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Abstract For any primep > 0, we contructp-adic polynomial functions inCp[z] whose Fatou sets
have wandering domains.To cite this article: R.L. Benedetto, C. R. Acad. Sci. Paris, Ser. I
335 (2002) 615–620.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Exemples des domaines errants dans la dynamique polynôme
p-adique

Résumé Soit p > 0 un nombre premier. Nous construisons des polynômesp-adiques dansCp[z]
dont les ensembles de Fatou ont des domaines errants.Pour citer cet article : R.L.
Benedetto, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 615–620.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

Soit p > 0 un nombre premier fixé, soit�Qp une clôture algébrique du corpsQp des nombres rationels
p-adiques, et soitCp le complété de�Qp pour la valeur absoluep-adique, notée| · |. Pour une fraction
rationelleφ(z) ∈ Cp(z), la dynamique deφ opérant surP1(Cp)= Cp ∪ {∞} est analogue à la dynamique
des fractions rationelles complexes sur la sphère de Riemann ; voir [1,2,4,6,7,9–11], par exemple. En
particulier, on peut définir les ensemblesp-adiques de Julia, les ensembles de Fatou, et les composantes
des ensembles de Fatou, qui se comportent de façon semblable à leurs contre-parties complexes. Bien que
quelques résultats partiels suggèrent que l’ensemble de Fatou deφ ∈ �Qp(z) ne puisse pas avoir de domaine
errant, nous démontrons dans cet article qu’il y a des polynômes dansCp[z] avec des domaines errants.
Plus précisément, nous démontrons qu’il existea ∈ Cp tel que la fonctionφa définie par l’équation (1) a
un domaine errant.

Pourx ∈ Cp etr > 0, on note le disque ouvertDr(x)= {y ∈ Cp : |y−x|< r} et le disque fermé�Dr(x)=
{y ∈ Cp : |y − x| � r}. Nous considéronsa ∈ Cp tel que|a| = |p|−(p−1) > 1. Dans ce cas,φa augmente
des distances dansD1(1) par un facteur de|a| ; voir équation (6). Nous observons avec l’équation (5) que
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φma contracte localement des distances dans�Dr(0), où r = |p|1−p−m
< 1, maisφma (�Dr(0)) = �D1(0). De

plus, on peut étudier la variation de la famille en employant l’équation (4).
Avec ces outils, nous pouvons construire une valeura ∈ Cp et un pointx ∈ D1(0) telle que l’orbite

{φja (x)}j�0 suit le modèle dans l’équation (7). Dans cette équation, un 0 en laj -ème position indique que

φ
j−1
a (x) ∈D1(0), et un 1 indique queφj−1

a (x) ∈D1(1) ; et pouri � 0, on aMi = 2i etmi = 2p+2(p−1)i.
Comme la contraction deφmia dansD1(0) est supérieure à l’expansion deφMi+1

a dansD1(1), on voit quex
est contenu dans un disque errant deφa .

1. Introduction

Fix a prime numberp > 0, and letQp denote the field ofp-adic rationals, formed by completingQ
with respect to the unique absolute value satisfying|p| = 1/p. Let �Qp be an algebraic closure ofQp, and
let Cp denote the completion of�Qp. The absolute value| · |, which extends canonically toCp , is non-
Archimedean, meaning that it satisfies the ultrametric triangle inequality|x + y| � max{|x|, |y|}. BothQp

andCp are complete with respect to| · |, though�Qp is not. Note thatZ ⊂ Qp ⊂ Cp ; everyn ∈ Z satisfies
|n| � 1, with |p|< 1. See [5,8,12] for more general background onp-adic fields.

Although Qp is locally compect,�Qp andCp are not. Still,Cp is algebraically closed and complete,
analogous toC; the projective lineP1(Cp) = Cp ∪ {∞} is a non-Archimedean version of the Riemann
sphere. The dynamics of rational functionsφ(z) ∈ Cp(z) acting onP1(Cp) have exhibited many parallels
with the existing theory of complex dynamics; see [1,2,4,6,7,9–11], for example. The failure of local
compactness, and hence of the Arzelà–Ascoli theorem, means thatp-adic Fatou and Julia sets should be
defined in terms of equicontinuity, rather than normality.

Topologically,P1(Cp) and its subsets are totally disconnected. Nevertheless, the author [1,2] and Rivera-
Letelier [9,11] have developed several related definitions of components ofp-adic Fatou sets which behave
as useful analogs of connected components of complex Fatou sets.

The author has proven [1] that ifφ ∈ �Qp(z) (acting on the fullP1(Cp)) has nonempty Julia setJ with no
recurrent critical points of order divisible byp in J , then the Fatou set ofφ has no wandering domains. (In
fact, the proof in [1] applies equally well to any of the definitions of components even ifJ is empty.) The
main result of this paper implies that the first hypothesis (that the coefficients lie in�Qp) cannot be removed.

THEOREM 1.1. – There exists a ∈ Cp such that the Julia set J of

φa(z)= (1− a)zp+1 + azp (1)

is nonempty, the Fatou set F of φa has a wandering domain, and all critical points of φa lie in F .

Compared to Sullivan’s complex No Wandering Domains Theorem [13], Theorem 1.1 gives a
sharp contrast between non-Archimedean and complex dynamics. Moreover, our result also provides
a counterexample disproving Rivera-Letelier’s Conjecture de Non-Errance and his related statement on
Structure Conjecturale de l’Ensemble de Fatou in [9, Section 4.3]. However, both of those conjectures may
still be true if the hypothesis that all coefficients lie in�Qp is added; see the conjecture in [1, Section 1].

A generalization of the method of this paper can actually be used to prove the density of parameters for
whichφa has a wandering domain in the set{a ∈ Cp : |a|> 1}. The argument works for any algebraically
closed complete non-Archimedean field with the property that|p|< 1. However, in the interest of clarity,
we restrict our attention here to announcing the existence ofp-adic wandering domains, and we leave the
generalizations to a forthcoming paper [3].
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2. Disks

We will denote the closed disk of radiusr > 0 about a pointa ∈ Cp by �Dr(a), and the open disk
byDr(a). We recall some basic properties of non-Archimedean disks. Every disk is both open and closed
as a topological set. Any point in a diskU is a center, but the radius ofU is a well-defined real number,
being the same as the diameter ofU . If two disks inCp intersect, then one contains the other. Iff ∈ Cp[z]
is a non-constant polynomial, and ifU ⊂ Cp is a disk, thenf (U) is also a disk. Ifa, b ∈ Cp , r, s > 0, and
f ∈ Cp[z] with f (a)= b, thenf maps�Dr(a) bijectively onto�Ds(b) if and only if for everyx ∈ �Dr(a),

∣∣f (x)− f (a)
∣∣ = s

r
· |x − a|.

We also recall Hsia’s criterion [7] for equicontinuity, which is a non-Archimedean analogue of the
Montel–Carathéodory theorem. Hsia stated his result for arbitrary meromorphic functions on more general
non-Archimedean fields, but for simplicity, we rephrase it for our special case.

THEOREM 2.1 (Hsia). – Let F be a family of rational functions on a disk U ⊂ Cp, and suppose that
there are two distinct points a1, a2 ∈ P1(Cp) such that for all f ∈ F , x ∈ U , and i = 1,2, we have
f (x) �= ai . Then F is an equicontinuous family.

3. The family

We consider the family{φa} defined in equation (1), with|a| = |p|−(p−1) > 1. For any sucha, φa has
a superattracting (hence Fatou) fixed point atz = 0, and a repelling (hence Julia) fixed point atz = 1.
Furthermore, it is not difficult to see that the filled Julia setK (that is, the set of points not attracted to∞)
is completely contained inD1(0) ∪D1(1). The only critical points ofφa besides∞ lie in �D|p|(0), which
is a bounded open set that maps into itself. Hence, all critical points are Fatou.

Fix a ∈ Cp with |a| = |p|−(p−1). If y0 ∈D1(1) and|y1−y0|< 1, then it is immediate from the definition
of φa and the ultrametric triangle inequality that∣∣φa(y1)− φa(y0)

∣∣ = |a| · |y1 − y0|. (2)

If |p|< |y0|< 1 and|y1 − y0| � |p|2, then it is only slightly more difficult to show that∣∣φa(y1)− φa(y0)
∣∣ = |a| · |y0|p · |y1 − y0|. (3)

On the other hand, if we fixy0 ∈D1(0) andy1 ∈D1(1), and if we choose two parametersa, b ∈ Cp, then∣∣φb(y0)− φa(y0)
∣∣ = |y0|p · |b− a| and

∣∣φb(y1)− φa(y1)
∣∣ = |y1 − 1| · |b− a|. (4)

4. Local mapping properties of φna

Let S = |p|2. If x ∈D1(0) or x ∈D1(1), then using induction and Eqs. (2) and (3), we can easily prove
the following statements concerning the next few iterates ofx.

LEMMA 4.1. – Let a ∈ Cp with |a| = |p|−(p−1). Let m� 1 and x ∈ Cp with |x| � |p|1−p−m
. Then for

all 0 � i �m,
∣∣φia(x)

∣∣ = |p|1−pi |x|pi , and for all r ∈ (0, S], φia
(�Dr(x)

) ⊂ �Dr ·|p|i−ei
(
φia(x)

)
,

where ei = p1−m + p2−m + · · · + pi−m < 2. In particular, if |x| = |p|1−p−m
, then |φma (x)| = 1,

φma
(�Dr(x)

) ⊂ �Dr ·|p|m−2

(
φma (x)

)
for all r ∈ (0, S], (5)

and φi(x) ∈D1(0) for all 0 � i �m− 1,
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Thus, the iterates ofx are pushed away from 0, but the functionφma is locally contracting.
On the other hand, all distances withinD1(1) are stretched by a factor of exactly|a|, giving us the

following simpler statement for that disk.

LEMMA 4.2. – Let a ∈ Cp with |a| = |p|−(p−1). Let M � 1 and x ∈ Cp with |x − 1| � |a|−M . Then for
all 0 � i �M ,∣∣φia(x)− 1

∣∣ = |a|i · |x − 1|, and for all r ∈ (
0, |a|−M]

, φia
(�Dr(x)

) = �Dr ·|a|i
(
φia(x)

)
.

In particular, if |x − 1| = |a|−M , then |φMa (x)− 1| = 1,

φMa
(�Dr(x)

) = �Dr ·|a|M
(
φMa (x)

)
for all r ∈ (

0, |a|−M]
, (6)

and φi(x) ∈D1(1) for all 0 � i �M − 1.

5. Perturbations

Set the notation�n(a, z)= φna (z). For fixedx ∈ Cp ,�n(·, x) is a polynomial function of the parametera.
The following lemmas show how that function behaves locally in certain circumstances.

LEMMA 5.1. – Let a ∈ Cp with |a| = |p|−(p−1). Let m � 2, let n � 0, and let x ∈ Cp satisfying

|φna (x)| = |p|1−p−m
. Let A� |p|p−1 be a real number, let ε ∈ (0,A−1S], and suppose that

�n
(�Dε(a), x

) ⊂ �DAε
(
φna (x)

)
and A� |p|p+1−m.

Then �n+m(·, x) maps �Dε(a) bijectively onto �Dε/|a|(φn+ma (x)).

Note that the two displayed conditions in Lemma 5.1 say, first, thatA is large enough to bound the size
of a certain image disk, and second, thatm is large enough to make|p|−m+p+1 even larger thanA.

LEMMA 5.2. – Let a ∈ Cp with |a| = |p|−(p−1). Let M � 0, let n � 1, and let x ∈ Cp satisfying
|φna (x)−1| � |a|−M . Let ε ∈ (0, |a|1−M]. Suppose that�n(·, x)maps �Dε(a) bijectively onto �Dε/|a|(φna (x)).
Then �n+M(·, x) maps �Dε(a) bijectively onto �Dε·|a|(M−1)(φn+Ma (x)).

We sketch the proofs as follows. Pickb ∈ �Dε(a) \ {a}, and for everyi � 0, letδi = |φn+ib (x)−φn+ia (x)|.
By the ultrametric triangle inequality, fori � 1 we haveδi � max{Bi,Ci}, with equality ifBi �= Ci , where

Bi = ∣∣φb
(
φn+i−1
b (x)

) − φa
(
φn+i−1
b (x)

)∣∣, and Ci =
∣∣φa

(
φn+i−1
b (x)

) − φa
(
φn+i−1
a (x)

)∣∣.
Define

si = |b− a| · max
{
A · |p|i−ei , |p|p−p−m+i}

, and ti = |b− a| · |a|i−1,

whereei is as in the statement of Lemma 4.1.
For Lemma 5.1, we show by induction (using Eqs. (3) and (4) and Lemma 4.1) thatBi,Ci � si for all

1 � i �m. Then we observe thatCm < Bm = sm = |b− a|/|a|, proving thatδm = |b − a|/|a|, as desired.
Similarly, for Lemma 5.2, we show thatBi < Ci = ti , for all 1� i �M. Thus,δM = tM = |a|M−1 · |b− a|.
6. Proof of Theorem 1.1

Let a0 = p−(p−1) ∈ Cp . For eachi � 0, defineMi = 2i andmi = 2p + 2(p − 1)i. Setri = |p|1−p−mi

andεi = |a0|1−MiS.
By Lemma 4.1, anyy ∈ Cp with |y| = r0 satisfies|φm0

a0 (y)| = 1. Becauseφm0
a0 (0) = 0, it follows that

φ
m0
a0 (

�Dr0(0)) ⊃ �D1(0). In particular, there is somex ∈ �Dr0(0) with φm0
a0 (x) = 1. By the same lemma, we

must have|x| = r0. We will find a ∈ �D1(a0) such that the orbit{φja (x)}j�0 can be described by

0, . . . ,0︸ ︷︷ ︸
m0

,1, . . . ,1︸ ︷︷ ︸
M1

,0, . . . ,0︸ ︷︷ ︸
m1

,1, . . . ,1︸ ︷︷ ︸
M2

,0, . . . ,0︸ ︷︷ ︸
m2

, . . . (7)
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where a 0 in thej -th position in the sequence indicates thatφ
j−1
a (x) ∈ D1(0), and a 1 indicates that

φ
j−1
a (x) ∈D1(1).
For i � 0, define

ni =
i∑

k=1

(mk−1 +Mk)= 2i + pi(i + 1), and Ni = ni +mi = p(i + 1)(i + 2).

That is,ni is the number of terms in (7) up to but not including the block ofmi 0’s, andNi is the number
of terms up to but not including the block ofMi+1 1’s.

For everyi � 0, we will find ai ∈ �Dεi−1(ai−1) so that for everya ∈ �Dεi (ai), the orbit{φja (x)} follows (7)

up to thej =Ni iterate, withφNiai (x)= 1 and such that

�Ni (·, x) : �Dεi (ai)→ �Dεi/|ai |(1) is bijective. (8)

Note that everyai will lie in �Dε0(a0), and therefore|ai| = |a0| = |p|−(p−1).

We proceed by induction oni. For i = 0, we already haveφN0
a0 (x) = 1, and by Lemma 4.1, the orbit

{φja0(x)} follows (7) up to theN0 = m0 iterate. By Lemma 5.1 (withn = n0 = 0, m = m0, a = a0,

A = |p|(p−1), andε = ε0), condition (8) holds. Also, by Lemma 4.1, the orbit{φja (x)} is correct up to
j =N0 for everya ∈ �Dε0(a0). Hence, thei = 0 case is already done.

For i � 1, assume that we are givenai−1 with the desired properties. Letρ = |a0|1−Mi � εi−1; then for
everya ∈ �Dρ(ai−1), the orbit{φja (x)} agrees with (7) up toj = Ni−1. By Lemma 5.2 (witha = ai−1,
M =Mi , n=Ni−1, andε = ρ), there existsc1 ∈ Cp such that|c1 − ai−1| = ρ and

�ni (c1, x)= 0 and �ni (·, x) : �Dσ (c1)→ �Dri (0) is bijective, (9)

whereσ = ri · |a0|1−Mi ∈ (0, ρ). By Lemma 4.2, the orbit{φja (x)} is correct up toj = ni for every
a ∈ �Dσ (c1).

Choosec2 ∈ �Dσ (c1) so that|�ni (c2, x)| = ri . By Lemma 4.1,|�Ni (c2, x)| = 1. Furthermore it is clear
that�Ni (c1, x)= 0. Because the polynomial image of a disk is a disk, it follows that�Ni (

�Dσ (c1), x) ⊃
�D1(0). We may therefore chooseai ∈ �Dσ (c1) so that�Ni (ai, x)= 1.

By Eq. (9), the radius of�ni (�Dεi (ai)) must beεi · |a0|Mi−1 = S. Therefore, by Lemma 5.1 (withn= ni ,

m=mi , a = ai ,A= |ai|Mi−1, andε = εi), condition (8) holds on�Dεi (ai). By Lemma 4.1, the orbit{φja (x)}
is correct up toj =Ni for everya ∈ �Dεi (ai). Our construction ofai is complete.

The sequence{ai}i�0 is a Cauchy sequence, because for any 0� i � j , we have|ai − aj | � εi, and
εi → 0. Therefore, the sequence has a limita ∈ Cp , with |a − a0| � ε0. By construction,a ∈ �Dεi (ai) for

everyi � 0; hence, the orbit{φja (x)} follows (7) exactly. In light of Lemmas 4.1 and 4.2, we must have
|φnia (x)| = |p|1−p−mi , and |φNia (x)− 1| = |a|−Mi+1, for any i � 0. We only need to verify thatφa has a
wandering domain containingx.

Let U = �DS(x); we will show thatU is contained in a wandering domain of the Fatou setF of φa .
Every iterateUn = φna (U) is a disk; we claim that for anyi � 0, the radius ofUni is at mostS = |p|2,
and the radius ofUNi is at most|a|−Mi+1S. The claim is easily proven by induction, as follows. Fori = 0,
Un0 = U0 = U , and by Eq. (5),UN0 has radius at most|p|m0−2S = |a|−M1S. For i � 1, we assume the
radius ofUNi−1 is at most|a|−MiS. By Eq. (6), the radius ofUni is at mostS; and by Eq. (5), the radius of
UNi is at most|p|mi−2S = |a|−Mi+1S.

In particular, noUni contains the point 1; and because 1 is fixed, it follows that noUn contains 1. Clearly,
noUn contains∞ either. By Hsia’s theorem, then, the family{φna } is equicontinuous onU , and therefore
U ⊂F .

By any of the definitions of components in [1,2,9,11], the componentV of F containingU must be a
disk (see, for example, [2, Theorem 5.4.d]). Again, no iterate ofV can contain 1, and therefore the symbolic
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dynamics of any point inV are also described by Eq. (7). Because those dynamics are not preperiodic, it
follows thatV must be wandering.
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