Extreme value attractors for star unimodal copulas

Ioan Cuculescu ${ }^{\text {a }}$, Radu Theodorescu ${ }^{\text {b }}$
${ }^{\text {a }}$ Facultatea de matematică, Universitatea Bucureşti, str. Academiei 14, RO-70109 Bucureşti, Romania
${ }^{\text {b }}$ Département de mathématiques et de statistique, Université Laval, Québec, QC, Canada G1K 7P4

Received 5 December 2001; accepted after revision 18 February 2002
Note presented by Paul Deheuvels.

Abstract

We determine maximum attractors for copulas star (or 2-) unimodal (about a point $(a, b) \in$ \mathbf{R}^{2}). If $(a, b) \neq(1,1)$ these attractors form a two-parameter family of copulas extending that of Cuadras-Augé, whereas if $(a, b)=(1,1)$ they cover all maximum value copulas. We also examine the relationship between unimodality and Archimax copulas. To cite this article: I. Cuculescu, R. Theodorescu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689-692. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Attracteurs de valeurs extrêmes pour les copules 2-unimodales

Abstract

Résumé \quad Nous déterminons les attracteurs des valeurs maximales pour les copules 2-unimodales (par rapport à $(a, b))$. Si $(a, b) \neq(1,1)$ ces attracteurs forment une famille de copules à deux paramètres généralisant celle de Cuadras-Augé alors que si $(a, b)=(1,1)$ elles couvrent toutes les copules de valeurs maximales. Nous examinons aussi la relation entre l'unimodalité et les copules Archimax. Pour citer cet article: I. Cuculescu, R. Theodorescu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689-692. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

An important property of a distribution is unimodality. It is then natural to ask whether copulas are unimodal. This question has been answered for central convex, block, and star unimodality in Cuculescu and Theodorescu [3]. As a follow-up we examine in this Note the maximum domain of attraction for star unimodal copulas.

The Note is organized as follows. Section 2 has an auxiliary character; here we indicate several definitions, notations, and results to be used throughout this note. In Section 3 we show that the maximum domain of attraction to which a copula that is star unimodal about $(a, b) \neq(1,1)$ belongs is an element of a two-parameter family of copulas extending that of Cuadras-Augé. When $(a, b)=(1,1)$ the set of all possible attractors changes dramatically and covers all maximum value copulas. As a consequence of the results in Section 3 we examine in Section 4 the relationship between star unimodality and the Archimax copulas of Capéraà, Fougères, and Genest [2]; we show that many of them are not star unimodal.

This Note summarizes the results obtained in Cuculescu and Theodorescu [4]; details and proofs will be published elsewhere.

[^0]
2. Prelude

We shall use the term probability measure or distribution at our convenience; m is Lebesgue measure, \otimes stands for measure product, 1_{A} for the indicator function of $A, \bar{\mu}$ for the 'survival' function of μ, and $f \mu$ for the measure $\int . f \mathrm{~d} \mu$.

Let $I=[0,1]$. It was Sklar [9] who in 1959 coined the term copula for a distribution on I^{2} whose margins are uniform. The notations M, W, and Π stand for the copulas $\min \{u, v\}, \max \{u+v-1,0\}$, and $u v$ respectively. For details on copulas we shall refer the reader to the recent book by Nelsen [7].

A copula C^{*} is said to be the maximum attractor of copula C (or C belongs to the maximum domain of attraction of C^{*}) if we have (Galambos [6, Theorem 5.2.3, p. 294])

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C^{n}\left(x^{1 / n}, y^{1 / n}\right)=C^{*}(x, y), \quad x, y \in I \tag{1}
\end{equation*}
$$

Here (1) is equivalent to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(1-C\left(x^{1 / n}, y^{1 / n}\right)\right)=-\log C^{*}(x, y), \quad x, y \in I \tag{2}
\end{equation*}
$$

Since $1-C(x, y)=(1-x)+(1-y)-\bar{C}(x, y), x, y \in I$, where $\bar{C}(x, y)=C((x, 1] \times(y, 1]))$ is the joint survival function of $C,(2)$ is equivalent to

$$
\lim _{n \rightarrow \infty} n \bar{C}\left(x^{1 / n}, y^{1 / n}\right)=-\log (x y)+\log C^{*}(x, y), \quad x, y \in I .
$$

Only the behavior of \bar{C} near the point $(1,1)$ is important when deciding whether C belongs or not to the maximum domain of attraction of C^{*}. Similarly copula C belongs to the minimum domain of attraction of C_{*} if and only if C_{*} is the maximum attractor of the survival copula $\widehat{C}(x, y)=\bar{C}(1-x, 1-y)=$ $x+y-1+C(1-x, 1-y), x, y \in I$. Therefore any assertion concerning the minimum domain of attraction is equivalent to one concerning the maximum domain of attraction by changing C to \widehat{C}.

Since the work of Pickands [8] (see also Tawn [10]) it is known that C^{*}, also called extreme value copula, can be expressed in the form

$$
\begin{equation*}
C^{*}(x, y)=C_{A}(x, y)=\exp \{\log (x y) A(\log (x) / \log (x y))\}, \quad x, y \in I \tag{3}
\end{equation*}
$$

in terms of a convex dependence function A defined on I in such a way that $\max \{t, 1-t\} \leqslant A(t) \leqslant 1$ for all $t \in I$. The bounds 1 and $\max \{t, 1-t\}$ correspond to copulas Π and M respectively. A dependence function A which will occur in the sequel is

$$
\begin{equation*}
A_{\theta_{1}, \theta_{2}}(t)=\max \left\{1-\theta_{1}(1-t), 1-\theta_{2} t\right\}, \quad \theta_{1}, \theta_{2} \in(0,1] \tag{4}
\end{equation*}
$$

and $A_{0,0}=1$. Such an $A_{\theta_{1}, \theta_{2}}$ leads to the copula

$$
C_{\theta_{1}, \theta_{2}}(x, y)= \begin{cases}x y^{1-\theta_{1}} & \text { for } x^{1 / \theta_{1}} \leqslant y^{1 / \theta_{2}} \\ x^{1-\theta_{2}} y & \text { for } y^{1 / \theta_{2}} \leqslant x^{1 / \theta_{1}}\end{cases}
$$

and $C_{0,0}=\Pi$. This two-parameter family of copulas is an extension of the one-parameter Cuadras-Augé (Nelsen [7, p. 12 and 17]) family of copulas

$$
C_{\theta}(x, y)= \begin{cases}x y^{1-\theta} & \text { for } x \leqslant y \\ x^{1-\theta} y & \text { for } y \leqslant x\end{cases}
$$

where $\theta \in I$.
In what follows we shall be concerned with star unimodality (n-unimodality) (Dharmadhikari and Joagdev [5, p. 38], Bertin, Cuculescu, and Theodorescu [1, p. 72]): a distribution C is said to be star unimodal about $x \in \mathbf{R}^{n}$ if it belongs to the closed convex hull of the set of all uniform distributions on sets which are star-shaped about x.

3. Asymptotics of extremes

Let copula C be star unimodal about $(a, b) \neq(1,1)$.

PROposition 3.1. - Let copula C be star unimodal about $(a, b) \neq(1,1)$. Then C belongs to the maximum domain of attraction of copula $C_{\theta_{1}, \theta_{2}}$ with $\theta_{1}=2 c_{11} /(1-b), \theta_{2}=2 c_{11} /(1-a)$ for $a, b<1$ and $\theta_{1}=\theta_{2}=0$ for $a=1$ or $b=1$; the quantity c_{11} is defined in (6).

Sketch of the proof. - In view of Choquet's representation, a distribution C is star unimodal about (a, b) if and only if it is a mixture of the form

$$
\begin{equation*}
C=\int \sigma_{(a, b),(u, v)} \mathrm{d} \mu(u, v) \tag{5}
\end{equation*}
$$

where the probability measure μ on \mathbf{R}^{2} is unique, $\sigma_{(a, b),(a, b)}=\varepsilon_{(a, b)}\left(\varepsilon_{w}\right.$ stands for the point mass at $\left.w\right)$, $\sigma_{(a, b),(u, v)}$, for $(u, v) \neq(a, b)$, is concentrated on the segment joining (a, b) to (u, v) and has with respect to the uniform distribution a probability density function $f\left(u^{\prime}, v^{\prime}\right)$ which is proportional to the distance between $\left(u^{\prime}, v^{\prime}\right)$ and (a, b). We now suppose that C is a copula which is star unimodal about $(a, b) \in I^{2}$. In Cuculescu and Theodorescu [3, Proposition 3.3] we completely determined the unique probability measure μ :

$$
\begin{equation*}
\mu=\sum_{\alpha, \beta \in\{0,1\}} c_{\alpha \beta} \varepsilon_{(\alpha, \beta)}+d_{0}^{1} \varepsilon_{0} \otimes\left(f_{0}^{1} m\right)+d_{1}^{1} \varepsilon_{1} \otimes\left(f_{1}^{1} m\right)+d_{0}^{2}\left(f_{0}^{2} m\right) \otimes \varepsilon_{0}+d_{1}^{2}\left(f_{1}^{2} m\right) \otimes \varepsilon_{1}+c \xi \tag{6}
\end{equation*}
$$

where $c=\sum_{\alpha, \beta \in\{0,1\}} c_{\alpha \beta}$, the remaining c 's and d 's are nonnegative such that

$$
\begin{array}{ll}
c_{00}+c_{01}+d_{0}^{1}=a / 2, & c_{10}+c_{11}+d_{1}^{1}=(1-a) / 2 \\
c_{00}+c_{10}+d_{0}^{2}=b / 2, & c_{01}+c_{11}+d_{1}^{2}=(1-b) / 2
\end{array}
$$

and f_{α}^{i} are probability density functions on I satisfying

$$
\left(d_{0}^{1} f_{0}^{1}+d_{1}^{1} f_{1}^{1}\right) m+c \xi_{2}=\left(d_{0}^{2} f_{0}^{2}+d_{1}^{2} f_{1}^{2}\right) m+c \xi_{1}=1_{I} m / 2
$$

ξ_{1} and ξ_{2} being the margins of the distribution ξ. The remaining of the proof is a succession of evaluations involving survival functions.

Remark 3.2. - Copula $C_{\theta_{1}, \theta_{2}}$ is not star unimodal except when $\theta_{1}=\theta_{2}=1$ (i.e., $C_{1,1}=C_{A_{1,1}}=M$) and $\theta_{1}=\theta_{2}=0$ (i.e., $C_{0,0}=\Pi$). This is the consequence of the fact that the singular part of a star unimodal (about (a, b)) copula is concentrated on a union of half-lines originating in (a, b) (Cuculescu and Theodorescu [3, Remark 4.3]).

The following result deals with the case $(a, b)=(1,1)$ which was left out in the preceding proposition. In what follows copula C is related to the measure μ by (5).

Proposition 3.3. - Let copula C be star unimodal about $(1,1)$. The following are equivalent:
(I) C belongs to the maximum domain of attraction of C_{A} (given by (3)) for some dependence function A.
(II) For all $x, y \in I$ there exists $\lim _{n \rightarrow \infty} n\left(1-\mu\left(x^{1 / n}, y^{1 / n}\right)\right)=h(x, y)$. Moreover $h(x, y)=-0.5 \times$ $\log C_{A}(x, y), x, y \in I$.

4. More on unimodality and Archimax copulas

The results in Section 3 allow us to infer that certain copulas are not star unimodal.
Let $\phi: I \rightarrow[0, \infty]$ with $\phi(1)=0$ be a continuous, convex, and strictly decreasing function and denote by $\phi^{[-1]}$ its pseudo-inverse given by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & \text { for } 0 \leqslant t \leqslant \phi(0) \\ 0 & \text { for } \phi(0) \leqslant t \leqslant \infty\end{cases}
$$

If $\phi(0)=\infty$ then $\phi^{[-1]}=\phi^{-1}$. Further we consider a dependence function A. A copula C is Archimax if

$$
C_{\phi, A}(u, v)=\phi^{[-1]}\left[(\phi(u)+\phi(v)) A\left(\frac{\phi(u)}{\phi(u)+\phi(v)}\right)\right], \quad u, v \in I
$$

The function ϕ is its generator. For $\phi(t)=\log (1 / t)$ we are led to an extreme value copula (3) and for $A \equiv 1$ we obtain an Archimedean copula (Nelsen [7, p. 90]). Archimax copulas were introduced by Capéraà, Fougères, and Genest [2]. The name 'Archimax' was chosen to reflect the fact that the new family includes both the maximum value distributions and the Archimedean copulas. We observe that for any generator ϕ we have $C_{\phi, A_{1,1}}=M$, where $A_{1,1}$ is given by (4).

According to Cuculescu and Theodorescu [3, Propositions 6.1 and 6.2] Archimedean copulas are not star unimodal except Π and W. In addition we have:

Proposition 4.1. - No extreme value copula except Π and M is star unimodal about $(a, b) \in I^{2}$, whatever the choice of (a, b).

Since in general neither Archimedean nor maximum value copulas are star unimodal let us look closer at Archimax copulas.

Proposition 4.2. - Suppose that $A \neq A_{1,1}$. If $\phi(1-1 / t)$ is regularly varying at infinity with degree $-r$ for some $r>1$ then copula $C_{\phi, A}$ is not star unimodal about any $(a, b) \neq(1,1)$.

Proposition 4.3. - Suppose that $A \neq A_{1,1}$. If $\phi(0)=\infty$ and $\phi(1 / t)$ is regularly varying at infinity with degree k for some $k>0$ then copula $C_{\phi, A}$ is not star unimodal about any $(a, b) \neq(0,0)$.
From Propositions 4.2 and 4.3 we deduce
COROLLARY 4.4. - Suppose that $A \neq A_{1,1}$. Under the regularity conditions in Propositions 4.2 and 4.3 copula $C_{\phi, A}$ is not star unimodal about any $(a, b) \in I^{2}$.

Acknowledgements. Work supported by the Natural Sciences and Engineering Research Council of Canada and by the Fonds pour la formation de chercheurs et l'aide à la recherche du Gouvernement du Québec. The authors also wish to thank Christian Genest for helpful comments and suggestions.

References

[1] E. Bertin, I. Cuculescu, R. Theodorescu, Unimodality of Probability Measures, Kluwer Academic, Dordrecht, 1997.
[2] P. Capéraà, A.-L. Fougères, C. Genest, Bivariate distributions with given extreme value attractor, J. Multivariate Anal. 72 (2000) 30-49.
[3] I. Cuculescu, R. Theodorescu, Are copulas unimodal?, J. Multivariate Anal. (2002) (accepted with revision).
[4] I. Cuculescu, R. Theodorescu, Unimodal copulas: maximum domain of attraction, Preprint nr. 01-02, University Laval, Department Math. Statist., 2001.
[5] S.W. Dharmadhikari, K. Joag-dev, Unimodality, Convexity, and Applications, Academic Press, New York, 1988.
[6] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Krieger, Malabar, 1987.
[7] R.B. Nelsen, An Introduction to Copulas, Springer, New York, 1999.
[8] J. Pickands, Multivariate extreme value distributions, in: Proc. 43rd Session Internat. Statist. Inst., Buenos Aires, 1981, pp. 859-878.
[9] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229-231.
[10] J.A. Tawn, Bivariate extreme value theory: Models and estimation, Biometrika 75 (1988) 397-415.

[^0]: E-mail addresses: icucul@pro.math.unibuc.ro (I. Cuculescu); radutheo@mat.ulaval.ca (R. Theodorescu).

