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Abstract If afield of positive definite symmetric matrices of order two and a field of symmetric
matrices of order two together satisfy the Gauld and Codazzi—-Mainardi equations in a
connected and simply connected open subset of R2, then these fields are the first and second
fundamental forms of asurfacein R3, unique up toisometries. It isshown herethat asurface
defined in this fashion varies continuously as a function of its two fundamental forms, for
ad hoc metrizabletopologies. To citethisarticle: P.G. Ciarlet, C. R. Acad. Sci. Paris, Ser. |
335 (2002) 609-614.
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Une surface est unefonction continue de ses deux formes
fondamentales

Résumé Si un champ de matrices symétriques définies positives d ordre deux et un champ de
matrices symétriques d' ordre deux vérifient ensemble | es équations de Gaul} et de Codazzi—
Mainardi dans un ouvert connexe et simplement connexe de R2, alors ces champs sont les
premiére et deuxiéme formes fondamentales d’ une surface dans R3, unique aux isomeétries
prés. On établit ici qu’ une surface définie de cette fagcon varie continlment en fonction de
ses deux formes fondamentales, pour des topologies métrisables convenables. Pour citer
cet article: P.G. Ciarlet, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 609-614.
O 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

1. Formulation of the problem

All spaces, matrices, etc., considered are real. The notations M4, O¢, S, and S¢ respectively designate
the sets of all square matrices of order d, of all orthogonal matrices of order d, of al symmetric matrices
of order d, and of al symmetric and positive definite matrices of order d.

Latin indices and exponentsvary in the set {1, 2, 3} except when they are used for indexing sequences or
when otherwiseindicated, Greek indicesand exponentsvary in the set {1, 2}, and the summation convention
with respect to repeated indices or exponentsis used in conjunction with these rules. Kronecker’s symbols

are designated by §;; or 8{ according to the context.
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Let E3 denote a three-dimensional Euclidean space, let a - b denote the Euclidean inner product of
a,b c E3 and let |a| = \/a - a denote the Euclidean norm of a € E3. Let p(A) denote the spectral radius
and let |A| := {p(AT A)}1/2 denote the spectral norm of amatrix A € M3,

Let there be given a two-dimensional vector space, identified with R2. Let y, denote the coordinates
of apoint y € R? and let 8, := 8/dy, and dyp := 3%/3y,dys. Let @ be an open subset of R? and let
0 € C?(w; E®) beanimmersion. Theimage 8 (w) isasurfacein E3. Thefirst and second fundamental forms
of the surface 6 (w) are defined by means of their covariant components

010 (y) A 920(y)
aap(y) :=30(y) - 3p0(y) and  bug(y) := dapf(y) { 9260) A 920 (0)] } cw

We now recall two classical resultsfrom differential geometry, which are essential to the ensuing analysis.
Theorem 1.1 provides sufficient conditions guaranteeing that, given two smooth enough matrix fields
(agp) : @ — SZ and (byp) : @ — S?, thereexistsanimmersion § : w — E3 such that these fields are the first
and second fundamental forms of the surface # (w). Theorem 1.2 specifies how two such immersions differ
(aself-contained, complete, and essentially elementary, proof of these well-known results, which together
constitute the fundamental theorem of surface theory, isfound in Ciarlet and Larsonneur [2]; a direct proof
of the fundamental theorem of surface theory is given in Klingenberg [5, Theorem 3.8.8]).

THEOREM 1.1 (Global Existence Theorem). — Let w be a connected and simply connected open subset
of R? and let (aup) € C%(w;S2) and (bep) € C2(w; S?) be two matrix fields that satisfy the GauR and
Codazzi—Mainardi equations, viz.,

8ﬂcomt - a(rcozﬂr + Cgﬂco'tu - ngcﬂru = bombﬂr - baﬂbat in w,
3pbac — dsbap + Cliybpy — Clighoy =0 inw,
where

1
Capr =5 (Opar + datipr — draap) and Co:=a" Cupr.  Where (a°7) := (anp) .

Then there exists an immersion @ € C3(w; E3) such that

010 A 020 .

= 0,0 - 950 d bgg =040 - { ——————— ]
Aap = 0ol 0p7 ARG Dop = Cap {|ala A 820|} ©

THEOREM 1.2 (Rigidity Theorem). — Let w be a connected open subset of R? and let 6 € C?(w; E®)

and 8 € C%(w; E3) be two immersions such that their associated first and second fundamental forms satisfy

(with self-explanatory notations) aeg = dog and beg = bag in w. Then there exist a vector a € ES3 and an

orthogonal matrix Q € 02 such that 8(y) = a + Qa(y) forallyew. O

Together, Theorems 1.1 and 1.2 establish the existence of a mapping F that associates to any matrix
fields (agp) € C2(w; S2) and (byp) € C2(w; S?) satisfying the Gaul and Codazzi-Mainardi equationsin w
awell-defined element F((aqp). (bap)) in the quotient set C3(w; E3)/R, where (8, 8) € R meansthat there
existsavector a € E3 and amatrix Q € O3 such that 8(y) =a + Q8 (y) foral y € w.

A natural question thus arises as to whether there exist ad hoc topologies on the space C?(w; Si) X
C?%(w; S?) and on the quotient set C3(w; E3)/R such that the mapping F defined in this fashion is
continuous.
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2. The analogous problem in “dimension three

The purpose of this Note is to provide an affirmative answer to the above question through a proof that
reliesin an essential way on the solution to an anal ogous question “ in dimension three” , as given in Ciarlet
and Laurent [3,4]. In this section, we accordingly briefly review this analog problem.

Let there be given a three-dimensional vector space, identified with R3. Let x; denote the coordinates
of a point x € R3 and let 9; := 8/dx;. Let Q be an open subset of R3. The notation K € 2 means
that K is a compact subset of Q. If @ € CY(2;E3) or A e CH(2; M®), £ >0, and K € , we let
1Olle,x == sup{ reK |0%@(x)| and ||A|l¢.kx :=SUPysrex |0¥A(x)|, where 9% stands for the standard multi-

index notation fo‘r partlal derivatives, and | - | dentlntles the Euclidean vector norm or the matrix spectral
norm.

Let ©® € C1(Q; E®) be an immersion. Then the metric tensor field (g;;) € CO(Q; S2) of the set O(RQ) is
defined by means of its covariant components g;; (x) := 9;®(x) - 9;0(x), x € Q. In geometrically exact
three-dimensional elasticity, the matrix (g;; (x)) isusually denoted C(x) := (g;; (x)), andiscalled the(right)
Cauchy—Green tensor at x.

We now recall two classical results from three—dimensional differential geometry. Theorem 2.1 provides
sufficient conditions guaranteeing that, given a smooth enough matrix field C = (g;;) : 2 — Si, there
existsanimmersion ® : 2 — E23 such that C isthe metric tensor field of the set ©(£2), while Theorem 2.2
specifies how two such immersions differ.

THEOREM 2.1 (Global Existence Theorem). — Let Q2 be a connected and simply connected open subset
of R®andlet C = (g;;) € C?(2; S) be a matrix field that satisfies

Ryijk = 0;Tikg — 0 Tijq + Fi”jl‘kq,, — F{;{qup =0 inQ,

where
1 _
F,’jq = E(ngiq+8igjq—8qgij) and Fipj = g”"l“ijq, where (gpq> = (gij) 1.
Then there exists an immersion © € C3(Q2: E3) suchthat C=vO'vVeO inQ. O

THEOREM 2.2 (Rigidity Theorem).— Let © be a connected open subset of R3 and let © € C1(Q; E®)
and © e C1(£; E®) betwo immersions whose associated metric tensorsC = VO'vV@ andC = vO'vVeO
satisfy C = C in . Then there exist a vector a € E2 and a matrix Q € O3 such that ©(x) = a + QO (x)
foralxeQ. O

Together, Theorems 2.1 and 2.2 establish the existence of a mapping F that associates to any matrix
field C = (g;;) € C2(2; S?) satisfying R,ijx = 0 in Q a well-defined element F(C) in the quotient set
C3(22; E3)/R, where (©, ©) € R means that there exists a vector a € E and a matrix Q € 0% such that
O(x)=a+ QO(x) foral x € Q.

As shown by Ciarlet and Laurent [3,4], the continuity of the mapping F for ad hoc topologies on the
space C2(2; S®) and on the quotient set C3($2; E3)/R is a consequence of the following crucial result,
which likewise plays akey role here (see the proof of Lemma 3.6 below).

THEOREM 2.3.— Let Q be a connected and simply connected open subset of R3. Let C = (gij) €
C2(2;$2), and C" = (g}) € C3(Q,S2), n > 0, be matrix fields respectively satisfying Ryijx =0 in
and R;‘l]k =0in Q, n > 0 (with self-explanatory notations), such that lim,_, ~ [|[C"—Cl|j2.x = 0 for all
K € Q. Let © € C3(Q; E3) be any mapping that satisfies VOTV® = C in  (such mappings exist by
Theorem 2.1). Then there exist mappings @" € C3(Q; E®) satisfying (VO")TVO" =C" inQ, n > 0, such
thatlim, .o [|@"—-@®|3x =0forall K € 2. O
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3. Main results

Let w bean open subset of R3. Thenotation x € w meansthat « isacompact subset of w. If f € C¢(w; R)
orf eCl(w;E3),£>0andk € w, welet || flle. :_sup{‘\ex 10% £ (y)| and ||0]|¢. ._sup{lm 1090 (v)].

IfAeClw; M%), £>0,d=2o0r3,andk € w, welet |Allg _sup{ vee [0%A®)].
The next theorem constitutes the key step towards establishing the contmuny of a surface as afunction
of itstwo fundamental forms (see Theorem 3.7).

THEOREM 3.1.— Let w bea connected and simply connected open subset of R2. Let (aqp) € C?(w; S2)
and (bgp) € Cz(w S?) be matrix fields satisfying the GauR and Codazzi-Mainardi equationsin » and let
(alg) € C¥(w; S2) and (blip) € C?(w; S?) be matrix fields satisfying for each n > 0 the GauB and Codazzi—
Mainardi equationsin w. Assume that these matrix fields satisfy

lim Haﬁ aaﬁ||2K_O and lim ||qu3 boqg||2 =0 foralxcw.

n—o0 n—o00

Let @ € C3(w; E®) be any mapping that satisfies

010 N 020 .
aaﬂzaao'aﬂa and baﬂzaaﬂo'{ ! 2 } nw

|016 A 020 |
(such mappings exist by Theorem 1.1). Then there exist mappings 6" € C3(w; E3) satisfying
010" A 020" .
dgp = 0a0" - 90" and  byg = Jopf" - {W} inw, n=0,
1 2

suchthat lim,_, [|10" =03, =0foral k ew. O

For clarity, the proof of Theorem 3.1 is broken into a series of five lemmas, the proofs of which are only
briefly sketched here. Complete proofsare found in Ciarlet [1].

LEMMA 3.2.— Letthe matrix fields (g;j) € C3(w x R; §%) and (g}}) € C%(w x R; §%), n > 0, be defined
by
8up = Aup — 2x3bop —i—x%caﬂ and gj3:=4;3,
8o ‘= Gup — 2x3bgg —i—x%cgﬂ and gh:=63, n=0
(thevariable y € w isomitted, x3 designatesthe variablein R), where
Cap :=bgbpr, bl :=a""bys, (a‘”) = (aa/g)_l,
Cap ' =bg"br, by i=a"""b,, (a®"") = (agﬁ)‘l, n=0.

Let wo be an open subset of R? suchthat @wg € w. Thenthereexists eg = o(wp) > 0 such that the symmetric
matrices C(y, x3) := (g;; (¥, x3)) and C"(y, x3) := (gf‘j(y,xg)), n > 0, are positive definite at all points
(v, x3) € Q0, where Qo := wox 1—¢o0, €0l -

Sketch of proof. — The matrices C(y, x3) := (gij (¥, x3)) € S® and C"(y, x3) := (g/;(y, x3)) € S® are of
theform:

C(y,x3) = Co(y) +x3C1(y) + x5C2(y) and C"(y,x3) = Ci(y) + x3C}(y) + x3C5(y), n=>0.

Firgt, it is deduced from the assumptions lim,_ ||agﬁ—aaﬁ||0,50 =0and lim,_ ||b0q3—ba,g||0,5O =0
that there exists a constant M such that

1(€8) oz + I llo, + CBlloz, < M forall n>0
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This uniform bound implies in turn that there exists eg = eo(wp) > 0 such that the matrices C(y, x3) and
C"(y,x3),n =0, areinvertible for al (y, x3) € wg x [—e¢0, €0]. Since these matrices are positive definite
for x3 = 0 by assumption, they remain so for all x3 € [—&p,0]. O

LEMMA 3.3.— Let wy, £ > 0, be open subsets of R? such that @, € w for each ¢ and w = Uz>owl- By
Lemma 3.2, there exist numbers e, = &¢(w¢) > 0, £ > 0, such that the symmetric matrices C(x) = (g;; (x))
and C"(x) = (g/;(x)), n > 0 (defined for all x = (y, x3) € @ x R asin Lemma 3.2), are positive definite
at all pointsx = (v, x3) € Q¢, Where Q2 := we x ]—&¢, &¢[, hence at all points x = (y, x3) of the open set
€ := ;>0 ¢, which is connected and simply connected.

Sketch of proof. — The set 2 is connected since it is clearly arcwise connected. To show that €2 issimply
connected, let y € C9([0, 1]; R3) be a loop in €. Let the projection operator & : 2 — w be defined by
n(y,x3) =y foral (v, x3) € Q. Then the mapping y := m o y € C%([0, 1]; R?) isaloop in w, which can
be reduced to a point y° € w since w is simply connected. It is then easy to construct a homotopy in €2 that
reducesthe loop y to the point (y°,0) e Q. O

LEMMA 3.4.— The set © being defined as in Lemma 3.3, let the functions Ry € %) and
Rl € CO(R), n > 0, be constructed as in Theorem 2.1 from the matrix fields (g;;) € C%(%; §2) and

(g/;) € C3(%S2),n > 0. Then Ry;jx =0inQand R}, =0inQforalln>0. O

This result, due to Ciarlet and Larsonneur [2], is crucia. Its proof essentialy relies on a series of
elementary, yet sometimes delicate and lengthy, computations. For details, see ibid.

LEMMA 3.5.— The matrix fields C = (g;;) € C?(22:;S%) and C" = (gf;) € C%(Q; S2) defined in
Lemma 3.3 satisfy lim,_, , ||[C"—Cl||2,.x =0 for all K € Q.

Proof. — Given any compact subset K of €, there exists a finite set Ax of integers such that K C
UZEAK Q. Since by assumption, lim,_ o ||agﬂ—aa,g 2z, =0andlim,_ ||bgﬂ—ba,g||2,@ =0,¢ € Ag,
it follows that lim,—, o [IC},—C)ll2m, = 0, £ € A, p =0, 1,2, where the matrices C, and C},, n > 0,
p=0,1, 2, aredefined as in the proof of Lemma 3.2, hence that lim,,_, oo ||C"—C||27§£ =0, € Ak.The
conclusion then follows from the finiteness of theset Ax. O

LEMMA 3.6.— There exist mappings 8" e C3(w; E3) satisfying

010" A 320" } .
Nw, n

o Al o an 2 O’
[010™ A 920" |

such that lim,,_, » [16"—8@ |3, = O for all k € w.

Sketch of proof. — Given any mapping 8 € C3(w; E3) that satisfies aqp = 3,0 - 350 and byg = dup0 -

lgigﬁg;gl} in o, let the mapping © : Q@ — E3 be defined by ©(y, x3) := 0(y) + x3as(y) for all

(y,x3) € Q, where az := Igizﬁgiz\' and let g;; := ;© - 9;©. Then an immediate computation shows that

8af = Gap — 2x3bap + x§caﬁ and g;3 = §;3 in 2, where a,g and byp are the covariant components of the
first and second fundamental forms of the surface 6 (w) and cqp = a® baobp:.

In other words, the matrices (g;;) constructed in this fashion coincide over the set € with those defined
in Lemma 3.2. Since Lemmas 3.3, 3.4, and 3.5 together show that all the assumptions of Theorem 2.3
are satisfied by the fields C = (g;;) € C2(2;S2) and C" = (g};) € C?%(£2; S%), there exist mappings
0" € C3(Q; E3) satisfying (VO")TV@" = C" in Q, n > 0, such that lim,_, », |@"—0l||3.x = 0 for all
K € . Itisthen shown that the mappings " () := @" (-, 0) € C3(w; E®) indeed satisfy

010" A 320" in
—_ w
[016" A 020" |
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The relations lim,,_, « (160" —0]|3, = O for al x € w follow from the relations lim,_, » |®"—0®||3.x =0
foral K € 2, combined with the observationsthat a compact subset of w isalso oneof 2, that @(-,0) =6
and ©"(-,0) =6", and finaly, that |0" —0 |3, < [|@"—O|3,. O

Let (k;);>0 be any sequence of subsets of w that setisfy x; € w and «; C intk;4q for al i > 0, and
w= U?ioKi, and let

[e ]

1 ||'/’_0||l/('
d.0)=) ST o e,
(¥, ) Z:Z’ T4 —6lcn

Let C3(w; E3) := C3(w; E®)/R denote the quotient set of C3(w; E3) by the equivalence relation R, where
(0,6) € R meansthat there exist a vector a € E3 and amatrix Q € O3 such that 8(y) = a + Q8(y) for all
y € w. The set C3(w; E3) becomes a metric space when it is equipped with the distance ds defined by
d3@,¥):= inf ds(k,x)= inf d3(0,a+Qv),
ke acE3
xey Qe0?
where § denotes the equivalence class of § modulo R.

The announced continuity of a surface as a function of its two fundamental formsis then a corollary to
Theorem 3.1. If d isametric defined on aset X, the associated metric space is denoted {X; d}.

THEOREM 3.7.— Let w be connected and simply connected open subset of R2. Let
Cg(w; S? x SZ) = {((aap)., (bap)) € Cz(a); Sr‘;) x Cz(w; SZ);
8/3Caar - 80Caﬁr + Cgﬁcaru - ngcﬁru = bombﬁr - baﬁbar inw,
98bas — dobap + Ch g, — Cl’jﬂbw =0in w}

Given any element ((aup), (bap)) € Ca(w; S2 x S?), let F(((aap), (bep))) € C3(w; E®) denote the
equivalence class modulo R of any 8 € C3(w; E3) that satisfies

010 A 020 .
(up = 040 - 930 and baﬁzaaﬁa-{ S } ino.

|010 A 020
Then the mapping

F: {Cg(w; S? x SZ); d2} — {63(w; E3); d3}

defined in thisfashion is continuous. O
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