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Note presented by Philippe G. Ciarlet.

Abstract We compute the homogenized-concentrated limit for a pair of non-linearly coupled diffu-
sion equations in a perforated cylindric domain with coaxial cylindric holes periodically
distributed along its axis. This problem arises from visual transduction.To cite this article:
D. Andreucci et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 329–332.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Homogénéisation et capacité concentrée dans les structures
réticulaires presque déconnectées

Résumé On calcule la limite homogénéisée-concentrée pour deux équations de diffusion couplées de
façon non linéaire dans un domaine cylindrique avec une distribution périodique de cavités
cylindriques coaxiales le long de son axe. Ce problème émane de la transduction visuelle.
Pour citer cet article : D. Andreucci et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 329–
332.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

A rod outer segment is a light-capturing device in vertebrates. It consists of a cylinder of heightH and
cross section a circleDR+σεo containing a layered distribution ofno equal, coaxial thin cylinders,Ci of
thicknessεo and radiusR calleddiscs [8]. In what follows,ε will denote a parameter ranging over(0, εo].
Forε = εo Fig. 1 corresponds to the physical configuration of the rod outer segment.

Notation: DR circle of radiusR; �ε = DR+σε × (0,H); �o = DR × (0,H); Sε = {DR+σε − DR} ×
(0,H) outer shell; Co =DR × (0, ε); Io =DR × (0, νε); Ci equispaced, equiaxial cylinders congruent to
Co, calleddiscs in phototransduction;Ii equispaced, equiaxial cylinders congruent toIo interdiscal spaces
betweenCi andCi+1; Li lateral boundary of the discsCi ; �i lateral boundary of the interdiscal spacesIi ;
F±
i upper and lower faces of the discsCi ; ∂±Ii upper and lower faces of interdiscal spacesIi ; ∂+Ii =

F−
i+1, ∂−Ii = F+

i , i = 1,2, . . . , (n − 1); θo = (volume of the union ofCi )/(volume of�o) = 1/(1+ ν);

�̃ε =�ε − ⋃n
i=1Ci space available for diffusion.

The space variable is denoted byx = (x, z), wherex = (x1, x2) andz is the vertical coordinate. Moreover,
σ andν denote fixed positive numbers.
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Figure 1. – The rod outer segment.

As photons hit the rod, they are captured by the discs and trigger a biochemical cascade whose net effect
is the depletion of cyclic Guanilate Monophosphate (cGMP). Depletion of cGMP causes the closing of
ionic channels located at the lateral boundary of the rod, thereby generating a variation of ionic current.
Such variations are at the basis of the mechanism of vision. A precise description of the phototransduction
cascade is in [1,8]. cGMP is depleted through a coupled diffusion process of cGMP and Calcium Ca2+
within �̃εo . Denoting byuεo andvεo the volumic, dimensionless concentrations of cGMP and Ca2+,

uεo,t − ku�uεo = 0, vεo,t − kv�vεo = 0 in �̃εo,T = �̃εo × (0, T ]; (1)
whereku, kv are given positive constants. Their non-linear coupling occurs through their fluxes on the faces
on the discsCi , i.e.,1

kuuεo,z|F±
i

= 1

2
νεo

{ ± γouεo ∓ f (uεo, vεox, t)
}
, i = 1,2, . . . , no, (2)

whereγo is a given positive constant andf is a given, positive, bounded, smooth function of its arguments.
Also cGMP does not penetrate the discsCi through their lateral boundaries, nor it can exit the boundary of
the rod. Calciumvεo does not penetrate the discsCi at all, nor outflows the rod through its bottomx = 0 or
top z =H . However it can flow through the lateral boundary of the rod,

{influx of vεo through|x| =R + σεo
} = −g1(vεo)+ g2(uεo) (3)

for given, positive, bounded, smooth functionsg1(·) andg2(·). The derivation of the model (1)–(3) is in [1],
where the various terms are discussed and justified.

1.1. Homogenization and concentrated capacity
Diffusion of cGMP and Ca2+ occurs in two thin compartments; the interdiscal spacesIi and the outer

shellSεo . Since their thickness is of the order ofεo 
 R we regardεo as a parameter to be let go to zero.
The process is carried so that asεo → 0 the number of discs increases but the ratioθo between the volume
occupied by the discs and the volume of the rod remains constant. Asεo → 0 the outer shell tends to a
cylindrical surfaceS. Information on diffusion in thin domains is preserved by concentrating the capacities.
Essentially the coefficients in the diffusion equation are scaled to compensate for the shrinking of the outer
shell, so that the total mass remains stable in the limit. The rod outer segment tends to the cylinder�o with
no discs within it. The homogenized-concentrated limit problem is in Section 3.

1.2. Novelty and significance
Limits of concentrated-capacity or homogenized limits are extensively treated in the literature in separate

settings [3–5,7]. A novelty of this investigation is their simultaneous occurrence. However the main
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mathematical significance is in the technical computation of the homogenized limit. In most of the
homogenization literature the ‘holes’ to be removed are ‘ball-like’ and their shrinking to points does not
disconnect ther ancestor domain. The cylindersCi tend to disconnect the rod outer segment. The difficulty
is overcome by establishing that the approximating solutions{uε} and{vε} satisfyingε-versions of (1)–(3)
are equi-Hölder continuous away from the outer shell. Whence such a compactness has been established, the
actual computation of the homogenized limit requires that the approximating solutions be extended in some
fashion with regular functions defined in the wholeR

3. Such an extension is realized by the Kirzbraun–
Pucci theorem valid for functions with concave modulus of continuity ([6], p. 197). This is also a novel
approach to homogenization.

2. Pointwise formulation of theε-problem
The functions in play areuε, vε representing dimensionless approximations of cGMP and Ca2+ and

defined in�̃ε. It is convenient to distinguish them asx ranges over the interdiscal spaces or over the
outer shell by denoting byuint

ε , vint
ε respectively the restrictions ofuε, vε to

⋃n
i=0 Ii and byuext

ε , vext
ε their

restrictions toSε. For a domainA ⊂ R
N we setAT =A× (0, T ] for some givenT > 0.

2.1. Equations in the interdiscal spacesIi

uε,t − ku�uε = 0, vε,t − kv�vε = 0 on Ii,T for i = 0,1, . . . , n; (4)

uε(·,0)= uo,ε, vε(·,0)= vo,ε for t = 0 andx ∈ �̃ε; (5)

kuuε,z = ∓1

2
νε

(
γouε − f (uε, vε, x, t)

)
on∂±Ii,T ; (6)

uε,z = 0 on∂−I0,T and∂+In,T ; (7)

vε,z = 0 on∂±Ii,T for i = 0,1, . . . , n; (8)

ku∇uint
ε · x

R
= εo

ε
ku∇uext

ε · x
R

on�i,T ; (9)

kv∇vint
ε · x

R
= εo

ε
kv∇vext

ε · x
R

on�i,T ; (10)

uint
ε = uext

ε , vint
ε = vext

ε on�i,T . (11)

2.2. Equations in the outer shell

uε,t − ku�uε = 0, vε,t − kv�vε = 0 onSε,T ; (12)

∇uε · x
R

= 0, ∇vε · x
R

= 0 onLi,T i = 1,2, . . . , n; (13)

∇uε · x

R + σε
= 0 on|x| =R + σε; (14)

εo

ε
kv∇vε · x

R + σε
= −g1(vε)+ g2(uε) on |x| =R + σε; (15)

uε,z = 0, vε,z = 0 for z = 0 andz =H. (16)

The initial conditions are inherited from (5) for the portionsSε of �̃ε. Bothuε andvε are continuous from
within each of the interdiscal spacesIi into Sε through the cylindrical surface�i , i.e., (11) continues to
hold. The flux relations (9), (10) are also in force and form part of the boundary conditions to be associated
with (12)–(16).

3. The homogenized-concentrated limit

As ε → 0 the layered domaiñ�ε tends to the cylinder�o and the outer shellSε tends to the surface
S = {|x| = R} × (0,H). The family of solutions to problems (4)–(16) tends to two pairs of functions, i.e.,
{u,v} defined in�o,T called the interior limit and{û, v̂} defined inST called the limit on the outer shell.
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3.1. The interior limit: u,v ∈ C(0, T ;L2(�o)), |∇xu|, |∇xv| ∈ L2(�o,T ). –{
ut − ku�xu= {

γou− f (u, v, x, t)
}

vt − kv�xv = 0
in D′(�o,T ). (17)

These can be regarded as diffusion processes, parametrized withz ∈ (0,H), taking place on the circle
{|x|<R}. The homogenized limit transforms the boundary fluxes in (6) into source terms holding in�o.

Denote coordinates on the limit surfaceS by θ ∈ (0,2π] andz ∈ (0,H). The levelz traces onS a circle
(z = {|x| =R} × {z}. The boundary limitŝu, v̂ are functions ofθ, z, t .

3.2. The limit in outer shell: û, v̂ ∈ C(0, T ;S), |(ûz, ûθ )|, |(v̂z, v̂θ )| ∈ L2(ST ). – These boundary limits
û, v̂ are related to the interior limitsu,v in two ways. Firstu andv have traces on{|x| = R} in L2(ST ) and,

û(θ, z, t)= u(x, z, t)||x|=R, v̂(θ, z, t)= v(x, z, t)||x|=R in L2(ST ). (18)
Second, denoting by�S the Laplace–Beltrami operator onS,


ût − ku�Sû= − (1−θo)ku

σεo
uρ

∣∣∣|x|=R

v̂ − kv�Sv̂ = − (1− θo)kv

σεo
vρ

∣∣∣|x|=R
+ 1

σεo

{
g1(v̂)− g2(û)

} in D′(ST ). (19)

The limit problem (17)–(19) consists of a system of diffusion equations taking place in different domains,
which are coupled through the fluxes exchanged at the common boundaries.

The regularity ofu, v does not insure thatuρ , vρ have traces onS. In this sense (19) is formal. The limit
problem (17)–(19) can be given the following rigorous weak form.

The functions{u,v} and{û, v̂} are in the stated regularity classes and satisfy the integral identities,

(1− θo)

{∫
�o,T

{−uϕt + ku∇xu · ∇xϕ}dx dt −
∫
�o

uoϕ(x,0)dx +
∫
�o,T

(
γou− f1(v)

)
ϕ dx dt

}

+ σεo

{∫
ST

{−ûϕt + ku∇Sû · ∇Sϕ}dηdt −
∫
S

ûoϕ(x,0)dη

}
= 0 (20)

for all testing functionsϕ ∈C1(�o,T ) vanishing fort = T ;

(1− θo)

{∫
�o,T

{−vψt + kv∇xv · ∇xψ}dx dt −
∫
�o

voψ(x,0)dx

}
(21)

+ σεo

{∫
ST

{−v̂ψt + kv∇S v̂ · ∇Sψ}dηdt −
∫
S

v̂oψ(x,0)dx + 1

σεo

∫
ST

{
g1(v̂)− g2(û)

}
ψ dηdt

}
= 0

for all testing functionsψ ∈ C1(�o,T ) vanishing fort = T . Proofs are in [2].
1 It is assumed that the photons generate source terms distributed on all the facesF±

i . One might visualize an
idealized experiment where a single photon is captured by a disc sayCio thereby generating a depletion term located
say onF−

io
. Mathematical modeling and analysis of this process are in [1,2].

References
[1] D. Andreucci, P. Bisegna, E. DiBenedetto, H.H. Hamm, Mathematical models of the dynamics of the second

messengers in visual transduction: Homogenization and concentrated capacity, Preprint, 2002.
[2] D. Andreucci, P. Bisegna, E. DiBenedetto, Homogenization and concentrated capacity limits for a problem in visual

transduction, Preprint, 2002.
[3] Ph.G. Ciarlet, V. Lods, Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations,

Arch. Rational Mech. Anal. 136 (1996) 119–161.
[4] D. Cioranescu, J. Saint Jean Paulin, Homogenization of Reticulated Structures, Appl. Math. Sci., Vol. 136, Springer,

New York, NY, 1998.
[5] P. Colli, J.F. Rodrigues, Diffusion through thin layers with high specific heat, Asymptotic Anal. 3 (1990) 249–263.
[6] E. DiBenedetto, Real Analysis, Birkhäuser, Boston, 2002.
[7] E. Magenes, Stefan problems with a concentrated capacity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1)

(1998) 71–81.
[8] E.N. Pugh, T.D. Lamb, Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification,

recovery and light adaptation, in: Handbook of Biological Physics, Vol. 3, Elsevier, 2000, Chapter 5.

332


