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Abstract For time series that are not stationary, the block bootstrap method is not directly applicable.
However, if the underlying stochastic structure is slowly changing with time, one may
employ a local block-resampling procedure. We define such a procedure, and give an
example of its applicability. To cite this article: E. Paparoditis, D.N. Politis, C. R. Acad.
Sci. Paris, Ser. I 335 (2002) 959–962.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Bloc re-échantillonnage local

Résumé Pour les séries chronologiques qui ne sont pas stationnaires, la méthode de bloc re-
échantillonnage n’est pas directement applicable. Cependant, si la structure stochastique
fondamentale change lentement, on peut utiliser une méthode de bloc re-échantillonnage
local. Nous définissons une telle procédure et donnons un exemple de son applicabilité.
Pour citer cet article : E. Paparoditis, D.N. Politis, C. R. Acad. Sci. Paris, Ser. I 335 (2002)
959–962.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let X1, . . . ,Xn be an observed stretch of a real-valued time series {Xt , t ∈ Z}. In many applications, for
instance in connection with financial or meteorological time series, the sample size n may be quite large.
Consequently, it may be unrealistic to assume that such a long time series is stationary; a more realistic
model might be to assume a slowly-changing stochastic structure in the sense that the joint probability law
of (Xt ,Xt+1, . . . ,Xt+k) changes smoothly (and slowly) with t for any k. Such nonstationary models have
been provided by the evolutionary spectra models of Priestley [5], and the locally stationary models of
Dahlhaus [1,2].

Now, because of the nonstationarity of {Xt }, the block bootstrap method of Künsch [3] is not directly
applicable; rather, a modification that takes into account the changing stochastic structure should be
constructed. We therefore propose the Local Block Bootstrap (LBB) procedure to address this situation.
The basic premise of the LBB is to only resample blocks that are close to each other, i.e., a block that
starts at time t , can only be replaced with blocks whose starting point is close to t . The LBB algorithm can
then be briefly described as follows: an LBB bootstrap pseudo-series is constructed by a concatenation of q
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blocks of size b (such that qb � n), where the j th block of the resampled series is chosen randomly from
a distribution (say, uniform) on all the size-b blocks of consecutive data whose time indices are ‘close’ to
those in the original block. Rigorous definition of the Local Block Bootstrap (LBB) algorithm is given in
Section 2; Section 3 gives an application to a simple but illustrative example.

2. Local block bootstrap

Given the data X1, . . . ,Xn, the LBB algorithm creates a bootstrap pseudo-series X∗
1, . . . ,X

∗
n as follows:

• Select an integer block of size b, and a real number B ∈ (0,1] such that nB is an integer; both b and
B are thought of as functions of n.

• For m = 0,1, . . . , (
n/b� − 1), let 1 X∗
mb+j := XIm+j−1 for j = 1, . . . , b, where I1, I2, . . . are inde-

pendent, integer-valued random variables satisfying P(Im = k) = Wn,m(k).
The probability distribution Wn,m(k) is the practitioner’s choice. The easiest choice is the uniform
probability over the integers in the interval [J1,m, J2,m], where J1,m = max{1,mb − nB} and J2,m =
min{n − b + 1,mb + nB}. However, many other choices are possible; our only requirement is:

Condition (C0): Let w(x) be a probability density over the interval [−1,1] that is continuous, symmetric
around 0, and monotone non-increasing for x ∈ [0,1]. Then, let Wn,m(k) = c−1

m w(k−mb
nB

)1[J1,m,J2,m](k),
where 1[J1,m,J2,m](k) is 1 or 0 according to whether k ∈ [J1,m, J2,m] or not, and cm = ∑J2,m

k=J1,m
w(k−mb

nB
).

Note that the range [k − nB,k + nB] indicates our ‘local’ neighborhood of the point k; in other words,
the idea is that the time series {Xt } can be considered as ‘almost’ stationary in a window of length 2nB , so
that the stretch Xk−nB, . . . ,Xk+nB is approximately stationary for any k.

Remark 2.1. – Künsch’s [3] block bootstrap is a special case of the LBB: just let B = 1, and let w be
the uniform density. In addition, if {Xt } happens to be independent, then taking b → ∞ is unnecessary;
therefore, Shi’s [7] local bootstrap for heteroskedastic regression is another special case of the LBB: just
take b = 1, B → 0 and nB → ∞.

Typical requirements for consistency of the LBB include the following:

Condition (C1): The block size b should be big, but small with respect to the local window size 2nB
which determines the effective ‘local’ sample size, i.e., we require b → ∞ but b/(nB) → 0.

Condition (C2): The local window size 2nB must be big, but small with respect to the sample size n,
i.e., we require nB → ∞ but B → 0.

Remark 2.2. – Condition (C2) is only needed under an assumption of local (but not global) stationarity;
if the sequence {Xt } is globally stationary, then Condition (C2) can be omitted, i.e., one may take
B = 1. Thus, it is intuitive that the ideal rate by which B should decrease may depend on the degree of
nonstationarity of the process. It is also conceivable to have a ‘local’—and possibly even data-dependent—
choice of B , i.e., higher values of B in neighborhoods of high stationarity and vice versa; these are higher-
order topics for future work.

3. Application

As is well-known, the applicability of bootstrap methods is usually checked on a case-by-case 2 basis.
Thus, we focus on a particular interesting example. Let

Xt = µ + vt εt , for all t ∈ Z, (1)
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where {εt , t ∈ Z} is a mean-zero, strong mixing and strictly stationary sequence satisfying

E|εt |6+δ < ∞, and
∞∑
k=1

k2αδ/(6+δ)
ε (k) < ∞ for some δ > 0, (2)

where αε(k) indicates the strong mixing coefficient associated with {εt , t ∈ Z}.
Consequently, the first moment of the sequence {Xn} is time-invariant and given by µ; nevertheless,

the second moments are not time-invariant because of the heteroskedasticity induced by the unknown
(but deterministic) factor vt . Our goal is interval estimation of the unknown parameter µ based on the
data X1, . . . ,Xn. For this reason, we require an approximation to the sampling distribution of the sample
mean µ̂ = n−1 ∑n

t=1 Xt that will serve as our estimator of µ. We propose the LBB as a method for this
approximation.

Let X∗
1, . . . ,X

∗
n denote an LBB pseudo-series constructed using the algorithm of Section 2, and let

µ̂∗ = n−1 ∑n
t=1 X∗

t . To investigate the asymptotic behavior of µ̂ and µ̂∗ it is helpful to use the set-up of
Dahlhaus [2] and map the range {1, . . . , n} onto the unit interval. For model (1), this entails the assumption:

vt = V

(
t

n

)
where V : [0,1] → R is a bounded, piecewise continuous function. (3)

Under (3), the data X1, . . . ,Xn constitute the nth row of a triangular array; however, since no confusion
arises, we will not use the usual double-index notation.

The following theorem shows that the LBB is successful in giving a consistent approximation to the
sampling distribution of the sample mean µ̂. Hence, asymptotically valid confidence intervals for µ can
be based on the quantiles of the bootstrap distribution P ∗(

√
n(µ̂∗ − E∗µ̂∗) � x) that are computable, as

opposed to the quantiles of the unknown true distribution P(
√

n(µ̂−µ) � x); here, P ∗,E∗ and Var∗ denote
probability, expectation and variance under the LBB bootstrap mechanism that—as usual—is performed
conditional on X1, . . . ,Xn.

THEOREM 3.1. – Assume Conditions (C0), (C1), (C2) as well as Eqs. (1), (2) and (3). Then, as n → ∞,

Var
(√

nµ̂
) − Var∗

(√
nµ̂∗) P−→ 0 (4)

and

sup
x

∣∣P (√
n(µ̂ − µ) � x

) − P ∗(√n(µ̂∗ − E∗µ̂∗) � x
)∣∣ P−→ 0. (5)

Proof (sketch). – The first step consists of showing that the two distributions, P(
√

n(µ̂ − µ) � x) and
P ∗(

√
n(µ̂∗ − E∗µ̂∗) � x), are both asymptotically normal. For the former, the proof follows the results

of Roussas et al. [6]; for the latter, the proof involves checking the conditions of a Lindeberg–Feller
Central Limit Theorem in the bootstrap world for the sum of the independent but not identically distributed
blocks. Since the two distributions in (5) are asymptotically normal with mean zero, it is apparent that
verifying (4) is sufficient to also show (5). Checking (4) is straightforward but tedious; suffice it to note that
both variances in (4) have the same asymptotic limit that is given by:

∫ 1

0
V 2(s)ds

∞∑
k=−∞

Cov(ε0, εk).

Remark 3.1. – The LBB can handle more complicated models than model (1); in a follow-up paper with
Arif Dowla (UCSD), heteroskedastic models that also possess a nonstationary first moment are analyzed,
and the LBB is shown to be successful in capturing the distribution of the nonparametric trend estimator.
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1 The ‘ceiling’ function 
k� denotes the smallest integer that is greater or equal to k. Thus, in the case where n is
not an integer multiple of b, our LBB algorithm generates a bootstrap series whose length is slightly bigger than n,
although only X∗

1 , . . . ,X
∗
n are kept in the end.

2 The only exception so far seems to be the i.i.d. bootstrap with smaller resample size that is generally consistent; see
Politis et al. [4, Chapter 2.3].
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