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Note presented by Étienne Ghys.

Abstract Using the same method we provide negative answers to the following questions: is it
possible to find real equations for complex polynomials in two variables up to topological
equivalence (Lee Rudolph)? Can two topologically equivalent polynomials be connected by
a continuous family of topologically equivalent polynomials? To cite this article: A. Bodin,
C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1039–1042.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Non réalité et non connectivité des polynômes complexes

Résumé Pour les polynômes de deux variables complexes, nous construisons des contre-exemples
aux questions suivantes : à équivalence topologique près, peut-on toujours trouver une équa-
tion réelle à un polynôme complexe (Lee Rudolph) ? Deux polynômes topologiquement
équivalents peuvent-ils être reliés par une famille de polynômes topologiquement équiva-
lents ? Pour citer cet article : A. Bodin, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 1039–
1042.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Two polynomials f,g ∈ C[x, y] are topologically equivalent, and we will denote f ≈ g, if there exist
homeomorphisms� : C2 → C2 and� : C → C such that g◦�=� ◦f . They are algebraically equivalent,
and we will denote f ∼ g, if we have � ∈ AutC2 and � = id.

It is always possible to find real equations for germs of plane curves up to topological equivalence.
In fact the proof is as follows: the topological type of a germ of plane curve (C,0) is determined by
the characteristic pairs of the Puiseux expansions of the irreducible branches and by the intersection
multiplicities between these branches. Then we can choose the coefficients of the Puiseux expansions in R

(even in Z). Now it is possible (see [7], appendix to Chapter 1) to find a polynomial f ∈ R[x, y] (even in
Z[x, y]) such that the germ (f = 0,0) is equivalent to the germ (C,0).

This property has been widely used by N. A’Campo and others (see [1] for example) in the theory of
divides. Lee Rudolph asked the question whether it is true for polynomials [10]. We give a negative answer:

THEOREM A. – Up to topological equivalence it is not always possible to find real equations for complex
polynomials.

2. We now deal with another problem. In [5] we proved that a family of polynomials with some
constant numerical data are all topologically equivalent. More precisely for a polynomial let m =
(µ,#Baff, λ,#B∞,#B) be the multi-integer respectively composed of the affine Milnor number, the number
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of affine critical values, the Milnor number at infinity, the number of critical values at infinity, the number
of critical values (with B = Baff ∪ B∞). Then we have a global version of the Lê-Ramanujam µ-constant
theorem:

THEOREM ([5]). – Let (ft )t∈[0,1] be a family of complex polynomials in two variables whose coefficients
are polynomials in t . Suppose that the multi-integer m(t) and the degree degft do not depend on t ∈ [0,1].
Then the polynomials f0 and f1 are topologically equivalent.

It is true that two topologically equivalent polynomials have the same multi-integers m. A natural
question is: can two topologically equivalent polynomials be connected by a continuous family of
topologically equivalent polynomials?

THEOREM B. – There exist two topologically equivalent polynomials f0, f1 that cannot be connected
by a family of equivalent polynomials. That means that for each continuous family (ft )t∈[0,1] there exists a
τ ∈ ]0,1[ such that fτ is not topologically equivalent to f0.

It can be noticed that the answer is positive for algebraic equivalence. Two algebraically equivalent
polynomials can be connected by algebraically equivalent polynomials since AutC2 is connected by Jung’s
theorem.

Such kinds of problems have been studied by V. Kharlamov and V. Kulikov in [9] for cuspidal projective
curves. They give two complex conjugate projective curves that are not isotopic. The example with lowest
degree has degree 825. In [2], Artal, Carmona and Cogolludo give examples of projective curves C, C′ of
degree 6 that have conjugate equations in Q(

√
2) but the pairs (P2,C) and (P2,C′) are not homeomorphic

by an orientation-preserving homeomorphism.

3. The method used in this note is based on the relationship between topological and algebraic equivalence:
we set a family (fs)s∈C of polynomials such that (fs = 0) is a line arrangement in C2. One of the line
depends on a parameter s ∈ C. There are enough lines in order that each polynomial is algebraically
essentially unique. Moreover every polynomial topologically equivalent to fs is algebraic equivalent to
a fs ′ , where s′ may be different from s.

For generic parameters the polynomials are topologically equivalent all together and the function fs is a
Morse function on C2 \f−1

s (0). We choose our counter-examples with non-generic parameters, for such an
example fk is not a Morse function on C2 \ f−1

k (0). The fact that non-generic parameters are finite enables
us to prove the requested properties.

4. Non-reality

Let

fs(x, y)= xy(x − y)(y − 1)(x − sy).

Let k, k̄ be the roots of s2 − s + 1.

THEOREM A. – There does not exist a polynomial g with real coefficients such that g ≈ fk .

Let C = {0,1, k, k̄}. Then for s ∈ C \ C , fs verifies µ = 14, #Baff = 3 and B∞ = ∅. By the connectivity
of C \ C and the global version of the µ-constant theorem, two polynomials fs and fs ′ , with s, s′ /∈ C , are
topologically equivalent.

The polynomials fk and fk̄ verify µ = 14, but #Baff = 2. Then such a polynomial is not topologically
equivalent to a generic one fs , s /∈ C . In fact for s /∈ C there are two non-zero critical fibers with one double
point for each one. For s = k or s = k̄, there is only one non-zero critical fiber with an ordinary cusp.

LEMMA 1. – Let s, s′ ∈ C. The polynomials fs and fs ′ are algebraically equivalent if and only if s = s′
or s = 1 − s′.
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In particular the polynomials fk and fk̄ are algebraically equivalent.

Proof. – Let us suppose that fs and fs ′ are algebraically equivalent. Then we can suppose that there exists
� ∈ AutC2 such that fs ′ = fs ◦�. Such a � must send the lines (x = 0), (y = 0) to two lines, then � is
linear:�(x,y)= (ax+ by, cx+ dy). A calculus proves that �(x,y)= (x, y) or �(x,y)= (y− x, y) that
is to say s = s′ or s = 1 − s′. ✷

LEMMA 2. – Fix s ∈ C and let f be a polynomial such that f ≈ fs . There exists s′ such that f ∼ fs ′ .

Then Lemma 1 implies that there are only two choices for s′, but s′ can be different from s.

Proof. – The curve f−1
s (0) contains the simply connected curve xy(x−y)(x−sy), then the curve f−1(0)

contains also a simply connected curve (with 4 components), by the generalization of Zaı̆denberg–Lin
theorem (see [4]) this simply connected curve is algebraically equivalent to xy(x − y)(x − s′y). Then the
polynomial f is algebraically equivalent to xy(x− y)(x− s′y)P (x, y). The curve C defined by (P = 0) is
homeomorphic to C and admits a polynomial parameterization (α(t), β(t)) with α,β ∈ C[t]. Since C does
not intersect the axe (y = 0), β is a constant polynomial; since C intersects the axe (x = 0) at one point α
is monomial. An equation of P is now P(x, y)= yn−λ. By the irreducibility of C and up to an homothety
we get P(x, y)= y − 1. That is to say f is algebraically equivalent to fs ′ . ✷
5. Let g ∈ C[x, y], if g(x, y) = ∑

ai,j x
iyj then we denote by ḡ the polynomial defined by ḡ(x, y) =∑

āi,j x
iyj . Then g = ḡ if and only if all the coefficients of g are real.

We prove Theorem A. Let suppose that there exists a polynomial g such that g = ḡ and g ≈ fk . There
exists s ∈ C such that g ∼ fs . Since fk has only two critical values, g and fs have two critical values. Then
s = k or s = k̄ (s = 0 or s = 1 gives a polynomial with non-isolated singularities). As fk ∼ fk̄ we can
choose s = k. As a consequence we have � ∈ AutC2 such that g = fk ◦�.

Let � be �= (p, q). Then g = pq(p− q)(q − 1)(p− kq). As g = ḡ we have:

{p,q,p− q, q − 1,p− kq} = {p̄, q̄, p̄− q̄, q̄ − 1, p̄− k̄q̄}.
Moreover by the configuration of the lines we have that q − 1 = q̄ − 1. So q = q̄ . Hence q ∈ R[x, y]. So

{p,p− q,p− kq} = {p̄, p̄− q̄, p̄− k̄q̄}.
Let suppose that p �= p̄. Then p = p̄ − q or p = p̄ − k̄q . So p − p̄ equals −q or −k̄q . But p − p̄ has
coefficients in iR, which is not the case of q ∈ R[x, y] nor of k̄q . Then p = p̄. We have proved that
� = (p, q) has real coefficients. From g = fk ◦� we get ḡ = f̄k ◦ �̄. So g = fk̄ ◦ �. On the one hand
fk = g ◦�−1 and on the other hand fk̄ = g ◦�−1. So fk = fk̄ , then k = k̄ which is false. It ends the proof.

We could have end in the following way: � = (p, q) is in AutC2 with real coefficients, then �,
considered as a real map, is in AutR2 (see [3, Theorem 2.1] for example). Then fk = g ◦�−1 with g,�−1

with real coefficients, then fk has real coefficients which provides the contradiction.

6. Non-connectivity

Let

fs(x, y)= xy(y − 1)(x + y − 1)(x − sy).

Let C be the roots of

s(s − 1)(s + 1)(256s4 + 736s3 + 825s2 + 736s + 256)(256s4 + 448s3 + 789s2 + 448s + 256).

Then for s ∈ C \ C , fs verifies µ= 14, #Baff = 4 and B∞ = ∅. For s, s′ /∈ C , fs and fs ′ are topologically
equivalent. The roots of 256s4 + 448s3 + 789s2 + 448s + 256 are of the form {k, k̄,1/k,1/k̄}. The
polynomials fk and fk̄ verifyµ= 14, but #Baff = 3. Then such a polynomial is not topologically equivalent
to a generic one fs , s /∈ C .
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THEOREM B. – The polynomials fk and fk̄ are topologically equivalent and it is not possible to find a
continuous family (gt )t∈[0,1] such that g0 = fk , g1 = fk̄ and gt ≈ fk for all t ∈ [0,1].

The polynomials fk and fk̄ are topologically equivalent since we have the formula fk̄(x̄, ȳ)= fk(x, y).
The two following lemmas are similar to Lemmas 1 and 2.

LEMMA 3. – The polynomials fs and fs ′ are algebraically equivalent if and only if s = s′ or s = 1/s′.

LEMMA 4. – Fix s and let f be a polynomial such that f ≈ fs . Then there exists s′ such that f ∼ fs ′ .

7. We now prove Theorem B. Let us suppose that such a family (gt ) does exist. Then by Lemma 4 for each
t ∈ [0,1] there exists s(t) ∈ C such that gt is algebraically equivalent to fs(t) (in fact there are two choices
for s(t)). We can suppose that there exists �t ∈ AutC2 such that fs(t) = gt ◦�t .

We now prove that the map t �→�t can be chosen continuous, that is to say the coefficients of the defining
polynomials are continuous functions of t . We write gt = AtBtGt such that A0(x, y) = x , B0(x, y)= y

and the maps t �→At , t �→Bt are continuous. So the automorphism�−1
t is defined by

�−1
t (x, y)= (

At(x, y),Bt (x, y)
)
.

By the inverse local theorem with parameter t , we have that t �→�t is a continuous function. Then the map
t �→ fs(t) is a continuous function, as the composition of two continuous functions. As s(t) is a coefficient
of the polynomial fs(t), the map t �→ s(t) is a continuous function.

As a conclusion we have a map t �→ s(t) which is continuous and such that s(0)= k and s(1)= k̄. It im-
plies that there exists τ ∈ ]0,1[ such that s(τ ) /∈ C . On the one hand gτ is algebraically, hence topologically,
equivalent to fs(τ); on the other hand gτ is topologically equivalent to fk (by hypothesis). As s(τ ) /∈ C ,
fs(τ) and fk are not topologically equivalent (because #Baff are different), it provides a contradiction.

8. I would like to thank Lee Rudolph for the question which initiated this work. The calculus have been
done with the help of SINGULAR, [8], and especially with author’s library critic described in [6]. This
research has been done at the Centre de Recerca Matemàtica of Barcelona and was supported by a Marie
Curie Individual Fellowship of the European Community (HPMF-CT-2001-01246).
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