# Examples of wandering domains in $p$-adic polynomial dynamics 

Robert L. Benedetto<br>Department of Mathematics, Amherst College, P.O. Box 5000, Amherst, MA 01002, USA<br>Received 5 July 2002; accepted 20 August 2002<br>Note presented by Jean-Christophe Yoccoz.

\begin{abstract}
For any prime $p>0$, we contruct $p$-adic polynomial functions in $\mathbb{C}_{p}[z]$ whose Fatou sets have wandering domains. To cite this article: R.L. Benedetto, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 615-620.
© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

## Exemples des domaines errants dans la dynamique polynôme $p$-adique

| Résumé | Soit $p>0$ un nombre premier. Nous construisons des polynômes $p$-adiques dans $\mathbb{C}_{p}[z]$ dont les ensembles de Fatou ont des domaines errants. Pour citer cet article:R.L. Benedetto, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 615-620. <br> © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS |
| :---: | :---: |

## Version française abrégée

Soit $p>0$ un nombre premier fixé, soit $\overline{\mathbb{Q}}_{p}$ une clôture algébrique du corps $\mathbb{Q}_{p}$ des nombres rationels $p$-adiques, et soit $\mathbb{C}_{p}$ le complété de $\overline{\mathbb{Q}}_{p}$ pour la valeur absolue $p$-adique, notée $|\cdot|$. Pour une fraction rationelle $\phi(z) \in \mathbb{C}_{p}(z)$, la dynamique de $\phi$ opérant sur $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)=\mathbb{C}_{p} \cup\{\infty\}$ est analogue à la dynamique des fractions rationelles complexes sur la sphère de Riemann; voir [1,2,4,6,7,9-11], par exemple. En particulier, on peut définir les ensembles $p$-adiques de Julia, les ensembles de Fatou, et les composantes des ensembles de Fatou, qui se comportent de façon semblable à leurs contre-parties complexes. Bien que quelques résultats partiels suggèrent que l'ensemble de Fatou de $\phi \in \overline{\mathbb{Q}}_{p}(z)$ ne puisse pas avoir de domaine errant, nous démontrons dans cet article qu'il y a des polynômes dans $\mathbb{C}_{p}[z]$ avec des domaines errants. Plus précisément, nous démontrons qu'il existe $a \in \mathbb{C}_{p}$ tel que la fonction $\phi_{a}$ définie par l'équation (1) a un domaine errant.

Pour $x \in \mathbb{C}_{p}$ et $r>0$, on note le disque ouvert $D_{r}(x)=\left\{y \in \mathbb{C}_{p}:|y-x|<r\right\}$ et le disque fermé $\bar{D}_{r}(x)=$ $\left\{y \in \mathbb{C}_{p}:|y-x| \leqslant r\right\}$. Nous considérons $a \in \mathbb{C}_{p}$ tel que $|a|=|p|^{-(p-1)}>1$. Dans ce cas, $\phi_{a}$ augmente des distances dans $D_{1}(1)$ par un facteur de $|a|$; voir équation (6). Nous observons avec l'équation (5) que

[^0]$\phi_{a}^{m}$ contracte localement des distances dans $\bar{D}_{r}(0)$, où $r=|p|^{1-p^{-m}}<1$, mais $\phi_{a}^{m}\left(\bar{D}_{r}(0)\right)=\bar{D}_{1}(0)$. De plus, on peut étudier la variation de la famille en employant l'équation (4).

Avec ces outils, nous pouvons construire une valeur $a \in \mathbb{C}_{p}$ et un point $x \in D_{1}(0)$ telle que l'orbite $\left\{\phi_{a}^{j}(x)\right\}_{j \geqslant 0}$ suit le modèle dans l'équation (7). Dans cette équation, un 0 en la $j$-ème position indique que $\phi_{a}^{j-1}(x) \in D_{1}(0)$, et un 1 indique que $\phi_{a}^{j-1}(x) \in D_{1}(1)$; et pour $i \geqslant 0$, on a $M_{i}=2 i$ et $m_{i}=2 p+2(p-1) i$. Comme la contraction de $\phi_{a}^{m_{i}}$ dans $D_{1}(0)$ est supérieure à l'expansion de $\phi_{a}^{M_{i+1}}$ dans $D_{1}(1)$, on voit que $x$ est contenu dans un disque errant de $\phi_{a}$.

## 1. Introduction

Fix a prime number $p>0$, and let $\mathbb{Q}_{p}$ denote the field of $p$-adic rationals, formed by completing $\mathbb{Q}$ with respect to the unique absolute value satisfying $|p|=1 / p$. Let $\overline{\mathbb{Q}}_{p}$ be an algebraic closure of $\mathbb{Q}_{p}$, and let $\mathbb{C}_{p}$ denote the completion of $\overline{\mathbb{Q}}_{p}$. The absolute value $|\cdot|$, which extends canonically to $\mathbb{C}_{p}$, is nonArchimedean, meaning that it satisfies the ultrametric triangle inequality $|x+y| \leqslant \max \{|x|,|y|\}$. Both $\mathbb{Q}_{p}$ and $\mathbb{C}_{p}$ are complete with respect to $|\cdot|$, though $\overline{\mathbb{Q}}_{p}$ is not. Note that $\mathbb{Z} \subset \mathbb{Q}_{p} \subset \mathbb{C}_{p}$; every $n \in \mathbb{Z}$ satisfies $|n| \leqslant 1$, with $|p|<1$. See [5,8,12] for more general background on $p$-adic fields.

Although $\mathbb{Q}_{p}$ is locally compect, $\overline{\mathbb{Q}}_{p}$ and $\mathbb{C}_{p}$ are not. Still, $\mathbb{C}_{p}$ is algebraically closed and complete, analogous to $\mathbb{C}$; the projective line $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)=\mathbb{C}_{p} \cup\{\infty\}$ is a non-Archimedean version of the Riemann sphere. The dynamics of rational functions $\phi(z) \in \mathbb{C}_{p}(z)$ acting on $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ have exhibited many parallels with the existing theory of complex dynamics; see $[1,2,4,6,7,9-11]$, for example. The failure of local compactness, and hence of the Arzelà-Ascoli theorem, means that $p$-adic Fatou and Julia sets should be defined in terms of equicontinuity, rather than normality.

Topologically, $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ and its subsets are totally disconnected. Nevertheless, the author [1,2] and RiveraLetelier [9,11] have developed several related definitions of components of $p$-adic Fatou sets which behave as useful analogs of connected components of complex Fatou sets.

The author has proven [1] that if $\phi \in \overline{\mathbb{Q}}_{p}(z)$ (acting on the full $\mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ ) has nonempty Julia set $\mathcal{J}$ with no recurrent critical points of order divisible by $p$ in $\mathcal{J}$, then the Fatou set of $\phi$ has no wandering domains. (In fact, the proof in [1] applies equally well to any of the definitions of components even if $\mathcal{J}$ is empty.) The main result of this paper implies that the first hypothesis (that the coefficients lie in $\overline{\mathbb{Q}}_{p}$ ) cannot be removed.

THEOREM 1.1. - There exists $a \in \mathbb{C}_{p}$ such that the Julia set $\mathcal{J}$ of

$$
\begin{equation*}
\phi_{a}(z)=(1-a) z^{p+1}+a z^{p} \tag{1}
\end{equation*}
$$

is nonempty, the Fatou set $\mathcal{F}$ of $\phi_{a}$ has a wandering domain, and all critical points of $\phi_{a}$ lie in $\mathcal{F}$.

Compared to Sullivan's complex No Wandering Domains Theorem [13], Theorem 1.1 gives a sharp contrast between non-Archimedean and complex dynamics. Moreover, our result also provides a counterexample disproving Rivera-Letelier's Conjecture de Non-Errance and his related statement on Structure Conjecturale de l'Ensemble de Fatou in [9, Section 4.3]. However, both of those conjectures may still be true if the hypothesis that all coefficients lie in $\overline{\mathbb{Q}}_{p}$ is added; see the conjecture in [1, Section 1].

A generalization of the method of this paper can actually be used to prove the density of parameters for which $\phi_{a}$ has a wandering domain in the set $\left\{a \in \mathbb{C}_{p}:|a|>1\right\}$. The argument works for any algebraically closed complete non-Archimedean field with the property that $|p|<1$. However, in the interest of clarity, we restrict our attention here to announcing the existence of $p$-adic wandering domains, and we leave the generalizations to a forthcoming paper [3].

## 2. Disks

We will denote the closed disk of radius $r>0$ about a point $a \in \mathbb{C}_{p}$ by $\bar{D}_{r}(a)$, and the open disk by $D_{r}(a)$. We recall some basic properties of non-Archimedean disks. Every disk is both open and closed as a topological set. Any point in a disk $U$ is a center, but the radius of $U$ is a well-defined real number, being the same as the diameter of $U$. If two disks in $\mathbb{C}_{p}$ intersect, then one contains the other. If $f \in \mathbb{C}_{p}[z]$ is a non-constant polynomial, and if $U \subset \mathbb{C}_{p}$ is a disk, then $f(\underline{U})$ is also a disk. If $a, b \in \mathbb{C}_{p}, r, s \geq 0$, and $f \in \mathbb{C}_{p}[z]$ with $f(a)=b$, then $f$ maps $\bar{D}_{r}(a)$ bijectively onto $\bar{D}_{s}(b)$ if and only if for every $x \in \bar{D}_{r}(a)$,

$$
|f(x)-f(a)|=\frac{s}{r} \cdot|x-a|
$$

We also recall Hsia's criterion [7] for equicontinuity, which is a non-Archimedean analogue of the Montel-Carathéodory theorem. Hsia stated his result for arbitrary meromorphic functions on more general non-Archimedean fields, but for simplicity, we rephrase it for our special case.

THEOREM 2.1 (Hsia). - Let $F$ be a family of rational functions on a disk $U \subset \mathbb{C}_{p}$, and suppose that there are two distinct points $a_{1}, a_{2} \in \mathbb{P}^{1}\left(\mathbb{C}_{p}\right)$ such that for all $f \in F, x \in U$, and $i=1,2$, we have $f(x) \neq a_{i}$. Then $F$ is an equicontinuous family.

## 3. The family

We consider the family $\left\{\phi_{a}\right\}$ defined in equation (1), with $|a|=|p|^{-(p-1)}>1$. For any such $a, \phi_{a}$ has a superattracting (hence Fatou) fixed point at $z=0$, and a repelling (hence Julia) fixed point at $z=1$. Furthermore, it is not difficult to see that the filled Julia set $\mathcal{K}$ (that is, the set of points not attracted to $\infty$ ) is completely contained in $D_{1}(0) \cup D_{1}(1)$. The only critical points of $\phi_{a}$ besides $\infty$ lie in $\bar{D}_{|p|}(0)$, which is a bounded open set that maps into itself. Hence, all critical points are Fatou.

Fix $a \in \mathbb{C}_{p}$ with $|a|=|p|^{-(p-1)}$. If $y_{0} \in D_{1}(1)$ and $\left|y_{1}-y_{0}\right|<1$, then it is immediate from the definition of $\phi_{a}$ and the ultrametric triangle inequality that

$$
\begin{equation*}
\left|\phi_{a}\left(y_{1}\right)-\phi_{a}\left(y_{0}\right)\right|=|a| \cdot\left|y_{1}-y_{0}\right| . \tag{2}
\end{equation*}
$$

If $|p|<\left|y_{0}\right|<1$ and $\left|y_{1}-y_{0}\right| \leqslant|p|^{2}$, then it is only slightly more difficult to show that

$$
\begin{equation*}
\left|\phi_{a}\left(y_{1}\right)-\phi_{a}\left(y_{0}\right)\right|=|a| \cdot\left|y_{0}\right|^{p} \cdot\left|y_{1}-y_{0}\right| . \tag{3}
\end{equation*}
$$

On the other hand, if we fix $y_{0} \in D_{1}(0)$ and $y_{1} \in D_{1}(1)$, and if we choose two parameters $a, b \in \mathbb{C}_{p}$, then

$$
\begin{equation*}
\left|\phi_{b}\left(y_{0}\right)-\phi_{a}\left(y_{0}\right)\right|=\left|y_{0}\right|^{p} \cdot|b-a| \quad \text { and } \quad\left|\phi_{b}\left(y_{1}\right)-\phi_{a}\left(y_{1}\right)\right|=\left|y_{1}-1\right| \cdot|b-a| \tag{4}
\end{equation*}
$$

## 4. Local mapping properties of $\phi_{a}^{n}$

Let $S=|p|^{2}$. If $x \in D_{1}(0)$ or $x \in D_{1}(1)$, then using induction and Eqs. (2) and (3), we can easily prove the following statements concerning the next few iterates of $x$.

LEMMA 4.1. - Let $a \in \mathbb{C}_{p}$ with $|a|=|p|^{-(p-1)}$. Let $m \geqslant 1$ and $x \in \mathbb{C}_{p}$ with $|x| \leqslant|p|^{1-p^{-m}}$. Then for all $0 \leqslant i \leqslant m$,

$$
\left|\phi_{a}^{i}(x)\right|=|p|^{1-p^{i}}|x|^{p^{i}}, \quad \text { and for all } r \in(0, S], \quad \phi_{a}^{i}\left(\bar{D}_{r}(x)\right) \subset \bar{D}_{r \cdot|p|^{i-e_{i}}}\left(\phi_{a}^{i}(x)\right)
$$

where $e_{i}=p^{1-m}+p^{2-m}+\cdots+p^{i-m}<2$. In particular, if $|x|=|p|^{1-p^{-m}}$, then $\left|\phi_{a}^{m}(x)\right|=1$,

$$
\begin{equation*}
\phi_{a}^{m}\left(\bar{D}_{r}(x)\right) \subset \bar{D}_{r \cdot|p|^{m-2}}\left(\phi_{a}^{m}(x)\right) \quad \text { for all } r \in(0, S] \tag{5}
\end{equation*}
$$

and $\phi^{i}(x) \in D_{1}(0)$ for all $0 \leqslant i \leqslant m-1$,

Thus, the iterates of $x$ are pushed away from 0 , but the function $\phi_{a}^{m}$ is locally contracting.
On the other hand, all distances within $D_{1}(1)$ are stretched by a factor of exactly $|a|$, giving us the following simpler statement for that disk.

LEMMA 4.2. - Let $a \in \mathbb{C}_{p}$ with $|a|=|p|^{-(p-1)}$. Let $M \geqslant 1$ and $x \in \mathbb{C}_{p}$ with $|x-1| \leqslant|a|^{-M}$. Then for all $0 \leqslant i \leqslant M$,

$$
\left|\phi_{a}^{i}(x)-1\right|=|a|^{i} \cdot|x-1|, \quad \text { and for all } r \in\left(0,|a|^{-M}\right], \quad \phi_{a}^{i}\left(\bar{D}_{r}(x)\right)=\bar{D}_{r \cdot|a|^{i}}\left(\phi_{a}^{i}(x)\right)
$$

In particular, if $|x-1|=|a|^{-M}$, then $\left|\phi_{a}^{M}(x)-1\right|=1$,

$$
\begin{equation*}
\phi_{a}^{M}\left(\bar{D}_{r}(x)\right)=\bar{D}_{r \cdot|a|^{M}}\left(\phi_{a}^{M}(x)\right) \quad \text { for all } r \in\left(0,|a|^{-M}\right] \tag{6}
\end{equation*}
$$

and $\phi^{i}(x) \in D_{1}(1)$ for all $0 \leqslant i \leqslant M-1$.

## 5. Perturbations

Set the notation $\Phi_{n}(a, z)=\phi_{a}^{n}(z)$. For fixed $x \in \mathbb{C}_{p}, \Phi_{n}(\cdot, x)$ is a polynomial function of the parameter $a$. The following lemmas show how that function behaves locally in certain circumstances.

Lemma 5.1. - Let $a \in \mathbb{C}_{p}$ with $|a|=|p|^{-(p-1)}$. Let $m \geqslant 2$, let $n \geqslant 0$, and let $x \in \mathbb{C}_{p}$ satisfying $\left|\phi_{a}^{n}(x)\right|=|p|^{1-p^{-m}}$. Let $A \geqslant|p|^{p-1}$ be a real number, let $\varepsilon \in\left(0, A^{-1} S\right]$, and suppose that

$$
\Phi_{n}\left(\bar{D}_{\varepsilon}(a), x\right) \subset \bar{D}_{A \varepsilon}\left(\phi_{a}^{n}(x)\right) \quad \text { and } \quad A \leqslant|p|^{p+1-m}
$$

Then $\Phi_{n+m}(\cdot, x)$ maps $\bar{D}_{\varepsilon}(a)$ bijectively onto $\bar{D}_{\varepsilon /|a|}\left(\phi_{a}^{n+m}(x)\right)$.
Note that the two displayed conditions in Lemma 5.1 say, first, that $A$ is large enough to bound the size of a certain image disk, and second, that $m$ is large enough to make $|p|^{-m+p+1}$ even larger than $A$.

Lemma 5.2. - Let $a \in \mathbb{C}_{p}$ with $|a|=|p|^{-(p-1)}$. Let $M \geqslant 0$, let $n \geqslant 1$, and let $x \in \mathbb{C}_{p}$ satisfying $\left|\phi_{a}^{n}(x)-1\right| \leqslant|a|^{-M}$. Let $\varepsilon \in\left(0,|a|^{1-M}\right]$. Suppose that $\Phi_{n}(\cdot, x)$ maps $\bar{D}_{\varepsilon}(a)$ bijectively onto $\bar{D}_{\varepsilon /|a|}\left(\phi_{a}^{n}(x)\right)$. Then $\Phi_{n+M}(\cdot, x)$ maps $\bar{D}_{\varepsilon}(a)$ bijectively onto $\bar{D}_{\varepsilon \cdot|a|^{(M-1)}}\left(\phi_{a}^{n+M}(x)\right)$.

We sketch the proofs as follows. Pick $b \in \bar{D}_{\varepsilon}(a) \backslash\{a\}$, and for every $i \geqslant 0$, let $\delta_{i}=\left|\phi_{b}^{n+i}(x)-\phi_{a}^{n+i}(x)\right|$. By the ultrametric triangle inequality, for $i \geqslant 1$ we have $\delta_{i} \leqslant \max \left\{B_{i}, C_{i}\right\}$, with equality if $B_{i} \neq C_{i}$, where

$$
B_{i}=\left|\phi_{b}\left(\phi_{b}^{n+i-1}(x)\right)-\phi_{a}\left(\phi_{b}^{n+i-1}(x)\right)\right|, \quad \text { and } \quad C_{i}=\left|\phi_{a}\left(\phi_{b}^{n+i-1}(x)\right)-\phi_{a}\left(\phi_{a}^{n+i-1}(x)\right)\right|
$$

Define

$$
s_{i}=|b-a| \cdot \max \left\{A \cdot|p|^{i-e_{i}},|p|^{p-p^{-m+i}}\right\}, \quad \text { and } \quad t_{i}=|b-a| \cdot|a|^{i-1}
$$

where $e_{i}$ is as in the statement of Lemma 4.1.
For Lemma 5.1, we show by induction (using Eqs. (3) and (4) and Lemma 4.1) that $B_{i}, C_{i} \leqslant s_{i}$ for all $1 \leqslant i \leqslant m$. Then we observe that $C_{m}<B_{m}=s_{m}=|b-a| /|a|$, proving that $\delta_{m}=|b-a| /|a|$, as desired. Similarly, for Lemma 5.2, we show that $B_{i}<C_{i}=t_{i}$, for all $1 \leqslant i \leqslant M$. Thus, $\delta_{M}=t_{M}=|a|^{M-1} \cdot|b-a|$.

## 6. Proof of Theorem 1.1

Let $a_{0}=p^{-(p-1)} \in \mathbb{C}_{p}$. For each $i \geqslant 0$, define $M_{i}=2 i$ and $m_{i}=2 p+2(p-1) i$. Set $r_{i}=|p|^{1-p^{-m_{i}}}$ and $\varepsilon_{i}=\left|a_{0}\right|^{1-M_{i}} S$.

By Lemma 4.1, any $y \in \mathbb{C}_{p}$ with $|y|=r_{0}$ satisfies $\left|\phi_{a_{0}}^{m_{0}}(y)\right|=1$. Because $\phi_{a_{0}}^{m_{0}}(0)=0$, it follows that $\phi_{a_{0}}^{m_{0}}\left(\bar{D}_{r_{0}}(0)\right) \supset \bar{D}_{1}(0)$. In particular, there is some $x \in \bar{D}_{r_{0}}(0)$ with $\phi_{a_{0}}^{m_{0}}(x)=1$. By the same lemma, we must have $|x|=r_{0}$. We will find $a \in \bar{D}_{1}\left(a_{0}\right)$ such that the orbit $\left\{\phi_{a}^{j}(x)\right\}_{j \geqslant 0}$ can be described by

$$
\begin{equation*}
\underbrace{0, \ldots, 0}_{m_{0}}, \underbrace{1, \ldots, 1}_{M_{1}}, \underbrace{0, \ldots, 0}_{m_{1}}, \underbrace{1, \ldots, 1}_{M_{2}}, \underbrace{0, \ldots, 0}_{m_{2}}, \ldots \tag{7}
\end{equation*}
$$

where a 0 in the $j$-th position in the sequence indicates that $\phi_{a}^{j-1}(x) \in D_{1}(0)$, and a 1 indicates that $\phi_{a}^{j-1}(x) \in D_{1}(1)$.

For $i \geqslant 0$, define

$$
n_{i}=\sum_{k=1}^{i}\left(m_{k-1}+M_{k}\right)=2 i+p i(i+1), \quad \text { and } \quad N_{i}=n_{i}+m_{i}=p(i+1)(i+2)
$$

That is, $n_{i}$ is the number of terms in (7) up to but not including the block of $m_{i} 0$ 's, and $N_{i}$ is the number of terms up to but not including the block of $M_{i+1} 1$ 's.

For every $i \geqslant 0$, we will find $a_{i} \in \bar{D}_{\varepsilon_{i-1}}\left(a_{i-1}\right)$ so that for every $a \in \bar{D}_{\varepsilon_{i}}\left(a_{i}\right)$, the orbit $\left\{\phi_{a}^{j}(x)\right\}$ follows (7) up to the $j=N_{i}$ iterate, with $\phi_{a_{i}}^{N_{i}}(x)=1$ and such that

$$
\begin{equation*}
\Phi_{N_{i}}(\cdot, x): \bar{D}_{\varepsilon_{i}}\left(a_{i}\right) \rightarrow \bar{D}_{\varepsilon_{i} /\left|a_{i}\right|}(1) \quad \text { is bijective. } \tag{8}
\end{equation*}
$$

Note that every $a_{i}$ will lie in $\bar{D}_{\varepsilon_{0}}\left(a_{0}\right)$, and therefore $\left|a_{i}\right|=\left|a_{0}\right|=|p|^{-(p-1)}$.
We proceed by induction on $i$. For $i=0$, we already have $\phi_{a_{0}}^{N_{0}}(x)=1$, and by Lemma 4.1, the orbit $\left\{\phi_{a_{0}}^{j}(x)\right\}$ follows (7) up to the $N_{0}=m_{0}$ iterate. By Lemma 5.1 (with $n=n_{0}=0, m=m_{0}, a=a_{0}$, $A=|p|^{(p-1)}$, and $\varepsilon=\varepsilon_{0}$ ), condition (8) holds. Also, by Lemma 4.1, the orbit $\left\{\phi_{a}^{j}(x)\right\}$ is correct up to $j=N_{0}$ for every $a \in \bar{D}_{\varepsilon_{0}}\left(a_{0}\right)$. Hence, the $i=0$ case is already done.

For $i \geqslant 1$, assume that we are given $a_{i-1}$ with the desired properties. Let $\rho=\left|a_{0}\right|^{1-M_{i}} \leqslant \varepsilon_{i-1}$; then for every $a \in \bar{D}_{\rho}\left(a_{i-1}\right)$, the orbit $\left\{\phi_{a}^{j}(x)\right\}$ agrees with (7) up to $j=N_{i-1}$. By Lemma 5.2 (with $a=a_{i-1}$, $M=M_{i}, n=N_{i-1}$, and $\varepsilon=\rho$ ), there exists $c_{1} \in \mathbb{C}_{p}$ such that $\left|c_{1}-a_{i-1}\right|=\rho$ and

$$
\begin{equation*}
\Phi_{n_{i}}\left(c_{1}, x\right)=0 \quad \text { and } \quad \Phi_{n_{i}}(\cdot, x): \bar{D}_{\sigma}\left(c_{1}\right) \rightarrow \bar{D}_{r_{i}}(0) \quad \text { is bijective } \tag{9}
\end{equation*}
$$

where $\sigma=r_{i} \cdot\left|a_{0}\right|^{1-M_{i}} \in(0, \rho)$. By Lemma 4.2, the orbit $\left\{\phi_{a}^{j}(x)\right\}$ is correct up to $j=n_{i}$ for every $a \in \bar{D}_{\sigma}\left(c_{1}\right)$.

Choose $c_{2} \in \bar{D}_{\sigma}\left(c_{1}\right)$ so that $\left|\Phi_{n_{i}}\left(c_{2}, x\right)\right|=r_{i}$. By Lemma 4.1, $\left|\Phi_{N_{i}}\left(c_{2}, x\right)\right|=1$. Furthermore it is clear that $\Phi_{N_{i}}\left(c_{1}, x\right)=0$. Because the polynomial image of a disk is a disk, it follows that $\Phi_{N_{i}}\left(\bar{D}_{\sigma}\left(c_{1}\right), x\right) \supset$ $\bar{D}_{1}(0)$. We may therefore choose $a_{i} \in \bar{D}_{\sigma}\left(c_{1}\right)$ so that $\Phi_{N_{i}}\left(a_{i}, x\right)=1$.

By Eq. (9), the radius of $\Phi_{n_{i}}\left(\bar{D}_{\varepsilon_{i}}\left(a_{i}\right)\right)$ must be $\varepsilon_{i} \cdot\left|a_{0}\right|^{M_{i}-1}=S$. Therefore, by Lemma 5.1 (with $n=n_{i}$, $m=m_{i}, a=a_{i}, A=\left|a_{i}\right|^{M_{i}-1}$, and $\left.\varepsilon=\varepsilon_{i}\right)$, condition (8) holds on $\bar{D}_{\varepsilon_{i}}\left(a_{i}\right)$. By Lemma 4.1, the orbit $\left\{\phi_{a}^{j}(x)\right\}$ is correct up to $j=N_{i}$ for every $a \in \bar{D}_{\varepsilon_{i}}\left(a_{i}\right)$. Our construction of $a_{i}$ is complete.

The sequence $\left\{a_{i}\right\}_{i \geqslant 0}$ is a Cauchy sequence, because for any $0 \leqslant i \leqslant j$, we have $\left|a_{i}-a_{j}\right| \leqslant \varepsilon_{i}$, and $\varepsilon_{i} \rightarrow 0$. Therefore, the sequence has a limit $a \in \mathbb{C}_{p}$, with $\left|a-a_{0}\right| \leqslant \varepsilon_{0}$. By construction, $a \in \bar{D}_{\varepsilon_{i}}\left(a_{i}\right)$ for every $i \geqslant 0$; hence, the orbit $\left\{\phi_{a}^{j}(x)\right\}$ follows (7) exactly. In light of Lemmas 4.1 and 4.2, we must have $\left|\phi_{a}^{n_{i}}(x)\right|=|p|^{1-p^{-m_{i}}}$, and $\left|\phi_{a}^{N_{i}}(x)-1\right|=|a|^{-M_{i+1}}$, for any $i \geqslant 0$. We only need to verify that $\phi_{a}$ has a wandering domain containing $x$.

Let $U=\bar{D}_{S}(x)$; we will show that $U$ is contained in a wandering domain of the Fatou set $\mathcal{F}$ of $\phi_{a}$. Every iterate $U_{n}=\phi_{a}^{n}(U)$ is a disk; we claim that for any $i \geqslant 0$, the radius of $U_{n_{i}}$ is at most $S=|p|^{2}$, and the radius of $U_{N_{i}}$ is at most $|a|^{-M_{i+1}} S$. The claim is easily proven by induction, as follows. For $i=0$, $U_{n_{0}}=U_{0}=U$, and by Eq. (5), $U_{N_{0}}$ has radius at most $|p|^{m_{0}-2} S=|a|^{-M_{1}} S$. For $i \geqslant 1$, we assume the radius of $U_{N_{i-1}}$ is at most $|a|^{-M_{i}} S$. By Eq. (6), the radius of $U_{n_{i}}$ is at most $S$; and by Eq. (5), the radius of $U_{N_{i}}$ is at most $|p|^{m_{i}-2} S=|a|^{-M_{i+1}} S$.

In particular, no $U_{n_{i}}$ contains the point 1 ; and because 1 is fixed, it follows that no $U_{n}$ contains 1. Clearly, no $U_{n}$ contains $\infty$ either. By Hsia's theorem, then, the family $\left\{\phi_{a}^{n}\right\}$ is equicontinuous on $U$, and therefore $U \subset \mathcal{F}$.

By any of the definitions of components in [1,2,9,11], the component $V$ of $\mathcal{F}$ containing $U$ must be a disk (see, for example, [2, Theorem 5.4.d]). Again, no iterate of $V$ can contain 1, and therefore the symbolic

## R.L. Benedetto / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 615-620

dynamics of any point in $V$ are also described by Eq. (7). Because those dynamics are not preperiodic, it follows that $V$ must be wandering.

Acknowledgements. The research for this paper was supported by NSF grant DMS-0071541. Many thanks to Bob Devaney, J.-C. Yoccoz, and especially to Juan Rivera-Letelier for their helpful comments and suggestions concerning the exposition of this paper.

## References

[1] R. Benedetto, p-adic dynamics and Sullivan's No Wandering Domains theorem, Compositio Math. 122 (2000) 281-298.
[2] R. Benedetto, Components and periodic points in non-Archimedean dynamics, Proc. London Math. Soc. (3) 84 (2002) 231-256.
[3] R. Benedetto, Wandering domains in non-Archimedean dynamics, in preparation.
[4] J.-P. Bézivin, Sur les points périodiques des applications rationnelles en analyse ultramétrique, Acta Arith. 100 (2001) 63-74.
[5] F. Gouvêa, p-adic Numbers. An Introduction, 2nd ed., Springer-Verlag, Berlin, 1997.
[6] M. Herman, J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, in: Geometric Dynamics, Rio de Janeiro, 1981, in: Lecture Notes in Math., Vol. 1007, Springer-Verlag, Berlin, 1983, pp. 408-447.
[7] L.-C. Hsia, Closure of periodic points over a non-Archimedean field, J. London Math. Soc. Ser. 262 (2000) 685-700.
[8] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer-Verlag, New York, 1984.
[9] J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Ph.D. thesis, Université de ParisSud, Orsay, 2000.
[10] J. Rivera-Letelier, Espace hyperbolique p-adique et dynamique de fonctions rationnelles, Preprint, 2001.
[11] J. Rivera-Letelier, Sur la structure des ensembles de Fatou p-adiques, Preprint, 2001.
[12] J.-P. Serre, Corps Locaux, 2nd ed., Hermann, Paris, 1968.
[13] D. Sullivan, Quasiconformal homeomorphisms and dynamics, I, Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. 122 (1985) 401-418.


[^0]:    E-mail address: rlb@cs.amherst.edu (R.L. Benedetto).

