Deformations of locally complete intersections

Catriona Maclean

Institut de mathématiques de Jussieu, Université Paris 6, 175, rue de Chevaleret, 75013, Paris, France
Received 8 November 2001; accepted after revision 1 July 2002
Note presented by Jean-Pierre Serre.

Abstract

Given a projective 1.c.i. scheme, $X \subset \mathbb{P}^{N}$, we show that X has a smooth formal neighbourhood in which X is globally a complete intersection; that is, X is the intersection of $\operatorname{codim}(X)$ hypersurfaces. To cite this article: C. Maclean, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 355-358. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Déformations des schémas localement intersections complètes

1. Introduction

If $X \subset \mathbb{P}^{N}(k)$ (k being any field) is a projective local complete intersection scheme, then X is not necessarily a global complete intersection in projective space - that is, X is not necessarily embedded in $\mathbb{P}^{N}(k)$ as the vanishing locus of codim X polynomials. It seems natural to ask whether this is true for more general ambient varieties. In particular, given such an X, we may wonder whether it can be embedded in some smooth Y as a globally complete intersection; i.e., the intersection of $\operatorname{codim}(X)$ hypersurfaces. The aim of this Note is to answer this question in the affirmative, at least formally, by proving the following result:

THEOREM 1.1. - Let $X \subset \mathbb{P}^{N}(k)$ be a projective local complete intersection scheme. Then there exists a smooth formal neighbourhood, X_{∞} of X, a vector bundle, V on X_{∞}, and a section $\sigma: X_{\infty} \rightarrow V$, such that

- V is a direct sum of line bundles,
- $r k(V)=\operatorname{codim}_{X_{\infty}} X$,
- X is schematically the zero locus of σ.

Remark. - I do not know whether or not this scheme X_{∞} may be choosen algebrisable.

[^0]
1.1. Idea of the proof

We will embed \mathbb{P}^{N} in a smooth space, W. The normal bundle of \mathbb{P}^{N} in W will be highly negative, and \mathbb{P}^{N} will be the zero locus of a section of a vector bundle, V, which is a direct sum of line bundles. We will consider the spaces \mathbb{P}_{n}^{N}, which will be cut out in W by $I_{\mathbb{P}^{N}}^{n}$, and will recursively construct an l.c.i. scheme X_{n} in \mathbb{P}_{n}^{N} extending X_{n-1}. If V is negative enough, the construction of X_{n} will be unobstructed, and we may therefore continue this construction to ∞ to obtain a formal neighbourhood, X_{∞} of X. We will also be able to impose that X_{∞} is smooth. X_{∞} will then satisfy all the requirements of the theorem.

2. Proof of Theorem 1

Let I_{X} be the ideal sheaf of X in \mathbb{P}^{N}. Since X is a l.c.i. subscheme of \mathbb{P}^{N}, the co-normal bundle I_{X} / I_{X}^{2} is a locally free sheaf of \mathcal{O}_{X} modules. We recall Serre's vanishing theorem, which may be found in [1]

PROPOSITION 2.1. - Let F be a coherent sheaf on X, a projective scheme. There exists an i such that, for all $a \geqslant i$ and for all $j \geqslant 1$, we have:

1. $H^{j}(X, F(a))=0$,
2. $F(a)$ is generated by its global sections.

We may therefore, in particular, choose m such that

1. $H^{1}\left(\left(I_{X} / I_{X}^{2}\right)^{*} \otimes \mathcal{O}_{X}(m)\right)=0$;
2. $\left(I_{X} / I_{X}^{2}\right)^{*} \otimes \mathcal{O}_{X}(m)$ is generated by its global sections.

We define:

- l, the dimension of $H^{0}\left(\left(I_{X} / I_{X}^{2}\right)^{*} \otimes \mathcal{O}_{X}(m)\right)$;
- W, the total space of the vector bundle $\mathcal{O}_{\mathbb{P}^{N}}(-m)^{\oplus l}$, in which \mathbb{P}^{N} is naturally embedded as the zero section;
- π, the projection $\pi: W \rightarrow \mathbb{P}^{N}$.

We denote by V the bundle $\mathcal{O}_{\mathbb{P}^{N}}(m)^{\oplus l}$ and by \mathbb{P}_{n}^{N} the n-th formal neighbourhood of \mathbb{P}^{N} in W, that is, the subscheme defined by the ideal $I_{\mathbb{P}^{N}}^{n}$. Let c be the codimension of X in \mathbb{P}^{N}.

The following proposition allows us to recursively construct neighbourhoods of X in \mathbb{P}_{n}^{N} in a compatible way:

Proposition 2.2. - If X_{n} is a l.c.i. subscheme of \mathbb{P}_{n}^{N}, such that $X_{n} \cap \mathbb{P}^{\mathbb{N}}=X$, and codim $X_{n} \subset \mathbb{P}_{n}^{N}=c$, then there exists X_{n+1}, an l.c.i. subscheme of \mathbb{P}_{n+1}^{N} such that

- $X_{n+1} \cap \mathbb{P}_{n}^{N}=X_{n}$,
- $\operatorname{codim}\left(X_{n+1}\right)=c$.

Proof. - If U is an open subscheme of \mathbb{P}^{N}, then we denote by U_{n} the open subscheme of \mathbb{P}_{n}^{N} whose underlying geometric space is U. Let

- U^{i} be an affine open covers of \mathbb{P}^{N}, such that $X_{n} \cap U_{n}^{i}$ is a complete intersection,
- $f_{1}^{i}, \ldots, f_{c}^{i} \subset H^{0}\left(U_{n}^{i}, I_{X^{n} \cap U_{n}^{i}}\right)$ a regular sequence for the ideal sheaf of $X_{n} \cap U_{n}^{i}$.

We denote $U^{i} \cap U^{j}$ by $U^{i, j}, X_{n} \cap U_{n}^{i}$ by X_{n}^{i} and $X_{n} \cap U_{n}^{i, j}$ by $X_{n}^{i, j}$.
For every i, d, we choose $\tilde{f}_{d}^{i} \in H^{0}\left(U_{n+1}^{i}, \mathcal{O}_{\mathbb{P}_{n+1}^{N}}\right)$ such that $\left.\tilde{f}_{d}^{i}\right|_{\mathbb{P}_{n}^{N}}=f_{d}^{i} . \tilde{f}_{d}^{i}$ is then a regular sequence in $\mathcal{O}_{U_{n+1}^{i}}$. We denote by I_{n+1}^{i} the ideal sheaf of $\mathcal{O}_{U_{n+1}^{i}}$ generated by the \tilde{f}_{d}^{i}, .
I_{n+1}^{i} defines an l.c.i subscheme of U_{n+1}^{i}, which we denote by \widetilde{X}_{n+1}^{i}. We will show that, after modification of the functions $\tilde{f}_{d}^{i}, I_{n+1}^{i}$ will be equal to I_{n+1}^{j} on $U_{n+1}^{i, j}$ and therefore, the \widetilde{X}_{n+1}^{i} 's may be glued together to form an 1.c.i subscheme, $X_{n+1} \subset \mathbb{P}_{n+1}^{N}$, satisfying the requirements of the proposition.

Consider the following exact sequence of $\mathcal{O}_{\mathbb{P}_{n+1}^{N}}$ modules:

$$
0 \rightarrow \operatorname{Sym}^{n+1}(V) \rightarrow \mathcal{O}_{\mathbb{P}_{n+1}^{N}} \rightarrow \mathcal{O}_{\mathbb{P}_{n}^{N}} \rightarrow 0
$$

$\operatorname{Sym}^{n+1}(V)$ is here considered with its $\mathcal{O}_{\mathbb{P}^{N}}$-module structure. We will now define a Cech cocycle

$$
h^{i, j} \in \Gamma\left(\left(I_{X_{n}} / I_{X_{n}}^{2}\right)^{*} \otimes_{\mathcal{O}_{X_{n}}} \operatorname{Sym}^{n+1}\left(\left.V\right|_{X}\right), U_{n}^{i, j}\right)
$$

whose vanishing will be a sufficient condition for \widetilde{X}_{n+1}^{i} to be compatible.
Given $f \in \Gamma\left(I_{X_{n}} / I_{X_{n}}^{2}, U_{n}^{i, j}\right)$, we now construct $h(f) \in \Gamma\left(\operatorname{Sym}^{n+1}\left(\left.V\right|_{X}\right), U^{i, j}\right)$. We choose

- $f^{\prime} \in \Gamma\left(I_{X_{n}}, U_{n}^{i, j}\right)$, extending f. This is possible since, U_{n}^{i} and U_{n}^{j}, and therefore $U_{n}^{i, j}$ are affine.
- $f^{\prime i} \in \Gamma\left(I_{n+1}^{i}, U_{n+1}^{i, j}\right)$ extending f^{\prime}.
- $f^{\prime j} \in \Gamma\left(I_{n+1}^{j}, U_{n+1}^{i, j}\right)$ extending f^{\prime}.

Then, $f^{\prime i}-f^{\prime j} \in \operatorname{Sym}^{n+1}(V)$ and $f^{\prime i}-\left.\left.f^{\prime j}\right|_{X} \in \operatorname{Sym}^{n+1}(V)\right|_{X}$.
The difference $f^{\prime i}-\left.f^{\prime j}\right|_{X}$ is independent of the choice of $f^{\prime i}$. Indeed, the choice of a different $f^{\prime i}$ alters $f^{\prime i}-f^{\prime j}$ by an element of $I_{n+1}^{i} \cap \operatorname{Sym}^{n+1}(V)$, which is equal to $\operatorname{Sym}^{n+1}(V) \otimes I_{X}$, since $f_{1}^{i}, \ldots, f_{c}^{i}$ is a regular sequence. The same argument show that $f^{\prime i}-\left.f^{\prime j}\right|_{X}$ is independent of the choice of $f^{\prime j}$.

Likewise, $f^{\prime i}-\left.f^{\prime j}\right|_{X}$ is independent of f^{\prime}. If $f^{\prime \prime}=f^{\prime}+g_{1} g_{2}, g_{i} \in I_{X_{n}}$, then we may choose

$$
f^{\prime \prime i}=f^{\prime i}+g_{1}^{i} g_{2}^{i}, \quad f^{\prime \prime j}=f^{\prime j}+g_{1}^{j} g_{2}^{i}
$$

and hence $f^{\prime \prime i}-f^{\prime \prime j}=\left(g_{1}^{i}-g_{1}^{j}\right) g_{2}^{i}+f^{\prime i}-f^{\prime j}$, whence $\left.\left(f^{\prime \prime i}-f^{\prime \prime j}\right)\right|_{X}=\left.\left(f^{\prime i}-f^{\prime j}\right)\right|_{X}$.
We may therefore define $h^{i, j}$ by $h^{i, j}(f)=f^{\prime i}-\left.f^{\prime j}\right|_{X}$. We now need the following lemma:
LEMMA 2.3. - If $h_{i, j}=0$, then I_{n+1}^{i} and I_{n+1}^{j} are compatible on the intersection $U^{i, j}$.
Proof. - If $h^{i, j}=0$, then, for every $f \in \Gamma\left(I_{n+1}^{i}, U^{i, j}\right)$, there exists $g \in \Gamma\left(I_{n+1}^{j}, U^{i, j}\right)$, such that

$$
(g-f) \in I_{X} \otimes_{\mathcal{O}_{X}} \operatorname{Sym}^{n+1}(V)
$$

On $U^{i, j}$, we have $I_{X} \otimes_{\mathcal{O}_{\mathbb{P}^{N}}} \operatorname{Sym}^{n+1}(V)=I_{n+1}^{i} \otimes_{\mathcal{O}_{\mathbb{P}_{n+1}^{N}}} \operatorname{Sym}^{n+1}(V)$ and therefore $(g-f) \in I_{n+1}^{j}$ whence $f \in I_{n+1}^{j}$.

We now finish the proof of the proposition. We alter the regular sequences \tilde{f}_{d}^{i} so that $h^{i, j}=0$. We note that

$$
H^{1}\left(\left(I_{X_{n}} / I_{X_{n}}^{2}\right)^{*} \otimes_{\mathcal{O}_{X_{n}}} \operatorname{Sym}^{n+1}\left(\left.V\right|_{X}\right)\right)=H^{1}\left(\left(I_{X} / I_{X}^{2}\right)^{*} \otimes_{\mathcal{O}_{X}} \operatorname{Sym}^{n+1}\left(\left.V\right|_{X}\right)\right)=0
$$

and that, therefore, there exist elements $h_{i} \in \Gamma\left(\left(I_{X_{n}} / I_{X_{n}}^{2}\right)^{*} \otimes \operatorname{Sym}^{n}\left(\left.V\right|_{X}\right), U_{i}\right)$, such that

$$
h_{i, j}=h_{i}-h_{j}
$$

We now choose a new regular sequence \bar{f}_{d}^{i}, in such a way that $\left.\bar{f}_{d}^{i}\right|_{X}=\left.\tilde{f}_{d}^{i}\right|_{X}+h_{i}\left(f_{d}^{i}\right)$. These sequences generate new ideal sheaves \bar{I}_{n+1}^{i}. It is immediate from the construction that the associated cocycle $\bar{h}_{i, j}$ is 0 , and hence, by the previous lemma, the sheaves \bar{I}_{n+1}^{i} are compatible on the intersections. Therefore, the \bar{I}_{n+1}^{i} 's glue together to form a global ideal sheaf, $I_{n+1} . I_{n+1}$ defines a subscheme of \mathbb{P}_{n+1}^{N}, which we denote by $X_{n+1} . X_{n+1}$ is l.c.i, and $\operatorname{codim}\left(X_{n+1}\right)=c$ since \bar{f}_{d}^{i} is a regular sequence for $X_{n+1} \cap U_{n+1}^{i} . X_{n+1}$ satisfies, therefore, all the requirements of the proposition.

The formal scheme $\lim n \rightarrow \infty X_{n}$ is then a formal neighbourhood of X in which X is embedded as the zero locus of the tautological section of $\pi^{*}\left(\mathcal{O}_{X}(-m)^{\oplus l}\right.$. It remains only to show that X_{∞} is smooth for
some choice of X_{n}. The smoothness of X_{∞} depends only on the choice of X_{2}. All the results we now quote on Kähler differentials may be found in [1].

Let π be the projection $\pi: \mathbb{P}_{2}^{N} \rightarrow \mathbb{P}^{N}$. The sheaf of Kähler differentials $\Omega_{k}^{1}\left(\mathbb{P}_{2}^{N}\right) \otimes \mathcal{O}_{\mathbb{P}^{N}}$ is canonically isomorphic to $\pi^{*} \Omega_{k}^{1}\left(\mathbb{P}^{N}\right) \oplus V$. The universal derivative map: $d: I_{X_{2}} / I_{X_{2}}^{2} \rightarrow \Omega_{k}^{1}\left(\mathbb{P}_{2}^{N}\right) \otimes \mathcal{O}_{X_{2}}$ is an $\mathcal{O}_{X_{2}}$ linear map. After tensoring by \mathcal{O}_{X}, we obtain an \mathcal{O}_{X}-linear map:

$$
d_{X_{2}}: I_{X} /\left.\left.I_{X}^{2} \rightarrow \Omega_{k}^{1}\left(\mathbb{P}^{N}\right)\right|_{X} \oplus V\right|_{X}
$$

X_{∞} is smooth at x if $d_{X_{2}}(x)$ is injective. We now assocaite to any $\phi: I_{X} / I_{X}^{2} \rightarrow V_{X}$ a candidate space for X_{2}, X_{ϕ}, in such a way that X_{ϕ} will be smooth if $\phi(x)$ is injective for all $x . X_{\phi} \subset \mathbb{P}_{2}^{N}$ is defined by the formula:

$$
\left.f \in I_{X_{\phi}} \Leftrightarrow f\right|_{\mathbb{P}^{N}} \in I_{X} \quad \text { and }\left.\quad\left(f-\pi^{*}\left(\left.f\right|_{\mathbb{P}^{N}}\right)\right)\right|_{X}=\phi(f)
$$

For this X_{ϕ}, we have that

$$
d_{X_{\phi}}(f)=\pi^{*} d f+\phi(f)
$$

whence $d_{X_{\phi}}(x)$ is injective for all x if $\phi(x)$ is injective for all x. It remains only to find $\phi \in \operatorname{Hom}\left(I_{X} / I_{X}^{2}, V\right)$ such that $\phi(x)$ is injective for every x. Now, $\operatorname{Hom}\left(I_{X} / I_{X}^{2}, \mathcal{O}_{X}(m)\right)$ is globally generated. If v_{1}, \ldots, v_{l} is a basis for $H^{0}\left(\operatorname{Hom}\left(I_{X} / I_{X}^{2}, \mathcal{O}_{X}(m)\right)\right)$, then

$$
\phi=\bigoplus_{b=1}^{l} v_{b}: I_{X} / I_{X}^{2} \rightarrow V
$$

is injective on $I_{X} / I_{X}^{2}(x)$ for every x.
Remark. - One might wonder whether this work holds for quasi-projective X. We have used the fact that X is projective only to invoke Serre's vanishing theorem. Suppose that X is a quasi projective variety - that is, X is the complement in an projective variety, V, of an closed subvariety of V, U. The results of this paper will hold for X, provided that:
(A) For any coherent sheaf, \mathcal{F} on X, there exists k such that for any $m \geqslant k H^{1}(\mathcal{F}(m))=0$ and $\mathcal{F}(m)$ is generated by its global sections.

If U is of pure codimension 1 , then X is affine, and the condition (A) is immediately satisfied. Further, there is an exact sequence:

$$
H^{1}(V, \mathcal{F}(m)) \rightarrow H^{1}(X, \mathcal{F}(m)) \rightarrow H_{U}^{2}(V, \mathcal{F}(m))
$$

where $H_{U}^{2}(V, \mathcal{F}(m))$, the local cohomology of F along U, vanishes if every component of U has codimension $\geqslant 3$ (see [2] for more details). It follows that the results of this Note are, in fact, also valid for $X=V / U$, where V is projective and U is a closed subvariety containing no codimension 2 component.

Acknowledgements. I would like to express my gratitude to my supervisor, Claire Voisin, for her unstinting help and guidance. I would also like to thank Yves Lazlo, who was always ready to answer my questions, and the referee, whose generous comments and help have much improved this work.

References

[1] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., Vol. 52, Springer.
[2] A. Grothendieck, S.G.A., Facsimile 1, exposes 1-3, IHES, 1962.

[^0]: E-mail address: maclean@clipper.ens.fr (C. Maclean).

