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Abstract In this Note we study indecomposable vector bundles of degree zero over an elliptic curve.
We show that each bundle generates a ring and a Tannakian category, such that the ring
and the group scheme associated to the Tannakian category are of the same dimension.
Furthermore we show that the result does not extend to curves of genus 2.To cite this
article: S. Lekaus, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 351–354.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Fibrés vectoriels de degré zéro sur une courbe elliptique

Résumé Dans cette Note, nous étudions les fibrés vectoriels indécomposables de degré zéro sur une
courbe elliptique. Nous montrons que chaque fibré engendre un anneau et une catégorie
tannakienne tels que l’anneau et le schéma en groupes associé à la catégorie soient de la
même dimension. De plus, nous montrons que ce résultat ne s’étend pas aux courbes de
genre 2.Pour citer cet article : S. Lekaus, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 351–
354.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction and notations
Let X be a complete, connected, reduced scheme over a perfect fieldk. We define Vect(X) to be the

set of isomorphism classes[V ] of vector bundlesV over X and the ringK(X) to be the Grothendieck
group associated to the additive monoid Vect(X), endowed with the multiplication induced by the tensor
product of vector bundles. The indecomposable vector bundles overX form a Z-basis ofK(X). Since
H0(X,End(V )) is finite dimensional, the Krull–Schmidt theorem [1] holds onX. This means that a
decomposition of a vector bundle into indecomposable components is unique up to isomorphism.

We want to generalize a theorem by M. Nori on finite vector bundles. A vector bundleV overX is called
finite, if the setS(V ) of all indecomposable components ofV ⊗n for all integersn ∈ Z is finite, where
V ⊗n := (V ∨)⊗(−n) for n < 0.

In the following, we denote by R(V) theQ-subalgebra ofK(X) ⊗Z Q generated by the setS(V ). If V is
a finite vector bundle, theQ-algebraR(V ) is of Krull dimension zero, since a finite vector bundle is integral
overQ (see [9], Lemma (3.1)).

In [9], Nori proves the following:
For every finite vector bundleV overX there exists a finite group schemeGV and a principalGV -bundle

π : P → X, such thatπ∗V is trivial overP . In particular, the equality dimR(V ) = dimGV (= 0) holds.
The group schemeGV is the group scheme associated to a Tannakian categoryCV , generated byV as

subcategory ofSS(X), whereSS(X) denotes the full subcategory of the category of quasi-coherent sheaves
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onX, whose objects are the vector bundles that are semistable of degree zero when restricted to any curve
in X.

As every (arbitrary) vector bundleV over X of rank r trivializes over its associated principal GL(r)-
bundle, we can look for a group schemeG of smallest dimension such that there exists a principalG-bundle
over which the pullback of the vector bundleV is trivial. We might also compare the dimension of the group
scheme to dimR(V ).

In this Note, we consider the family of vector bundles of degree zero over an elliptic curve defined over
an algebraically closed field of characteristic zero and prove that they trivialize over a principalG-bundle
with a group schemeG of smallest possible dimension equal to 1. As in Nori’s theorem, this dimension
turns out to be equal to the dimension of the ringR(V ), and the group scheme is the one associated to the
Tannakian category generated by the vector bundle. Furthermore we show that this result does not extend
to vector bundles over a curve of higher genus: we construct a stable vector bundleE of degree zero over a
curve of genus 2, whose ringR(E) is of dimension 1, whereas the group scheme associated to its Tannakian
category is 3-dimensional.

2. Dimension relation

Let X be an elliptic curve over an algebraically closed fieldk of characteristic zero. We consider vector
bundles of degree zero overX; such bundles were classified by Atiyah [2]. ByE(r,0) we denote the set of
indecomposable vector bundles of rankr and degree zero overX.

THEOREM 2.1 (Atiyah [2]). –There exists a vector bundle Fr ∈ E(r,0), unique up to isomorphism, with
�(X,Fr) �= 0. Moreover we have exact sequences

0 → OX → Fr → Fr−1 → 0. (1)

If E ∈ E(r,0), then E ∼= L ⊗ Fr , where L is a line bundle of degree zero, unique up to isomorphism.

PROPOSITION 2.2. –
(1) The Q-subalgebra R(Fr ) of K(X)⊗Z Q generated by S(Fr ) is Q[x], with x = [F2], if r is even, and

x = [F3], if r is odd.
(2) There exists a principal Ga-bundle π : P → X such that π∗(Fr) is trivial for all r � 2.

There is no finite group scheme G, such that π∗(Fr) trivializes over a principal G-bundle.

Remark. – As in the case of finite bundles we have a correspondence of dimensions dimR(Fr ) =
dimGa (= 1).

Proof. – The vector bundles fulfill the multiplication formulaFr ⊗ Fs
∼= Fr+s−1 ⊕ · · · ⊕ Fr−s+1 for

2� s � r (see [2], Lemma 21), which is the Clebsch–Gordan formula for the symmetric product of a vector
bundle of rank 2, since det(F2) ∼= OX andFr

∼= Sr−1(F2) for all r � 1 (see [2], Theorem 9). This implies
that there existai(n) ∈ Z such thatF⊗n

r
∼= a1(n)OX ⊕ a2(n)F2 ⊕ · · · ⊕ a(r−1)n−1F(r−1)n−1 ⊕ F(r−1)n+1,

whereai(n) = 0 for oddi, if r is even andn is odd, andai(n) = 0 for eveni, if eitherr is odd or ifr andn

are both even. Elseai(n) > 0. ThereforeS(Fr) = {Fi | i ∈ N}, if r is even, andS(Fr ) = {Fi | i � 1, i odd},
if r is odd. In particular every bundleFi , i � 1, appears as subbundle of a tensor power ofF2, and every
Fi , i odd, as subbundle of a tensor power ofF3, and the computation ofR(Fr ) follows.

By definition, F2 is defined by an element of Ext1(OX,OX) = H1(X,OX), hence defines a principal
Ga-bundle, over whichF2 and allFr

∼= Sr−1(F2) trivialize. Every finite, unramified coveringY of X is
an elliptic curve, and the pullback yields an isomorphism of H1(X,OX) and H1(Y,OY ). ThereforeF2, and
inductivelyFr , cannot trivialize over such a covering.✷

There is a similar statement forE ∼= L ⊗ Fr with L a line bundle of degree zero (see Theorem 2.1):

PROPOSITION 2.3. –
(1) If L is not torsion, the ring R(E) is isomorphic to Q[x, x−1]⊗Q[y] and E trivializes over a principal

Gm × Ga-bundle.
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(2) If L is torsion, let n ∈ N, n � 1, be the minimal number such that L⊗n ∼= OX. If n and r are both
even, the ring R(E) is isomorphic to Q[x]/〈xn/2 − 1〉 ⊗ Q[y], and E trivializes over a principal
µn × Ga-bundle. There is no principal µn/2 × Ga-bundle over which E is trivial.
If n and r are not both even, the ring R(E) is isomorphic to Q[x]/〈xn −1〉⊗Q[y], and E trivializes
over a principal µn × Ga-bundle.

In all cases the trivializing principal bundle is PL ×X P , where P is the principal Ga-bundle from
Proposition 2.2and PL is a principal bundle over which L is trivial.

Proof. – The computation of the ringsR(E) follows from the multiplication formula for the bundles
Fr , r � 2 ([2], Lemma 21). IfPL is the principal bundle associated toL via the transition functions ofL,
it is clear that everyL ⊗ Fr trivializes overP ×X PL, therefore it only remains to prove that, for an
n-torsion bundleL, L ⊗ Fr is not trivial over aµm × Ga-bundlePm ×X P with m < n. Since every finite
unramified coveringPm of X is again an elliptic curve, we assume without loss of generality thatX = Pm

and show thatL ⊗ Fr cannot be trivial overP , if L is non-trivial. Else we have for arbitrary largeN
thatOP(F2) ↪→ π∗(L ⊗ Fr)(N∞), whereπ : P(F2) → X is the projection and∞ denotes the hyperplane
P(OX) ⊂ P(F2). The projection formula and [5], II, (7.11) imply thatOX ↪→ (L⊗Fr )⊗π∗OP(F2)(N∞) =
(L⊗Fr)⊗SN(F2) = (L⊗Fr )⊗FN+1, and hence thatOX ↪→ L⊗ (FN+2−r ⊕FN+4−r ⊕· · ·⊕FN+r ) (see
Proposition 2.2). Thus one of the direct summands must have a non-trivial global section. By the uniqueness
of theFi , i ∈ N, this implies thatL must be trivial, which contradicts our assumption.✷

Remark 1. – The correspondence between the dimension of the “minimal” group scheme and the
dimension of the ringR(E) also occurs in the case of vector bundles over the projective line. This follows
immediately from the fact that every vector bundle overP1 splits into a direct sum of line bundles.

3. Tannakian category associated to a vector bundle
PROPOSITION 3.1. –Every indecomposable vector bundle of degree zero over an elliptic curve X is

semistable.
Proof. – This follows inductively from the exact sequence in Theorem 2.1 and the fact that every line

bundle of degree zero is semistable.✷
If E is an indecomposable vector bundle of degree zero overX, it generates a categoryCE , which is the

full subcategory ofSS(X) with set of objectsS(E), whereS(E) denotes the set of vector bundles that are
isomorphic to a bundleV2/V1, whereV1 andV2 are objects ofSS(X) such thatV1 ⊂ V2 ⊂ ⊕t

i=1 Pi for
somePi ∈ S(E), 1� i � t , and withS(E) as defined in the introduction. AsX is an elliptic curve, here
SS(X) just denotes the category of semistable vector bundles of degree zero.

For example, sinceS(Fr ) = {Fi | i ∈ N}, if r is even, andS(Fr ) = {Fi | i � 1, i odd}, if r is odd, and
Fi ⊂ Fi+1 for all i � 1, we obtain thatCFr = CF2 for all r � 2, with the objects being subquotients of finite
direct sums of the bundlesFi , i � 1.

SinceSS(X) is Abelian, all objects ofS(E) are objects ofSS(X). By construction,CE is abelian for
every indecomposable vector bundleE overX (see [9], §1).

PROPOSITION 3.2 (compare [9]). –For every E ∈ E(r,0), r ∈ N, the category CE together with the fibre
functor x∗, mapping an object of CE to its fibre in a k-rational point x , is a neutralized Tannakian category.

For the formalism of Tannakian categories see [10] and [3]. By a theorem of Saavedra [10] for any
neutralized Tannakian category(C,ω) there exists an affine group schemeG such thatC is equivalent to
G-mod, the category of finite-dimensional representations ofG.

PROPOSITION 3.3. –Let E ∈ E(r,0), i.e. E ∼= L ⊗ Fr for some line bundle L of degree zero. Then
CE

∼= (Gm ×Ga)-mod, if L is not a torsion bundle, and CE
∼= (µn ×Ga)-mod, if L is an n-torsion bundle

with n � 1 the minimal number such that L⊗n ∼= OX .
Proof. – First we note that for allr � 2, CL⊗Fr = CL⊗F2. By [3], Prop. 2.8, there is a functorial

isomorphism between the group schemeG, corresponding toCL⊗F2, and Aut⊗(x∗) which is a functor
assigning to everyk-algebraR a set of families{α(V )}, V ∈ ObjCL⊗F2, of R-linear endomorphisms of
x∗(V )⊗k R, compatible with the tensor product and morphisms inCL⊗F2. Thenα(L⊗F2) = α(L)⊗α(F2)
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is in (Gm × Ga)(R) or in (µn × Ga)(R), depending on whetherL is a torsion bundle. Everyα(V ),
V ∈ Obj CE , is uniquely determined byα(L ⊗ F2), because of the compatibility properties of the family
and the fact that everyV is a subquotient of a finite direct sum of bundles(L ⊗ F2)

⊗a ⊗ ((L ⊗ F2)
∨)⊗b ,

a, b ∈ Z,� 0. Conversely, every element of(Gm × Ga)(R) or (µn × Ga)(R) defines a family in this
way. ✷
4. Counter-example on a curve of genus 2

Let X be a curve of genusg = 2 overC, and letx be aC-rational point ofX.
We want to show that there exists a stable bundleE over X, generating a Tannakian categoryCE ,

such that the ringR(E) is of smaller dimension than the group scheme associated toCE . For this let
ρ : π1(X,x) → GL2(C) be the irreducible, unitary representation defined byρ(a) := A, ρ(b) := B,
ρ(c) := B, ρ(d) := A, with generatorsa, b, c, andd of π1(X,x), satisfying[a, b][c, d]= 1, and

A :=
(

λ 0
0 λ−1

)
, B =

(
cos(2π,) −sin(2π,)

sin(2π,) cos(2π,)

)
, (2)

whereλ = e2π i, for an irrational, ∈ [0,1].
The Zariski-closure of the image ofρ in GL2(C) is SL2(C), hence by [6], (1.2.2), the Tannakian category

generated byρ, whose objects are subquotients of finite direct sums of tensor powers ofρ and ρ∨, is
equivalent to the category SL2(C)-mod.

Let E be the stable vector bundle of degree zero corresponding toρ via the Narasimhan–Seshadri
correspondence ([8], §12). All objects ofCE , as constructed in the previous paragraph, are polystable
vector bundles of degree zero (i.e. direct sums of stable vector bundles of degree zero [7]): any semistable
bundleV of degree zero has, by Jordan–Hölder-filtration, a stable subbundleW of degree zero. Hence, if
V is a subbundle of a finite direct sum of objects ofS(E) (which are all stable),W must be isomorphic
to one of the direct summands and must split fromV . Inductively, we obtain thatV is polystable. By
the Narasimhan–Seshadri correspondence there is therefore a 1–1 correspondence between the objects
of CE and ofCρ , so we obtain an equivalence of categoriesCE

∼= Cρ
∼= SL2(C)-mod. Since SL2(C) is

connected and simply connected, its representations are in 1–1 correspondence with those of the Lie algebra
sl2(C) (see [4], Part II, §8.1). Assl2(C) is completely reducible ([4], Theorem 9.19), this implies that the
indecomposable vector bundles inCE cannot have any proper subbundles. Hence the definition ofCE

implies that the elements ofS(E) are the only indecomposable bundles inCE . Therefore the elements of
S(E) are in 1–1 correspondence with the irreducible (=indecomposable) representations of SL2(C), and it
follows that the ringR(E) is isomorphic to the representation ring of SL2(C) overQ. As all representations
of sl2(C) are symmetric powers of the standard representation, we conclude thatR(E) ∼= Q[x].

Acknowledgements. I am grateful to Hélène Esnault for suggesting the problem and for useful discussions. Thanks
are also due to Bertrand Toën.
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