C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689-692

Probabilités/Probability Theory (Statistique/Statistics)

Extreme value attractors for star unimodal copulas

Ioan Cuculescu^a, Radu Theodorescu^b

^a Facultatea de matematică, Universitatea Bucureşti, str. Academiei 14, RO-70109 Bucureşti, Romania
 ^b Département de mathématiques et de statistique, Université Laval, Québec, QC, Canada G1K 7P4

Received 5 December 2001; accepted after revision 18 February 2002

Note presented by Paul Deheuvels.

Abstract We determine maximum attractors for copulas star (or 2-) unimodal (about a point $(a, b) \in \mathbb{R}^2$). If $(a, b) \neq (1, 1)$ these attractors form a two-parameter family of copulas extending that of Cuadras–Augé, whereas if (a, b) = (1, 1) they cover all maximum value copulas. We also examine the relationship between unimodality and Archimax copulas. *To cite this article: I. Cuculescu, R. Theodorescu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689–692.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Attracteurs de valeurs extrêmes pour les copules 2-unimodales

Résumé Nous déterminons les attracteurs des valeurs maximales pour les copules 2-unimodales (par rapport à (a, b)). Si $(a, b) \neq (1, 1)$ ces attracteurs forment une famille de copules à deux paramètres généralisant celle de Cuadras–Augé alors que si (a, b) = (1, 1) elles couvrent toutes les copules de valeurs maximales. Nous examinons aussi la relation entre l'unimodalité et les copules Archimax. *Pour citer cet article : I. Cuculescu, R. Theodorescu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689–692.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

An important property of a distribution is unimodality. It is then natural to ask whether copulas are unimodal. This question has been answered for central convex, block, and star unimodality in Cuculescu and Theodorescu [3]. As a follow-up we examine in this Note the maximum domain of attraction for star unimodal copulas.

The Note is organized as follows. Section 2 has an auxiliary character; here we indicate several definitions, notations, and results to be used throughout this note. In Section 3 we show that the maximum domain of attraction to which a copula that is star unimodal about $(a, b) \neq (1, 1)$ belongs is an element of a two-parameter family of copulas extending that of Cuadras–Augé. When (a, b) = (1, 1) the set of all possible attractors changes dramatically and covers all maximum value copulas. As a consequence of the results in Section 3 we examine in Section 4 the relationship between star unimodality and the Archimax copulas of Capéraà, Fougères, and Genest [2]; we show that many of them are not star unimodal.

This Note summarizes the results obtained in Cuculescu and Theodorescu [4]; details and proofs will be published elsewhere.

E-mail addresses: icucul@pro.math.unibuc.ro (I. Cuculescu); radutheo@mat.ulaval.ca (R. Theodorescu).

[@] 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02322-1/FLA

I. Cuculescu, R. Theodorescu / C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689-692

2. Prelude

We shall use the term probability measure or distribution at our convenience; *m* is Lebesgue measure, \otimes stands for measure product, 1_A for the indicator function of *A*, $\overline{\mu}$ for the 'survival' function of μ , and $f\mu$ for the measure $\int f d\mu$.

Let I = [0, 1]. It was Sklar [9] who in 1959 coined the term *copula* for a distribution on I^2 whose margins are uniform. The notations M, W, and Π stand for the copulas $\min\{u, v\}$, $\max\{u + v - 1, 0\}$, and uv respectively. For details on copulas we shall refer the reader to the recent book by Nelsen [7].

A copula C^* is said to be the *maximum attractor* of copula C (or C belongs to the *maximum domain of attraction* of C^*) if we have (Galambos [6, Theorem 5.2.3, p. 294])

$$\lim_{n \to \infty} C^n \left(x^{1/n}, y^{1/n} \right) = C^*(x, y), \quad x, y \in I.$$
(1)

Here (1) is equivalent to

$$\lim_{n \to \infty} n \left(1 - C \left(x^{1/n}, y^{1/n} \right) \right) = -\log C^*(x, y), \quad x, y \in I.$$
⁽²⁾

Since $1 - C(x, y) = (1 - x) + (1 - y) - \overline{C}(x, y), x, y \in I$, where $\overline{C}(x, y) = C((x, 1] \times (y, 1]))$ is the joint *survival function* of *C*, (2) is equivalent to

$$\lim_{n \to \infty} n\overline{C}\left(x^{1/n}, y^{1/n}\right) = -\log(xy) + \log C^*(x, y), \quad x, y \in I.$$

Only the behavior of \overline{C} near the point (1, 1) is important when deciding whether *C* belongs or not to the maximum domain of attraction of C^* . Similarly copula *C* belongs to the *minimum domain of attraction* of C_* if and only if C_* is the maximum attractor of the *survival copula* $\widehat{C}(x, y) = \overline{C}(1 - x, 1 - y) = x + y - 1 + C(1 - x, 1 - y), x, y \in I$. Therefore any assertion concerning the minimum domain of attraction is equivalent to one concerning the maximum domain of attraction by changing *C* to \widehat{C} .

Since the work of Pickands [8] (see also Tawn [10]) it is known that C^* , also called *extreme value copula*, can be expressed in the form

$$C^{*}(x, y) = C_{A}(x, y) = \exp\{\log(xy)A(\log(x)/\log(xy))\}, \quad x, y \in I,$$
(3)

in terms of a convex *dependence function* A defined on I in such a way that $\max\{t, 1-t\} \leq A(t) \leq 1$ for all $t \in I$. The bounds 1 and $\max\{t, 1-t\}$ correspond to copulas Π and M respectively. A dependence function A which will occur in the sequel is

$$A_{\theta_1,\theta_2}(t) = \max\{1 - \theta_1(1-t), 1 - \theta_2 t\}, \quad \theta_1, \theta_2 \in (0, 1],$$
(4)

and $A_{0,0} = 1$. Such an A_{θ_1,θ_2} leads to the copula

$$C_{\theta_1,\theta_2}(x,y) = \begin{cases} xy^{1-\theta_1} & \text{for } x^{1/\theta_1} \leqslant y^{1/\theta_2}, \\ x^{1-\theta_2}y & \text{for } y^{1/\theta_2} \leqslant x^{1/\theta_1}, \end{cases}$$

and $C_{0,0} = \Pi$. This two-parameter family of copulas is an extension of the one-parameter Cuadras–Augé (Nelsen [7, p. 12 and 17]) family of copulas

$$C_{\theta}(x, y) = \begin{cases} xy^{1-\theta} & \text{for } x \leq y, \\ x^{1-\theta}y & \text{for } y \leq x, \end{cases}$$

where $\theta \in I$.

In what follows we shall be concerned with *star unimodality* (*n-unimodality*) (Dharmadhikari and Joagdev [5, p. 38], Bertin, Cuculescu, and Theodorescu [1, p. 72]): a distribution *C* is said to be *star unimodal* about $x \in \mathbf{R}^n$ if it belongs to the closed convex hull of the set of all uniform distributions on sets which are star-shaped about *x*.

3. Asymptotics of extremes

Let copula *C* be star unimodal about $(a, b) \neq (1, 1)$.

To cite this article: I. Cuculescu, R. Theodorescu, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689-692

PROPOSITION 3.1. – Let copula C be star unimodal about $(a, b) \neq (1, 1)$. Then C belongs to the maximum domain of attraction of copula C_{θ_1,θ_2} with $\theta_1 = 2c_{11}/(1-b)$, $\theta_2 = 2c_{11}/(1-a)$ for a, b < 1 and $\theta_1 = \theta_2 = 0$ for a = 1 or b = 1; the quantity c_{11} is defined in (6).

Sketch of the proof. – In view of Choquet's representation, a distribution C is star unimodal about (a, b) if and only if it is a mixture of the form

$$C = \int \sigma_{(a,b),(u,v)} \,\mathrm{d}\mu(u,v),\tag{5}$$

where the probability measure μ on \mathbb{R}^2 is unique, $\sigma_{(a,b),(a,b)} = \varepsilon_{(a,b)}(\varepsilon_w \text{ stands for the point mass at } w)$, $\sigma_{(a,b),(u,v)}$, for $(u, v) \neq (a, b)$, is concentrated on the segment joining (a, b) to (u, v) and has with respect to the uniform distribution a probability density function f(u', v') which is proportional to the distance between (u', v') and (a, b). We now suppose that *C* is a copula which is star unimodal about $(a, b) \in I^2$. In Cuculescu and Theodorescu [3, Proposition 3.3] we completely determined the unique probability measure μ :

$$\mu = \sum_{\alpha,\beta \in \{0,1\}} c_{\alpha\beta}\varepsilon_{(\alpha,\beta)} + d_0^1\varepsilon_0 \otimes \left(f_0^1m\right) + d_1^1\varepsilon_1 \otimes \left(f_1^1m\right) + d_0^2\left(f_0^2m\right) \otimes \varepsilon_0 + d_1^2\left(f_1^2m\right) \otimes \varepsilon_1 + c\xi, \quad (6)$$

where $c = \sum_{\alpha,\beta \in \{0,1\}} c_{\alpha\beta}$, the remaining *c*'s and *d*'s are nonnegative such that

$$c_{00} + c_{01} + d_0^1 = a/2, \qquad c_{10} + c_{11} + d_1^1 = (1-a)/2,$$

$$c_{00} + c_{10} + d_0^2 = b/2, \qquad c_{01} + c_{11} + d_1^2 = (1-b)/2,$$

and f^i_{α} are probability density functions on I satisfying

$$(d_0^1 f_0^1 + d_1^1 f_1^1)m + c\xi_2 = (d_0^2 f_0^2 + d_1^2 f_1^2)m + c\xi_1 = 1_I m/2,$$

 ξ_1 and ξ_2 being the margins of the distribution ξ . The remaining of the proof is a succession of evaluations involving survival functions.

Remark 3.2. – Copula C_{θ_1,θ_2} is not star unimodal except when $\theta_1 = \theta_2 = 1$ (i.e., $C_{1,1} = C_{A_{1,1}} = M$) and $\theta_1 = \theta_2 = 0$ (i.e., $C_{0,0} = \Pi$). This is the consequence of the fact that the singular part of a star unimodal (about (a, b)) copula is concentrated on a union of half-lines originating in (a, b) (Cuculescu and Theodorescu [3, Remark 4.3]).

The following result deals with the case (a, b) = (1, 1) which was left out in the preceding proposition. In what follows copula *C* is related to the measure μ by (5).

PROPOSITION 3.3. – Let copula C be star unimodal about (1, 1). The following are equivalent:

- (I) C belongs to the maximum domain of attraction of C_A (given by (3)) for some dependence function A.
- (II) For all $x, y \in I$ there exists $\lim_{n\to\infty} n(1 \mu(x^{1/n}, y^{1/n})) = h(x, y)$. Moreover $h(x, y) = -0.5 \times \log C_A(x, y)$, $x, y \in I$.

4. More on unimodality and Archimax copulas

The results in Section 3 allow us to infer that certain copulas are not star unimodal.

Let $\phi: I \to [0, \infty]$ with $\phi(1) = 0$ be a continuous, convex, and strictly decreasing function and denote by $\phi^{[-1]}$ its *pseudo-inverse* given by

$$\phi^{[-1]}(t) = \begin{cases} \phi^{-1}(t) & \text{for } 0 \leq t \leq \phi(0), \\ 0 & \text{for } \phi(0) \leq t \leq \infty. \end{cases}$$

If $\phi(0) = \infty$ then $\phi^{[-1]} = \phi^{-1}$. Further we consider a dependence function A. A copula C is Archimax if

$$C_{\phi,A}(u,v) = \phi^{[-1]} \left[\left(\phi(u) + \phi(v) \right) A \left(\frac{\phi(u)}{\phi(u) + \phi(v)} \right) \right], \quad u, v \in I.$$

691

I. Cuculescu, R. Theodorescu / C. R. Acad. Sci. Paris, Ser. I 334 (2002) 689-692

The function ϕ is its *generator*. For $\phi(t) = \log(1/t)$ we are led to an extreme value copula (3) and for $A \equiv 1$ we obtain an *Archimedean* copula (Nelsen [7, p. 90]). Archimax copulas were introduced by Capéraà, Fougères, and Genest [2]. The name 'Archimax' was chosen to reflect the fact that the new family includes both the maximum value distributions and the Archimedean copulas. We observe that for any generator ϕ we have $C_{\phi,A_{1,1}} = M$, where $A_{1,1}$ is given by (4).

According to Cuculescu and Theodorescu [3, Propositions 6.1 and 6.2] Archimedean copulas are not star unimodal except Π and W. In addition we have:

PROPOSITION 4.1. – No extreme value copula except Π and M is star unimodal about $(a, b) \in I^2$, whatever the choice of (a, b).

Since in general neither Archimedean nor maximum value copulas are star unimodal let us look closer at Archimax copulas.

PROPOSITION 4.2. – Suppose that $A \neq A_{1,1}$. If $\phi(1 - 1/t)$ is regularly varying at infinity with degree -r for some r > 1 then copula $C_{\phi,A}$ is not star unimodal about any $(a, b) \neq (1, 1)$.

PROPOSITION 4.3. – Suppose that $A \neq A_{1,1}$. If $\phi(0) = \infty$ and $\phi(1/t)$ is regularly varying at infinity with degree k for some k > 0 then copula $C_{\phi,A}$ is not star unimodal about any $(a, b) \neq (0, 0)$.

From Propositions 4.2 and 4.3 we deduce

COROLLARY 4.4. – Suppose that $A \neq A_{1,1}$. Under the regularity conditions in Propositions 4.2 and 4.3 copula $C_{\phi,A}$ is not star unimodal about any $(a, b) \in I^2$.

Acknowledgements. Work supported by the Natural Sciences and Engineering Research Council of Canada and by the Fonds pour la formation de chercheurs et l'aide à la recherche du Gouvernement du Québec. The authors also wish to thank Christian Genest for helpful comments and suggestions.

References

- [1] E. Bertin, I. Cuculescu, R. Theodorescu, Unimodality of Probability Measures, Kluwer Academic, Dordrecht, 1997.
- [2] P. Capéraà, A.-L. Fougères, C. Genest, Bivariate distributions with given extreme value attractor, J. Multivariate Anal. 72 (2000) 30–49.
- [3] I. Cuculescu, R. Theodorescu, Are copulas unimodal?, J. Multivariate Anal. (2002) (accepted with revision).
- [4] I. Cuculescu, R. Theodorescu, Unimodal copulas: maximum domain of attraction, Preprint nr. 01-02, University Laval, Department Math. Statist., 2001.
- [5] S.W. Dharmadhikari, K. Joag-dev, Unimodality, Convexity, and Applications, Academic Press, New York, 1988.
- [6] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd ed., Krieger, Malabar, 1987.
- [7] R.B. Nelsen, An Introduction to Copulas, Springer, New York, 1999.
- [8] J. Pickands, Multivariate extreme value distributions, in: Proc. 43rd Session Internat. Statist. Inst., Buenos Aires, 1981, pp. 859–878.
- [9] A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231.
- [10] J.A. Tawn, Bivariate extreme value theory: Models and estimation, Biometrika 75 (1988) 397-415.