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Abstract During the last thirty years, symplectic or Marsden–Weinstein reduction has been a major
tool in the construction of new symplectic manifolds and in the study of mechanical systems
with symmetry. This procedure has been traditionally associated to the canonical action
of a Lie group on a symplectic manifold, in the presence of a momentum map. In this
Note we show that the symplectic reduction phenomenon has much deeper roots. More
specifically, we will find symplectically reduced spaces purely within the Poisson category
under hypotheses that do not necessarily imply the existence of a momentum map. In
other words, the right category to obtain symplectically reduced spaces is that of Poisson
manifolds acted upon canonically by a Lie group.To cite this article: J.-P. Ortega, C. R.
Acad. Sci. Paris, Ser. I 334 (2002) 999–1004.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

Les espaces réduits symplectiques d’une action de Poisson

Résumé Pendant les trente derniers années, la réduction symplectique (aussi appelée de Marsden–
Weinstein) a joué un rôle majeur lors de la construction de nouvelles variétés symplectiques
et dans l’étude des systèmes mécaniques symétriques. Ce procédé a été traditionnellement
associé à l’action canonique d’un groupe de Lie sur une variété symplectique, en présence
d’une application moment. Dans cette Note, nous montrerons que le phénomène de la
réduction symplectique a des racines beaucoup plus profondes. Plus spécifiquement, nous
trouverons des espaces réduits symplectiques à l’intérieur de la catégorie des variétés de
Poisson sous des hypothèses qui n’impliquent pas forcément l’existence d’une application
moment. Autrement dit, la catégorie la plus générale pour l’obtention des espaces réduits
symplectiques est celle des variétés de Poisson munies de l’action canonique d’un groupe
de Lie.Pour citer cet article : J.-P. Ortega, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 999–
1004.  2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

Soit (M, {·, ·}) une variété de Poisson etG un groupe de Lie qui agit surM d’une façon canonique et
propre. SoitA′

G la distribution lisse et intégrable surM définie par l’identitéA′
G := {Xf | f ∈ C∞(M)G},

où C∞(M)G est l’ensemble des fonctions lissesG-invariantes surM et Xf est le champ de vecteurs
hamiltonien associé à la fonctionf . L’application moment optimaleJ : M → M/A′

G a été définie en
[12] comme la projection canonique deM sur l’espace des feuillesM/A′

G deA′
G.
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Par construction, les surfaces de niveau deJ sont des sous-variétés immergées préservées par la
dynamique hamiltonienneG-équivariante sur la variété de Poisson(M, {·, ·}). En plus, on peut définir
une action du groupeG sur l’espace de feuillesM/A′

G par rapport à laquelleJ est équivariante.
Le résultat principal de cette Note est la démonstration du théorème suivant.

THÉORÈME 0.1. –Soit (M, {·, ·}) une variété de Poisson etG un groupe de Lie qui agit surM
d’une façon canonique et propre. SoitJ : M → M/A′

G l’application moment optimale associée a
cette action. Alors, pour un élémentρ ∈ M/A′

G quelconque dont le sous-groupe d’isotropieGρ agit
proprement surJ −1(ρ), l’espace des orbitesJ−1(ρ)/Gρ est une variété quotient régulière(c.-à-d.,
la projection canoniqueπρ : J −1(ρ) → J −1(ρ)/Gρ est une submersion surjective). En plus, c’est une
variété symplectique, avec la forme symplectique naturelleωρ définie par l’identité

π∗
ρωρ(m)

(
Xf (m),Xh(m)

) = {f,h}(m), pourm ∈ J −1(ρ) etf,h ∈ C∞(M)G.

1. Introduction

Let (M,ω) be a symplectic manifold andG be a Lie group that acts freely and properly onM. We will
assume that this action is canonical that is, it preserves the symplectic form and that it has an equivariant
momentum mapJ :M → g∗ associated. Marsden and Weinstein [8] showed that for any valueµ ∈ J(M)
with coadjoint isotropy subgroupGµ, the quotientJ−1(µ)/Gµ is a smooth symplectic manifold with a
symplectic structure naturally inherited from that inM. This procedure can be reproduced when, instead of
ag∗-valued momentum map, we have aG-valued momentum map in the sense of Alekseev et al. [9,1].

The study of symplectic reduction in the absence of the freeness hypothesis on theG-action has given
rise to the so calledSingular Reduction Theorywhich has been spelled out over the years in a series of
works. See [2,14,3,10,5,13], and references therein.

The first effort to perform symplectic reduction without momentum maps was carried out in [12] by
using the so calledoptimal momentum map. Nevertheless, in the requirements of the reduction theorem
formulated in that paper there is a “closedness hypothesis” that is reminiscent at some level of the existence
of a standard (g∗ orG-valued) momentum map.

In this Note we will formulate a symplectic reduction theorem that does not require this hypothesis and
that at the same time works in the Poisson category. More specifically, we will show that the Marsden–
Weinstein quotients constructed using the (always available) optimal momentum map associated to a
canonical Lie group action on the Poisson manifold(M, {·, ·}) are smooth symplectic manifolds, provided
that the group action satisfies a customary properness hypothesis.

2. The optimal momentum map and the momentum space

The optimal momentum map was introduced in [12] as a general method to find the conservation laws
associated to the symmetries of a Poisson system encoded in the canonical action of a Lie group. We
recall its definition. Let(M, {·, ·}) be a Poisson manifold andG be a Lie group that acts properly onM
by Poisson diffeomorphisms via the left action� :G×M →M. The group of canonical transformations
associated to this action will be denoted byAG := {�g :M →M | g ∈G} and the canonical projection of
M onto the orbit space byπAG :M →M/AG =M/G. Let A′

G be the distribution onM defined by the
relationA′

G(m) := {Xf (m) | f ∈ C∞(M)G}, for all m ∈ M. The symbolXf denotes the Hamiltonian
vector field associated to the functionf ∈ C∞(M). Depending on the context, the distributionA′

G is
called theG-characteristic distributionor the polar distribution defined byAG [11]. A′

G is a smooth
integrable generalized distribution in the sense of Stefan and Sussman [15–17]. Theoptimal momentum
mapJ is defined as the canonical projection onto the leaf space ofA′

G, that is,J : M → M/A′
G. By

its very definition, the levels sets ofJ are preserved by the Hamiltonian flows associated toG-invariant
Hamiltonian functions andJ is universalwith respect to this property, that is, any other map whose level
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sets are preserved byG-equivariant Hamiltonian dynamics factors necessarily throughJ . By construction,
the fibers ofJ are the leaves of an integrable generalized distribution and therebyinitial immersed
submanifoldsof M [6]. Recall that we say thatN is an initial submanifold ofM when the injection
i :N →M is a smooth immersion that satisfies that for any manifoldZ, a mappingf : Z→N is smooth
iff i ◦ f : Z→M is smooth. We summarize this and other elementary properties of the fibers ofJ in the
following proposition.

PROPOSITION 2.1. –Let (M, {·, ·}) be a Poisson manifold andG be a Lie group that acts properly
and canonically onM. Let J : M → M/A′

G be the associated optimal momentum map. Then for any
ρ ∈M/A′

G we have that:
(i) The level setJ −1(ρ) is an immersed initial submanifold ofM.
(ii) There is a unique symplectic leafL of (M, {·, ·}) such thatJ−1(ρ)⊂ L.
(iii) Letm ∈M be an arbitrary element ofJ−1(ρ). Then,J−1(ρ) ⊂MGm , withMGm := {z ∈M |Gz =

Gm}.
In the sequel we will denote byLρ the unique symplectic leaf ofM that containsJ −1(ρ). Notice that as

Lρ is also an immersed initial submanifold ofM, the injectioniLρ : J −1(ρ) ↪→ Lρ is smooth.
The leaf spaceM/A′

G is called themomentum spaceof J . We will consider it as a topological space
with the quotient topology. Letm ∈M be arbitrary such thatJ (m) = ρ ∈M/A′

G. Then, for anyg ∈ G,
the map�g(ρ)= J (g ·m) ∈M/A′

G defines a continuousG-action onM/A′
G with respect to whichJ is

G-equivariant. Notice that since this action is not smooth andM/A′
G is not Hausdorff in general, there is no

guarantee that the isotropy subgroupsGρ are closed, and therefore embedded, subgroups ofG. However,
there is still something that we can say:

PROPOSITION 2.2. – Let Gρ be the isotropy subgroup of the elementρ ∈ M/A′
G associated to the

G-action onM/A′
G that we just defined. Then:

(i) There is a unique smooth structure onGρ for which this subgroup becomes an initial Lie subgroup
ofG with Lie algebragρ given bygρ = {ξ ∈ g | ξM(m) ∈ TmJ −1(ρ), for all m ∈J −1(ρ)}.

(ii) With this smooth structure forGρ , the left action�ρ : Gρ × J −1(ρ) → J−1(ρ) defined by
�ρ(g, z) :=�(g, z) is smooth.

(iii) This action has fixed isotropies, that is, ifz ∈ J−1(ρ) then (Gρ)z = Gz, and Gm = Gz for all
m ∈J −1(ρ).

Proof. –(i) It is a straightforward corollary of Definition 3 and Proposition 9 in page 290 of [4]. Indeed,
we can use that result to conclude the existence of a unique smooth structure forGρ with which it becomes
an initial subgroup ofG with Lie algebragρ = {ξ ∈ g | there exists a smooth curvec : R →Gρ such that
c(0) = e andc′(0) = ξ}. An elementary argument shows thatgρ = {ξ ∈ g | exptξ · m ∈ J −1(ρ) for all
m ∈J −1(ρ), t ∈ R} = {ξ ∈ g | ξM(m) ∈ TmJ −1(ρ), for all m ∈ J−1(ρ)}.

(ii) As J −1(ρ) is an initial submanifold ofM andiρ ◦�ρ is smooth, withiρ : J−1(ρ) ↪→M the natural
inclusion, then�ρ is also smooth. (iii) is a straightforward consequence of the definitions.✷
3. The reduction theorem

We will now introduce our main result. In the statement we will denote byπρ : J −1(ρ)→ J−1(ρ)/Gρ
the canonical projection onto the orbit space of theGρ -action onJ −1(ρ) defined in Proposition 2.2.

THEOREM 3.1 (Symplectic reduction by Poisson actions). –Let (M, {·, ·}) be a smooth Poisson
manifold andG be a Lie group acting canonically and properly onM. LetJ :M →M/A′

G be the optimal
momentum map associated to this action. Then, for anyρ ∈ M/A′

G whose isotropy subgroupGρ acts
properly onJ −1(ρ), the orbit spaceMρ := J −1(ρ)/Gρ is a smooth symplectic regular quotient manifold
with symplectic formωρ defined by:

π∗
ρωρ(m)

(
Xf (m),Xh(m)

) = {f,h}(m), for anym ∈ J−1(ρ) and anyf,h ∈ C∞(M)G. (1)
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Remark1. – Let iLρ : J −1(ρ) ↪→ Lρ be the natural smooth injection ofJ −1(ρ) into the symplectic
leaf (Lρ,ωLρ ) of (M, {·, ·}) in which it is sitting. AsLρ is an initial submanifold ofM, the injectioniLρ
is a smooth map. The formωρ can also be written in terms of the symplectic structure of the leafLρ as
π∗
ρωρ = i∗LρωLρ . In view of this remark we can obtain the standard Symplectic Stratification Theorem of

Poisson manifolds as a straightforward corollary of Theorem 3.1 by taking the groupG= {e}. In that case
the distributionA′

G coincides with the characteristic distribution of the Poisson manifold and the level sets
of the optimal momentum map, and thereby the symplectic quotientsMρ , are exactly the symplectic leaves.
We explicitly point this out in our next statement.

COROLLARY 3.2 (Symplectic Stratification Theorem). –Let (M, {·, ·}) be a smooth Poisson manifold.
Then,M is the disjoint union of the maximal integral leaves of the integrable distributionD given by
D(m) := {Xf (m) | f ∈ C∞(M)},m ∈M. These leaves are symplectic initial submanifolds ofM.

Remark2. – The only extra hypothesis in the statement of Theorem 3.1 with respect to the hypotheses
used in the classical reduction theorems is the properness of theGρ -action onJ−1(ρ). The next example
will show that this is a real hypothesis in the sense that the properness of theGρ -action is not automatically
inherited from the properness of theG-action onM, as it used to be the case in the presence of a standard
momentum map (see[12]). From this reduction point of view we can think of the presence of a standard
momentum map as an extra integrability feature of theG-characteristic distribution that makes its integrable
leaves imbedded (and not just initial) submanifolds ofM and their isotropy subgroups automatically closed.

Example1 (On the properness of theGρ -action). – As we announced in the previous remark, we now
present a situation where theGρ -action onJ−1(ρ) is not proper while theG-action onM satisfies
this condition. LetM := T

2 × T
2 be the product of two two-tori whose elements we will denote by

the four-tuples(eiθ1,eiθ2,eiψ1,eiψ2). We endowM with the symplectic structureω defined byω :=
dθ1 ∧ dθ2 + √

2dψ1 ∧ dψ2. We now consider the canonical two-torus action given by(eiφ1,eiφ2) ·
(eiθ1,eiθ2,eiψ1,eiψ2) := (ei(θ1+φ1),ei(θ2+φ2),ei(ψ1+φ1),ei(ψ2+φ2)). First of all, notice that since the two-torus
is compact this action is necessarily proper. Moreover, asT

2 acts freely, the corresponding orbit space
M/AT2 is a smooth manifold such that the projectionπA

T2 :M →M/AT2 is a surjective submersion. The

polar distributionA′
T2 does not have that property. Indeed, C∞(M)T2

comprises all the functionsf of

the formf ≡ f (ei(θ1−ψ1),ei(θ2−ψ2)). An inspection of the Hamiltonian flows associated to such functions
readily shows that the leaves ofA′

T2, that is, the level sets of the optimal momentum mapJ , are the
products of two leaves of an irrational foliation in a two-torus. Moreover, it can be checked that for any
ρ ∈M/A′

T2, the isotropy subgroupT2
ρ is the product of two discreet subgroups ofS1, each of which fill

densely the circle. We can use this density property to show that theTρ -action onJ −1(ρ) is not proper. Let
{(eiτn,eiσn)}n∈N be a strictly monotone sequence of elements inT

2
ρ that converges to(e,e) in T

2. Then, for
any sequence{zn}n∈N ⊂ J−1(ρ) such thatzn → z ∈J −1(ρ) in J −1(ρ) we have that(eiτn ,eiσn) ·zn → z in
J−1(ρ). However, sinceT2

ρ is endowed with the discrete topology and{(eiτn,eiσn)}n∈N is strictly monotone
it has no convergent subsequences, which implies thatGρ does not act properly onJ−1(ρ).

Example2. – A simplified version of the previous example provides a situation where the hypotheses of
Theorem 3.1 are satisfied while all the standard reduction theorems fail. Namely, there are no momentum
maps for this action and, moreover, the “closedness hypothesis” in [12] is not satisfied.

Let M := T
2 × T

2 with the same symplectic structure that we had in the previous example. We now
consider the canonical circle action given by eiφ · (eiθ1,eiθ2,eiψ1,eiψ2) := (ei(θ1+φ),eiθ2,ei(ψ1+φ),eiψ2). In
this case, C∞(M)S1

comprises all the functionsf of the formf ≡ f (eiθ2,eiψ2,ei(θ1−ψ1)). An inspection
of the Hamiltonian flows associated to such functions readily shows that the leaves ofA′

S1, that is, the

level setsJ −1(ρ) of the optimal momentum mapJ , are the product of a two-torus with a leaf of an
irrational foliation (Kronecker submanifold) of another two-torus. Obviously this is not compatible with the
existence of a (R2 or T

2-valued) momentum map or with the closedness hypothesis in [12]. Nevertheless,
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the isotropiesS1
ρ coincide with the circleS1, whose compactness guarantees that its action onJ−1(ρ)

is proper. Theorem 3.1 automatically guarantees that the quotients of the formMρ := J −1(ρ)/S1
ρ �

(S1 ×S1 S1)× {Kronecker submanifold ofT2} are symplectic.

Proof of the theorem. –Since by hypothesis theGρ -action onJ −1(ρ) is proper and by Proposition 2.2
it has fixed isotropies, the quotientJ −1(ρ)/Gρ is therefore a smooth manifold, and the projection
πρ : J −1(ρ)→ J−1(ρ)/Gρ is a smooth surjective submersion.

We start the proof of the symplecticity ofMρ by showing that (1) is a good definition for the form
ωρ in the quotientMρ . Let m,m′ ∈ J −1(ρ) be such thatπρ(m) = πρ(m

′), and v,w ∈ TmJ −1(ρ),
v′,w′ ∈ Tm′J −1(ρ) be such thatTmπρ · v = Tm′πρ · v′, Tmπρ ·w = Tm′πρ ·w′. Let f,f ′, g, g′ ∈ C∞(M)G
be such thatv = Xf (m), v′ = Xf ′(m′), w = Xg(m), w′ = Xg′(m′). The conditionπρ(m) = πρ(m

′) im-
plies the existence of an elementk ∈ Gρ such thatm′ = �

ρ
k (m). We also have thatTmπρ = Tm′πρ ◦

Tm�
ρ
k . Analogously, because of the equalitiesTmπρ · v = Tm′πρ · v′, Tmπρ · w = Tm′πρ · w′ there

exist G-invariant functionsh1, h2 ∈ C∞(M)G and elementsξ1, ξ2 ∈ gρ such thatXf ′(m′) − Tm�
ρ
k ·

Xf (m)= ξ1
J −1(ρ)

(m′)=Xh1(m′), andXg′(m′)−Tm�ρk ·Xg(m)= ξ2
J −1(ρ)

(m′)=Xh2(m′), or, analogously

Xf ′(m′) = Xh1+f ◦�
k−1
(m′) = Xh1+f (m′), andXg′(m′) = Xh2+g◦�

k−1
(m′) = Xh2+g(m′). Hence, we can

write

ωρ
(
πρ(m

′)
)
(v′,w′)= {f ′, g′}(m′)= {

h1 + f,h2 + g
}
(m′)= {

h1 + f,h2 + g
}
(m)

= {f,g}(m)+ {
f,h2}(m)+ {

h1, g
}
(m)+ {

h1, h2}(m)

= {f,g}(m)+ df (m) · ξ2
J −1(ρ)

(m)− d
(
g + h2)(m) · ξ1

J −1(ρ)
(m)

= {f,g}(m)= ωρ
(
πρ(m)

)
(v,w).

Consequently,ωρ is a well defined two-form on the quotientMρ . Given thatπρ is a smooth surjective
submersion, the formωρ is clearly smooth. The Jacobi identity for the bracket{·, ·} onM implies thatωρ is
closed. These two features of the formωρ can also be immediately read out of the expression forωρ given
in Remark 1, whose equivalence with (1) is straightforward.

It only remains to be shown thatωρ is non degenerate. We start our argument with a few notations
and remarks. LetH ⊂ G be the isotropy subgroup of all the elements inJ −1(ρ) with respect to the
smoothGρ -action on this manifold. Recall that by Proposition 2.2 this isotropy subgroup coincides with
an isotropy of theG-action onM. Since by hypothesis theG-action onM is proper, the subgroupH ⊂Gρ
is necessarily compact. Moreover, the Slice theorem guarantees that for any pointm ∈ J −1(ρ), there is a
G-invariant neighborhoodU ofm inM that isG-equivariantly diffeomorphic to the twist productG×H Vr ,
whereVr is a ball of radiusr around the origin in some vector spaceV on whichH acts linearly.

Let m ∈ J −1(ρ) arbitrary. Suppose that the vectorXf (m), with f ∈ C∞(M)G, satisfies the equality
π∗
ρωρ(m)(Xf (m), Xh(m)) = {f,h}(m) = 0, for all h ∈ C∞(M)G. In order to prove thatωρ is non

degenerate we have to show thatXf (m) ∈ Tm(Gρ · m). We will do so by using the local coordinates
around the pointm provided by the Slice theorem. First of all, asf is G-invariantXf (m) ∈ TmMH .
Hence, as in local coordinatesMH � N(H) ×H VHr , we have thatXf (m) = T(e,0)π · (ζ, v), where
π :G× Vr →G×H Vr is the natural projection,ζ ∈ Lie(N(H)), andv ∈ VH . We recall thatVH denotes
the fixed points inV by the action ofH .

We now rephrase in these local coordinates the non degeneracy condition. Indeed, the fact that
π∗
ρωρ(m)(Xf (m),Xh(m)) = {f,h}(m) = −dh(m) · Xf (m) = 0, for all h ∈ C∞(M)G amounts to saying

thatdg(0) · v = 0 for all the functionsg ∈ C∞(Vr)H . On other words,v ∈ ({dg(0) | g ∈ C∞(Vr)H })◦. A
known fact about proper group actions (seeProposition 3.1.1 in [10] or Proposition 2.14 in [12]) implies
that v ∈ ((V ∗)H )◦. Consequently,v ∈ VH ∩ ((V ∗)H )◦. We now show that this intersection is trivial and
thereforev = 0 necessarily.
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We start by recalling (seeagain the references that we just quoted) that the restriction to(V ∗)H of
the dual map associated to the inclusioniVH : VH ↪→ V is aH -equivariant isomorphism from(V ∗)H
to (V H )∗. Now, asv ∈ V H ∩ ((V ∗)H )◦ we have that〈α,v〉V = 0 for everyα ∈ ((V )∗)H . The symbol
〈·, ·〉V denotes the natural pairing ofV with its dual. We can rewrite this condition as 0= 〈α,v〉V =
〈α, iV H (v)〉V = 〈i∗

VH
(α), v〉V H . As the restrictioni∗

VH
|(V ∗)H is an isomorphism, the previous identity is

equivalent to〈β,v〉V H = 0 for all β ∈ (V H )∗. Consequently,v = 0, as required.
We conclude our argument by noting that asXf (m) = T(e,0)π · (ζ,0), we have thatXf (m) ∈ Tm(G ·

m)∩A′
G(m)= Tm(Gρ ·m), which proves the nondegeneracy ofωρ . ✷
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