Erratum

to the Note by Paolo Bisegna, Frédéric Lebon, Franco Maceri

entitled: D-PANA: a convergent block-relaxation solution method for the discretized dual formulation of the Signorini-Coulomb contact problem
published in Série I, t. 333, n ${ }^{\circ}$ 11, pp. 1053-1058.

The Note: D-PANA: a convergent block-relaxation solution method for the discretized dual formulation of the Signorini-Coulomb contact problem was published in Tome 333, number 11, pp. 1053-1058. The authors' corrections were omitted; we publish here the corrected Subsection 3.3.

3.3. Well-posedness and convergence result

THEOREM 3.2. - Under the hypothesis stated in Section 3.1, there exists a positive constant \mathcal{M} such that for $0 \leqslant \mu<\mathcal{M}$ the transformation $f: \mathcal{H} \rightarrow \mathcal{H}$ defined by Eq. (6) is a contraction. As a consequence, for $0 \leqslant \mu<\mathcal{M}$ the discrete dual condensed formulation (4) of the Signorini-Coulomb contact problem has a unique solution $(\bar{\sigma}, \bar{\tau}) \in \mathcal{H} \times \mathcal{K}_{\bar{\sigma}}$ and the D-PANA algorithm converges to this solution for any initial vector $\sigma_{0} \in \mathcal{H}$. Moreover, a constant $0<\beta<1$ exists such that the error estimates

$$
\left\|\sigma_{k}-\bar{\sigma}\right\| \leqslant \frac{\left\|\sigma_{0}-\sigma_{1}\right\| \beta^{k}}{1-\beta}, \quad\left\|\tau_{k}-\bar{\tau}\right\| \leqslant \frac{\left\|\sigma_{0}-\sigma_{1}\right\| \beta^{k}}{(1-\beta)\|C\|}, \quad k \in N
$$

hold.
Proof of Theorem 3.2. - For any $\sigma_{1}, \sigma_{2} \in \mathcal{H}$, by using Lemma 3.1, the following estimate is obtained:

$$
\begin{aligned}
& \left\|f\left(\sigma_{1}\right)-f\left(\sigma_{2}\right)\right\| \leqslant\left\|C^{t}\left(p\left(d_{\tau}-C \sigma_{1},-\mu Q_{\sigma} \sigma_{1}\right)-p\left(d_{\tau}-C \sigma_{2},-\mu Q_{\sigma} \sigma_{2}\right)\right)\right\| \\
& \quad \leqslant\|C\|\left(\left\|-C \sigma_{1}+C \sigma_{2}\right\|+\left\|Q_{\tau}^{-1}\right\|\left\|-\mu Q_{\sigma} \sigma_{1}+\mu Q_{\sigma} \sigma_{2}\right\|\right) \leqslant\|C\|\left(\|C\|+\mu\left\|Q_{\sigma}\right\|\left\|Q_{\tau}^{-1}\right\|\right)\left\|\sigma_{1}-\sigma_{2}\right\| .
\end{aligned}
$$

It follows that f is Lipschitz continuous with Lipschitz coefficient $\beta=\|C\|\left(\|C\|+\mu\left\|Q_{\sigma}\right\|\left\|Q_{\tau}^{-1}\right\|\right)$. From the positive definiteness of the compliance matrix in the diagonalized formulation, it easily follows that $\|C\|<1$. Therefore, setting $\mathcal{M}=\left(1-\|C\|^{2}\right) /\left(\|C\|\left\|Q_{\sigma}\right\|\left\|Q_{\tau}^{-1}\right\|\right)$, for every $0 \leqslant \mu<\mathcal{M}$ it turns out that $0<\beta<1$. Hence, the assert follows from the Banach-Caccioppoli contraction principle, by observing that Eqs. (5) can be summarized by the equation $\sigma_{k}=f\left(\sigma_{k-1}\right)$. The error estimates follow from the contraction principle and Lemma 3.1. It is worth observing that the constant \mathcal{N} depends on quantities having a significant mechanical interest: they are $\|C\|$, which is a measure of the energetic coupling between σ and τ, and $\left\|Q_{\sigma}\right\|\left\|Q_{\tau}^{-1}\right\|$, related to the direct complementary energies associated to σ and τ.

