1, . . . ,Fn) in the complex
case is of codimension greater than 1 (in fact, it is of codimension 3). ✷

LEMMA 3.2. – Write the Poisson structure � in the form � = �(1) + �̃, where �(1) is the linear part
and �̃ denote the higher order terms. Then �̃ is a Poisson structure which can be written in the form

�̃ =
∑
i<j

fij Xi ∧ Xj, (2)

where the functions fij are analytic functions which depend only on the variables x , and they are Casimir
functions for gl∗(n) (if we consider the variables x as linear functions on gl∗(n)).

Proof. – We work first locally near a point (x, y) where the vector fields Xk are linearly independent
point-wise. As �̃ is a 2-vector field in Kn = {y} (with coefficient depending on x) we have a local formula
�̃ = ∑

i<j fij Xi ∧Xj where fij are analytic functions in variables (x, y). Since Xk are Hamiltonian vector

fields for � and also for �(1), we have [Xk, �̃] = [Xk,�] − [Xk,�
(1)] = 0 for k = 1, . . . , n. This leads to

Xk(fij ) = 0 ∀k, i, j. Hence, because the Xk generate Kn, the functions fij are locally independent of y.

Using analytic extension, Hartog’s theorem and the fact that the set of x such that X1, . . . ,Xn are linearly
dependent point-wise everywhere in Kn is of complex codimension greater than 1, we obtain that fij are
local analytic functions in a neighborhood of 0 which depend only on the variables x . The fact that �̃ is a
Poisson structure, i.e., [�̃, �̃] = 0, is now evident, because Xk(fij ) = 0 and [Xi,Xj ] = 0.

Relations [Xxk, �̃] = [Xxi ,�] − [Xxi ,�
(1)] = 0 imply that Xxk(fij ) = 0, which means that fij are

Casimir functions for gl∗(n). ✷
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Remark. – Lemma 3.2 is still valid in the formal case. In fact, every homogeneous component of �̃

satisfies a relation of type (2).

LEMMA 3.3. – There exists a vector field Y of the form Y = ∑n
i=1 αiXi, where the analytic functions

αi depend only on the variables x and are Casimir functions for gl∗(n), such that

[
Y,�(1)

] = −�̃ ,
[
Y, �̃

] = 0. (3)

Proof. – Since the functions fij of Lemma 3.2 are analytic Casimir functions for gl(n), we have
fij = φij (F1, . . . ,Fn) where φij (z1, . . . , zn) are analytic functions of n variables. On the other hand, since
�(1), �̃ and � = �(1) + �̃ are Poisson structures, they are compatible, i.e., we have [�(1), �̃] = 0.
Decomposing this relation, we get ∂φij

∂zk
+ ∂φjk

∂zi
+ ∂φki

∂zj
= 0 ∀i, j, k. This is equivalent to the fact that the

2-form φ := ∑
ij φij dzi ∧dzj is closed. By Poincaré’s lemma we get φ = dα with an 1-form α = ∑

i αi dzi.

Then we put Y := ∑
i αi(F1, . . . ,Fn)Xi . An elementary calculation proves that Y is the desired vector

field. ✷
Proof of Theorem 1.1. – Consider a path of Poisson structures given by �t := �(1) + t�̃. As we have

[Y,�t ] = �̃ = d
dt

�t , the time-1 map of the vector field Y moves �(1) = �0 into � = �1. This shows that
� is locally analytically linearizable, thus proving our theorem. ✷
4. Degeneracy of saff(2) and e(3)

The linear Poisson structure corresponding to saff(2) has the form �(1) = 2e∂h ∧ ∂e − 2f ∂h ∧ ∂f +
h∂e∧∂f +y1∂h∧∂y1 −y2∂h∧∂y2 +y1∂e∧∂y2 +y2∂f ∧∂y1 in a natural system of coordinates. Now put
� = �(1) + �̃ with �̃ = (h2 + 4ef )∂y1 ∧ ∂y2. Then � is a Poisson structure, vanishing at the origin, with
a linear part corresponding to saff(2). For �(1) the set where the rank is less or equal to 2 is a codimension
2 subspace (given by the equations y1 = 0 and y2 = 0). For � the set where the rank is less or equal to 2
is a 2-dimensional cone (the cone given by the equations y1 = 0, y2 = 0 and h2 + 4ef = 0). So these two
Poisson structures are not isomorphic, even formally.

The linear Poisson structure corresponding to e(3) has the form �(1) = x1∂x2 ∧ ∂x3 + x2∂x3 ∧ ∂x1 +
x3∂x1 ∧ ∂x2 + y1∂x2 ∧ ∂y3 + y2∂x3 ∧ ∂y1 + y3∂x1 ∧ ∂y2 in a natural system of coordinates. Now put
� = �(1) + �̃ with �̃ = (x2

1 +x2
2 +x2

3 )(x1∂y2 ∧ ∂y3 +x2∂y3 ∧ ∂y1 +x3∂y1 ∧ ∂y2). For �(1) the set where
the rank is less or equal to 2 is a dimension 3 subspace (given by the equation y1 = y2 = y3 = 0), while for
� the set where the rank is less or equal to 2 is the origin.
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