Combinatoire/Combinatorics

Graph-theoretical methods in general function theory

Amine El Sahili^{a,b}

^a Lebanese university I, El hadas, Beyrout, Lebanon
^b El sahili Amine, BP 93, Tyr-Lebanon, Lebanon
Received 15 April 2002; accepted after revision 8 October 2002
Note presented by Michel Duflo.

Abstract Consider two maps f and g from a set E into a set F such that $f(x) \neq g(x)$ for every x in E. What is the maximal cardinal of a subset A of E such that the images of the restriction of f and g to A are disjoint? Mekler, Pelletier and Taylor have shown that it is card(E) when the set E is infinite; in the finite case, we have proved that it is greater than or equal to card(E)/4. In this paper, using graph theoretical technics, we find these results as a direct application of a lemma of Erdös. Moreover, we show that if $E = F = \mathbb{R}$, then there exists a countable partition $\{E_n\}_{n \ge 1}$ of \mathbb{R} such that $f(E_n) \cap g(E_n) = \phi$, for every $n \ge 1$. To cite *this article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859–861.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Théorie des graphes dans la théorie generale des fonctions

Résumé On considère deux applications f et g d'un ensemble E dans un ensemble F telles que $f(x) \neq g(x)$ pour tout x dans E. Quel est le cardinal maximal d'un sous-ensemble A de E tel que les images des restrictions de f et g à A soient disjointes ? Dans le cas où E est infini, la réponse est card(E), comme l'ont montré Mekler, Pelletier et Taylor ; dans le cas fini, nous avons prouvé que le cardinal en question est plus grand ou égale à card(E)/4. Dans cet article, en utilisant les outils de la théorie des graphes, nous retrouvons ces resultats comme application directe d'un lemme d'Erdös. Nous démontrons de plus que si $E = F = \mathbb{R}$, alors il existe une partition dénombrable $\{E_n\}_{n \ge 1}$ de \mathbb{R} telle que $f(E_n) \cap g(E_n) = \phi$, pour tout $n \ge 1$. Pour citer cet article : A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859–861.

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Multigraphs and multidigraphs considered here are obtained from graphs and digraphs by permitting multiple edges but no loops. When G is a multigraph, we denote by e(G) the cardinal of the set of edges of G. If H is a submultigraph of G, G - H denotes the multigraph obtained from G by deleting the edges of H. A subset A of V(G) is said to be independent if the submultigraph induced by A has no edges. We denote by G(D) the underlying multigraph of a multidigraph D. The chromatic number of a multidigraph D, denoted by $\chi(D)$, is the chromatic number of its underlying multigraph.

Consider two maps f and g from a set E into a set F, which satisfy the following property: for every element x in E, $f(x) \neq g(x)$.

E-mail addresses: sahili@jonas.univ-lyon1.fr; aminsahi@inco.com.lb (A. El Sahili).

^{© 2002} Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02585-2/FLA

A. El Sahili / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859-861

Pelletier, Mekler and Taylor announce in [4] the following theorem:

THEOREM 1 (Pelletier, Mekler and Taylor). – Let f and g be two maps from a set E into a set F, such that $f(x) \neq g(x)$ for every x in E. If E is infinite, then there exists a subset A of E having the same cardinality as E such that $f(A) \cap g(A) = \phi$.

In [1] we gave a simple proof of the above theorem and we proved in the finite case the following result:

THEOREM 2. – Let f and g be two maps from a set E into a set F, such that $f(x) \neq g(x)$ for every x in E. If E contains at least 4m elements, then there exists a subset A of E with at least m elements such that $f(A) \cap g(A) = \phi$.

Using graph-theoretical technics, we find the above results as an application of a lemma of Erdös [2], and we prove the following result:

THEOREM 3. – Let f and g be two maps from \mathbb{R} into \mathbb{R} such that $f(x) \neq g(x)$ for every x in \mathbb{R} . Then there exists a countable partition $\{E_n\}_{n \ge 1}$ of \mathbb{R} such that $f(E_n) \cap g(E_n) = \phi$, for every $n \ge 1$.

2. Functions and multidigraphs

Let f and g be two maps from a set E into a set F which satisfy: $f(x) \neq g(x)$ for every x in E. We define two multidigraphs D and H as follows:

V(D) = F, and for all $a, b \in V(D)$, we draw κ edges from a to b, where $\kappa = \operatorname{card}(g^{-1}(a) \cap f^{-1}(b))$. D contains no loops since $f(x) \neq g(x)$ for every x in E.

V(H) = E, and $(x, y) \in E(H)$ if f(x) = g(y).

We remark that we may associate, in a bijective way, to each edge from a to b in D a vertex x of E such that g(x) = a and f(x) = b. Then (x, y) is an edge in H if h(x) = t(y). (The had of x is the tail of y viewed as edges in D.)

It is easy to see that an independent set in H is a subset A of E such that $f(A) \cap g(A) = \phi$.

LEMMA 1 ([2]). – Any finite multigraph G contains a bipartite submultigraph B = B(X, Y) such that $e(B) \ge e(G)/2$.

We extend this lemma to infinite multigraphs as follows:

LEMMA 2. – Any multigraph G contains a bipartite submultigraph B = B(X, Y) such that $e(B) \ge e(G - B)$.

Proof. – Enumerate V(G) by an ordinal α and set $V(G) = \{v_{\beta}, \beta < \alpha\}$. The proof is by transfinite induction on α . If $\alpha = 0$, there is nothing to prove. Suppose that the lemma holds for all multigraphs *G* such that V(G) can be enumerated by an ordinal $\beta < \alpha$. We consider two cases:

(1) α is a successor ordinal. Set $\alpha = \gamma + 1$. Since the lemma holds for the subgraph G_{γ} of G induced by $\{v_{\beta}, \beta < \gamma\}$, there exists a $B_{\gamma} = B_{\gamma}(X_{\gamma}, Y_{\gamma})$ such that $e(B_{\gamma}) \ge e(G_{\gamma} - B_{\gamma})$ and $V(G_{\gamma}) = X_{\gamma} \cup Y_{\gamma}$. Set

 $R_{\alpha} = \{e : e \text{ is an edge of } G \text{ incident with } v_{\alpha} \text{ and a vertex in } X_{\gamma}\},\$

 $T_{\alpha} = \{e : e \text{ is an edge of } G \text{ incident with } v_{\alpha} \text{ and a vertex in } Y_{\gamma}\}.$

If $|R_{\alpha}| \ge |T_{\alpha}|$, we set $X_{\alpha} = X_{\gamma}$ and $Y_{\alpha} = Y_{\gamma} \cup \{v_{\alpha}\}$, otherwise we set $Y_{\alpha} = Y_{\gamma}$ and $X_{\alpha} = X_{\gamma} \cup \{v_{\alpha}\}$. We have $e(B_{\alpha}) \ge e(G - B_{\alpha})$.

(2) α is a limit ordinal. By case 1, we may suppose that if $\beta < \gamma < \alpha$, we have $X_{\beta} \subseteq X_{\gamma}$ and $Y_{\beta} \subseteq Y_{\gamma}$. Put $X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$ and $Y_{\alpha} = \bigcup_{\beta < \alpha} Y_{\beta}$. Then $e(B_{\alpha}) \ge e(G - B_{\alpha})$. \Box

Proof of Theorem 1. – Let *D* and *H* be defined as above on *F* and *E*. We apply Lemma 2 to G(D). It thus contains a bipartite submultigraph B = B(X, Y) such that $e(B) \ge e(D - B)$. Since |E| = e(D) = e(B) + e(D - B) and *E* is infinite, we have e(B) = |E|. We partition E(B) into those edges whose tails lie

To cite this article: A. El Sahili, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 859-861

in X and those whose tails lie in Y. One of these two subsets of E(B) has the same cardinality as E. This subset corresponds to an independent set in H having the same cardinality as E. \Box

Proof of Theorem 2. – As in the above proof, we have $e(B) \ge e(D-B)$, so $e(B) + e(D-B) = E(D) = |E| \ge 4m$, and $e(B) \ge 2m$. We partition E(B) into those edges whose tails lie in X and those whose tails lie in Y. One of these two subsets of E(B) has at least m edges. This subset corresponds to an independent set in H having at least m elements. \Box

3. Application to real functions

Let f and g be two maps from \mathbb{R} into \mathbb{R} such that $f(x) \neq g(x)$ for every x in \mathbb{R} . We construct the digraphs D and H as in the above section. First we note that any vertex x of H can be viewed as a couple (g(x), f(x)) (two distinct vertices of H may have the same representation!). Since card $(\mathbb{R}) = 2^{\aleph_0}$, then the elements of \mathbb{R} can be replaced by the subsets of \mathbb{N} , and so the vertices of H by couples of distinct subsets of \mathbb{N} . Thus if v = (A, B) and v' = (A', B') are two vertices of H $(A, B, A' \text{ and } B' \text{ are subsets of } \mathbb{N})$, (v, v') is an edge of H if B = A'.

Proof of Theorem 3. – We shall prove that $\chi(H) \leq \aleph_0$, by considering the vertices of *H* as couples of distinct subsets of \mathbb{N} . For every $n \ge 1$, we define the following two sets:

$$F_n = \{ (A, B) \in V(H); \inf(A - B) = n \},\$$

$$F'_n = \{ (A, B) \in V(H); \inf(B - A) = n \}.$$

These sets are independent in *H*. In fact, let v = (A, B) and v' = (A', B') be two vertices in F_n . If (v, v') is an edge of *H* then B = A', but $(A, B) \in F_n$ means that $\inf(A - B) = n$ and so $n \notin B$ which contradicts the fact that $(B, B') = (A', B') \in F_n$. Similarly we show that F'_n is an independent set. In the other hand, let v = (A, B) be any vertex of *H*. Since $A \neq B$, then $A \triangle B \neq \phi$ so $(A - B) \neq \phi$ or $(B - A) \neq \phi$. In the first case, $v \in F_s$ where $s = \inf(A - B)$, in the other case $v \in F'_t$ where $t = \inf(B - A)$. Thus $V(H) = \bigcup_{n \ge 1} (F_n \cup F'_n)$ and $\chi(H) \le \aleph_0$. \Box

This fact directly proved on real functions can be obtained as a particular case of a result of Erdös and Hajnal on shift graphs.

If D = (V, E) is a digraph, the shift-graph associated to D is by definition the digraph sh(D) = (V', E')such that V' = E and $E' = \{((i, j), (j, k)) : (i, j), (j, k) \in E\}$. If D is complete and if V(D) is infinite of cardinal κ , the chromatic number $\chi(sh(D))$ is calculated by Erdös and Hajnal [3] to be $\log_2(\kappa)$ (the smallest λ such that $\kappa \leq 2^{\lambda}$). Let D be the complete digraph defined on \mathbb{R} . It is clear that the digraph Hdefined above is a subdigraph of sh(D), then $\chi(H) \leq \chi(sh(D)) = \log_2(|\mathbb{R}|) = \aleph_0$.

References

- [1] A. El Sahili, Functions with disjoint graphs, C. R. Acad. Sci. Paris, Série I 319 (1994) 519-521.
- [2] P. Erdös, On some extremal problems in graph theory, Israel J. Math. (1965) 113–116.
- [3] P. Erdös, A. Hajnal, On chromatic number of infinite graphs, in: Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, 1968, pp. 83–98.
- [4] A.H. Mekler, D.H. Pelletier, A.D. Taylor, A separation theorem, Abstracts Amer. Math. Soc. (1982) 593.