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Abstract We prove the vanishing of the Â-genus of compact smooth manifolds with finite second
homotopy group and endowed with smooth S1 actions. These manifolds are not necessarily
spin, hence, this vanishing extends that of Atiyah and Hirzebruch on spin manifolds with
S1 actions. The proof is accomplished by proving a rigidity theorem under circle actions
of the elliptic genus on these manifolds. To cite this article: H. Herrera, R. Herrera, C. R.
Acad. Sci. Paris, Ser. I 335 (2002) 371–374.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Un résultat sur les variétés non-spinorielles de genres Â et elliptique
munies d’actions de S1

Résumé On montre que le Â-genre d’une variété lisse, compacte munie d’un second groupe d’homo-
topie fini et dotée d’une action de S1 est égal à zéro. Ces variétés ne sont pas nécessairement
spinorielles de sorte que ce théorème d’annulation étend le résultat d’Atiyah–Hirzebruch
établi pour des variétés spinorielles avec actions de S1. La démonstration est faite à par-
tir d’un théorème de rigidité sous des actions de S1 de genre elliptique sur ces variétés.
Pour citer cet article : H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 335 (2002)
371–374.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The main results of this paper are the following vanishing theorem and a rigidity theorem stated below
(Theorem 2.1).

THEOREM 1.1. – Let M be a 2n-dimensional, oriented, compact, connected, smooth manifold with
finite second homotopy group, and endowed with a smooth S1 action. Then

Â(M) = 0.
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This vanishing theorem is new since it does not follow from results on spin (nor spinc, nor spinh)
manifolds, and the manifolds under consideration are not necessarily of this type. Hence, Theorem 1.1
extends that of Atiyah and Hirzebruch on spin manifolds endowed with smooth S1 actions [1]. Furthermore,
such manifolds may admit no spin structure and, therefore, have neither spin bundle, nor spinors, nor Dirac
operator. This means that the characteristic number Â(M) is, a priori, a rational number and that we cannot
estimate Â(M) in the usual index-theoretical way. We prove this theorem by means of the “rigidity under S1

actions” of the elliptic genus of Ochanine [8] on these manifolds.
The Note is organized as follows. In Section 2 we define the elliptic genus, state the Rigidity Theorem 2.1,

and outline the proof of Theorem 1.1. In Section 3 we outline the proof of Theorem 2.1 along the lines of
Bott and Taubes [2]. In Section 4 we give some applications. The full proofs of the theorems and further
applications will appear in [4].

2. Rigidity and vanishing theorems

Let
∧±

c be the even and odd complex forms, respectively, on an oriented 2n-dimensional smooth
Riemannian manifold M , with respect to the Hodge star operator ∗. The signature operator ds : ∧+

c → ∧−
c

acting on forms is elliptic, and the virtual dimension of its index equals the signature τ (M). By means of a
connection on a complex vector bundle W on M one can twist the signature operator to forms with values
in W , ds ⊗ W : ∧+

c (W) → ∧−
c (W). This operator is also elliptic and the virtual dimension of its index is

denoted by τ (M,W).
Let T = T M ⊗ C be the complexified tangent bundle of M . Let Ri be the sequence of (representations)

bundles defined by the formal power series

R(q,T ) =
∞∑
i=0

Riq
i =

∞⊗
i=1

∧
qi

T ⊗ ⊗∞
i=1 Sqi T ,

where SaT = ∑∞
j=0 aj Sj T ,

∧
a T = ∑∞

j=0 aj
∧j

T , and SjT ,
∧j

T denote the j -th symmetric and
exterior tensor powers of T respectively. We refer the reader to [5] for an introduction to the subject.

DEFINITION 2.1. – The elliptic genus of M is defined by the following power series

τq(M) =
∞∑
i=0

τ (M,Ri)q
i.

If M is endowed with an S1 action, the equivariant genus τq(M)g is defined by the analogous q-series using
equivariant twisted signatures as coefficients, for any g ∈ S1.

THEOREM 2.1 (Rigidity theorem). – Let M be an 2n-dimensional, oriented, compact, smooth manifold
with finite second homotopy group and endowed with a smooth S1 action. Then we have

τq(M) = τq(M)g (1)

for every g ∈ S1.

Sketch of proof of Theorem 1.1. – Assume dim(M) = 2n ≡ 0 mod4. According to Theorem 2.1, the value
of τq(M)g does not depend on g. Following [6] we apply the Atiyah–Segal G-signature theorem: τq(M)g
can be expressed in terms of the fixed point set Mg of g and the action of g in the normal bundle of
Mg ⊂ M . Let g = −1 ∈ S1. The self-intersection Mg ◦ Mg is oriented and smooth. In [6], Hirzebruch and
Slodowy showed that τq(M)g = τq(Mg ◦ Mg), and by Eq. (1), τq(M) = τq(Mg ◦ Mg).
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The expansion of τq(M) at the other cusp [5] can be written as the following power series,

τ̃q (M) = 1

qn/4

∞∑
j=0

Â(M,R′
j )q

j ,

where R′
j is a sequence of representations in terms of T starting with R′

0 = 1, R′
1 = −T , etc. By rigidity, it

also satisfies

τ̃q (M) = τ̃q

(
Mg ◦ Mg

)
. (2)

The codimension of Mg is positive and even, therefore the right-hand side of (2) has a pole of order
less than n/4, which implies that the coefficient of qn/4 on the left-hand side of (2) must vanish, i.e.
Â(M) = 0. ✷
3. Sketch of the proof of the Rigidity theorem

The proof of Theorem 2.1 is along the lines of [2], to which we refer the reader for the notation. The fixed
points of an S1 action on M fall into connected components {P } which are oriented smooth submanifolds.
Let P be a component of the fixed point set, so that T splits as T |P = T P ⊕ ⊕

E#
i , where E#

i denotes
the underlying real bundle of the complex bundle Ei on which S1 acts by sending ξ to ξmi . Applying the
Atiyah–Segal equivariant index theorem we obtain the following localization formula

τq(M) =
∑
P

µ(P ).

The contribution µ(P) of P to τq(M) is the index of the signature operator on P twisted by an appropiate
power series in the Ei ’s [2]. Both µ(P) and τq(M) are meromorphic functions on Tq2 = C∗/q2 (the non-
zero complex numbers modulo the multiplicative group generated by q2 �= 0). The proof of Theorem 2.1
depends on proving that τq(M) has no poles at all on Tq2 , which implies that τq(M) is a constant.

This will follow from carrying out localizations to intermediate (auxiliary) submanifolds. They are the
submanifolds Mk of fixed points under the action of the subgroup Zk ⊂ S1. The argument of the proof
follows as in [2] with the exception of two technical points due to the (possible) non-spin nature of the
manifold: (i) we have to prove that the submanifolds Mk are orientable; (ii) we have to prove that it is
possible to choose an orientation of Mk compatible with M and all the components P contained in Mk .
The following lemma addresses (i), and is the analogue of [2, Lemma 10.1] in our set-up.

LEMMA 3.1. – Let M be an oriented 2n-dimensional smooth manifold endowed with a smooth S1

action. Consider Zk ⊂ S1 and its corresponding action on M . If k is odd then the fixed point set Mk of
the Zk action is orientable. If k is even and Mk contains a fixed point of the S1 action, then Mk is also
orientable.

Point (ii) is the content of [2, Lemma 9.3] and is equivalent to the verification of the even parity of
the first Chern class of the tangent bundle T M evaluated on S1-invariant 2-spheres which contain exactly
two S1-fixed points from disjoint connected components of {P }. In our non-spin set-up, this is proved by
applying [3, Theorem V], which implies that such a number is identically zero.

4. Application

An oriented, connected, irreducible, Riemannian 4n-manifold M is called a quaternion-Kähler manifold,
n � 2, if its linear holonomy is contained in Sp(n)Sp(1). We shall call M positive if its metric is complete
and has positive scalar curvature. It is known that if a positive quaternion-Kähler manifold M is not the

373



H. Herrera, R. Herrera / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 371–374

complex Grassmannian Gr2(C
n+2), then π2(M) is finite [7], and that the 8m + 4-dimensional positive

quaternion-Kähler manifolds are not spin in general.

COROLLARY 4.1 ([4]). – Let M be a positive quaternion-Kähler manifold different from Gr2(C
n+2)

which admits S1 actions. Then we have

Â(M) = 0.

This corollary turns out to be the key in the classification of such manifolds in 12 dimensions (cf. [4]).

Examples. – The real Grassmannian Gr4(R
2m+5) is not spin, its isometry group is SO(2m + 5) and

satisfies the hypotheses of Theorem 1.1. Therefore Â(Gr4(R
2m+5)) = 0. Furthermore, one can also check

that its elliptic genus vanishes τq(Gr4(R
2m+5)) = 0.

In contrast, we have the complex Grassmannian Gr2(C
2m+3) which is neither spin nor has finite second

homotopy group. In fact π2(Gr2(C
2m+3)) = Z. Direct calculation shows that Â(Gr2(C

2m+3)) �= 0.
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