Examples of wandering domains in p-adic polynomial dynamics

Robert L. Benedetto

Department of Mathematics, Amherst College, P.O. Box 5000, Amherst, MA 01002, USA

Received 5 July 2002; accepted 20 August 2002

Note presented by Jean-Christophe Yoccoz.

Abstract

For any prime $p > 0$, we construct p-adic polynomial functions in $\mathbb{C}_p[z]$ whose Fatou sets have wandering domains. To cite this article: R.L. Benedetto, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 615–620.

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Exemples des domaines errants dans la dynamique polynôme p-adique

Résumé

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

Soit $p > 0$ un nombre premier fixé, soit $\overline{\mathbb{Q}}_p$, une clôture algébrique du corps \mathbb{Q}_p des nombres rationnels p-adiques, et soit \mathbb{C}_p le complété de $\overline{\mathbb{Q}}_p$ pour la valeur absolue p-adique, notée $| \cdot |$. Pour une fraction rationnelle $\phi(z) \in \mathbb{C}_p(z)$, la dynamique de ϕ opérant sur $\mathbb{P}^1(\mathbb{C}_p) = \mathbb{C}_p \cup \{\infty\}$ est analogue à la dynamique des fractions rationnelles complexes sur la sphère de Riemann ; voir [1, 2, 4, 6, 7, 9–11], par exemple. En particulier, on peut définir les ensembles p-adiques de Julia, les ensembles de Fatou, et les composantes des ensembles de Fatou, qui se comportent de façon semblable à leurs contre-parties complexes. Bien que quelques résultats partiels suggèrent que l’ensemble de Fatou de $\phi \in \overline{\mathbb{Q}}_p(z)$ ne puisse pas avoir de domaine errant, nous démontrons dans cet article qu’il y a des polynômes dans $\mathbb{C}_p[z]$ avec des domaines errants. Plus précisément, nous démontrons qu’il existe $a \in \mathbb{C}_p$ tel que la fonction ϕ_a définie par l’équation (1) a un domaine errant.

Pour $x \in \mathbb{C}_p$ et $r > 0$, on note le disque ouvert $D_r(x) = \{ y \in \mathbb{C}_p : |y-x| < r \}$ et le disque fermé $\overline{D}_r(x) = \{ y \in \mathbb{C}_p : |y-x| \leq r \}$. Nous considérons $a \in \mathbb{C}_p$ tel que $|a| = |p|^{-(p-1)} > 1$. Dans ce cas, ϕ_a augmente des distances dans $D_1(1)$ par un facteur de $|a|$; voir équation (6). Nous observons avec l’équation (5) que

E-mail address: rlb@cs.amherst.edu (R.L. Benedetto).

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés

S1631-073X(02)02531-1/FLA

615
The main result of this paper implies that the first hypothesis (that the coefficients lie in $\overline{\mathbb{D}}_r(0)$, where $r = |p|^{1-p^{-m}} < 1$, but $\phi_m(\overline{\mathbb{D}}_r(0)) = \overline{D}_1(0)$. De plus, on peut étudier la variation de la famille en employant l’équation (4).

Avec ces outils, nous pouvons construire une valeur $a \in \mathbb{C}_p$ et un point $x \in D_1(0)$ telle que l’orbite $\{\phi_j^a(x)\}_{j \geq 0}$ suit le modèle dans l’équation (7). Dans cette équation, un 0 ou la j-ème position indique que $\phi_j^{-1}(x) \in D_1(0)$, et un 1 indique que $\phi_j^{-1}(x) \in D_1(1)$; et pour $i \geq 0$, on a $M_i = 2i$ et $m_i = 2p + 2(p - 1)i$. Comme la contraction de ϕ_m dans $D_1(0)$ est supérieure à l’expansion de ϕ_{M+1} dans $D_1(1)$, on voit que x est contenu dans un disque errant de ϕ_a.

1. Introduction

Fix a prime number $p > 0$, and let \mathbb{Q}_p denote the field of p-adic rationals, formed by completing \mathbb{Q} with respect to the unique absolute value satisfying $|p| = 1/p$. Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p, and let \mathbb{C}_p denote the completion of $\overline{\mathbb{Q}}_p$. The absolute value $|\cdot|$, which extends canonically to \mathbb{C}_p, is non-Archimedean, meaning that it satisfies the ultrametric triangle inequality $|x + y| \leq \max\{|x|, |y|\}$. Both \mathbb{Q}_p and \mathbb{C}_p are complete with respect to $|\cdot|$, though \mathbb{Q}_p is not. Note that $\mathbb{Z} \subset \mathbb{Q}_p \subset \mathbb{C}_p$; every $n \in \mathbb{Z}$ satisfies $|n| \leq 1$, with $|p| < 1$. See [5,8,12] for more general background on p-adic fields.

Although \mathbb{Q}_p is locally compact, $\overline{\mathbb{Q}}_p$ and \mathbb{C}_p are not. Still, \mathbb{C}_p is algebraically closed and complete, analogous to \mathbb{C}; the projective line $\mathbb{P}^1(\mathbb{C}_p) = \mathbb{C}_p \cup \{\infty\}$ is a non-Archimedean version of the Riemann sphere. The dynamics of rational functions $\phi(z) \in \mathbb{C}_p(z)$ acting on $\mathbb{P}^1(\mathbb{C}_p)$ have exhibited many parallels with the existing theory of complex dynamics; see [1,2,4,6,7,9–11], for example. The failure of local compactness, and hence of the Arzelà–Ascoli theorem, means that p-adic Fatou and Julia sets should be defined in terms of equicontinuity, rather than normality.

Topologically, $\mathbb{P}^1(\mathbb{C}_p)$ and its subsets are totally disconnected. Nevertheless, the author [1,2] and Rivera-Letelier [9,11] have developed several related definitions of components of p-adic Fatou sets which behave as useful analogs of connected components of complex Fatou sets.

The author has proven [11] that if $\phi \in \mathbb{Q}_p(z)$ (acting on the full $\mathbb{P}^1(\mathbb{C}_p)$) has nonempty Julia set \mathcal{J} with no recurrent critical points of order divisible by p in \mathcal{J}, then the Fatou set of ϕ has no wandering domains. (In fact, the proof in [1] applies equally well to any of the definitions of components even if \mathcal{J} is empty.) The main result of this paper implies that the first hypothesis (that the coefficients lie in \mathbb{Q}_p) cannot be removed.

Theorem 1.1. – There exists $a \in \mathbb{C}_p$ such that the Julia set \mathcal{J} of

$$
\phi_a(z) = (1 - a)z^{p+1} + az^p
$$

is nonempty; the Fatou set \mathcal{F} of ϕ_a has a wandering domain, and all critical points of ϕ_a lie in \mathcal{F}.

Compared to Sullivan’s complex No Wandering Domains Theorem [13], Theorem 1.1 gives a sharp contrast between non-Archimedean and complex dynamics. Moreover, our result also provides a counterexample disproving Rivera-Letelier’s Conjecture de Non-Errance and his related statement on Structure Conjecturale de l’Ensemble de Fatou in [9, Section 4.3]. However, both of those conjectures may still be true if the hypothesis that all coefficients lie in \mathbb{Q}_p is added; see the conjecture in [1, Section 1].

A generalization of the method of this paper can actually be used to prove the density of parameters for which ϕ_a has a wandering domain in the set $\{a \in \mathbb{C}_p : |a| > 1\}$. The argument works for any algebraically closed complete non-Archimedean field with the property that $|p| < 1$. However, in the interest of clarity, we restrict our attention here to announcing the existence of p-adic wandering domains, and we leave the generalizations to a forthcoming paper [3].
2. Disks

We will denote the closed disk of radius \(r > 0 \) about a point \(a \in \mathbb{C}_p \) by \(\overline{D}_r(a) \), and the open disk by \(D_r(a) \). We recall some basic properties of non-Archimedean disks. Every disk is both open and closed as a topological set. Any point in a disk \(U \) is a center, but the radius of \(U \) is a well-defined real number, being the same as the diameter of \(U \). If two disks in \(\mathbb{C}_p \) intersect, then one contains the other. If \(f \in \mathbb{C}_p[z] \) is a non-constant polynomial, and if \(U \subset \mathbb{C}_p \) is a disk, then \(f(U) \) is also a disk. If \(a, b \in \mathbb{C}_p, r > 0, \) and \(f \in \mathbb{C}_p[z] \) with \(f(a) = b \), then \(f \) maps \(\overline{D}_r(a) \) bijectively onto \(\overline{D}_r(b) \) if and only if for every \(x \in \overline{D}_r(a) \),

\[
|f(x) - f(a)| = \frac{s}{r} |x - a|.
\]

We also recall Hsia’s criterion \([7]\) for equicontinuity, which is a non-Archimedean analogue of the Montel–Carathéodory theorem. Hsia stated his result for arbitrary meromorphic functions on more general non-Archimedean fields, but for simplicity, we rephrase it for our special case.

Theorem 2.1 (Hsia). Let \(F \) be a family of rational functions on a disk \(U \subset \mathbb{C}_p \), and suppose that there are two distinct points \(a_1, a_2 \in \mathbb{P}_1(\mathbb{C}_p) \) such that for all \(f \in F, x \in U \), and \(i = 1, 2 \), we have \(f(x) \neq a_i \). Then \(F \) is an equicontinuous family.

3. The family

We consider the family \(\{\phi_a\} \) defined in equation (1), with \(|a| = |p|^{-(p-1)} > 1 \). For any such \(a, \phi_a \) has a superattracting (hence Fatou) fixed point at \(z = 0 \), and a repelling (hence Julia) fixed point at \(z = 1 \). Furthermore, it is not difficult to see that the filled Julia set \(K \) (that is, the set of points not attracted to \(\infty \)) is completely contained in \(D_1(0) \cup D_1(1) \). The only critical points of \(\phi_a \) besides \(\infty \) lie in \(\overline{D}_1(p)(0) \), which is a bounded open set that maps into itself. Hence, all critical points are Fatou.

Fix \(a \in \mathbb{C}_p \) with \(|a| = |p|^{-(p-1)} \). If \(y_0 \in D_1(1) \) and \(|y_1 - y_0| < 1 \), then it is immediate from the definition of \(\phi_a \) and the ultrametric triangle inequality that

\[
|\phi_a(y_1) - \phi_a(y_0)| = |a| \cdot |y_1 - y_0|.
\]

(2)

If \(|p| < |y_0| < 1 \) and \(|y_1 - y_0| \leq |p|^2 \), then it is only slightly more difficult to show that

\[
|\phi_a(y_1) - \phi_a(y_0)| = |a| \cdot |y_0|^p \cdot |y_1 - y_0|.
\]

(3)

On the other hand, if we fix \(y_0 \in D_1(0) \) and \(y_1 \in D_1(1) \), and if we choose two parameters \(a, b \in \mathbb{C}_p \), then

\[
|\phi_a(y_0) - \phi_a(y_1)| = |y_0|^p \cdot |b - a| \quad \text{and} \quad |\phi_b(y_1) - \phi_a(y_1)| = |y_1 - 1| \cdot |b - a|.
\]

(4)

4. Local mapping properties of \(\phi_a^m \)

Let \(S = |p|^2 \). If \(x \in D_1(0) \) or \(x \in D_1(1) \), then using induction and Eqs. (2) and (3), we can easily prove the following statements concerning the next few iterates of \(x \).

Lemma 4.1. Let \(a \in \mathbb{C}_p \) with \(|a| = |p|^{-(p-1)} \). Let \(m \geq 1 \) and \(x \in \mathbb{C}_p \) with \(|x| \leq |p|^{1-p-m} \). Then for all \(0 \leq i \leq m \),

\[
|\phi_a^i(x)| = |p|^{1-p} |x|^i, \quad \text{and for all } r \in (0, S], \quad \phi_a^i(D_r(x)) \subset \overline{D}_{r \cdot |p|^{1-p}}(\phi_a^i(x)),
\]

where \(e_i = p^{1-m} + p^{2-m} + \cdots + p^{i-m} < 2 \). In particular, if \(|x| = |p|^{1-p-m} \), then \(|\phi_a^m(x)| = 1 \),

\[
\phi_a^m(D_r(x)) \subset \overline{D}_{r \cdot |p|^{m-2}}(\phi_a^m(x)) \quad \text{for all } r \in (0, S],
\]

(5)

and \(\phi^i(x) \in D_1(0) \) for all \(0 \leq i \leq m - 1 \).
Thus, the iterates of x are all pushed away from 0, but the function ϕ_a^m is locally contracting.

On the other hand, all distances within $D_1(1)$ are stretched by a factor of exactly $|a|$, giving us the following simpler statement for that disk.

Lemma 4.2. Let $a \in \mathbb{C}_p$ with $|a| = |p|^{-(p-1)}$. Let $M \geq 1$ and $x \in \mathbb{C}_p$ with $|x-1| \leq |a|^{-M}$. Then for all $0 \leq i \leq M$,

$$|\phi_a^i(x) - 1| = |a|^i \cdot |x-1|,$$

and for all $r \in (0, |a|^{-M}]$,

$$\phi_a^i(D_r(x)) = \overline{D}_{r |a^i|} (\phi_a^i(x)).$$

In particular, if $|x-1| = |a|^{-M}$, then $\phi_a^M(x) - 1 = 1$,

$$\phi_a^M(D_r(x)) = \overline{D}_{r |a^M|} (\phi_a^M(x)) \quad \text{for all } r \in (0, |a|^{-M}],$$

and $\phi(x) \in D_1(1)$ for all $0 \leq i \leq M - 1$.

5. Perturbations

Set the notation $\Phi_n(a, z) = \phi_a^n(z)$. For fixed $x \in \mathbb{C}_p$, $\Phi_n(\cdot, x)$ is a polynomial function of the parameter a.

The following lemmas show how the function behaves locally in certain circumstances.

Lemma 5.1. Let $a \in \mathbb{C}_p$ with $|a| = |p|^{-(p-1)}$. Let $M \geq 2$, let $n \geq 0$, and let $x \in \mathbb{C}_p$ satisfying $|\phi_a^n(x)| = |p|^{1-p^m}$. Let $A > |p|^{p-1}$ be a real number, let $\varepsilon \in (0, A^{-1}S]$, and suppose that

$$\Phi_n(D_a(x), x) \subseteq \overline{D}_{A \cdot |\phi_a^n(x)|} \quad \text{and} \quad A \leq |p|^{p+1-m}.$$

Then $\Phi_{n+m}(\cdot, x)$ maps $\overline{D}_e(a)$ bijectively onto $\overline{D}_{e/\ell |a|}(\phi_a^{n+m}(x))$.

Note that the two displayed conditions in Lemma 5.1 say, first, that A is large enough to bound the size of a certain image disk, and second, that m is large enough to make $|p|^{-m+p+1}$ even larger than A.

Lemma 5.2. Let $a \in \mathbb{C}_p$ with $|a| = |p|^{-(p-1)}$. Let $M \geq 2$, let $n \geq 1$, and let $x \in \mathbb{C}_p$ satisfying $|\phi_a^n(x)| = |p|^{-p^m - 1}$. Let $\varepsilon \in (0, |a|^{-1}M]$. Suppose that $\Phi_n(\cdot, x)$ maps $D_a(x)$ bijectively onto $\overline{D}_{\varepsilon/\ell |a|}(\phi_a^n(x))$.

Then $\Phi_{n+m}(\cdot, x)$ maps $\overline{D}_e(a)$ bijectively onto $\overline{D}_{e/\ell |a|^{M-1}}(\phi_a^{n+m}(x))$.

We sketch the proofs as follows. Pick $b \in \overline{D}_e(a) \setminus \{a\}$, and for every $i \geq 0$, let $\delta_i = |\phi_a^i(x) - \phi_a^j(x)|$.

By the ultrametric triangle inequality, for $i \geq 1$ we have $\delta_i \leq \max\{B_i, C_i\}$, with equality if $B_i \neq C_i$, where

$$B_i = |\phi_b(\phi_a^{i+1}(x)) - \phi_a(\phi_a^{i+1}(x))|, \quad C_i = |\phi_b(\phi_a^{i+1}(x)) - \phi_a(\phi_a^{i+1}(x))|.$$

Define

$$s_i = |b-a| \cdot \max\{A \cdot |p|^{-\varepsilon i}, |p|^{1-p^{m+i}}\}, \quad \text{and} \quad t_i = |b-a| \cdot |a|^{-1},$$

where ε is as in the statement of Lemma 4.1.

For Lemma 5.1, we show by induction (using Eqs. (3) and (4) and Lemma 4.1) that $B_i, C_i \leq s_i$ for all $1 \leq i \leq m$. Then we observe that $C_m = B_m = s_m = |b-a|/|a|$, proving that $\delta_m = |b-a|/|a|$, as desired. Similarly, for Lemma 5.2, we show that $B_i < C_i = t_i$, for all $1 \leq i \leq M$. Thus, $\delta_M = t_M = |a|^{M-1} \cdot |b-a|$.

6. Proof of Theorem 1.1

Let $a_0 = p^{-(p-1)} \in \mathbb{C}_p$. For each $i \geq 0$, define $M_i = 2i$ and $m_i = 2p + 2(p-1)i$. Set $r_i = |p|^{1-p^{-m_i}}$ and $\varepsilon_i = |a_0|^{-1-M_i}$. By Lemma 4.1, any $y \in \mathbb{C}_p$ with $|y| = r_0$ satisfies $|\phi_a^{m_0}(y)| = 1$. Because $\phi_a^{m_0}(0) = 0$, it follows that $\phi_a^{m_0}(D_{r_0}(0)) \supset D_1(1)$. In particular, there is some $x \in D_{r_0}(0)$ with $\phi_a^{m_0}(x) = 1$. By the same lemma, we must have $|x| = r_0$. We will find $a \in \overline{D}_1(a_0)$ such that the orbit $\{\phi_a^j(x)\}_{j \geq 0}$ can be described by

$$0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, \ldots$$

with $m_0 \subseteq M_1 \subseteq m_1 \subseteq M_2 \subseteq m_2$.

(7)
where a 0 in the \(j\)-th position in the sequence indicates that \(\phi_a^{j-1}(x) \in D_1(0)\), and a 1 indicates that \(\phi_a^{j-1}(x) \in D_1(1)\).

For \(i \geq 0\), define

\[
 n_i = \sum_{k=1}^{i} (m_{k-1} + M_k) = 2i + pi(i + 1), \quad \text{and} \quad N_i = n_i + m_i = p(i + 1)(i + 2).
\]

That is, \(n_i\) is the number of terms in (7) up to but not including the block of \(m_i\) 0’s, and \(N_i\) is the number of terms up to but not including the block of \(M_{i+1}\) 1’s.

For every \(i \geq 0\), we will find \(a_i \in \overline{D}_{\sigma_{i-1}}(a_{i-1})\) so that for every \(a \in \overline{D}_{\sigma_i}(a_i)\), the orbit \(\{\phi_a^n(x)\}\) follows (7) up to the \(j = N_i\) iterate, with \(\phi_{a_i}^{N_i}(x) = 1\) and such that

\[
 \Phi_{N_i}(\cdot, x) : \overline{D}_{\sigma_i}(a_i) \to \overline{D}_{\sigma_i/|a_i|}(1) \quad \text{is bijective.} \quad (8)
\]

Note that every \(a_i\) will lie in \(\overline{D}_{\rho_{a_0}}(a_0)\), and therefore \(|a_i| = |a_0| = |p|^{-(p-1)}\).

We proceed by induction on \(i\). For \(i = 0\), we already have \(\phi_{a_0}^{N_0}(x) = 1\), and by Lemma 4.1, the orbit \(\{\phi_{a_0}(x)\}\) follows (7) up to the \(N_0 = m_0\) iterate. By Lemma 5.1 (with \(n = n_0 = 0, m = m_0, a = a_0, A = |p|^{(p-1)}, \epsilon = \epsilon_0\)), condition (8) holds. Also, by Lemma 4.1, the orbit \(\{\phi_{a_0}(x)\}\) is correct up to \(j = N_0\) for every \(a \in \overline{D}_{\rho_{a_0}}(a_0)\). Hence, the \(i = 0\) case is already done.

For \(i \geq 1\), assume that we are given \(a_{i-1}\) with the desired properties. Let \(\rho = |a_0|^{1-M_i} \leq \epsilon_{i-1}\); then for every \(a \in \overline{D}_{\sigma_{i-1}}(a_{i-1})\), the orbit \(\{\phi_a^{N_i}(x)\}\) agrees with (7) up to \(j = N_{i-1}\). By Lemma 5.2 (with \(a = a_{i-1}, M = M_i, n = N_{i-1}, \epsilon = \rho\)), there exists \(c_1 \in \mathbb{C}_p\) such that \(|c_1 - a_{i-1}| = \rho\) and

\[
 \Phi_{N_i}(c_1, x) = 0 \quad \text{and} \quad \Phi_{N_i}(\cdot, x) : \overline{D}_{\sigma}(c_1) \to \overline{D}_{n_0}(0) \quad \text{is bijective,} \quad (9)
\]

where \(\sigma = r_i \cdot |a_0|^{1-M_i} \leq \epsilon_{i-1}\). By Lemma 4.2, the orbit \(\{\phi_a^{N_i}(x)\}\) is correct up to \(j = n_i\) for every \(a \in \overline{D}_{\rho_{c_1}}(c_1)\).

Choose \(c_2 \in \overline{D}_{\rho_{c_1}}(c_1)\) so that \(|\Phi_{n_i}(c_2, x)| = r_i\). By Lemma 4.1, \(|\Phi_{N_i}(c_2, x)| = 1\). Furthermore it is clear that \(\Phi_{N_i}(c_1, x) = 0\). Because the polynomial image of a disk is a disk, it follows that \(\Phi_{N_i}(\overline{D}_{\sigma_{i-1}}(c_1), x) \supset \overline{D}_{\gamma_{i-1}}(0)\). We may therefore choose \(a_i \in \overline{D}_{\sigma_{i-1}}(c_1)\) so that \(\Phi_{n_i}(a_i, x) = 1\).

By Eq. (9), the radius of \(\Phi_{n_i}(\overline{D}_{\sigma_{i-1}}(a_i))\) must be \(\epsilon_{i-1} \cdot |a_0|^{M_i-1} = S\). Therefore, by Lemma 5.1 (with \(n = n_{i-1}, m = m_{i-1}, a = a_i, A = |a_i|^{M_i-1}, \epsilon = \epsilon_{i-1}\)), condition (8) holds on \(\overline{D}_{\rho_{a_i}}(a_i)\). By Lemma 4.1, the orbit \(\{\phi_{a_i}^{N_i}(x)\}\) is correct up to \(j = N_i\) for every \(a \in \overline{D}_{\rho_{a_i}}(a_i)\). Our construction of \(a_i\) is complete.

The sequence \(|a_i| \geq 0\) is a Cauchy sequence, because for any \(0 \leq i \leq j\), we have \(|a_i - a_j| \leq \epsilon_i\), and \(\epsilon_i \to 0\). Therefore, the sequence has a limit \(a \in \mathbb{C}_p\), with \(|a - a_0| \leq \epsilon_0\). By construction, \(a \in \overline{D}_{\rho_{a_i}}(a_i)\) for every \(i \geq 0\); hence, the orbit \(\{\phi_{a_i}^{N_i}(x)\}\) follows (7) exactly. In light of Lemmas 4.1 and 4.2, we must have \(|\phi_{a_i}^{N_i}(x)| = |p|^{1-p^{-m_i}}\), and \(|\phi_{a_i}^{N_i}(x) - 1| = |a|^{-M_i+1}\), for any \(i \geq 0\). We only need to verify that \(\phi_a\) has a wandering domain containing \(x\).

Let \(U = \overline{D}_S(x)\); we shall show that \(U\) is contained in a wandering domain of the Fatou set \(\mathcal{F}\) of \(\phi_a\). Every iterate \(U_{ni} = \phi_a^{ni}(U)\) is a disk; we claim that for any \(i \geq 0\), the radius of \(U_{ni}\) is at most \(S = |p|^2\), and the radius of \(U_{N_i}\) is at most \(|a|^{-M_i+1}S\). The claim is easily proven by induction, as follows. For \(i = 0\), \(U_0 = U_0 = U\), and by Eq. (5), \(|U_0|\) has radius at most \(|p|^{m_0-2}S = |a|^{-M_1}S\). For \(i \geq 1\), we assume the radius of \(U_{N_{i-2}}\) is at most \(|a|^{-M_i}S\). By Eq. (6), the radius of \(U_{N_i}\) is at most \(S\); and by Eq. (5), the radius of \(U_{N_i}\) is at most \(|p|^{m_0-2}S = |a|^{-M_{i+1}}S\).

In particular, no \(U_{ni}\) contains the point 1; and because 1 is fixed, it follows that no \(U_{ni}\) contains 1. Clearly, no \(U_{ni}\) contains \(\infty\) either. By Hsia’s theorem, then, the family \(\{\phi_{a_i}\}\) is equicontinuous on \(U\), and therefore \(U \subset \mathcal{F}\).

By any of the definitions of components in [1,2,9,11], the component \(V\) of \(\mathcal{F}\) containing \(U\) must be a disk (see, for example, [2, Theorem 5.4.d]). Again, no iterate of \(V\) can contain 1, and therefore the symbolic
dynamics of any point in \(V \) are also described by Eq. (7). Because those dynamics are not preperiodic, it follows that \(V \) must be wandering.

Acknowledgements. The research for this paper was supported by NSF grant DMS-0071541. Many thanks to Bob Devaney, J.-C. Yoccoz, and especially to Juan Rivera-Letelier for their helpful comments and suggestions concerning the exposition of this paper.

References

