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Abstract We compute the homogenized-concentrated limit for a pair of non-linearly coupled diffu-
sion equations in a perforated cylindric domain with coaxial cylindric holes periodically
distributed along its axis. This problem arises from visual transductwnite thisarticle:
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Homogénéisation et capacité concentrée dans les structures
réticulaires presque déconnectées

Résumé On calcule la limite homogénéisée-concentrée pour deux équations de diffusion couplées de
fagcon non linéaire dans un domaine cylindrique avec une distribution périodique de cavités
cylindriques coaxiales le long de son axe. Ce probleme émane de la transduction visuelle.
Pour citer cet article: D. Andreucci et al., C. R. Acad. Sci. Paris, Ser. | 335 (2002) 329—

332.
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1. Introduction

A rod outer segment is a light-capturing device in vertebrates. It consists of a cylinder of Heayid
cross section a circl®g.,., containing a layered distribution af, equal, coaxial thin cylinders}; of
thickness,, and radiusk calleddiscs [8]. In what follows, s will denote a parameter ranging ov&, &,].
Fore = ¢, Fig. 1 corresponds to the physical configuration of the rod outer segment.

Notation: Dp circle of radiusR; Q; = Dryoe X (0, H); Qo= Dg x (0, H); S¢ = {Drtoe — Dp} x
(0, H) outer shell; C? = Dg x (0,¢); I° = Dg x (0, ve); C; equispaced, equiaxial cylinders congruent to
C?, calleddiscsin phototransduction; equispaced, equiaxial cylinders congruenktanterdiscal spaces
betweenC; andC;1; L; lateral boundary of the disas;; A; lateral boundary of the interdiscal spadgs
FijE upper and lower faces of the dis€s; d*1; upper and lower faces of interdiscal spadgsd/; =

i1 0 L= Fi+, i=12,...,(n—1); 6, = (volume of the union o€;)/(volume of2,) = 1/(1+ v);
Q. = Q. — ", C; spaceavailablefor diffusion.

The space variable is denotedby= (¥, z), wherex = (x1, x2) andz is the vertical coordinate. Moreover,

o andv denote fixed positive numbers.
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Figure 1. — The rod outer segment.

As photons hit the rod, they are captured by the discs and trigger a biochemical cascade whose net effect
is the depletion of cyclic Guanilate Monophosphate (cGMP). Depletion of cGMP causes the closing of
ionic channels located at the lateral boundary of the rod, thereby generating a variation of ionic current.
Such variations are at the basis of the mechanism of vision. A precise description of the phototransduction
cascade is in [1,8]. cGMP is depleted through a coupled diffusion process of cGMP and Cal&tim Ca
within ., . Denoting byu., andv,, the volumic, dimensionless concentrations of cGMP anti Ca

e, 1 —kyAug, =0, Ve, —kyAve, =0 INQq, 7=, x (0, T]; (1)
wherek,, k, are given positive constants. Their non-linear coupling occurs through their fluxes on the faces
on the discg;, i.e.,!

kuusg,z|pii = %Vgo{ £ Youe, F fue,, Ve, x, t)}, i=12,...,n,, (2
wherey, is a given positive constant andis a given, positive, bounded, smooth function of its arguments.
Also cGMP does not penetrate the diggsthrough their lateral boundaries, nor it can exit the boundary of
the rod. Calcium,, does not penetrate the dis€sat all, nor outflows the rod through its bottom= 0 or
topz = H. However it can flow through the lateral boundary of the rod,

{influx of vg, through|X| = R + o0&, } = —g1(vs,) + g2(us,) (3)
for given, positive, bounded, smooth functigng-) andg>(-). The derivation of the model (1)—(3) is in [1],
where the various terms are discussed and justified.

1.1. Homogenization and concentrated capacity

Diffusion of cGMP and C&" occurs in two thin compartments; the interdiscal spagemd the outer
shell S,,. Since their thickness is of the orderqf « R we regarce, as a parameter to be let go to zero.
The process is carried so that&as— 0 the number of discs increases but the ragibetween the volume
occupied by the discs and the volume of the rod remains constant, As0 the outer shell tends to a
cylindrical surfaceS. Information on diffusion in thin domains is preserved by concentrating the capacities.
Essentially the coefficients in the diffusion equation are scaled to compensate for the shrinking of the outer
shell, so that the total mass remains stable in the limit. The rod outer segment tends to the Qylinitar
no discs within it. The homogenized-concentrated limit problem is in Section 3.

1.2. Novelty and significance

Limits of concentrated-capacity or homogenized limits are extensively treated in the literature in separate
settings [3-5,7]. A novelty of this investigation is their simultaneous occurrence. However the main
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mathematical significance is in the technical computation of the homogenized limit. In most of the
homogenization literature the ‘holes’ to be removed are ‘ball-like’ and their shrinking to points does not
disconnect ther ancestor domain. The cylindgéréend to disconnect the rod outer segment. The difficulty
is overcome by establishing that the approximating solutjapsand{v. } satisfyinge-versions of (1)—(3)
are equi-Hdolder continuous away from the outer shell. Whence such a compactness has been established, the
actual computation of the homogenized limit requires that the approximating solutions be extended in some
fashion with regular functions defined in the wh®é. Such an extension is realized by the Kirzbraun—
Pucci theorem valid for functions with concave modulus of continuity ([6], p. 197). This is also a novel
approach to homogenization.
2. Pointwise formulation of the e-problem

The functions in play are., v representing dimensionless approximations of cGMP arfd Gand
defined inQ2.. It is convenient to distinguish them asranges over the interdiscal spaces or over the
outer shell by denoting by'™, v!" respectively the restrictions af, v, to J/_oZ; and byu®t, v®! their

e

restrictions taS,. For a domaimrA ¢ R we setAr = A x (0, T for some giveril > 0.
2.1. Equations in the interdiscal spaceg;

uer —kyAue =0, ve;—kyAve=0 onlrfori=0,1,...,n; (4)
ue(,0) =upe, ve(-,0) =14, forr=0andx e QS; ®)
1

kuus,z:qzéve(youg—f(ug,vg,x,t)) Onailigr; (6)

Ue.. =0 ond~ Ior andd™ I, 7; (7

US,ZZO onaili,T fori=0,1,...,n; (8)
int X _ %o t X )

ky Vurt - R ?kuvugx ‘R onA;r; 9
int X _ o t X .

ky Vo't = ?kqufX ‘R onA;r; (10)

uLnt — uSXt, ant — vgext on Ai,T- (11)

2.2. Equations in the outer shell

Uegr —kyAue =0, ve;—kyAve=0 onsSe r; (12)
X X
wg;:o, va-ﬁzo onL;7 i=12,...,n; (13)
X

Vug - =0 on|x|=R ; 14
L x| +o¢ (14)

€ X

Ly Vg - ——— = —g1(vs) + g2(ue) ON[X| =R +0e; (15)
e R+o¢

us; =0, wv,,=0 forz=0andz = H. (16)

The initial conditions are inherited from (5) for the portidfof Q.. Bothu, andv, are continuous from
within each of the interdiscal spacé&sinto S, through the cylindrical surfaca;, i.e., (11) continues to
hold. The flux relations (9), (10) are also in force and form part of the boundary conditions to be associated
with (12)—(16).
3. The homogenized-concentrated limit

As ¢ — 0 the layered domaiﬁi9 tends to the cylindef2, and the outer shelf, tends to the surface
S ={|x| = R} x (0, H). The family of solutions to problems (4)—(16) tends to two pairs of functions, i.e.,
{u, v} defined inS2, r called the interior limit andi, v} defined inSr called the limit on the outer shell.
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3.1 Theinterior limit: u, v € C(0, T; L3(,)), | Vxul, |V5v| € LA(Q20.7). —
ek LA L (L) ar)
Vr — TV =
These can be regarded as difflﬁsi%n processes, parametrized witd, H), taking place on the circle
{|x] < R}. The homogenized limit transforms the boundary fluxes in (6) into source terms holdixyg in
Denote coordinates on the limit surfagdy 6 € (0, 27 ] andz € (0, H). The levelz traces orS a circle
¢, ={|X| = R} x {z}. The boundary limitgi, v are functions 09, z, r.

3.2 Thelimitinouter shell: &, 0 € C(0, T; S), |(it2, @ig)|, |(02, Dg)| € L3(St). — These boundary limits
u, v are related to the interior limits, v in two ways. Firsiz andv have traces ogﬂ = R}in L%(S7) and,

00,z,1) =u®®, z,0)|g=r, 00,20 =v& 2. 0)|x=r INL(Sr). (18)
Second, denoting b s the Laplace—Beltrami operator ¢h
~ oo (1_90)]%1
U R A= T | in D' (57) (19)
n T)-
. . A—6,)k 1 R R
v—kUAsvz—#v _ +—{g1(v)—g2(u)}
X|I=R o€

The limit problem (17)—(19) consigtgoof a system of diffusion equations taking place in different domains,
which are coupled through the fluxes exchanged at the common boundaries.

The regularity oft, v does not insure that,, v, have traces of. In this sense (19) is formal. The limit
problem (17)—(19) can be given the following rigorous weak form.

The functionqu, v} and{u, v} are in the stated regularity classes and satisfy the integral identities,

(1—90){/ {—u@; + k,Vzu - Vxo} dx dt—/ uep(x,0) dx+/ (you — fl(v))gadx dt}
Qo,T Q2 QO,T

+oso{/ {—ﬁ¢t+kuvsﬁ-vsw}dndt—/ﬁow(x,o)dn}zo (20)

St S

for all testing functiong € C1(R2,.7) vanishing forr = T;

1- 90){/ {—vy + ky Vxv - Ve ) dx de —/ Vo (x,0) dx} (22)
QU.T Qp

n n - 1 - N
+aeo{/ (=6 + kst Vs dndt = [ Guce e+ — [ {ad) —g2<u>}wdndt} 0

Sr s 0¢&o JSr

for all testing functions) € C1(Q,.7) vanishing forr = T'. Proofs are in [2].

11t is assumed that the photons generate source terms distributed on all the")"éc@e might visualize an
idealized experiment where a single photon is captured by a dis€;gapereby generating a depletion term located

say onFl.:. Mathematical modeling and analysis of this process are in [1,2].
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