C. R. Acad. Sci. Paris, Ser. I 335 (2002) 371-374

Topologie/*Topology* (Géométrie Algébrique/*Algebraic Geometry*)

A result on the \widehat{A} and elliptic genera on non-spin manifolds with circle actions

Haydeé Herrera^a, Rafael Herrera^b

^a Department of Mathematics, Tufts University, Medford, MA 02155, USA

^b Department of Mathematics, University of California, Riverside, CA 92521, USA

Received 12 April 2002; accepted 27 May 2002

Note presented by Mikhaël Gromov.

Abstract We prove the vanishing of the \widehat{A} -genus of compact smooth manifolds with finite second homotopy group and endowed with smooth S^1 actions. These manifolds are not necessarily spin, hence, this vanishing extends that of Atiyah and Hirzebruch on spin manifolds with S^1 actions. The proof is accomplished by proving a rigidity theorem under circle actions of the elliptic genus on these manifolds. *To cite this article: H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I* 335 (2002) 371–374.

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Un résultat sur les variétés non-spinorielles de genres \hat{A} et elliptique munies d'actions de S^1

Résumé
On montre que le Â-genre d'une variété lisse, compacte munie d'un second groupe d'homotopie fini et dotée d'une action de S¹ est égal à zéro. Ces variétés ne sont pas nécessairement spinorielles de sorte que ce théorème d'annulation étend le résultat d'Atiyah–Hirzebruch établi pour des variétés spinorielles avec actions de S¹. La démonstration est faite à partir d'un théorème de rigidité sous des actions de S¹ de genre elliptique sur ces variétés. *Pour citer cet article : H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 371–374.*

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The main results of this paper are the following vanishing theorem and a rigidity theorem stated below (Theorem 2.1).

THEOREM 1.1. – Let M be a 2n-dimensional, oriented, compact, connected, smooth manifold with finite second homotopy group, and endowed with a smooth S^1 action. Then

 $\widehat{A}(M) = 0.$

E-mail addresses: hherre01@tufts.edu (H. Herrera); herrera@math.ucr.edu (R. Herrera).

^{© 2002} Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02480-9/FLA

H. Herrera, R. Herrera / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 371-374

This vanishing theorem is new since it *does not* follow from results on spin (nor spin^c, nor spin^h) manifolds, and the manifolds under consideration are not necessarily of this type. Hence, Theorem 1.1 extends that of Atiyah and Hirzebruch on spin manifolds endowed with smooth S^1 actions [1]. Furthermore, such manifolds may admit no spin structure and, therefore, have neither spin bundle, nor spinors, nor Dirac operator. This means that the characteristic number $\widehat{A}(M)$ is, a priori, a rational number and that we cannot estimate $\widehat{A}(M)$ in the usual index-theoretical way. We prove this theorem by means of the "rigidity under S^1 actions" of the elliptic genus of Ochanine [8] on these manifolds.

The Note is organized as follows. In Section 2 we define the elliptic genus, state the Rigidity Theorem 2.1, and outline the proof of Theorem 1.1. In Section 3 we outline the proof of Theorem 2.1 along the lines of Bott and Taubes [2]. In Section 4 we give some applications. The full proofs of the theorems and further applications will appear in [4].

2. Rigidity and vanishing theorems

Let \bigwedge_c^{\pm} be the even and odd complex forms, respectively, on an oriented 2n-dimensional smooth Riemannian manifold M, with respect to the Hodge star operator *. The signature operator $d_s : \bigwedge_c^+ \to \bigwedge_c^$ acting on forms is elliptic, and the virtual dimension of its index equals the signature $\tau(M)$. By means of a connection on a complex vector bundle W on M one can *twist* the signature operator to forms with values in W, $d_s \otimes W : \bigwedge_c^+(W) \to \bigwedge_c^-(W)$. This operator is also elliptic and the virtual dimension of its index is denoted by $\tau(M, W)$.

Let $T = TM \otimes \mathbb{C}$ be the complexified tangent bundle of M. Let R_i be the sequence of (representations) bundles defined by the formal power series

$$R(q,T) = \sum_{i=0}^{\infty} R_i q^i = \bigotimes_{i=1}^{\infty} \bigwedge_{q_i} T \otimes \bigotimes_{i=1}^{\infty} S_{q^i} T,$$

where $S_a T = \sum_{j=0}^{\infty} a^j S^j T$, $\bigwedge_a T = \sum_{j=0}^{\infty} a^j \bigwedge^j T$, and $S^j T$, $\bigwedge^j T$ denote the *j*-th symmetric and exterior tensor powers of *T* respectively. We refer the reader to [5] for an introduction to the subject.

DEFINITION 2.1. - The elliptic genus of M is defined by the following power series

$$\tau_q(M) = \sum_{i=0}^{\infty} \tau(M, R_i) q^i.$$

If *M* is endowed with an S^1 action, the equivariant genus $\tau_q(M)_g$ is defined by the analogous *q*-series using equivariant twisted signatures as coefficients, for any $g \in S^1$.

THEOREM 2.1 (Rigidity theorem). – Let M be an 2n-dimensional, oriented, compact, smooth manifold with finite second homotopy group and endowed with a smooth S^1 action. Then we have

$$\tau_q(M) = \tau_q(M)_g \tag{1}$$

for every $g \in S^1$.

Sketch of proof of Theorem 1.1. – Assume dim $(M) = 2n \equiv 0 \mod 4$. According to Theorem 2.1, the value of $\tau_q(M)_g$ does not depend on g. Following [6] we apply the Atiyah–Segal G-signature theorem: $\tau_q(M)_g$ can be expressed in terms of the fixed point set M^g of g and the action of g in the normal bundle of $M^g \subset M$. Let $g = -1 \in S^1$. The self-intersection $M^g \circ M^g$ is oriented and smooth. In [6], Hirzebruch and Slodowy showed that $\tau_q(M)_g = \tau_q(\mathcal{M}^g \circ M^g)$, and by Eq. (1), $\tau_q(M) = \tau_q(\mathcal{M}^g \circ M^g)$.

To cite this article: H. Herrera, R. Herrera, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 371-374

The expansion of $\tau_q(M)$ at the other cusp [5] can be written as the following power series,

$$\tilde{\tau}_q(M) = \frac{1}{q^{n/4}} \sum_{j=0}^{\infty} \widehat{A}(M, R'_j) q^j,$$

where R'_{j} is a sequence of representations in terms of T starting with $R'_{0} = 1$, $R'_{1} = -T$, etc. By rigidity, it also satisfies

$$\tilde{\tau}_q(M) = \tilde{\tau}_q \left(\mathcal{M}^g \circ M^g \right). \tag{2}$$

The codimension of M^g is positive and even, therefore the right-hand side of (2) has a pole of order less than n/4, which implies that the coefficient of $q^{n/4}$ on the left-hand side of (2) must vanish, i.e. $\widehat{A}(M) = 0$. \Box

3. Sketch of the proof of the Rigidity theorem

The proof of Theorem 2.1 is along the lines of [2], to which we refer the reader for the notation. The fixed points of an S^1 action on M fall into connected components $\{P\}$ which are oriented smooth submanifolds. Let P be a component of the fixed point set, so that T splits as $T|_P = TP \oplus \bigoplus E_i^{\#}$, where $E_i^{\#}$ denotes the underlying real bundle of the complex bundle E_i on which S^1 acts by sending ξ to ξ^{m_i} . Applying the Atiyah–Segal equivariant index theorem we obtain the following localization formula

$$\tau_q(M) = \sum_P \mu(P).$$

The contribution $\mu(P)$ of P to $\tau_q(M)$ is the index of the signature operator on P twisted by an appropriate power series in the E_i 's [2]. Both $\mu(P)$ and $\tau_q(M)$ are meromorphic functions on $T_{q^2} = \mathbb{C}^*/q^2$ (the nonzero complex numbers modulo the multiplicative group generated by $q^2 \neq 0$). The proof of Theorem 2.1 depends on proving that $\tau_q(M)$ has no poles at all on T_{q^2} , which implies that $\tau_q(M)$ is a constant.

This will follow from carrying out localizations to intermediate (auxiliary) submanifolds. They are the submanifolds M_k of fixed points under the action of the subgroup $\mathbb{Z}_k \subset S^1$. The argument of the proof follows as in [2] with the exception of two technical points due to the (possible) non-spin nature of the manifold: (i) we have to prove that the submanifolds M_k are orientable; (ii) we have to prove that it is possible to choose an orientation of M_k compatible with M and all the components P contained in M_k . The following lemma addresses (i), and is the analogue of [2, Lemma 10.1] in our set-up.

LEMMA 3.1. – Let M be an oriented 2n-dimensional smooth manifold endowed with a smooth S^1 action. Consider $\mathbb{Z}_k \subset S^1$ and its corresponding action on M. If k is odd then the fixed point set M_k of the \mathbb{Z}_k action is orientable. If k is even and M_k contains a fixed point of the S^1 action, then M_k is also orientable.

Point (ii) is the content of [2, Lemma 9.3] and is equivalent to the verification of the even parity of the first Chern class of the tangent bundle TM evaluated on S^1 -invariant 2-spheres which contain exactly two S^1 -fixed points from disjoint connected components of $\{P\}$. In our non-spin set-up, this is proved by applying [3, Theorem V], which implies that such a number is identically zero.

4. Application

An oriented, connected, irreducible, Riemannian 4*n*-manifold *M* is called a *quaternion-Kähler manifold*, $n \ge 2$, if its linear holonomy is contained in Sp(*n*) Sp(1). We shall call *M positive* if its metric is complete and has positive scalar curvature. It is known that if a positive quaternion-Kähler manifold *M* is not the

H. Herrera, R. Herrera / C. R. Acad. Sci. Paris, Ser. I 335 (2002) 371-374

complex Grassmannian $\mathbb{G}r_2(\mathbb{C}^{n+2})$, then $\pi_2(M)$ is finite [7], and that the 8m + 4-dimensional positive quaternion-Kähler manifolds are *not spin* in general.

COROLLARY 4.1 ([4]). – Let M be a positive quaternion-Kähler manifold different from $\mathbb{G}r_2(\mathbb{C}^{n+2})$ which admits S^1 actions. Then we have

$$A(M) = 0.$$

This corollary turns out to be the key in the classification of such manifolds in 12 dimensions (cf. [4]).

Examples. – The real Grassmannian $\mathbb{G}r_4(\mathbb{R}^{2m+5})$ is not spin, its isometry group is SO(2m + 5) and satisfies the hypotheses of Theorem 1.1. Therefore $\widehat{A}(\mathbb{G}r_4(\mathbb{R}^{2m+5})) = 0$. Furthermore, one can also check that its elliptic genus vanishes $\tau_a(\mathbb{G}r_4(\mathbb{R}^{2m+5})) = 0$.

In contrast, we have the complex Grassmannian $\mathbb{G}r_2(\mathbb{C}^{2m+3})$ which is neither spin nor has finite second homotopy group. In fact $\pi_2(\mathbb{G}r_2(\mathbb{C}^{2m+3})) = \mathbb{Z}$. Direct calculation shows that $\widehat{A}(\mathbb{G}r_2(\mathbb{C}^{2m+3})) \neq 0$.

References

- M.F. Atiyah, F. Hirzebruch, Spin manifolds and group actions, in: Essays in Topology and Related Subjects, Springer-Verlag, Berlin, 1970, pp. 18–28.
- [2] R. Bott, T. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1) (1989) 137-186.
- [3] G.E. Bredon, Representations at fixed points of smooth actions of compact groups, Ann. of Math. 89 (2) (1969) 515–532.
- [4] H. Herrera, R. Herrera, Â-genus on non-spin manifolds with S¹ actions and the classification of positive quaternion-Kähler 12-manifolds, IHÉS Preprint, 2001.
- [5] F. Hirzebruch, T. Berger, R. Jung, Manifolds and Modular Forms, Aspects of Math., Vieweg, 1992.
- [6] F. Hirzebruch, P. Slodowy, Elliptic genera, involutions, and homogeneous spin manifolds, Geom. Dedicata 35 (1990) 309-343.
- [7] C.R. LeBrun, S.M. Salamon, Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math. 118 (1994) 109–132.
- [8] S. Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987) 143-151.
- [9] E. Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987) 525.