Graph-theoretical methods in general function theory

Amine El Sahili ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Lebanese university I, El hadas, Beyrout, Lebanon
${ }^{\text {b }}$ El sahili Amine, BP 93, Tyr-Lebanon, Lebanon

Received 15 April 2002; accepted after revision 8 October 2002
Note presented by Michel Duflo.

Abstract

Consider two maps f and g from a set E into a set F such that $f(x) \neq g(x)$ for every x in E. What is the maximal cardinal of a subset A of E such that the images of the restriction of f and g to A are disjoint? Mekler, Pelletier and Taylor have shown that it is $\operatorname{card}(E)$ when the set E is infinite; in the finite case, we have proved that it is greater than or equal to $\operatorname{card}(E) / 4$. In this paper, using graph theoretical technics, we find these results as a direct application of a lemma of Erdös. Moreover, we show that if $E=F=\mathbb{R}$, then there exists a countable partition $\left\{E_{n}\right\}_{n} \geqslant 1$ of \mathbb{R} such that $f\left(E_{n}\right) \cap g\left(E_{n}\right)=\phi$, for every $n \geqslant 1$. To cite this article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859-861. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Théorie des graphes dans la théorie generale des fonctions

Abstract

Résumé \quad On considère deux applications f et g d'un ensemble E dans un ensemble F telles que $f(x) \neq g(x)$ pour tout x dans E. Quel est le cardinal maximal d'un sous-ensemble A de E tel que les images des restrictions de f et g à A soient disjointes? Dans le cas où E est infini, la réponse est $\operatorname{card}(E)$, comme l'ont montré Mekler, Pelletier et Taylor; dans le cas fini, nous avons prouvé que le cardinal en question est plus grand ou égale à card $(E) / 4$. Dans cet article, en utilisant les outils de la théorie des graphes, nous retrouvons ces resultats comme application directe d'un lemme d'Erdös. Nous démontrons de plus que si $E=F=\mathbb{R}$, alors il existe une partition dénombrable $\left\{E_{n}\right\}_{n} \geqslant 1$ de \mathbb{R} telle que $f\left(E_{n}\right) \cap g\left(E_{n}\right)=\phi$, pour tout $n \geqslant 1$. Pour citer cet article : A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859861. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Multigraphs and multidigraphs considered here are obtained from graphs and digraphs by permitting multiple edges but no loops. When G is a multigraph, we denote by $e(G)$ the cardinal of the set of edges of G. If H is a submultigraph of $G, G-H$ denotes the multigraph obtained from G by deleting the edges of H. A subset A of $V(G)$ is said to be independent if the submultigraph induced by A has no edges. We denote by $G(D)$ the underlying multigraph of a multidigraph D. The chromatic number of a multidigraph D, denoted by $\chi(D)$, is the chromatic number of its underlying multigraph.

Consider two maps f and g from a set E into a set F, which satisfy the following property: for every element x in $E, f(x) \neq g(x)$.

[^0]Pelletier, Mekler and Taylor announce in [4] the following theorem:
Theorem 1 (Pelletier, Mekler and Taylor). - Let f and g be two maps from a set E into a set F, such that $f(x) \neq g(x)$ for every x in E. If E is infinite, then there exists a subset A of E having the same cardinality as E such that $f(A) \cap g(A)=\phi$.

In [1] we gave a simple proof of the above theorem and we proved in the finite case the following result:
THEOREM 2. - Let f and g be two maps from a set E into a set F, such that $f(x) \neq g(x)$ for every x in E. If E contains at least $4 m$ elements, then there exists a subset A of E with at least m elements such that $f(A) \cap g(A)=\phi$.

Using graph-theoretical technics, we find the above results as an application of a lemma of Erdös [2], and we prove the following result:

THEOREM 3. - Let f and g be two maps from \mathbb{R} into \mathbb{R} such that $f(x) \neq g(x)$ for every x in \mathbb{R}. Then there exists a countable partition $\left\{E_{n}\right\}_{n} \geqslant 1$ of \mathbb{R} such that $f\left(E_{n}\right) \cap g\left(E_{n}\right)=\phi$, for every $n \geqslant 1$.

2. Functions and multidigraphs

Let f and g be two maps from a set E into a set F which satisfy: $f(x) \neq g(x)$ for every x in E.
We define two multidigraphs D and H as follows:
$V(D)=F$, and for all $a, b \in V(D)$, we draw κ edges from a to b, where $\kappa=\operatorname{card}\left(g^{-1}(a) \cap f^{-1}(b)\right)$. D contains no loops since $f(x) \neq g(x)$ for every x in E.
$V(H)=E$, and $(x, y) \in E(H)$ if $f(x)=g(y)$.
We remark that we may associate, in a bijective way, to each edge from a to b in D a vertex x of E such that $g(x)=a$ and $f(x)=b$. Then (x, y) is an edge in H if $h(x)=t(y)$. (The had of x is the tail of y viewed as edges in D.)

It is easy to see that an independent set in H is a subset A of E such that $f(A) \cap g(A)=\phi$.
LEMMA 1 ([2]). - Any finite multigraph G contains a bipartite submultigraph $B=B(X, Y)$ such that $e(B) \geqslant e(G) / 2$.

We extend this lemma to infinite multigraphs as follows:
LEMMA 2. - Any multigraph G contains a bipartite submultigraph $B=B(X, Y)$ such that $e(B) \geqslant$ $e(G-B)$.

Proof. - Enumerate $V(G)$ by an ordinal α and set $V(G)=\left\{v_{\beta}, \beta<\alpha\right\}$. The proof is by transfinite induction on α. If $\alpha=0$, there is nothing to prove. Suppose that the lemma holds for all multigraphs G such that $V(G)$ can be enumerated by an ordinal $\beta<\alpha$. We consider two cases:
(1) α is a successor ordinal. Set $\alpha=\gamma+1$. Since the lemma holds for the subgraph G_{γ} of G induced by $\left\{v_{\beta}, \beta<\gamma\right\}$, there exists a $B_{\gamma}=B_{\gamma}\left(X_{\gamma}, Y_{\gamma}\right)$ such that $e\left(B_{\gamma}\right) \geqslant e\left(G_{\gamma}-B_{\gamma}\right)$ and $V\left(G_{\gamma}\right)=X_{\gamma} \cup Y_{\gamma}$. Set

$$
\begin{aligned}
R_{\alpha} & =\left\{e: e \text { is an edge of } G \text { incident with } v_{\alpha} \text { and a vertex in } X_{\gamma}\right\}, \\
T_{\alpha} & =\left\{e: e \text { is an edge of } G \text { incident with } v_{\alpha} \text { and a vertex in } Y_{\gamma}\right\} .
\end{aligned}
$$

If $\left|R_{\alpha}\right| \geqslant\left|T_{\alpha}\right|$, we set $X_{\alpha}=X_{\gamma}$ and $Y_{\alpha}=Y_{\gamma} \cup\left\{v_{\alpha}\right\}$, otherwise we set $Y_{\alpha}=Y_{\gamma}$ and $X_{\alpha}=X_{\gamma} \cup\left\{v_{\alpha}\right\}$. We have $e\left(B_{\alpha}\right) \geqslant e\left(G-B_{\alpha}\right)$.
(2) α is a limit ordinal. By case 1 , we may suppose that if $\beta<\gamma<\alpha$, we have $X_{\beta} \subseteq X_{\gamma}$ and $Y_{\beta} \subseteq Y_{\gamma}$. Put $X_{\alpha}=\bigcup_{\beta<\alpha} X_{\beta}$ and $Y_{\alpha}=\bigcup_{\beta<\alpha} Y_{\beta}$. Then $e\left(B_{\alpha}\right) \geqslant e\left(G-B_{\alpha}\right)$.

Proof of Theorem 1. - Let D and H be defined as above on F and E. We apply Lemma 2 to $G(D)$. It thus contains a bipartite submultigraph $B=B(X, Y)$ such that $e(B) \geqslant e(D-B)$. Since $|E|=e(D)=$ $e(B)+e(D-B)$ and E is infinite, we have $e(B)=|E|$. We partition $E(B)$ into those edges whose tails lie
in X and those whose tails lie in Y. One of these two subsets of $E(B)$ has the same cardinality as E. This subset corresponds to an independent set in H having the same cardinality as E.

Proof of Theorem 2. - As in the above proof, we have $e(B) \geqslant e(D-B)$, so $e(B)+e(D-B)=E(D)=$ $|E| \geqslant 4 m$, and $e(B) \geqslant 2 m$. We partition $E(B)$ into those edges whose tails lie in X and those whose tails lie in Y. One of these two subsets of $E(B)$ has at least m edges. This subset corresponds to an independent set in H having at least m elements.

3. Application to real functions

Let f and g be two maps from \mathbb{R} into \mathbb{R} such that $f(x) \neq g(x)$ for every x in \mathbb{R}. We construct the digraphs D and H as in the above section. First we note that any vertex x of H can be viewed as a couple $(g(x), f(x))$ (two distinct vertices of H may have the same representation!). Since $\operatorname{card}(\mathbb{R})=2^{\aleph_{0}}$, then the elements of \mathbb{R} can be replaced by the subsets of \mathbb{N}, and so the vertices of H by couples of distinct subsets of \mathbb{N}. Thus if $v=(A, B)$ and $v^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ are two vertices of $H\left(A, B, A^{\prime}\right.$ and B^{\prime} are subsets of $\left.\mathbb{N}\right),\left(v, v^{\prime}\right)$ is an edge of H if $B=A^{\prime}$.

Proof of Theorem 3. - We shall prove that $\chi(H) \leqslant \aleph_{0}$, by considering the vertices of H as couples of distinct subsets of \mathbb{N}. For every $n \geqslant 1$, we define the following two sets:

$$
\begin{aligned}
F_{n} & =\{(A, B) \in V(H) ; \inf (A-B)=n\} \\
F_{n}^{\prime} & =\{(A, B) \in V(H) ; \inf (B-A)=n\} .
\end{aligned}
$$

These sets are independent in H. In fact, let $v=(A, B)$ and $v^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ be two vertices in F_{n}. If $\left(v, v^{\prime}\right)$ is an edge of H then $B=A^{\prime}$, but $(A, B) \in F_{n}$ means that $\inf (A-B)=n$ and so $n \notin B$ which contradicts the fact that $\left(B, B^{\prime}\right)=\left(A^{\prime}, B^{\prime}\right) \in F_{n}$. Similarly we show that F_{n}^{\prime} is an independent set. In the other hand, let $v=(A, B)$ be any vertex of H. Since $A \neq B$, then $A \Delta B \neq \phi$ so $(A-B) \neq \phi$ or $(B-A) \neq \phi$. In the first case, $v \in F_{s}$ where $s=\inf (A-B)$, in the other case $v \in F_{t}^{\prime}$ where $t=\inf (B-A)$. Thus $V(H)=\bigcup_{n \geqslant 1}\left(F_{n} \cup F_{n}^{\prime}\right)$ and $\chi(H) \leqslant \aleph_{0}$.

This fact directly proved on real functions can be obtained as a particular case of a result of Erdös and Hajnal on shift graphs.

If $D=(V, E)$ is a digraph, the shift-graph associated to D is by definition the digraph $\operatorname{sh}(D)=\left(V^{\prime}, E^{\prime}\right)$ such that $V^{\prime}=E$ and $E^{\prime}=\{((i, j),(j, k)):(i, j),(j, k) \in E\}$. If D is complete and if $V(D)$ is infinite of cardinal κ, the chromatic number $\chi\left(\operatorname{sh}(D)\right.$) is calculated by Erdös and Hajnal [3] to be $\log _{2}(\kappa)$ (the smallest λ such that $\kappa \leqslant 2^{\lambda}$). Let D be the complete digraph defined on \mathbb{R}. It is clear that the digraph H defined above is a subdigraph of $\operatorname{sh}(D)$, then $\chi(H) \leqslant \chi(\operatorname{sh}(D))=\log _{2}(|\mathbb{R}|)=\aleph_{0}$.

References

[1] A. El Sahili, Functions with disjoint graphs, C. R. Acad. Sci. Paris, Série I 319 (1994) 519-521.
[2] P. Erdös, On some extremal problems in graph theory, Israel J. Math. (1965) 113-116.
[3] P. Erdös, A. Hajnal, On chromatic number of infinite graphs, in: Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, 1968, pp. 83-98.
[4] A.H. Mekler, D.H. Pelletier, A.D. Taylor, A separation theorem, Abstracts Amer. Math. Soc. (1982) 593.

[^0]: E-mail addresses: sahili@jonas.univ-lyon1.fr; aminsahi@inco.com.lb (A. El Sahili).

