Conductors of wildly ramified covers, I

Rachel J. Pries
Department of Mathematics, Columbia University, New York, NY 10027, USA
Received 10 June 2002; accepted 20 June 2002
Note presented by Michel Raynaud.

Abstract
Consider a wildly ramified G-Galois cover of curves $\phi: Y \to \mathbb{P}^1_k$ branched at only one point over an algebraically closed field k of characteristic p. For any p-pure group G whose Sylow p-subgroups have order p, I show the existence of such a cover with small conductor. The proof uses an analysis of the semi-stable reduction of families of covers. To cite this article: R.J. Pries, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 481–484.

Conducteurs des revêtements avec ramification sauvage, I

Résumé

1. Introduction

Let k be an algebraically closed field of characteristic p. Abhyankar’s Conjecture (Raynaud [5]) states that there exists a G-Galois cover $\phi: Y \to \mathbb{P}^1_k$ branched at only one point if and only if G is a quasi-p group which means that G is generated by p-groups. An open problem is to determine which filtrations of higher ramification groups can be realized for the inertia groups of such a cover ϕ.

Let S be a chosen Sylow p-subgroup of G. In this note, I restrict to the case that S has order p. Under this assumption, any inertia group of ϕ is of the form $I \cong \mathbb{Z}/p \rtimes \mu_m$ with $\gcd(p, m) = 1$. Furthermore, the filtration of higher ramification groups at a ramification point η is determined by one integer j, namely by the lower jump or conductor; note that $j = \val(g(\pi_\eta) - \pi_\eta) - 1$ where $id \neq g \in S$ and π_η is a uniformizer at η. Note that $\gcd(p, j) = 1$ and the order n' of the prime-to-p part of the center of I equals $\gcd(j, m)$. When $G \neq \mathbb{Z}/p$, there is a nontrivial lower bound for j. In this case, under an additional hypothesis on G, I show the existence of such a cover ϕ with small conductor, Theorem 3.5.

The main idea of the proof is that it is possible to decrease the ramification data of a given G-Galois cover $\phi: Y \to \mathbb{P}^1_k$. The method is to use [4] to deform the original cover ϕ to a family of covers having a fibre ϕ_K with bad reduction. I analyze the special fibre of the semi-stable model of ϕ_K to find new covers...
of \(\mathbb{P}^1_k \) each branched at only one point. Under a condition on \(G \), one of these covers will be connected.

Theorem 2.8 compares the ramification information of these covers and of \(\phi_K \). This is motivated by [5,6].

Suppose \(f : Y \to X \) is a morphism of schemes, \(\xi \) is a point of \(X \), and \(\eta \in f^{-1}(\xi) \). The germ \(\hat{X}_\xi \) of \(X \) at \(\xi \) is the spectrum of the complete local ring of functions of \(X \) at \(\xi \) and \(\hat{f}_\eta : \hat{Y}_\eta \to \hat{X}_\xi \).

2. Degeneration of covers

Let \(R \simeq k[[t]] \) where \(k = \overline{k} \) has characteristic \(p > 2 \) and let \(K = \text{Frac}(R) \). In this section, all \(R \)-curves are proper, normal, reduced and flat over \(R \) with smooth and geometrically connected generic fibres. All covers of \(R \)-curves are flat and generically separable. We analyze the semi-stable model of the special fibre of a cover \(\phi \) of \(R \)-curves with bad reduction. The results follow those of Raynaud [5,6] where \(R \) has unequal characteristic. See also [7].

Lemma 2.1. Suppose that \(f : Y \to X \) is a cover of normal curves over \(R \) with \(X \) and \(Y \) reduced. Let \(x_R \) be an \(R \)-point of \(X \) which specializes to a smooth point \(x \) of \(X \). Let \(y \in f^{-1}(x) \) and suppose \(\hat{f}_y \) is étale outside \(x_R \). Let \(e \) be the ramification index of \(\hat{f}_{y,K} \) over the point \(x_K = x_R \times_R K \). If \(\gcd(e, p) = 1 \), then \(y \) is smooth and \(\hat{f}_{y,K} \) is tamely ramified at \(x \) with ramification index \(e \).

Proof. – The proof is the same as in unequal characteristic, which was proved in [5, 6.3.2] using Abhyankar’s Lemma. See also [7, 1.7] for a proof using Kato’s formula [2].

Lemma 2.2. Let \(f : Y \to X \) be a Galois cover of integral semi-stable \(R \)-curves. Let \(y_K \) be a rational point of \(Y_K \) specializing to a point \(y \) of \(Y_k \). Assume \(f : Y_K \to X_K \) is étale outside \(\hat{f}(y_K) \). Let \(\eta \) be the generic point of an irreducible component of \(Y_k \) which contains \(y \). Then \(I(y_K) \subset I(y) \) and \(I(\eta) \) is a \(p \)-group normal in the inertia group \(I(y) \) at \(y \) and in the stabilizer \(D(\eta) \) of this component.

Proof. – The proof is the same as the unequal characteristic case in [5, 6.3.3, 6.3.6].

Lemma 2.3. Let \(f : Y \to X \) be as in Lemma 2.2 with \(x \in X_k \) and \(y \in f^{-1}(x) \).

(i) Assume \(p \neq 2 \). Suppose \(x \) is a smooth point of \(X_k \). Suppose that \(f \) has at most one branch point \(x_R \) specializing to \(x \). Then \(y \) is a smooth point of \(Y_k \).

(ii) Suppose \(\hat{f}_{x,K} \) is étale. If \(x \) is a node of \(X_k \) then \(y \) is a node. If \(I(\eta_1) \) and \(I(\eta_2) \) are the inertia groups of the generic points of the components of \(\hat{Y} \) containing \(y \) then \(I(\eta_1), I(\eta_2) \) is normal in \(I(y) \) and contains the Sylow \(p \)-subgroup of \(I(y) \).

Proof. – (i) (The proof is similar to [7, 1.11]). If \(y \) is a node, let \(I' \) be the subgroup of \(I(y) \) which stabilizes each of the two components passing through \(y \). Since \(\hat{f}_y \) is Galois, \(I' \) is of index 2 and normal in \(I(y) \). Consider the Galois quotient \(\hat{f}_y : \hat{Y} \to \hat{X} \) of \(\hat{f}_y \) by \(I' \). Thus \(\hat{f}_y \) is a Galois cover of degree two from a singular to a smooth germ of a curve. It is generically étale over \(\hat{X}_{x,k} \) and the ramification index \(e \) of \(\hat{f}_y \) over \(x_k \) divides 2. Since \(p \neq 2 \), this contradicts Lemma 2.1.

(ii) See [7, 1.4, 1.9]. Here is the outline: \(y \) is a node since \(Y \) is semi-stable and the singularity can only worsen. The subgroup \(I' = (I(\eta_1), I(\eta_2)) \) is normal in \(I(y) \). As in part (i), take the quotient of \(\hat{f}_y \) by \(I' \).

The resulting morphism \(\hat{f}_y \) is generically étale. Applying a formula of Kato [2] to \(\hat{f}_y \) implies that it is tame and thus prime-to-\(p \). Thus \(I' \) contains the Sylow \(p \)-subgroup of \(I(y) \).

Now let \(\phi_K : Y_K \to \mathbb{P}^1_k \) be a flat \(G \)-Galois cover of proper, smooth, reduced, geometrically connected curves over \(\text{Spec}(K) \) with genus(\(Y_K \)) \(\geq 2 \). Let \(Y_{0,R} \) be the normalization of \(\mathbb{P}^1_k \) in \(Y_K \) and let \(\phi_{0,R} : Y_{0,R} \to \mathbb{P}^1_R \). Note that \(\phi_{0,k} \) can be generically inseparable and \(Y_{0,k} \) can be singular.

Here we assume that \(\phi_K \) is étale away from one (necessarily wild) branch point \(\infty_K \).

After a finite extension \(R' \) of \(R \), there exists a minimal semi-stable normal curve \(Y \) which is a blow-up of \(Y_{0,R} \) and has an action of \(G \) so that: the quotient map is a \(G \)-Galois cover \(\phi : Y \to X \); the irreducible components of \(Y_k \) are smooth; and the branch points of \(\phi \) specialize in distinct smooth points of \(X_k \).
curve X is semi-stable and normal and X_k is a tree of projective lines. We call $\phi : Y \to X$ the stable model of ϕ_K, [5, 6.3]. Let X_{br} be the component of X_k into which ∞_K specializes to a point ∞_K.

Definition 2.4. – If Y_k is smooth and ϕ_k is generically étale then ϕ_K has good reduction.

Lemma 2.5. – The cover ϕ_K has good reduction if and only if X_k is irreducible.

Proof. – If ϕ_K has good reduction, then Y_k is connected by Zariski’s Theorem and smooth; thus X_k is irreducible since Y_k is. If X_k is irreducible, then it is smooth. Since the branch points of ϕ_K specialize to distinct points of X_k and since $p \neq 2$, Lemma 2.3(ii) indicates that every point y of Y_k is smooth. Since Y_k is smooth and genus(Y_k) ≥ 2 the morphism $\phi_K : Y_k \to X_k$ is generically étale; see [6, 2.4.10].

Definition 2.6. – Suppose ϕ_K has bad reduction. An irreducible component C of X_k is terminal if $C \neq X_{\text{br}}$ and C intersects the closure of $X_k - C$ in only one point.

Proposition 2.7. – Let $\phi : Y \to X$ be the stable model of ϕ_K. If $\phi : Y \to X$ is generically étale over a component C of X_k then C is terminal. Suppose that η is the generic point of a terminal component C of X_k. Then $|I(\eta)| = |S|$, so ϕ is generically étale over C.

Proof. – This proof is a modification of [5, 6.3.8], [6, 2.4.8], and [6, 3.1.2] to equal characteristic case. The crucial point is that (taking the initial component to be X_{br}) no wild branch point specializes to a component which needs to be contracted in the proof.

Suppose that ϕ_K does not have good reduction. By Lemma 2.5, Y_k and X_k are singular. Let $U \subset X_k$ be the union of the non-terminal components of the tree X_k. Choose a connected component V of $\phi^{-1}(U)$.

With Proposition 2.7 and Lemmas 2.2, 2.3(ii), one can show that $I \subset D(V) \subset N_G(S)$. Let B be the set of terminal components of X_k. For $b \in B$, let P_b be the corresponding terminal component and let ∞_b be the point of intersection of P_b with U. For each $b \in B$, let $\sigma_b = j_b/m_b$ be the upper jump of the restriction of ϕ to P_b over ∞_b. Let $\sigma = j/m$ be the upper jump of ϕ_K over ∞_K.

Theorem 2.8 (Key formula). – $\sigma - 1 = \sum_{b \in B} (\sigma_b - 1)$.

Proof. – The proof parallels that of [6, (3.4.2)(5)] by constructing a $D(V)$-Galois auxiliary cover $\psi : Z \to X$ of semi-stable curves which has the same ramification as ϕ but is easier to analyze. The construction of ψ parallels [6, 3.2], using [3] and [1, Theorem 4].

3. Decreasing the conductor

Let $\phi : Y \to \mathbb{P}^1_k$ be a G-Galois cover branched at only one point and having inertia $I \simeq \mathbb{Z}/p \rtimes \mu_m$ and conductor j. When $G \neq \mathbb{Z}/p$, there is a small set of values $j_{\text{min}}(I)$, depending only on I, consisting of the minimal possible conductors for ϕ. Let n be such that $m = n^r$ for n^r as in Section 1.

Definition 3.1. – Define $j_{\text{min}}(I) = \{j_{\text{min}}(I, a) : 1 \leq a \leq n, \gcd(a, n) = 1\}$ where $j_{\text{min}}(I, a) = 2m + n'$ if $a = 1$ and $n = p - 1$ and $j_{\text{min}}(I, a) = m + an'$ otherwise.

The cover ϕ has a non-isotrivial deformation in equal characteristic p if and only if $j \notin j_{\text{min}}(I)$, [4, Theorem 3.1.11]. If $j \notin j_{\text{min}}(I)$ then genus(Y_K) ≥ 2. Suppose $1 \leq a \leq n$ and $j \equiv an' \mod m$. If $G \neq \mathbb{Z}/p$ then $j \geq j_{\text{min}}(I, a)$, by [4, Lemma 1.4.3].

Definition 3.2. – Let $G(S) \subset G$ be the subgroup generated by all proper quasi-p subgroups G' such that $G' \cap S$ is a Sylow p-subgroup of G'. The group G is p-pure if $G(S) \neq G$.

This condition was introduced in [5]. If G is quasi-p with $|S| = p$, then G is p-pure if and only if G is not generated by all proper quasi-p subgroups $G' \subset G$ such that $S \subset G'$.

Proposition 3.3. – Let $\phi : Y \to X$ be the stable model of ϕ_K. If G is p-pure and has no (non-trivial) normal p-subgroups, then for some terminal component P_b of X_k, the curve $Y_b = \phi^{-1}(P_b)$ is connected.

483
Theorem 3.4. — Let G be a finite p-pure quasi-p group whose Sylow p-subgroups have order $p
eq 2$. Suppose there exists a G-Galois cover $\phi : Y \to P^1_k$ branched at only one point with inertia group $I \cong \mathbb{Z}/p \rtimes \mu_m$ and conductor $j \notin j_{\text{min}}(I)$. Then there exists a G-Galois cover $\phi_0 : Y_b \to P^1_k$ which is branched at only one point with inertia group $I_b \cong \mathbb{Z}/p \rtimes \mu_{m_b} \subset N_G(S)$ and conductor j_b satisfying $j_b/m_b < j/m$.

Proof. — By [4, Theorem 3.3.7], for some proper connected variety \mathcal{O}, there exists a family of G-Galois covers $\phi_\mathcal{O} : Y_\mathcal{O} \to P^1_\mathcal{O}$ of flat, proper, semi-stable \mathcal{O}-curves branched at only one \mathcal{O}-point such that: for some k-point ω, $\phi \cong \phi_\omega$; and for some K-point of \mathcal{O} the pullback $\phi_K : Y_K \to P^1_K$ has bad reduction.

Consider the stable model $\phi : Y \to X$ for ϕ_K. Since ϕ_K has bad reduction there are at least two terminal components of X_k. By Proposition 3.3, the cover is connected over one of the terminal components P_b. By Proposition 2.7, the restriction $\phi_b : Y_b \to P_b \cong P^1_k$ is separable. By Lemma 2.1, ϕ_b is branched only at ∞_b since no ramification of ϕ_K specializes to P_b. Over ∞_b, the cover ϕ_b has some inertia group $I_b \cong \mathbb{Z}/p \rtimes \mu_{m_b} \subset N_G(S)$ and some conductor j_b. By Theorem 2.8, $\sigma_b = j_b/m_b < j/m = \sigma$. □

Theorem 3.5. — Let G be a finite p-pure quasi-p group whose Sylow p-subgroups have order $p \neq 2$. For some $I \cong \mathbb{Z}/p \rtimes \mu_m \subset G$ and some $j \in j_{\text{min}}(I)$, there exists a G-Galois cover $\phi : Y \to P^1_k$ of smooth connected curves branched at only one point over which it has inertia group I and conductor j. In particular, $\text{genus}(Y) \leq 1 + \#G(p - 1)/2p$.

Proof. — By Abhyankar’s Conjecture [5, 6.5.3], for some I of the form $\mathbb{Z}/p \rtimes \mu_{m'}$ and some j', there exists a G-Galois cover $\phi : Y \to P^1_k$ with group G which is branched at only one point with inertia group I and conductor j'. If $j' \notin j_{\text{min}}(I)$, Theorem 3.4 implies there exists a G-Galois cover $\phi_b : Y_b \to P^1_k$ which is branched at only one point with inertia group $I_b \cong \mathbb{Z}/p \rtimes \mu_{m_b} \subset N_G(S)$ and conductor j_b satisfying $j_b/m_b < j'/m'$. We reiterate this process until the inertia group $I_b = \mathbb{Z}/p \rtimes \mu_{m_b}$ and conductor j_b satisfy $j_b/m_b \leq 2 + 1/(p - 1)$, which implies $j_b \in j_{\text{min}}(I)$. The condition on genus(Y) follows directly from Definition 3.1 and the Riemann–Hurwitz formula. □

Example 1. — Let $p = 11$. The simple group $G = M_{11}$ is quasi-11. The only maximal subgroup containing $\mathbb{Z}/11$ is $\text{PSL}_2(11)$, so G is 11-pure and $N_G(S) = \mathbb{Z}/11 \rtimes \mathbb{Z}/5$. By Theorem 3.5, there exists a G-Galois cover $\phi : Y \to P^1_k$ branched at only one point, either having inertia $\mathbb{Z}/11$ and conductor 2 or inertia $N_G(S)$ and conductor $6 \leq j \leq 9$.

References

484