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Abstract We introduce tight binding operators for quasicrystals that are parametrized by Delone sets.
These operators can be regarded in a natural operator algebra framework that encodes the
long range aperiodic order. This algebraic point of view allows us to study spectral theoretic
properties. In particular, the integrated density of states of the tight binding operators is
related to a canonical trace on the associated von Neumann algebra.To cite this article:
D. Lenz, P. Stollmann, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1131–1136.  2002
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Quasicristaux, ordre apériodique, et algèbres von Neumann

Résumé On introduit des opérateurs « tight binding » pour des quasicristaux paramétrés par des
ensembles de Delone. On peut regarder ces opérateurs dans le contexte naturel des algèbres
de von Neumann. Un tel point de vue permet d’étudier la théorie spectrale. En particulier
la densité d’états intégrée est liée à une trace de l’algèbre.Pour citer cet article : D. Lenz,
P. Stollmann, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1131–1136.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

Cette note résume notre travail [21,22] sur l’étude des hamiltoniens de quasicristaux. On part d’un
système dynamique(�,T ) dont les élémentsω ∈ � sont des ensembles de Deloneω ⊂ R

d et oùT sont
les translations. Pour chaqueω on a l’espace�2(ω) sur lequel agit un opérateurHω qui décrit l’hamiltonien
d’une réalisationω d’un type de quasicristaux.

En appliquant la théorie de l’intégration non commutative de Connes [8] on construit une algèbre de von
NeumannN (�,µ) pour toute mesure invarianteµ sur�. Cette algèbre contient les famillesH = (Hω)
des hamiltoniens de quasicristaux. On peut alors obtenir l’analogue des propriétés spectrales bien connues
pour les cas aléatoire ou presque-périodique. Notamment,N (�,µ) est muni d’une traceτ avec laquelle
on définitρH , une mesure surR. On obtient queρH est une mesure spectrale pourH ce qui entraîne que
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le spectreσ(Hω) soit constant pour presque toutω si µ est ergodique. De plus, si le système(�,T ) est
apériodique, la partie discrète du spectre deHω est vide pour presque toutω.

Si le système(�,T ) est uniquement ergodique et apériodique, alorsN (�,µ) est un facteur de type II.
Pour l’étude de la densité d’états intégrée on se ramène à uneC∗-algèbreA(�). On obtient que la

minimalité du système(�,T ) est équivalente au fait que tous les spectresσ(Hω) sont égaux.
De plus on a une formule de type « Shubin » abstraite qui permet d’identifier la densité d’états intégrée

à l’aide de la trace canoniqueτ . Dans ces résultats les propriétés de convergence (convergence faible ou
convergence en distribution) dépendent des propriétés ergodiques du système(�,T ).

1. Introduction: Quasicrystals and Delone dynamical systems

Quasicrystals have been discovered as solids that exhibit sharp Bragg peaks in diffraction experiments
with symmetries disallowed for periodic order, see [26]. Due to that phenomenon, quasicrystals are
supposed to have long range aperiodic order as explained in [12], which also contains useful information
on the literature.

It is nowadays quite common to model this long range order by tilings or, equivalently, Delone sets.
We adopt the second point of view and refer to [16–18,25,28,29] for standard notions and bibliographic
information. In this section, we briefly introduce the necessary notions. Details will be given in [21].

DEFINITION 1.1. – A subsetω ⊂ R
d is called aDelone set if there exist 0< r0 < r1 such that for any

p ∈ R
d the ballBr0(p) contains at most one andBr1(p) contains at least one element ofω.

HereBr(p) denotes the closed ball centered atp with radius r. The points of a Delone setω are
interpreted as the positions of the atoms of a quasicrystal. Thus a natural attempt to describe a quasicrystal
quantum mechanically is to associate withω a tight binding operatorHω defined on�2(ω) whose matrix
elements represent the effective interaction and potentials. Clearly, such a hamiltonian should be shift
invariant in the sense thatHω+t is obtained fromHω by translation. This leads to considering along with
ω all the translationsω+ t . (The shiftT = (Tt )t∈Rd , Ttω := ω+ t obviously maps Delone sets to Delone
sets.)

According to [21] there is a topology on the set of closed subsets ofR
d that is compact and has the

property that translations are continuous. It is called thenatural topology. See also [18], which we follow
in the first part of the following definition:

DEFINITION 1.2. – (1) If� is a closed set of Delone sets and invariant under the shift we call(�,T ) a
Delone dynamical system, DDS for short.

(2) A DDS is said to be offinite type, DDSF for short, if, furthermore,

{ω− p | p ∈ ω, ω ∈�} ∩Br(0)

is finite for everyr > 0.

The important finiteness condition in (2) above can be rephrased by saying that there are only finitely
many non-equivalent (with respect to translation) patchesω ∩ Br(p) of radiusr aroundp ∈ ω. By what
we said above� is compact for every DDS. See also [5,18] for compactness results under more restrictive
conditions, as well as [24]. Now a Delone dynamical system� can be used as a natural parameter space
of a family of hamiltonians describing quasicrystals. It should be regarded as the analog of the hull of a
quasiperiodic potential or the probability space of a random potential. Moreover it captures the symmetry
inherent in the Delone sets.

We shall say that a DDSF isaperiodic if ω+ t = ω (for someω) impliest = 0. In this respect we follow
the terminology of [28] and differ from [18].

1132



To cite this article: D. Lenz, P. Stollmann, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 1131–1136

It is our aim to prove that one has the same sort of results for families of Hamiltonians associated to
Delone sets as in the almost periodic or random case. The study of random operators by means of operator
algebras is not new. It goes back at least to the seminal work of Shubin [27] and Coburn, Moyer and
Singer [7]. LaterC∗-algebras associated to almost-periodic operators became a key tool in a program
initiated by Bellissard centered around the so called gap-labelling (see, e.g., [2–4]). These works focus on
K-theory for almost-periodic operators. However, they also establish versions of Pastur–Shubin formulas
(which are needed to calculate a certain functional on theK0-groups) as well as certain spectral features.
However, all these results are phrased and proven within the framework of crossed products. This means,
the underlying Hamiltonians are all assumed to act on the same Hilbert space which is just the�2-space of
the underlying (mostly discrete) group. While this is a quite general framework it is not sufficiently general
to treat discrete random operators associated to tilings or Delone sets (unless of course the Delone set is a
lattice). Namely, in this case each HamiltonianHω has its own Hilbert space�2(ω) attached and this Hilbert
space depends onω and is not the�2 space of a group. This difficulty is overcome in our present work by
the use of Connes’ non-commutative integration theory combined with certain direct integrals based on
naturally arising fibred spaces.

Finally, let us mention that starting with the work of Kellendonk [13,14], much has been established
about theK-theory of certain tilingC∗-algebras. We refer the reader to the survey articles by Kellendonk
and Putnam [15] and the article by Bellissard, Herrmann and Zarrouati [5].

2. The associated von Neumann algebra

We shall use Delone dynamical systems as parameter spaces for operators associated with quasicrystals.
A DDS� is viewed as standing for a type of quasicrystals and the elementsω ∈� are considered as specific
realizations, the points ofω representing the positions of the atoms of a quasicrystal. Notation is chosen to
underline the analogy with random models [6,23,30], see also the almost random framework introduced in
[2,3]. However, there is a fundamental difference: in the situation at hand the HamiltonianHω is naturally
defined on�2(ω) and the latter space varies withω ∈ �. Clearly, a reasonable family(Hω)ω∈� should
satisfy thecovariance condition

Hω+t =UtHωU∗
t ,

whereUt : �2(ω)→ �2(ω+ t) is the unitary operator induced by translation. For a DDSF(�,T ) consider
the bundle

� := {
(ω, x) | ω ∈�,x ∈ ω} ⊂�× R

d, equipped withm=
∫
�

(∑
x∈ω
εx

)
dµ(ω),

whereµ is aT -invariant measure on� andεx the unit mass. We get

L2(�,m)=
∫ ⊕

�

�2(ω)dµ(ω).

For a measurable, essentially boundedH = (Hω)ω∈� let

π(H)=
∫ ⊕

�

Hω dµ(ω) ∈ B
(
L2(�,m)

)
.

Define

N (�,µ) := {
A= (Aω)ω∈� |A covariant, measurable and bounded

}
/∼,
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where∼ means that we identify families that agreeµ almost everywhere. In the notation of Connes’ [8]
we would haveH = (�2(ω))ω∈�, � the transversal measure corresponding to the invariant measureµ on
� andN (�,µ)= End�(H), where� is considered as a groupoid with respect to translations. We get the
following result, details of which will be given in [21].

THEOREM 2.1. –Consider an aperiodic and uniquely ergodic DDSF (�,T ). Let µ be the unique
invariant probability measure. Then N (�,µ) is a factor of type IID , where

D = lim
R→∞

#(ω∩BR(0))
|BR(0)|

is the density of ω.

Of course, the existence of the limit that givesD had already be known and can be found, e.g., in [5].
This theorem is a consequence of the results in [8] and a direct calculation of the canonical trace

τ (H)=
∫
�

tr(HωMf )dµ(ω)

that does not depend upon the choice off ∈ Cc(Rd) as long asf � 0 and
∫
f (x)dx = 1. Note that the

multiplication operatorMf acts on�2(ω) by restriction and that the resulting operatorHωMf has finite
rank, since only finitely many points ofω lie in the support off . This canonical trace is connected with
the integrated density of states as will be seen in the next section. It can be defined onN (�,µ) whenever
µ is an invariant measure. The relation to spectral theoretic properties ofH is provided by the following
measureρH on R, defined by

〈ρH ,ϕ〉 := τ(ϕ(H)) for ϕ ∈Cb(R),

for anyH ∈ N (�,µ). Its fundamental importance is illustrated by:

PROPOSITION 2.1. –Let (�,T ) be an aperiodic DDSF, µ an invariant measure and H ∈ N (�,µ)
selfadjoint. Then ρH is a spectral measure of H and π(H). If, moreover, µ is ergodic, then for µ-a.e.
ω ∈� we have that suppρH = σ(Hω) and that the discrete spectrum of Hω is void.

Details will be given in [21]. Note that this is the analog of one of the basic results for random operators
[6,23,30]. In different context it can be found in [19,20].

3. Tight binding operators

In order to describe the properties of disordered models quantum mechanically it is common to use a
tight binding approach. We introduce the following notion that still leaves a lot of flexibility. In comparison
with the random or almost random case it is again the fact that the space varies that makes the fundamental
difference. Details will appear in [22].

DEFINITION 3.1. – Let� ba aDDSF. A family A = (Aω), Aω ∈ B(�2(ω)) is said to be anoperator
(family) of finite range if there existsR > 0 such that

– (Aωδx |δy)= 0 if x, y ∈ ω and|x − y| �R.
– (Aω+t δx+t |δy+t )= (Aω̃δx |δy) if ω ∩BR(x + t)= ω̃ ∩BR(x)+ t andx, y ∈ ω̃.

This merely says that the matrix elementsAω(x, y) = (Aωδx |δy) of Aω only depend on a sufficiently
large patch aroundx and vanish if the distance betweenx andy is too large. Since there are only finitely
many nonequivalent patches, an operator of finite range is bounded in the sense that‖A‖ = supω∈� ‖Aω‖<
∞. Moreover it is clear that every suchA is covariant and consequentlyA ∈ N (�,µ) for every invariant
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measureµ. The completion of the space of all finite range operators with respect to the above norm is
a C∗-algebra that we denote byA(�). The representationsπω : A �→ Aω can be uniquely extended to
representations ofA(�) and are again denoted byπω :A(�)→ B(�2(ω)). We have the following result:

THEOREM 3.1. –The following conditions on � are equivalent:
(i) (�,T ) is minimal.
(ii) For any selfadjoint A ∈A(�) the spectrum σ(Aω) is independent of ω ∈�.
(iii) πω is faithful for every ω ∈�.

Next we relate the “abstract integrated density of states”ρH to the integrated density of states as
considered in random or almost random models and defined by a volume limit over finite parts of the
operator.

Note that for selfadjointA ∈ A(�) and boundedQ⊂ R
d the restrictionAω|Q defined on�2(Q∩ω) has

finite rank. Therefore, the spectral counting function

n(Aω,Q)(E) := #{eigenvalues ofAω|Q belowE}

is finite and that 1
|Q|n(Aω,Q) is the distribution function of the measureρ(Aω,Q), defined by

〈
ρ(Aω,Q),ϕ

〉 := 1

|Q| tr
(
ϕ(Aω|Q)

)
for ϕ ∈ Cb(R).

THEOREM 3.2. –Let (�,T ) be a uniquely ergodic DDSF and A ∈ A(�) selfadjoint. Then, for any van
Hove sequenceQn,

ρ(Aω,Qn)→ ρA weakly as n→ ∞.
This generalizes results implicit in Geerse and Hof [9] and Kellendonk [13], see also [10] and is an analog

of results of Bellissard [2,3] in the almost random setting. General arguments now yield the convergence
in distribution forE a continuity point of the limit distribution. However, as we will show by examples in
[22], discontinuities cannot be excluded. This may seem rather astonishing in view of what is known for
random models as well as onedimensional quasicrystals. The reason is the more complicated geometry in
dimensionsd � 2. In virtue of this remark the next result is of particular interest. It is based upon an ergodic
theorem for Delone sets, details will be given in [22].

THEOREM 3.3. –Let (�,T ) be a minimal, uniquely ergodic, aperiodic DDSF. Then, for any van Hoove
sequenceQn,

ρ(Aω,Qn)→ ρA in distribution as n→ ∞,
uniformly in ω ∈� for every selfadjoint A of finite range.

Note that both these last results can be regarded as abstract versions of the celebrated Shubin’s trace
formula [27]. See also the discussion in [19] as well as [1,6,23,2,3] for the almost periodic, random and
almost random case. The result holds as well for primitive substitutions. For the special case of the Penrose
tiling related but weaker results can be found [9,10], see [11] as well.
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