C.R. Acad. Sci. Paris, Ser. | 335 (2002) 793-796

Analyse mathématique/Mathematical Analysis

Wavelet packets with uniform time-frequency
localization

LarsF. Villemoes

Coding Technologies, Débelnsgatan 64, 11352 Stockholm, Sweden
Received 23 September 2002; accepted 1 October 2002

Note presented by Yves Meyer.

Abstract We construct basic wavelet packets with uniformly bounded localization in both time
and frequency. The corresponding orthonormal bases of wavelet packets are parametri-
zed by dyadic segmentations obeying a local variation condifiomite this article: L.F.
Villemoes, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 793-796.
0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Paquets d’ ondelettes avec localisation temps-fréguentielle uniforme

Résumé Nous construisons des paquets d’ondelettes de base uniformément bien localisés en temps
et en fréquences. Les bases orthonormées correspondantes de paquets d'ondelettes sons
parametrisées par des partitions dyadiques obeissants une condition de variation locale.
Pour citer cet article: L.F. Villemoes, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 793—796.
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1. Basic wavelet packets

Let ¢ be a real valued continuous function with support include@fin /6, 57 /6] and such that for
lo| < 7/3,

2 2
gE-0) " +g(5+0) =1, 1)
g(-20-%)=3(5+o). @)
Definev as the inverse Fourier transfornn®) = (Zn)—lfg(w) €' dw, and let
Y (1) = 2 Re{exp(ir (n + 3)1) v((=D"(t — 3)) }. ©)
THEOREM 1.1. — The systeny, (t — k), k € Z,n=0,1, 2, ..., forms an orthonormal basis far’(R).
Proof. —The Fourier transform of,, is given by

Yn(w) =2 (&g (en (0 =7 (n+ 3))) + € g (ensa(@+7 (0 +3))) } (4)
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wherea, = 7 (n + %) ande, = (—1)". Forn > 1 the hypotheses (1), (2) and disjoint support interiors give
that[[vx |12 = (27) ~*2l|g||> = 1. Forn = 0, observe thaltjo(w)|? = [€*0g (& — F) + e “0g(—w — 3) [ =
g(@— %)+ g(—w — Z)?, since &0 is purely imaginary, andlyo|? = 1 follows as well.

Thus the system is normalized irf Bnd it is known from [4] that it suffices to show that for auee R,

O<D —_—
> Un(@+ (@ -l =80, =012, . (5)
n=0

The casd = 0 is easily verified by study of (w)|? as performed for the normalization. Fbe> 1,
elementary computation and support considerations lead to

Un(@+ )Y@ — ) =€ &g (e, (0 —m(n— 1+ 1)) g(ensr(0+ 7 (n—1+3))),
which vanishes unless=1 — 1 orn = 1. Hence the sum (5) reduces to

2 (51-1(0+3))g (61 (0 — 3)) + €% (e1 (0 — 3))g (ersa(0+ F)) =0, 0
2. Wavelet packet bases

Let D be the collection of dyadic intervalg ,, = [2/n,2/ (n+1)[, j,n € Z, and let|I| denote the length
of an intervall .

THEOREM 2.1.— Assume$ C D is a collection of pairwise disjoint intervals such thifs 7 =
[0, +oo[\E where E is countable. Assume furthermore that for edch [a, b[ € S there is an interval
in 8 with left end pointb and, if a # 0, also one with right end point. Finally, suppose that for all
adjacent paird, J € S with |I| > |J|, it holds that|7| = 2|J| and both intervals are contained in a dyadic
interval Ip € D with |Ig| = 2|1|.

Definey (1) = 2//2y,,(2/t) for I = I, ; € D. Theny; (t — k|1|™Y), I € 8, k € Z, forms an orthonormal
basis forL2(R).

Proof. —For eachl = I, ; € §, itis clear by rescaling and Theorem 1.1 tiia(r — k|17, k e Z, forms
an orthonormal sequence i lwhich spans a closed subspage |t also follows thatV; L V; if I # J for
anyl, J € § with equal lengths. The main difficulty is to show tHat L V; for all adjacent pairg, J € §
with different lengths. Without loss of generality, let= [m, m + 1[ andJ = %[n, n+1[ wheren =2m +2
if m is even andk + 1= 2m if m is odd. In both cases, straightforward computations lead to

P(@) = Y 20) P (0) = €72 @b () — i) + €7 (w0 + i) },

whereg, = Z (n+1), b(x) = g(5 +x)g(% —x) is a symmetric bump function amg, = m + 1 (1+(-1)")
is the meeting point of the intervals. Observe thatis an odd integer and2periodization ofp(w) yields

S plo+ 27l =23 (1) €207 4 (=) e T (0 4 271 — 7).
leZ leZ

This sum vanishes sinag, is odd and: — m is even. Hence),, (¢/2) is orthogonal to all integer translates
of ¥,,,, soV; L Vy.

The orthogonality oV; andV; for nonadjacent, J € S is easily seen from support consideration%f
by using the assumption that all intervalssitnave right neighbors. Lét be the closure of the orthogonal
sum of allVy, I € 8. It remains to prove thatic V.
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Given a positive odd integer, consider the orthogonal sub & H,. corresponding to the segmentation
%[n,n +1[, n+ 1< 2, [m,m + 1], m > k. Then, by Theorem 1.1, the orthogonal complemédints
and H- have bases determined by the segmentatiens: + 1], m + 1 < «, and%[n, n—+1[, n > 2,
respectively. Since these complements are orthogonal, it followstHhad Hy = H- ® H- = L2. By
repeating this argument, bases can be contructed corresponding to constant interval size extensions of
all adjacent triples —, 1, I* in 8. Due to the support properties &f[ we infer that anyf e L? with
supp f) € =(IU(=1)) is contained inV. However, sinc¢ J I = [0, +oo[\E, it follows that L> c V. O

3. Recursion

There exist continuous2 periodic symbolsg(w), m1(w) andm, ,(w),r € {—2,—-1,0,1},v € {—1, 0},
with m_1_, _1_, = m,.,,, such that

Y0(2w) = mo(@)Yo(@),  ¥1(2w) = m1(w)Po(w), (6)
0
Vagr(20) =D myy (@2 0(@), ref{-2-1,01}, ¢=12 ... @)
v=-1

These facts follow easily from Theorem 2.1 and-@eriodization ofy4, +, (20) Y2, 1 (). All the symbols
are explicitin terms of, and(mg, m1) is a conjugate quadrature filter pair. For the symhgls, we have
the matrix condition

1 0

Z Z myy(w+em)ms y(w+emw) =65, r,se{—2,-1,01}, (8)
e=0v=-1

which is well known from the theory of refinable vectors, [5]glf/anishes outsidg-97 /10, 77 /10] then

m1,—1 =0, but it is important thatzg —1 is nontrivial. The split and merge property corresponding to (7)

is that any pair of adjacent equal lengths dyadic intervals such that their union is not dyadic can be splitin
four half size intervals. This rule and its inverse both preserve the class of partitions of Theorem 2.1 and
adaptive best basis algorithms can be developed easily for this structure following the ideas of [12].

4. Relation to standard wavelet packets

The standard basic wavelet packet construction in sequency order corresponds to the case where
m_1,_1=mg,o=mo andm_» _1 = m1, 0= m1 and all othermn,, =0 in (7). In this case, the split and
merge property is much more flexible, since any dyadic interval can be split in two. Unfortunately this
freedom destroys the hope for uniform time-frequency localization. This has been very well studied in [3,
6,11,2,10]. Let us here furnish a proof in a simple formulation based on the identity

2/ (m+1)—1
|$m (Z_jw) ‘2 = Z |$n (w)‘Z ()]

n=2/m

which holds for allj,m =0, 1, 2, ... and follows directly from iterated merging. It holds true also for the
nonstationary basic wavelet packets defined in [6,2],rmitfor the system (3). Assume alt, are real
valued and that there is a finite constahsuch that

(0.¢]
/ (@ —nm)2[Pn(@)?do < C?%, n=0,12,.... (10)
0
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Then it is easy to show using Tchebycheff’s inequality that the right-hand &geof (9) satisfies

Nmn+C 400
/ s(w)dw>7 —1 and s(w) dw <
Nrn—C (N+1)m+C?

EE

: (11)

whereN =2/ (m + 1) — 1 and we assumée’ 2> C. It follows thatf, s(w)—s(w+d)do>7—1— % >0,
wherel =[Nz — C, N7 + C] andd = 7 + C2 + C. Now, since (9) implies () = ¥ (2~ w)|? we find
by letting j — oo that,, cannot be uniformly continuous, s, ¢ L1. In other words, (9) and (10) ruin
the chances for a good time localization.

On the other hand it is clear from (4) that the system (3) satisfies (10) an@)jfis smooth then the
window functionu(¢) has rapid decay at infinity, so the time localization is trivial. What is left open to
explore is whether there exist compactly supported functignsolving (6) and (7) and inheriting a good
time-frequency localization.

Let us stress that constructions very similar to the bases of Theorem 2.1 are well known for the case of
wavelet bases from [8], and in the general case from [7,9], and [1]. However, none of these bases possess
the wavelet packet type of structure described here.

Finally, Theorem 2.1 still holds true if one takes the imaginary part in (3) instead of the real part.
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