Positive solutions for slightly super-critical elliptic equations in contractible domains

Riccardo Molle ${ }^{\text {a }}$, Donato Passaseo ${ }^{\text {b }}$
${ }^{a}$ Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
b Dipartimento di Matematica "E. De Giorgi", Università di Lecce, P.O. Box 193, 73100 Lecce, Italy
Received and accepted 8 July 2002
Note presented by Haïm Brézis.

Abstract

We give examples of bounded domains Ω, even contractible, having the following property: there exists $\bar{k}(\Omega)$ such that, for every integer $k \geqslant \bar{k}(\Omega)$, problem $P(\varepsilon, \Omega)$ below, for $\varepsilon>0$ small enough, has at least one solution blowing up as $\varepsilon \rightarrow 0$ at exactly k points. We also prove that the blow-up points tend to some points of $\partial \Omega$ as $k \rightarrow \infty$. To cite this article: R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 459-462. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Solutions positives pour l'équation $\Delta u+u^{(n+2) /(n-2)+\varepsilon}=0$ en ouverts contractibles

Abstract

Résumé On donne des exemples d'ouverts bornés Ω, même contractibles, satisfaisant la propriété suivante : il existe $\bar{k}(\Omega)$ tel que, pour tout $k \geqslant \bar{k}(\Omega)$, le problème $P(\varepsilon, \Omega)$ ci-dessous, pour $\varepsilon>0$ suffisamment petit, a des solutions qui pour $\varepsilon \rightarrow 0$ explosent exactement en k points. On prouve aussi que ces points convergent vers des points de $\partial \Omega$ quand $k \rightarrow \infty$. Pour citer cet article : R. Molle, D. Passaseo, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 459-462. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Let us consider the problem

$$
P(\varepsilon, \Omega) \quad\left\{\begin{array}{l}
\Delta u+u^{(n+2) /(n-2)+\varepsilon}=0 \quad \text { in } \Omega \\
u>0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a bounded domain of $\mathbb{R}^{n}, n \geqslant 3$, and ε is a small positive parameter.
It is well known that $P(\varepsilon, \Omega)$ has no solution if $\varepsilon \geqslant 0$ and Ω is starshaped (see [11]), while (see [9]) it has solution for all $\varepsilon \geqslant 0$ if Ω is, for example, an annulus (when $\varepsilon<0, P(\varepsilon, \Omega)$ is solvable in any bounded domain Ω).

For $\varepsilon=0$, in [4] the existence of a solution is proved for domains with small holes; in [1] this result is extended to all domains having "nontrivial" topology (in a suitable sense). This nontriviality condition (which covers a large class of domains) is only sufficient for the solvability but not necessary as shown by some examples of contractible domains Ω such that $P(0, \Omega)$ has solutions (see [5,7,12]).

[^0]For $\varepsilon>0$ large enough, nonexistence results have been proved also in some domains having nontrivial topology in the sense of [1] (see [13]); on the other hand, existence and multiplicity results hold for all $\varepsilon>0$ in the same contractible domains considered in [12] (see [14]).

When $\varepsilon \rightarrow 0$, some concentration phenomena occur, which have been first investigated in the subcritical case, i.e. when $\varepsilon \rightarrow 0^{-}$(see [3,15,8,2], etc.). In particular, in [2], multi-peak solutions are found, blowingup as $\varepsilon \rightarrow 0^{-}$at some points, which are critical points of suitable functions defined in terms of the Green and Robin functions in Ω.

In [6] similar phenomena are described in the super-critical case; in domains with small holes, for $\varepsilon>0$ small enough, it is proved the existence of a finite number of solutions blowing-up as $\varepsilon \rightarrow 0^{+}$at some pairs of points localized near the holes.

In this paper our aim is to give some examples showing, in particular, that these concentration phenomena for super-critical problems occur even in some contractible domains (notice that the solutions obtained in [14] for all $\varepsilon>0$ do not blow-up as $\varepsilon \rightarrow 0$). In order to construct such examples, we consider some domains having radial symmetry with respect to a pair of co-ordinates and, for every integer k large enough, we prove the existence of solutions blowing-up as $\varepsilon \rightarrow 0^{+}$at exactly k points, regularly placed around circles, whose distance from $\partial \Omega$ tends to 0 as $k \rightarrow \infty$. Thus we obtain, in particular, that the number of geometrically distinct solutions tends to infinity as $\varepsilon \rightarrow 0^{+}$. Notice that, as proved in [2], for $\varepsilon<0$ the blow-up points remain uniformly away from $\partial \Omega$ and, for k large enough, there are not solutions blowing-up at k points as $\varepsilon \rightarrow 0^{-}$.

It is worth pointing out that the domains we consider in this paper (unlike [5,7,12] etc.) are not required to be close to domains having different topology (for example, the parameters r and σ in Theorem 1 are not required to be small).

Let us first consider a simple example. For all $\sigma>0$ and $r \in] 0,1[$, set

$$
\Omega_{r}^{\sigma}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\left|r<|x|<1,\left(\sum_{i=1}^{n-1} x_{i}^{2}\right)^{1 / 2}>\sigma x_{n}\right\}\right.
$$

We look for solutions to $P\left(\varepsilon, \Omega_{r}^{\sigma}\right)$ of the form

$$
\begin{equation*}
u_{k, \varepsilon}(x)=[n(n-2)]^{(n-2) / 4} \sum_{i=1}^{k}\left(\frac{\lambda_{k, \varepsilon} \varepsilon^{1 /(n-2)}}{\lambda_{k, \varepsilon}^{2} \varepsilon^{2 /(n-2)}+\left|x-\xi_{i, k, \varepsilon}\right|^{2}}\right)^{(n-2) / 2}+\theta_{k, \varepsilon}(x) \tag{1}
\end{equation*}
$$

where $\theta_{k, \varepsilon} \rightarrow 0$ uniformly as $\varepsilon \rightarrow 0, \lambda_{k, \varepsilon}$ is a concentration parameter and the concentration points $\xi_{i, k, \varepsilon} \in \Omega_{r}^{\sigma}$ have the form $\xi_{i, k, \varepsilon}=\left(\rho_{k, \varepsilon} \cos (2 \pi / k) i, \rho_{k, \varepsilon} \sin (2 \pi / k) i, x_{3, k, \varepsilon}, \ldots, x_{n, k, \varepsilon}\right)$ for $i=1, \ldots, k$.

THEOREM 1. - For all $\sigma>0$ and $r \in] 0,1\left[\right.$, there exist $\bar{k}=\bar{k}(r, \sigma)$ and a sequence $\left(\varepsilon_{k}\right)_{k}, \varepsilon_{k}>0, \forall k \geqslant$ \bar{k}, such that, for all $k \geqslant \bar{k}$ and $\varepsilon \in] 0, \varepsilon_{k}\left[, P\left(\varepsilon, \Omega_{r}^{\sigma}\right)\right.$ has at least two solutions $u_{k, \varepsilon}^{(1)}$ and $u_{k, \varepsilon}^{(2)}$ of the form (1). The corresponding concentration points $\xi_{i, k, \varepsilon}^{(1)}$ and $\xi_{i, k, \varepsilon}^{(2)}$ satisfy $x_{3, k, \varepsilon}^{(j)}=x_{4, k, \varepsilon}^{(j)}=\cdots=x_{n-1, k, \varepsilon}^{(j)}=0$ for $j=1,2$ and

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \rho_{k, \varepsilon}^{(1)} & =\frac{\sigma r}{\sqrt{1+\sigma^{2}}}, \quad \lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} x_{n, k, \varepsilon}^{(1)}=\frac{r}{\sqrt{1+\sigma^{2}}}, \\
\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \rho_{k, \varepsilon}^{(2)} & =r, \quad \lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} x_{n, k, \varepsilon}^{(2)}=0 .
\end{aligned}
$$

The concentration parameters $\lambda_{k, \varepsilon}^{(1)}$ and $\lambda_{k, \varepsilon}^{(2)}$ behave as follows: $\lim _{\varepsilon \rightarrow 0} \lambda_{k, \varepsilon}^{(j)}>0, \forall k \geqslant \bar{k}, j=1,2$; $\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \lambda_{k, \varepsilon}^{(j)}=0$ for $j=1,2$.

Sketch of the proof. - Let us set $S_{r}^{\sigma}=\left\{\left(\rho, x_{n}\right) \in \mathbb{R}^{2} \mid r^{2}<\rho^{2}+x_{n}^{2}<1, \rho>\sigma x_{n}, \rho>0\right\}$ and consider the function $\psi_{k}: S_{r}^{\sigma} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by

$$
\psi_{k}\left(\rho, x_{n}, \Lambda\right)=\frac{\Lambda^{2}}{2}\left\{\sum_{i=1}^{k} H\left(\xi_{i, k}, \xi_{i, k}\right)-2 \sum_{1 \leqslant i<j \leqslant k} G\left(\xi_{i, k}, \xi_{j, k}\right)\right\}+k \lg \Lambda,
$$

where $\xi_{i, k}=\left(\rho \cos \frac{2 \pi}{k} i, \rho \sin \frac{2 \pi}{k} i, 0, \ldots, 0, x_{n}\right), G$ denotes the Green function of $-\Delta$ in Ω_{r}^{σ} and H its regular part.

Using the method introduced in [2] and [15], suitably adapted to the super-critical case (see [6] for example), and taking also into account the symmetry of Ω_{r}^{σ} with respect to the co-ordinates $x_{3}, x_{4}, \ldots, x_{n-1}$, the problem reduces to finding critical points of the function ψ_{k}, which persist with respect to small C^{1} perturbations. Clearly $\psi_{k}\left(\rho, x_{n}, \Lambda\right)=k\left[\frac{\Lambda^{2}}{2} \gamma_{k}\left(\rho, x_{n}\right)+\lg \Lambda\right]$, with $\gamma_{k}\left(\rho, x_{n}\right)=H\left(\xi_{1, k}, \xi_{1, k}\right)-$ $\sum_{i=2}^{k} G\left(\xi_{1, k}, \xi_{i, k}\right)$. Taking into account the properties of H and G, it is easy to verify that $\gamma_{k}\left(\rho, x_{n}\right) \rightarrow+\infty$ as $\operatorname{dist}\left(\xi_{1, k}, \partial \Omega\right) \rightarrow 0$ and that $\lim _{k \rightarrow \infty} \gamma_{k}\left(\rho, x_{n}\right)=-\infty, \forall\left(\rho, x_{n}\right) \in S_{r}^{\sigma}$.
Notice that any critical point for ψ_{k} must satisfy the condition $\Lambda^{2}=-1 / \gamma_{k}\left(\rho, x_{n}\right)$, which is possible only if $\gamma_{k}\left(\rho, x_{n}\right)<0$; a direct computation shows that finding critical points for ψ_{k} is equivalent to finding critical points $\left(\rho, x_{n}\right)$ for γ_{k}, such that $\gamma_{k}\left(\rho, x_{n}\right)<0$.
Now the crucial step is to observe that, if we set, for example, $c_{k}=\left|\gamma_{k}((r+1) / 2,0)\right|$, then we obtain $\lim _{k \rightarrow \infty} \frac{1}{c_{k}} \gamma_{k}\left(\rho, x_{n}\right)=-((r+1) / 2 \rho)^{n-2} \forall\left(\rho, x_{n}\right) \in S_{r}^{\sigma}$. Moreover, we have $\lim _{k \rightarrow \infty} \inf \left\{\left.\frac{1}{c_{k}} \gamma_{k}\left(\rho, x_{n}\right) \right\rvert\,\right.$ $\left.\left(\rho, x_{n}\right) \in S_{r}^{\sigma}, \rho=\tilde{\rho}\right\}=-((r+1) / 2 \tilde{\rho})^{n-2}$, for all $\left.\tilde{\rho} \in\right] 0,1[$. Therefore, for all $\tilde{\rho} \in] \frac{\sigma r}{\sqrt{1+\sigma^{2}}}, r[$, the minimum $\min \left\{\gamma_{k}\left(\rho, x_{n}\right) \mid\left(\rho, x_{n}\right) \in S_{r}^{\sigma}, \rho<\tilde{\rho}, x_{n}>0\right\}$ is achieved for k large enough and the minimum points must converge to ($\sigma r / \sqrt{1+\sigma^{2}}, r / \sqrt{1+\sigma^{2}}$) as $k \rightarrow \infty$.
Now observe that $\lim _{k \rightarrow \infty} \inf \left\{\left.\frac{1}{c_{k}} \gamma_{k}(\rho, 0) \right\rvert\, r<\rho<1\right\}=-((r+1) / 2 r)^{n-2}$ and that $\lim _{k \rightarrow \infty} \sup \left\{\frac{1}{c_{k}} \gamma_{k}(\rho\right.$, $\left.\left.\left.x_{n}\right) \mid\left(\rho, x_{n}\right) \in S_{r}^{\sigma}, \rho^{2}+x_{n}^{2}=\tilde{r}^{2}, x_{n} \leqslant r / \sqrt{1+\sigma^{2}}\right\}=-((r+1) / 2 \tilde{r})^{n-2}, \forall \tilde{r} \in\right] r, 1[$. It follows that for k large enough there exists at least another critical point for γ_{k} (a saddle point) which converges to ($r, 0$) as $k \rightarrow \infty$.
Finally, notice that these two critical points, we get for γ_{k}, both correspond to negative critical values (which tend to $-\infty$ as $k \rightarrow \infty$); the corresponding critical points for ψ_{k}, of the form ($\left.\rho, x_{n}, \sqrt{-1 / \gamma_{k}\left(\rho, x_{n}\right)}\right)$, persist with respect to small C^{1} perturbations, so they give rise to solutions which behave as described in Theorem 1 when $\varepsilon \rightarrow 0$ and $k \rightarrow \infty$.

Remark 1. - When $\varepsilon=0$, for all $r \in] 0,1\left[\right.$ there exists $\sigma(r)>0$ such that $P\left(0, \Omega_{r}^{\sigma}\right)$ has solution for all $\sigma \in] 0, \sigma(r)]$ (see [12]), while it is natural to expect that it has no solution if σ is large enough. On the contrary, Theorem 1 holds for all $\sigma>0$ and gives solutions which do not converge to solutions of $P\left(0, \Omega_{r}^{\sigma}\right)$ since they vanish as $\varepsilon \rightarrow 0$.
We describe now some results (whose proof is reported in [10]) which extend Theorem 1.
THEOREM 2. - Let Ω be a bounded domain of \mathbb{R}^{n} and assume that there exist $a, b \in \mathbb{R}$ and two functions $\rho_{1}, \rho_{2}:[a, b] \rightarrow\left[0,+\infty\left[\right.\right.$ such that $\bar{\Omega}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid a \leqslant x_{n} \leqslant b, \rho_{1}^{2}\left(x_{n}\right) \leqslant \sum_{i=1}^{n-1} x_{i}^{2} \leqslant\right.$ $\left.\rho_{2}^{2}\left(x_{n}\right)\right\}$. Let $\bar{x}_{n} \in[a, b]$ satisfy $\rho_{1}\left(\bar{x}_{n}\right)>0$ and assume that there exists a neighbourhood $I\left(\bar{x}_{n}\right)$ of \bar{x}_{n} such that $\rho_{1}\left(\bar{x}_{n}\right)<\rho_{1}\left(x_{n}\right), \forall x_{n} \in I\left(\bar{x}_{n}\right) \backslash\left\{\bar{x}_{n}\right\}$ or $\left.\bar{x}_{n} \in\right] a, b\left[\right.$ and $\rho_{1}\left(\bar{x}_{n}\right)>\rho_{1}\left(x_{n}\right), \forall x_{n} \in I\left(\bar{x}_{n}\right) \backslash\left\{\bar{x}_{n}\right\}$. Then there exist $\bar{k}=\bar{k}(\Omega)$ and a sequence $\left(\varepsilon_{k}\right)_{k}, \varepsilon_{k}>0, \forall k \geqslant \bar{k}$, such that, for all $k \geqslant \bar{k}$ and $\left.\varepsilon \in\right] 0, \varepsilon_{k}[$, $P(\varepsilon, \Omega)$ has at least one solution $u_{k, \varepsilon}$ of the form (1) satisfying $x_{3, k, \varepsilon}=x_{4, k, \varepsilon}=\cdots=x_{n-1, k, \varepsilon}=0$ and $\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} x_{n, k, \varepsilon}=\bar{x}_{n}, \lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \rho_{k, \varepsilon}=\rho_{1}\left(\bar{x}_{n}\right)$. Moreover, $\lim _{\varepsilon \rightarrow 0} \lambda_{k, \varepsilon}>0, \forall k \geqslant \bar{k}$ and $\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \lambda_{k, \varepsilon}=0$.
Remark 2. - Consider two balls of $\mathbb{R}^{n}, B\left(c_{1}, r_{1}\right)$ and $B\left(c_{2}, r_{2}\right)$, such that $\overline{B\left(c_{1}, r_{1}\right)} \subset B\left(c_{2}, r_{2}\right)$. Then Theorem 2 clearly applies when $\Omega=B\left(c_{2}, r_{2}\right) \backslash \overline{B\left(c_{1}, r_{1}\right)}$ (and r_{1} is not required to be small enough).

Notice that the symmetry of Ω with respect to the co-ordinates $x_{3}, x_{4}, \ldots, x_{n-1}$ (we use in Theorems 1 and 2) is not really essential to get solutions. What we really need, in order to find solutions of the form (1), is the radial symmetry of Ω with respect to x_{1} and x_{2} (i.e., $\left(x_{1}, \ldots, x_{n}\right) \in \Omega$ if and only if $\left.\left(0, \sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}, \ldots, x_{n}\right) \in \Omega\right)$. In fact, the following theorem holds.

THEOREM 3. - Let Ω be a bounded domain of \mathbb{R}^{n}, radially symmetric with respect to x_{1} and x_{2} and set $S_{\Omega}=\left\{\left(\rho, x_{3}, \ldots, x_{n}\right) \in \mathbb{R}^{n-1} \mid \rho>0,\left(0, \rho, x_{3}, \ldots, x_{n}\right) \in \Omega\right\}$. Moreover consider the function $\varphi: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ defined by $\varphi\left(\rho, x_{3}, \ldots, x_{n}\right)=\rho$ and let $\left(\bar{\rho}, \bar{x}_{3}, \ldots, \bar{x}_{n}\right)$, with $\bar{\rho}>0$, be an "essential" critical point for the function φ constrained on \bar{S}_{Ω}, according to a suitable definition (see [10] and also Remark 3). Then, for all $k \geqslant \bar{k}=\bar{k}(\Omega)$, there exists $\varepsilon_{k}>0$ such that, for all $\left.\varepsilon \in\right] 0, \varepsilon_{k}[, P(\varepsilon, \Omega)$ has at least one solution $u_{k, \varepsilon}$ of the form (1), satisfying $\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \rho_{k, \varepsilon}=\bar{\rho}, \lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} x_{i, k, \varepsilon}=\bar{x}_{i}$ for $i=3,4, \ldots, n$. Moreover, $\lim _{\varepsilon \rightarrow 0} \lambda_{k, \varepsilon}>0, \forall k \geqslant \bar{k}$ and $\lim _{k \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \lambda_{k, \varepsilon}=0$.

Remark 3. - The "essential" critical points for φ constrained on \bar{S}_{Ω} are special points of the boundary of S_{Ω}. For example, if $\left(\bar{\rho}, \bar{x}_{3}, \ldots, \bar{x}_{n}\right)$ is, in a suitable neighbourhood, the only minimum point for φ constrained on \bar{S}_{Ω}, then it is an "essential" critical point in the sense we need in Theorem 3. This theorem applies to a large class of domains. For example, let S be a bounded domain of R^{n-h} with $1 \leqslant h \leqslant n-1$, such that $\bar{S} \subset] 0,+\infty\left[\times \mathbb{R}^{n-h-1}\right.$, and set $\Omega_{S}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid\left(\left[\sum_{i=1}^{h+1} x_{i}^{2}\right]^{1 / 2}, x_{h+2}, \ldots, x_{n}\right) \in S\right\}$ (nontrivial domains of this type, like solid tori, have been considered in [13]). Then Theorem 3 gives solutions of $P\left(\varepsilon, \Omega_{S}\right)$, blowing-up at k points as $\varepsilon \rightarrow 0$ (other solutions, one can easily find exploiting the radial symmetry of Ω_{S} with respect to all the variables x_{1}, \ldots, x_{h+1}, present a different behaviour).

References

[1] A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988) 253-294.
[2] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. 3 (1) (1995) 67-93.
[3] H. Brezis, L.A. Peletier, Asymptotics for elliptic equations involving critical growth, in: Colombini, Modica, Spagnolo (Eds.), P.D.E. and the Calculus of Variations, Birkhäuser, Basel, 1989, pp. 149-192.
[4] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Série I 299 (7) (1984) 209-212.
[5] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (6) (1988) 600-602.
[6] M. Del Pino, P. Felmer, M. Musso, Multipeak solutions for super-critical elliptic problems in domains with small holes, Preprint.
[7] W.Y. Ding, Positive solutions of $\Delta u+u^{(n+2) /(n-2)}=0$ on contractible domains, J. Partial Differential Equations 2 (4) (1989) 83-88.
[8] Z.C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (2) (1991) 159-174.
[9] J. Kazdan, F.W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (5) (1975) 567-597.
[10] R. Molle, D. Passaseo, (to appear).
[11] S.I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Dokl. 6 (1965) 1408-1411.
[12] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math. 65 (2) (1989) 147-165.
[13] D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal. 114 (1) (1993) 97-105.
[14] D. Passaseo, Nontrivial solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J. 92 (2) (1998) 429-457.
[15] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1) (1990) 1-52.

[^0]: E-mail address: molle@mat.uniroma2.it (R. Molle).

