Stochastic calculus of variations and Harnack inequality on Riemannian path spaces

Ana-Bela Cruzeiro ${ }^{\text {a }}$, Paul Malliavin ${ }^{b}$
${ }^{\text {a }}$ Dep. Matemática I.S.T. and Grupo de Física-Matemática U.L., Av. Rovisco Pais, 1049-001 Lisboa, Portugal
${ }^{\text {b }} \mathbf{1 0}$, rue Saint Louis en l'Isle, 75004 Paris, France

Received 5 August 2002; accepted 3 September 2002
Note presented by Paul Maliavin.

Abstract

We describe the tangent space of Riemannian path space as a space of tangent processes localized on Brownian sheets; the bundle of adapted frames above a Riemannian path space and its structural equation are given. The stochastic calculus of variations allows us to derive Harnack-Bismut inequality for the Norris semigroup. To cite this article: A.-B. Cruzeiro, P. Malliavin, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 817-820. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Calcul de variations stochastiques et l'inéqualité de Harnack sur l'espace de chemins riemanniens

Abstract

Résumé On décrit l'espace tangent à l'espace de chemins riemanniens comme un espace de processus tangents localisé sur des fueuilles browniennes; le fibré de repères adaptés sur l'espace de chemins riemanniens et son équation de structure sont donnés. Le calcul de variations stochastiques permet de dériver l'inégalité de Harnack-Bismut pour le semigroupe de Norris. Pour citer cet article: A.-B. Cruzeiro, P. Malliavin, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 817-820. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Structural equations

Given a d-dimensional compact Riemannian M we fix a point $m_{0} \in M$ and we denote $P_{m_{0}}(M)$ the path space that is the space of continuous maps $p:[0,1] \mapsto M$ such $p(0)=m_{0}[12,14]$. In [1-3] it has been emphasized that the differential geometry on the path space has to be compatible with the underlyig Itô filtration \mathcal{N}_{*}; in particular the natural unitary group associated to the change of frame is the subgroup of all unitary transformations of the Cameron-Martin space which commute with the orthogonal projections defined by the conditional expectations $E^{\mathcal{N}^{*}}$. This group can be realized as $P_{e}(\mathrm{SO}(d))$, the path group over the d-dimensional orthogonal group; in [4] the orthonormal frame bundle $O\left(P_{m_{0}}(M)\right)$ has been defined so that its structural group is $P_{e}(\mathrm{SO}(d))$; the Levi-Civita parallel transport on M transport gives a canonic section $\sigma: P_{m_{0}}(M) \mapsto O\left(P_{M_{0}}(M)\right)$.

As a substitute of the Levi-Civita connection for which the adaptness criterium to the Ito filtration fails, the Markovian connection has been introduced in [3]. This connnection induces on $O\left(P_{m_{0}}(M)\right)$ a parallelism given by two differential forms $\pi=(\dot{\pi}, \ddot{\pi})$ where $\ddot{\pi}$ takes its values in $P_{0}(\operatorname{so}(d))$; a novelty of the present Note is to consider that the range of $\dot{\pi}$ is a space \mathcal{P} of localized tangent processes. In [3] the tangent processes on the whole path space have been defined as the family of \mathbb{R}^{d} valued semi-martingales

[^0]$\mathrm{d} \zeta^{\alpha}=a_{\beta}^{\alpha} \mathrm{d} x^{\beta}+c^{\alpha} \mathrm{d} \tau$ such that $a_{\beta}^{\alpha}+a_{\alpha}^{\beta}=0$; as this notion of tangent process involves the concept of semimartingale, it is a global notion on the whole space $P_{m_{0}}(M)$. A differential form π is said to take its values in the space of tangent processes if and only if $\langle Z, \dot{\pi}\rangle$ is a tangent process for every adapted vector field Z defined on $O\left(P_{m_{0}}(M)\right)$: constant vector fields in the parallelism are adapted vector fields and generate the space of all adapted vector fields. To obtain a Harnack inequality one needs to localize this global notion of tangent process: we shall proceed by parametrizing $P_{p_{0}}\left(P_{m_{0}}(M)\right)$ by a Brownian sheet on which we shall use the global notion of tangent process.

A key fact established in $[3,4,9]$ is the structural equations of the parallelism. In order to shorten this Note we shall assume all around that the Ricci curvature of M vanishes; when this hypothesis is not fulfilled the situation can be mastered by a suitable modification of the formalism, replacing the usual gradient on $P_{m_{0}}(M)$ by the damped gradient introduced in [10] (see [1]).

ThEOREM. - Assume that the Ricci tensor of M vanishes; denote by Z_{*} constant vector fields on $O\left(P_{m_{0}}(M)\right)$; then

$$
\left(\left\langle Z_{1} \wedge Z_{2}, \mathrm{~d} \dot{\pi}\right\rangle\right)_{\sigma(p)}=\left(\ddot{\pi}\left(Z_{2}\right) \dot{\pi}\left(Z_{1}\right)-\ddot{\pi}\left(Z_{1}\right) \dot{\pi}\left(Z_{2}\right)\right)_{\sigma(p)}+\mathcal{T}\left(\dot{\pi}\left(Z_{1}\right), \dot{\pi}\left(Z_{2}\right)\right)
$$

here \mathcal{T} is the torsion defined by the following Itô stochastic integral:

$$
\left(\mathcal{T}\left(z_{1}, z_{2}\right)\right)_{\tau}:=\int_{0}^{\tau} \Omega\left(z_{1}, z_{2}\right) \mathrm{d} x
$$

where Ω is the Riemann curvature tensor of M and where x denotes the antideveloppement of $p \in P_{m_{0}}(M)$; the functor \mathcal{T} is a bilinear map of $\mathcal{P} \times \mathcal{P} \mapsto \mathcal{P}$. In the same way introduce the functor \mathcal{C} which associates to $\zeta, \zeta^{\prime} \in \mathcal{P}$ the endomorphism of \mathcal{P} defined by

$$
\mathcal{C}\left(\zeta, \zeta^{\prime}\right): \eta \mapsto \int_{0}^{*} \Omega\left(\zeta, \zeta^{\prime}\right) \mathrm{d} \eta
$$

then \mathcal{C} is the curvature of the parallelism in the sense that the following structural equation holds true:

$$
\left(\left\langle Z_{1} \wedge Z_{2}, \mathrm{~d} \ddot{\pi}\right\rangle\right)_{\sigma(p)}-\left[\ddot{\pi}\left(Z_{1}\right), \ddot{\pi}\left(Z_{2}\right)\right]_{\sigma(p)}=\mathcal{C} .
$$

Remark. - The torsion can be obtained by saturating one index of the curvature by the stochastic differential along the path $\mathrm{d} x: \mathcal{T}=\mathcal{C}(\mathrm{d} x)$; this type of contraction is a key building stone in the theory of iterated path integrals.

2. Harnack inequality

Denote μ the Wiener measure on $P_{m_{0}}(M)$; then the Cameron-Martin type gradient on $P_{m_{0}}(M)$ defines a Dirichlet form; the corresponding process has been constructed in [7]; under our hypothesis of vanishing Ricci this process coincides with the process defined in [13] and therefore is compatible with the Itô filtration. Its infinitesimal generator \mathcal{L}, using [11], has been written in [4] on $O\left(P_{m_{0}}(M)\right)$ using the covariant derivative associated to the parallelism $\widehat{\nabla}$ as

$$
2 \mathcal{L}=\sum_{\alpha} \int_{0}^{1}\left(\widehat{\nabla}_{\tau, \alpha}^{2} \mathrm{~d} \tau-\widehat{\nabla}_{\tau, \alpha} \mathrm{d} x^{\alpha}(\tau)\right)
$$

We denote by $\Pi_{t}\left(p_{0}, \mathrm{~d} p\right)$ the heat kernel associated to the semi-group $\exp (t \mathcal{L})$ which is defined in [7] for p_{0} outside a set of null capacity; the strong machinery of [13] makes possible to define it for all p_{0}; in this work we have for objective to prove inequalities which can be reached through uniform estimates of finite dimensional approximations in the spirit of [5] and in this context we shall not emphasize the problem of the domain of definition of $\Pi_{t}(*, \mathrm{~d} p)$. For Harnack-Bismut type derivative formulas see [8] and references therein.

The Cameron-Martin space of the Wiener space of the R^{d} valued brownian motion is the Hilbert space $\mathrm{H}^{1}\left(R^{d}\right)$ of R^{d} valued paths z such that $\dot{z} \in \mathrm{~L}^{2}$; we denote $T_{p_{0}}^{1}\left(P_{m_{0}}(M)\right)$ its image by parallel transport along p_{0} of $\mathrm{H}^{1}\left(T_{m_{0}}(M)\right)$. For any vector $z \in T_{p_{0}}^{1}\left(P_{m_{0}}(M)\right)$ we define the logarithmic derivative $\partial_{z} \log \Pi_{t}\left(p_{0}, p\right)$ in the spirit of [6] by the following identity holding true for every bounded test function ϕ :

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int\left(\Pi_{t}\left(p_{0}+\varepsilon z, \mathrm{~d} p\right)-\Pi_{t}\left(p_{0}, \mathrm{~d} p\right)\right) \phi(p)=\int \Pi_{t}\left(p_{0}, \mathrm{~d} p\right) \partial_{z} \log \Pi_{t}\left(p_{0}, p\right) \phi(p)
$$

HARNACK THEOREM. - Let M be a d-dimensional Riemmanian manifold with vanishing Ricci curvature and with curvature tensor as well as its first three covariant derivatives bounded; then for all $r \in] 1, \infty\left[\right.$ there exists a constant C_{r} depending only on the previous bounds such that for all vector field Z such that the Cameron-Martin norm $\left\|Z_{p}\right\|_{T_{p_{0}}^{1}\left(P_{m_{0}}(M)\right)} \leqslant 1, \forall p$ we have

$$
\int_{P_{m_{0}}(M) \otimes P_{m_{0}}(M)}\left|\partial_{Z} \log \Pi_{t}\left(p_{0}, p\right)\right|^{r} \mu\left(\mathrm{~d} p_{0}\right) \otimes \mu(\mathrm{d} p) \leqslant C_{r} \exp (-r t)
$$

This theorem will be approached by the stochastic calculus of variations which consists in looking at the propagation of z along the time evolution of the stochastic flow associated to \mathcal{L}; the structural equations imply that a vector $z \in T_{p_{0}}^{1}\left(P_{m_{0}}(M)\right)$ propagates as a local tangent processes along the time evolution: one novelty of this Note is to consider tangent processes on an auxiliary probability space which allows us to fix the starting point p_{0} without loosing their properties.

3. Stochastic calculus of variations along the Brownian sheet

We denote $w^{*}(t, \tau)$ the R^{d} valued Brownian sheet defined for $t>0, \tau \in[0,1]$ such that $w(0, *)=$ $w(*, 0)=0$. We denote y_{t} the R^{d}-valued Brownian curve defined as $y_{t}(\tau)=w(t, \tau)$. We consider for initial σ field the data of a starting path together with a vector in the Cameron-Martin tangent space at this starting point; then we denote $\mathcal{N}_{t, \tau}$ the σ field obtained by adding at the initial σ field the information given by the knowledge of $x^{\alpha}\left(t^{\prime}, \tau^{\prime}\right)$ for $t^{\prime}<t, \tau^{\prime}<\tau$. We denote $\mathcal{I}_{t}^{t^{\prime}}, t<t^{\prime}$, the innovation $\mathcal{N}_{t^{\prime}, 1}-\mathcal{N}_{t, 1}$. We define a vector field

$$
Z_{t}(p)=E^{p_{y_{t}}(t)=p}\left(\zeta_{1}(t)\right)
$$

Considering a trajectory p_{t} of the process associated to \mathcal{L} starting from p_{0}, we denote x_{t} its antidevelopment. Then we shall use the parametrization

$$
\begin{equation*}
d_{t} x_{t}=\mathrm{d} y_{t}-x_{t} \mathrm{~d} t, \quad x_{0} \neq 0, \quad y_{0}=0 \tag{1}
\end{equation*}
$$

THEOREM. - Denote $\zeta(t, \tau)$ a variation of the Brownian sheet; denote ζ_{1} the corresponding variation of p_{t} looked upon the parallelism then we have:

$$
\begin{equation*}
d_{t} \zeta=d_{t} \zeta_{1}+\zeta_{1} \mathrm{~d} t-\rho o d_{t} x_{t}+\mathcal{T}\left(\zeta_{1}, o d_{t} x_{t}\right), \quad d_{t} \rho=\mathcal{C}\left(\zeta_{1}, o d_{t} x_{t}\right) \tag{2}
\end{equation*}
$$

The stochastic contraction involving ρ appearing (2) takes the shape

$$
\left(\mathcal{C}\left(\zeta_{1}, d_{t} x\right) d_{t} x_{t}\right)_{\tau}=\int_{0}^{\tau} \operatorname{Ricci}^{M}\left(\zeta_{1}(s)\right) \mathrm{d} s
$$

the right-hand side can be interpreted as defining $\operatorname{Ricci}{ }^{P_{m}}{ }^{(M)}$; this interpretation is coherent with the interpretation given [3], p. 165, formula (9.7.1). In our setting where Ricci $^{M}=0$ this contraction disappears.

We can choose the variations ζ, ζ_{1} as we like as soon that (2) is fullfiled; we make the following choice determining first ζ_{1} and subsequently ζ :

$$
\begin{align*}
& d_{t} \zeta_{1}(t)=-\zeta_{1}(t) \mathrm{d} t-\mathcal{T}\left(\zeta_{1}(t), o d_{t} x_{t}\right), \quad \zeta_{1}(0)=z \in T^{1}\left(P_{m_{0}}(M)\right) \tag{3}\\
& d_{t} \zeta(t)=-\rho d_{t} x_{t}, \quad d_{t} \rho=\mathcal{C}\left(\zeta_{1}, o d_{t} x_{t}\right), \quad \zeta(0)=0, \quad \rho(0)=0 \tag{4}
\end{align*}
$$

Using the change of variable (1) Eqs. (3), (4) can be transfered on the Brownian sheet; we call a local tangent process a map which for each t defines a semi-martingale on the Brownian space $w(t, *)$ with the antisymmetry of its martingale part; then ζ_{1} is a local tangent process. We denote μ_{t} the Wiener measure on $P_{0}\left(R^{d}\right)$ defined by $w(t, *)$. We fix a finite mass Borelian measure θ on R^{+}and we consider the finite mass measure defined on $P_{0}\left(R^{d}\right)$ by $v_{\theta}=\int_{0}^{\infty} \mu_{t} \theta(\mathrm{~d} t)$; then

THEOREM. - The infinitesimal transformation associated to $\zeta(*)$ preserves the measures v_{θ}.

4. Integration by parts procedure

A key step in the proof of Harnack-Bismut formula in finite dimensions is to realize an integration by parts by using a Girsanov formula. In our setting Girsanov formula is not available; worst, the coefficient of this "tentative Girsanov formula" will not be a function in a Cameron-Martin space relatively to the variable τ but a tangent process. Trotter-Kato formula will supply for us the missing Girsanov formula; the annoying contribution of tangent processes will then disappear. We consider the OU process associated to \mathcal{L} and its lift to the frame bundle, associated to $\widetilde{\mathcal{L}}$, a crucial object constructed in [5]; we denote for $t_{1}<t_{2}$ the corresponding stochastic flow $U_{t_{2} \leftarrow t_{1}}^{w}, \widetilde{U}_{t_{2} \leftarrow t_{1}}^{w}$. The measures μ_{t} being mutually singular, we shall realize the semi-group associated to \mathcal{L} on space time introducing for $s<t$ a map $P_{s \leftarrow t}: L_{\mu_{t}}^{2} \mapsto L_{\mu_{s}}^{2}$ defined by $P_{s \leftarrow t}=E^{\mathcal{F}_{s}}\left(\left(U_{t \leftarrow s}^{w}\right)^{*} f\right)$. We denote by \mathcal{P}_{t} the space of tangent process on the Wiener space $w(t, *)$ and we define a flow $\left(Q_{t \leftarrow s}\left(\zeta_{s}\right)\right)_{y}=E^{w(t, *)=y}(\eta(t))$, where $t>s$, and where η satisfies Eq. (3) with the initial value $\eta(s)=\zeta$. We have the intertwinning formula

$$
\left\langle\zeta_{s}, d P_{s \leftarrow t} f\right\rangle=P_{s \leftarrow t}\left(\left\langle Q_{t \leftarrow s} \zeta_{s}, d f\right\rangle\right)
$$

Then we have the formula of integration by parts

$$
\begin{equation*}
t E\left\langle\zeta_{0}, d P_{0 \leftarrow t} f\right\rangle_{p_{0}}=E\left(\left(\int_{0}^{t} \delta_{s}\left(Q_{s \leftarrow 0} \zeta_{0}\right) \mathrm{d} s\right) f\left(U_{t \leftarrow 0}^{w}\left(p_{0}\right)\right)\right) \tag{5}
\end{equation*}
$$

where δ_{s} denotes the divergence relatively to the infinitesimal measure generated by $\mathcal{F}_{s+\varepsilon}-\mathcal{F}_{s}$.
From a differential geometer point of view our strategy can be summarized as follows: the pionneering work of Norris [13] has shown the fittness of Brownian sheet stochastic calculus for the study of path space; Norris used a delicate two parameters M-valued Stratonovitch stochastic calculus; lifting the situation to frame bundle only a milded R^{d} valued two parameters stochastic calculus is needed here; frame bundle technology needs firstly a computable knowledge of frame bundle structural equations recently obtained in $[4,9]$ and secondly the realization of the lift of the OU process to frame bundle: this realization depends upon finite dimensional approximation realized in [5].

References

[1] A.B. Cruzeiro, S. Fang, A Weitzenböck formula for the damped O-U operator in adapted differential geometry, C. R. Acad. Sci. Paris, Série I 332 (2001) 447-452.
[2] A.B. Cruzeiro, S. Fang, P. Malliavin, A probabilistic Weitzenböck formula on Riemannian path space, J. Analyse Math. 80 (2000) 87-100.
[3] A.B. Cruzeiro, P. Malliavin, Renormalized differential geometry on path space: structural equation, curvature, J. Funct. Anal. 139 (1996) 119-181.
[4] A.B. Cruzeiro, P. Malliavin, Frame bundle of Riemannian path space and Ricci tensor in adapted differential geometry, J. Funct. Anal. 177 (2000) 219-253.
[5] A.B. Cruzeiro, X. Zhang, Finite dimensional approximation of Riemannian path space geometry, J. Funct. Anal., to appear.
[6] Y.L. Dalecky, S.V. Fomin, Measures and Differential Equations in Infinite-Dimensional Space, in: Math. Appl., Kluwer Academic, 1991.
[7] B. Driver, M. Röckner, Construction of diffusions on path space and on loop space of compact Riemannian manifold, C. R. Acad. Sci. Paris, Série I 320 (1995) 1249-1254.
[8] B. Driver, A. Thalmaier, Heat equation derivative formulas for vector bundles, J. Funct. Anal. 183 (2001) 42-108.
[9] S. Fang, Markovian connection, curvatures and Weitzenböck formula on Riemannian path space, J. Funct. Anal. 181 (2001) 476-507.
[10] S. Fang, P. Malliavin, Stochastic analysis on the path space of a Riemannian manifold, J. Funct. Anal. 118 (1993) 249-274.
[11] T. Kazumi, Le processus de Ornstein-Uhlenbeck sur l'espace des chemins et le probleme des martingales, J. Funct. Anal. 144 (1997) 20-45.
[12] P. Malliavin, Stochastic Analysis, in: Grundlehren Math., Springer, 1997.
[13] J. Norris, Twisted sheets, J. Funct. Anal. 132 (1995) 273-334.
[14] D. Stroock, Stochastic Analysis on Riemannian Path Space, American Mathematical Society, 2000.

[^0]: E-mail addresses: cruzeiro@math.ist.utl.pt (A.-B. Cruzeiro); sli@ccr.jussieu.fr (P. Malliavin).

