Rational homotopy groups and Koszul algebras

Stefan Papadimaa, Alexander I. Suciub

a Institute of Mathematics of the Romanian Academy, PO Box 1-764, RO-70700 Bucharest, Romania
b Department of Mathematics, Northeastern University, Boston, MA 02115, USA

Received 28 January 2002; accepted 29 April 2002

Note presented by Jean-Pierre Serre.

Abstract

Let X and Y be finite-type CW-spaces (X connected, Y simply connected), such that the ring $H^*(Y, \mathbb{Q})$ is a k-rescaling of $H^*(X, \mathbb{Q})$. If $H^*(X, \mathbb{Q})$ is a Koszul algebra, then the graded Lie algebra $\pi_*(\Omega Y) \otimes \mathbb{Q}$ is the k-rescaling of $\text{gr}_*(\pi_1 X) \otimes \mathbb{Q}$. If Y is a formal space, then the converse holds, and Y is coformal. Furthermore, if X is formal, with Koszul cohomology algebra, there exist filtered group isomorphisms between the Malcev completion of $\pi_1 X$, the completion of $[\Omega^{2k+1}, \Omega Y]$, and the Milnor–Moore group of coalgebra maps from $H_*(\Omega^{2k+1}, \mathbb{Q})$ to $H_*(\Omega Y, \mathbb{Q})$. To cite this article: S. Papadima, A.I. Suciu, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 53–58. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Note fran\c{c}aise abr\é\g\é\e

Cette Note est un résumé des résultats de [9]. Commençons par définir la notion de recalibrage d’un espace topologique (ayant le type d’homotopie d’un CW-complexe connexe de type fini).

Soient k un entier positif, et A une algèbre graduée. On définit l’algèbre graduée $A[k]$ par $A[k]^{p(2k+1)} = A^g$ et $A[k]^p = 0$ si $2k + 1 \mid p$, avec la multiplication héritée de A. On dit qu’un espace X est un k-recalibrage de X si $\pi_1 X = 0$ et $H^*(Y, \mathbb{Q}) = H^*(X, \mathbb{Q})[k]$, en tant qu’algèbres graduées. Un tel espace Y peut être construit à partir du modèle minimal de l’algèbre $H^*(X, \mathbb{Q})[k]$, munie de la différentielle nulle. Cette construction donne un espace formel, mais X peut bien avoir des recalibrages non-formels. D’autre part, si $\dim_{\mathbb{Q}} H^*(X, \mathbb{Q}) < \infty$, alors X a un k-recalibrage unique (à \mathbb{Q}-équivalence près), pour tout $k \gg 1$.

E-mail addresses: spapadim@stoilow.imar.ro (S. Papadima); alexsuciu@neu.edu (A.I. Suciu).

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés

53
Soit L_x un espace vectoriel gradué, muni d’un crochet de Lie de degré 0. On définit l’algèbre de Lie graduée $L[k]$ par $L[k]_{2k} = L_k$ et $L[k]_p = 0$ si $2k \not\equiv p$, avec le crochet hérité de L.

Théorème 1. — Soit Y un k-recalibrage d’un espace X. Soit $\text{gr}_k(\pi_1 X) \otimes \mathbb{Q}$ l’espace vectoriel gradué associé à la suite centrale descendante de $\pi_1 X$ (muni du crochet induit par le commutateur du groupe), et soit $\pi_*(\Omega Y) \otimes \mathbb{Q}$ l’algèbre de Lie d’homotopie de Y (muni du crochet de Samelson).

(a) Si $A^* = H^*(X, \mathbb{Q})$ est une algèbre de Koszul (c’est-à-dire, si $\text{Tor}_p^{A^*}(\mathbb{Q}, \mathbb{Q}) = 0$, pour tous $p \neq q$), alors il existe un isomorphisme d’algèbres de Lie graduées

$$\pi_*(\Omega Y) \otimes \mathbb{Q} \cong \text{gr}_k(\pi_1 X) \otimes \mathbb{Q}[k].$$

(b) De plus, $\prod_{i \geq 1} (1 - t^{(2k+1)i})^{\text{rank } \pi_{2i}(\Omega Y)} = P_X(-2k+1)$.

(c) Si Y est formel et $\pi_*(\Omega Y) \otimes \mathbb{Q} \cong \text{gr}_k(\pi_1 X) \otimes \mathbb{Q}[k]$, en tant qu’espaces vectoriels gradués, alors $H^*(X, \mathbb{Q})$ est une algèbre de Koszul. De plus, Y est coformel.

La première partie du théorème nous permet de décrire le type d’homotopie rationnelle de l’espace de lacets de Y, uniquement à partir du polynôme de Poincaré de X. En particulier, $P_{\Omega Y}(t) = P_X(-2k)^{-1}$.

Théorème 2. — Soit Y un k-recalibrage d’un espace X, tel que $H^*(X, \mathbb{Q})$ soit une algèbre de Koszul. L’espace X est formel si et seulement s’il existe des isomorphismes de groupes filtrés

$$\text{Hom}^{\text{algèbre}}(H_*(\Omega S^{2k+1}, \mathbb{Q}), H_*(\Omega Y, \mathbb{Q})) \cong [\Omega S^{2k+1}, \Omega Y] \cong \pi_1 X \otimes \mathbb{Q}.$$

Les groupes ci-dessus—le groupe de Milnor–Moore de morphismes de cogèbres entre $H_*(\Omega S^{2k+1}, \mathbb{Q})$ et $H_*(\Omega Y, \mathbb{Q})$, le complété du groupe de classes d’homotopie pointées entre ΩS^{2k+1} et ΩY, et le complété de Malcev du groupe fondamental de X—sont tous pourvus de filtrations canoniques de limite inverse.

En passant aux gradués associés, l’isomorphisme de groupes filtrés $[\Omega S^{2k+1}, \Omega Y] \cong \pi_1 X \otimes \mathbb{Q}$ donne l’isomorphisme d’algèbres de Lie graduées (1).

Parmi les espaces admettant des recalibrages intégraux, on trouve les compléments d’arrangements d’hyperplans dans C^k, et les compléments d’entrelacs de cercles dans S^3. Le k-recalibrage (formel) d’un tel espace X est fourni par le complément Y d’un certain arrangement de sous-espaces de codimension $k + 1$ dans $C^{(k+1)i}$, et par le complément d’un certain entrelacs de $(2k + 1)$-sphères dans S^{4k+3}, respectivement.

La formule (1) est vraie pour les arrangements supersolvables (un résultat de [2]), ainsi que pour les entrelacs ayant un graphe d’enlacement connexe. Pour les arrangements génériques, la formule (1) n’est plus vraie en général (à cause de la non-coformalité de Y, détectée par les produits de Whitehead d’ordre supérieur). Dans le cas des entrelacs, la formule (2) n’est pas toujours vraie (à cause de la non-formalité de X, détectée par les invariants de Campbell–Hausdorff), même si la formule (1) est valable.

1. Rescaling operations

This Note is an announcement of [9]. We refer to that paper for full details, and complete proofs.

Let A^* be a graded algebra over a ring R. For each integer $k \geq 1$, the k-rescaling of A is the graded algebra $A[k]$ with $A[k]_{2k+1} = A^g$, and $A[k]_p = 0$ otherwise, and with multiplication rescaled accordingly.

Let X be a connected space. A simply-connected space Y is called a k-rescaling of X (over R) if the cohomology algebra $H^*(Y, R)$ is the k-rescaling of $H^*(X, R)$. For example, the sphere S^{2k+1} is a k-rescaling of S^3, the wedge $\bigvee^n S^{2k+1}$ is a k-rescaling of $\bigvee^n S^1$, and the connected sum $#_k S^{2k+1} \times S^{2k+1}$ is a k-rescaling of a genus g orientable surface. Though here, and most throughout, the rescaling holds over $R = \mathbb{Z}$, the theory works best over $R = \mathbb{Q}$, and so this will be our default coefficients ring.

Using Sullivan’s minimal models [14], it is easy to see that any connected CW-space of finite type, X, admits a rational k-rescaling, for each $k \geq 1$. Indeed, $(H^*(X, \mathbb{Q})[k], d = 0)$ is a 1-connected, finite-
type differential graded algebra, with minimal model \(\mathcal{M} \). Hence, there exists a finite-type, 1-connected CW-space \(Y \) such that \(\mathcal{M}(Y) = \mathcal{M} \). In particular, \(H^*(Y, \mathbb{Q}) = H^*(X, \mathbb{Q})[k] \).

By construction, the space \(Y \) is formal, i.e., its rational homotopy type is a formal consequence of its rational cohomology algebra. Hence, \(Y \) is uniquely determined (up to rational homotopy equivalence) among spaces with the same cohomology ring. But there may be other, non-formal rescalings of \(X \). For example, take \(X = S^1 \vee S^1 \vee S^{2k+2} \). Clearly, the formal k-rescaling is \(Y = S^{2k+1} \vee S^{2k+1} \vee S^2 \bullet \). A non-formal rescaling is \(Z = (S^1 \vee S^1 \vee S^{2k+1}) \cup_{\alpha} e^{(2k+1)(2k+2)} \), where \(\alpha \) is the iterated Whitehead product \(ad^{2k+2}(x) = [x, [\cdots [x, y]]] \). Even so, if \(H^*(X, \mathbb{Q}) = 0 \), then \(X \) has a unique k-rescaling (up to \(\mathbb{Q} \)-equivalence), for all \(k > (d-1)/2 \); see [13].

A graded \(\mathbb{Q} \)-vector space \(L_\ast \), endowed with a bilinear operation \([,] : L_p \otimes L_q \to L_{p+q} \) is called a Lie algebra with grading if the bracket satisfies the anti-commutativity and Jacobi identities. If the Lie identities are satisfied only up to sign (following the Koszul convention), then \(L_\ast \) is called a graded Lie algebra.

We are interested in two main examples. The associated graded Lie algebra of a formally finite group \(G \) is the Lie algebra with grading \(\text{gr}_*(G) \otimes \mathbb{Q} := \bigoplus_{r \geq 1} (\Gamma^r G/\Gamma_1 G) \otimes \mathbb{Q} \), where \(\{\Gamma^r G\}_{r \geq 1} \) is the lower central series of \(G \), and the bracket is induced by the group commutator. The homotopy Lie algebra \(\pi_\ast(\Omega Y) \otimes \mathbb{Q} := \bigoplus_{r \geq 1} \pi_r(\Omega Y) \otimes \mathbb{Q} \), where \(\Omega Y \) is the loop space of \(Y \), and the bracket is the Samelson product, obtained from the Whitehead product on \(\pi_r(\Omega Y) \) via the boundary map in the path fibration over \(Y \). A Lie algebra with grading \(L_\ast \), and a positive integer \(k \), the \(k \)-rescaling of \(L \) is the graded Lie algebra \(L[k] \), with \(L[k]_{2kq} = L_q \) and \(L[k]_{p} = 0 \) otherwise, and with Lie bracket rescaled accordingly.

2. The Rescaling Formula

Let \(A^* \) be a graded algebra over \(\mathbb{Q} \). By definition, \(A \) is a Koszul algebra if \(\text{Tor}^A_{k,q}(\mathbb{Q}, \mathbb{Q}) = 0 \), for all \(p \neq q \). A necessary condition is that \(A \) be the quotient of a free algebra on generators in degree 1 by an ideal \(I \) generated in degree 2. A sufficient condition is that \(I \) admits a quadratic Gröbner basis. A topological interpretation of Koszulness is as follows. Let \(X \) be a formal space. Then, \(H^*(X, \mathbb{Q}) \) is a Koszul algebra if and only if the (Bousfield–Kan) rationalization \(X_\mathbb{Q} \) is aspherical; see [10].

From now on, all spaces will be assumed to be connected, well-pointed, and homotopy equivalent to some finite-type CW-complex. Recall that a \(k \)-rescaling of a space \(X \) is a simply-connected space \(Y \) with \(H^*(Y, \mathbb{Q}) = H^*(X, \mathbb{Q})[k] \), as graded algebras. Our first result shows that, under a Koszulness assumption, this homological rescaling passes to a homotopical rescaling.

THEOREM 2.1. Let \(Y \) be a \(k \)-rescaling of a space \(X \). If \(H^*(X, \mathbb{Q}) \) is a Koszul algebra, then the following Rescaling Formula holds:

\[
\pi_\ast(\Omega Y) \otimes \mathbb{Q} \cong \text{gr}_\ast(\pi_\ast X) \otimes \mathbb{Q}[k], \quad \text{as graded Lie algebras.}
\]

We sketch the proof in the particular case when both \(X \) and \(Y \) are formal.

Let \(A^* = H^*(X, \mathbb{Q}) \), and let \(\mathcal{H}_\ast(A) = L^*(A_1)/\langle \text{im } \nabla \rangle \) be its holonomy Lie algebra, defined as the quotient of the free Lie algebra on the dual of \(A^1 \) by the Lie ideal generated by the image of the comultiplication map, \(\nabla : A_2 \to A_1 \wedge A_1 = L^2(A_1) \), and with grading given by bracket length. Since \(X \) is formal, \(\text{gr}_\ast(\pi_\ast X) \otimes \mathbb{Q} \cong \mathcal{H}_\ast(A) \), as Lie algebras with grading (see for instance [6]).

Let \(B^* = H^*(Y, \mathbb{Q}) = A^*[k] \), and let \(\mathcal{L}(B,0) = (\mathcal{L}(\pi^{-1}(\mathbb{Q}^0)), \partial) \) be the corresponding Quillen differential graded Lie algebra, defined as the free Lie algebra on the desuspension of the dual of the augmentation ideal of \(B \), with differential \(\partial \) arising from the dual of the multipication map. Since \(Y \) is formal, \(\pi_\ast(\Omega Y) \otimes \mathbb{Q} \cong \mathcal{H}_\ast(\mathcal{L}(B,0)) \), as graded Lie algebras (see [11]).

Now define a morphism of graded Lie algebras, \(\lambda : \mathcal{L}(B,0) \to (\mathcal{H}_\ast(A))[k], 0 \), by sending \(A_1 \) identically to \(A_1 \) (in degree \(2k \)) and \(A_{i+1} \) to zero. It is readily checked that \(\lambda \) commutes with the differentials and induces a surjection in homology. Since the algebra \(A \) is Koszul, results from [11] and [10] insure that the induced map, \(\lambda_* : \pi_\ast(\Omega Y) \otimes \mathbb{Q} \to \text{gr}_\ast(\pi_\ast X) \otimes \mathbb{Q}[k] \), is in fact an isomorphism (of graded Lie algebras).
Our next result shows that the Rescaling Formula (even at the level of graded vector spaces) is strong enough to imply—under a formality assumption—the Koszulness of $H^\ast(X, \mathbb{Q})$.

Theorem 2.2.—Let Y be a formal k-rescaling of a space X. If $\text{Hilb}(\pi_\ast(\Omega Y) \otimes \mathbb{Q}, t)$ equals $\text{Hilb}(\text{gr}_\ast(\pi_1 X) \otimes \mathbb{Q}, t^2k)$, then $H^\ast(X, \mathbb{Q})$ is a Koszul algebra. Moreover, Y is a coformal space (i.e., its rational homotopy type is determined by its homotopy Lie algebra).

Let $P_X(t) = \text{Hilb}(H^\ast(X; \mathbb{Q}), t)$ be the Poincaré series of X, and set $\Phi_r := \text{rank gr}_r(\pi_1 X)$. The following *Lower Central Series formula* has received considerable attention: $\prod_{i=1}^{\infty} (1 - t^{(2k+1)i})^{2} = P_X(-t)$. This formula was established for classifying spaces of pure braid groups by Kohno, and then for complements of arbitrary fiber-type arrangements by Falk and Randell. The LCS formula was related to Koszul duality in [12], and extended to formal spaces X with Koszul cohomology algebra in [10]. Our next result gives an LCS-type formula for the rational homotopy groups of a rescaling of X (under no formality assumptions).

Theorem 2.3.—Let Y be a simply-connected CW-space of finite type. Assume $H^\ast(Y, \mathbb{Q})$ is the k-rescaling of a Koszul algebra. Set $\Phi_r := \text{rank} \pi_r(\Omega Y)$. Then $\Phi_r = 0$, if r is not a multiple of $2k$, and the following homotopy LCS formula holds:

$$\prod_{i=1}^{\infty} (1 - t^{(2k+1)i})^{2^{\Phi_{2i}}} = P_Y(-t).$$

Consequently, $\Omega Y \simeq \prod_{i=1}^{\infty} K(\mathbb{Q}, 2ki)^{2^{\Phi_{2i}}}$. If $H^\ast(Y, \mathbb{Q}) = H^\ast(X, \mathbb{Q})[k]$, and $H^\ast(X, \mathbb{Q})$ is a Koszul algebra, it follows that the rational homotopy type of ΩY is determined by the Poincaré polynomial of X in particular, the Poincaré series of ΩY is given by $P_{\Omega Y}(t) = P_X(-t^{2k})^{-1}$. In fact, by Milnor-Moore [7], $H_r(\Omega Y, \mathbb{Q}) \cong \bigwedge_t \text{gr}_r(\pi_t X) \otimes \mathbb{Q}[K]$, as Hopf algebras.

We illustrate these results with some simple examples. In each case, X is a formal space, with $H^\ast(X, \mathbb{Q})$ a Koszul algebra, and Y is the unique up to \mathbb{Q}-equivalence formal k-rescaling of X.

- $X = S^1$, $Y = S^{2k+1}$. We have $\pi_1 X = \mathbb{Z}$, and so $\pi_\ast(\Omega Y) \otimes \mathbb{Q} = L^\ast(x)$, the free Lie algebra on a generator x in degree 2. Thus, $\pi_\ast(\Omega Y) \otimes \mathbb{Q} = K(\mathbb{Q}, 2k)$, a result that goes back to Serre's thesis.

- $X = \bigvee^n S^1$, $Y = \bigvee^n S^{2k+1}$. The associated graded of $\pi_1 X$ was computed by Magnus. We obtain: $\pi_\ast(\Omega Y) \otimes \mathbb{Q} = L^\ast(x_1, \ldots, x_n)$. Hence, $\Phi_r = 0$ if $2k \nmid r$, and $\prod_{i=1}^{\infty} (1 - t^{(2k+1)i})^{2} = 1 - nt^{2k+1}$. Thus, $P_{\Omega Y}(t) = (1 - nt^{2k+1})^{-1}$, a result that goes back to Bott and Samelson.

- $X = \#^n S^1 \times S^1$, $Y = \#^n S^{2k+1} \times S^{2k+1}$. The associated graded of $\pi_1 X$ was computed by Labute. We obtain: $\pi_\ast(\Omega Y) \otimes \mathbb{Q} = L^\ast(x_1, x_2)/([x_1, x_2] + \cdots + [x_{2^g-1}, x_{2^g}] = 0)$. Hence, $\Phi_r = 0$ if $2k \nmid r$, and $\prod_{i=1}^{\infty} (1 - t^{(2k+1)i})^{2} = 1 - 2gr^{2k+1} + r^{4k+2}$. Thus, $P_{\Omega Y}(t) = (1 - 2gr^{2k} + r^{4k})^{-1}$.

3. Malcev completions and Milnor-Moore groups

Let K be a connected, finite-type CW-complex K, with base-point \ast. Fix an increasing, exhaustive filtration of K by connected, finite subcomplexes, $\{K_r\}_{r \geq 0}$, starting with $K_0 = \ast$. Let Y be a based, simply-connected CW-space of finite type, and denote by $[K, \Omega Y]$ the group (under composition of loops) of based homotopy classes of based maps. Since K_\ast is a finite complex, $[K_r, \Omega Y]$ is a finitely-generated nilpotent group. Define the completion $[K, \Omega Y] \hat{\ast} := \text{lim} ([K_{r-1}, \Omega Y] \otimes \mathbb{Q})$, and endow it with the inverse limit filtration, $\{F_r[K, \Omega Y] \hat{\ast} := \ker([K_{r-1}, \Omega Y] \otimes \mathbb{Q}) \subset [K_{r-1}, \Omega Y] \otimes \mathbb{Q}\}$.

For example, $K = \Omega S^m(m \geq 2)$ has a cell decomposition with one cell of dimension $(m-1)$, for each $r \geq 0$. Setting K_r equal to the $(r-1)$-th skeleton, we obtain the filtered group $[\Omega S^m, \Omega Y] \hat{\ast}$. Now let G be an arbitrary finitely-generated group. Then G has a Malcev completion, defined as $G \otimes \mathbb{Q} := \text{lim}_r (G/F_rG) \otimes \mathbb{Q}$. This group comes equipped with the inverse limit filtration; see [11].

The next theorem lifts the Rescaling Formula (3) from the level of associated graded Lie algebras to the level of filtered groups.

56
THEOREM 3.1. – Let Y be a k-rescaling of a space X. Assume that $H^*(X, \mathbb{Q})$ is a Koszul algebra. Then, X is formal if and only if the following Malcev Formula holds:

$$\Omega S^{2k+1}, \Omega Y \cong \pi_1 X \otimes \mathbb{Q}, \quad \text{as filtered groups.} \quad (5)$$

Let us sketch the proof of the forward implication. By the Campbell–Hausdorff formula; see [11]. For such arrangements, the Rescaling Formula was first established in [2], as a functorial way, a filtered group, called the exponential group of L. The underlying set of $\exp(L)$ is just L, while the group law is given by the Campbell–Hausdorff formula; see [11]. We then have:

$$\Omega S^{2k+1}, \Omega Y \cong \exp(\text{Hom}(H_{-1}(\Omega S^{2k+1}, \mathbb{Q}), \pi_\ast(\Omega Y) \otimes \mathbb{Q}))$$

$$\cong \exp(\pi_\ast(\Omega Y) \otimes \mathbb{Q}[2k + 1]) \cong \exp(\text{gr}_\ast(\pi_1 X) \otimes \mathbb{Q}) \cong \pi_1 X \otimes \mathbb{Q}.$$

The key is the first isomorphism, which follows from a theorem of H. Baues [1]. The second isomorphism requires a “rebracketing” of the homotopy Lie algebra. The third one is provided by Theorem 2.1, while the last one uses the formality of X (see [14,6]).

Consider now the Milnor–Moore group of degree 0 coalgebra maps from $H_\ast(K, \mathbb{Q})$ to $H_\ast(\Omega Y, \mathbb{Q})$, as defined in [7]. There is a natural filtration on $\text{Hom}^\text{coalg}(H_\ast(K, \mathbb{Q}), H_\ast(\Omega Y, \mathbb{Q}))$, with r-th term equal to the kernel of the map induced by the inclusion $K_{r-1} \rightarrow K$; see [3]. Using results of Hilton–Mislin–Roitberg and Scheerer, we show that $\text{Hom}^\text{coalg}(H_\ast(K, \mathbb{Q}), H_\ast(\Omega Y, \mathbb{Q})) \cong [K, \Omega Y]^\sim$. Combined with Theorem 3.1, this proves the following theorem.

THEOREM 3.2. – Let Y be a k-rescaling of a formal space X. If $H^*(X, \mathbb{Q})$ is a Koszul algebra, then $\text{Hom}^\text{coalg}(H_\ast(\Omega S^{2k+1}, \mathbb{Q}), H_\ast(\Omega Y, \mathbb{Q})) \cong \pi_1 X \otimes \mathbb{Q}, \quad \text{as filtered groups.} \quad (6)$

As noted by Cohen and Gitler in [3], the filtered group $[\Omega S^2, \Omega Y]$ is a particularly interesting object. As a set, it equals $\prod_{j \geq 1} \pi_\ast(\Omega Y)$, thus reassembling all the homotopy groups of Y into a single group, called the “group of homotopy groups” of Y. In this context, we obtain a result similar to Theorem 3.2, with ΩS^{2k+1} replaced by ΩS^2. In the case when X is the configuration space of ℓ distinct points in \mathbb{C}, and Y is the configuration space of ℓ distinct points in \mathbb{C}^{k+1}, this result answers a question posed by Cohen and Gitler. In the case when $X = \bigvee^n S^1$ and $Y = \bigvee^n S^{2k+1}$, we recover a result of Sato (see [4]).

4. Rescaling hyperplane arrangements

Let $\mathcal{A} = \{H_1, \ldots, H_n\}$ be an arrangement of hyperplanes in \mathbb{C}^ℓ, with complement $X = M(\mathcal{A})$. For each $k \geq 1$, let $\mathcal{A}^k := \{H_1^k, \ldots, H_n^k\}$ be the corresponding redundant arrangement of codimension k subspaces in \mathbb{C}^ℓ. Then, as shown by Cohen, Cohen and Xicoténcatl [2], the complement $Y = M(\mathcal{A}^{k+1})$ is an integral k-rescaling of X. By work of Brieskorn and Yuzvinsky, respectively, it is known that both X and Y are formal spaces.

By Theorems 2.1 and 2.2, the Rescaling Formula (3) holds precisely for the class of arrangements for which $H^*(X, \mathbb{Q})$ is a Koszul algebra. In this case, Y is coformal, and the Malcev Formula (5) also applies.

Presently, the only arrangements which are known to be Koszul are the fiber-type (or, supersolvable) arrangements; see [12]. For such arrangements, the Rescaling Formula was first established in [2], as a generalization of previous results of Fadell–Husseini and Cohen–Gitler on configuration spaces.

The Poincaré polynomial of the complement of a fiber-type arrangement \mathcal{A}, with exponents d_1, \ldots, d_ℓ, factors as $P_X(t) = \prod_{j=1}^\ell (1 + d_j t)$. From Theorem 2.3, we see that $\Phi_\tau = \text{rank} \pi_\tau(\Omega Y)$ vanishes if $2k \nmid \tau$, and $\prod_{j \geq 1} (1 - r(2k+1)^k_\tau) \pi_{2k+1}(1 - d_j t^{2k+1})$. As a consequence, the rational homotopy type of ΩY is determined solely by the exponents of \mathcal{A}. In particular, $\pi_{2k+1}(t) = \prod_{j=1}^\ell (1 - d_j t^{2k+1})^{-1}$.

If \mathcal{A} is an affine, generic arrangement of n hyperplanes in \mathbb{C}^{n-1} ($n > 2$), then the Rescaling Formula fails for $X = M(\mathcal{A})$, due to the non-coformality of $Y = M(\mathcal{A}^{k+1})$. The absence of coformality is detected by higher-order Whitehead products, which also account for the deviation from equality in (3) and (4). For example, $\Phi_\ell(2k+1)n-2 = 1$, whereas $\text{gr}_{\ell-1}(\pi_1 X) = 0$.
5. Rescaling links in S^3

Let $K = (K_1, \ldots, K_n)$ be a link of oriented circles in S^3. For each $k \geq 1$, we define the k-rescaling $K \otimes_k$ to be the link of $(2k + 1)$-spheres in S^{4k+3} obtained by taking the iterated join (in the sense of Koschorke and Rolfsen [5]) of the link K with k copies of the n-component Hopf link.

Let X and Y be the complements of K and $K \otimes_k$. Clearly, $\pi_1(Y) = 0$. Interpreting cup products in X and Y in terms of linking numbers, we show that Y is an integral k-rescaling of X. Since $H^{\geq 2}(X, \mathbb{Z}) = 0$, this rescaling is unique (up to \mathbb{Q}-equivalence), and so Y is a formal space.

Associated to K there is a linking graph, G_K, with vertices corresponding to the components K_i, and edges connecting pairs of distinct vertices for which $lk(K_i, K_j) \neq 0$. It is known that G_K is connected if and only if $H^*(X, \mathbb{Q})$ is Koszul; see [6]. Examples of links with complete (hence, connected) linking graphs include algebraic links and singularity links of central arrangements of transverse planes in \mathbb{R}^4.

The Rescaling Formula (3) holds for X and Y if and only if G_K is connected. In that case, Y is also coformal. Its homotopy Lie algebra is a semidirect product of free Lie algebras generated in degree $2k$, with non-zero ranks given by $\prod_{i \geq 1} (1 - t^{(2k+1)i})^{\mathbb{Z}} = (1 - t^{2k+1})(1 - (n-1)t^{2k+1})$.

On the other hand, the Malcev Formula (5) may fail (due to the non-formality of X), even when the Rescaling Formula does hold. To illustrate this phenomenon, we use the Campbell–Hausdorff invariants of links, introduced in [8]. If K_0 and K are two links with the same connected weighted linking graph, and if both link complements are formal, we show that $p^r(K_0) = p^r(K)$, for all $r \geq 1$.

Now take K_0 to be the n-component Hopf link ($n \geq 4$), and add the Borromean braid on three of its strands to get K. Then K_0 and K have the same weighted linking graph (the complete graph on n vertices, with all linking numbers equal to 1), but $p^r(K_0) \neq p^r(K)$. Since X_0 is obviously formal, X must be nonformal. Hence, if Y is the complement of the k-rescaling of K, then $\pi_1(\Omega Y) \otimes \mathbb{Q} \cong \mathfrak{g}_r(\pi_1 X) \otimes \mathbb{Q}[k]$, as graded Lie algebras, but $[\Omega S^{2k+1}, \Omega Y] \not\cong \pi_1 X \otimes \mathbb{Q}$, as filtered groups.

Acknowledgments. The first author was partially supported by a CERES grant. The second author was partially supported by NSF grant DMS-0105342.

References