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Abstract In the univariate case we show mathematical existence, in real time and model free, of
the instantaneous liquidity rate, which is a measure of the market stability. We give a
mathematical formula expressing the instantaneous liquidity rate in terms of self cross
volatilities, which, for frequently traded assets, are econometrically measurable.To cite this
article: P. Malliavin, M.E. Mancino, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 505–508.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Prime instantanée de liquidité et sa mesure économétrique par les
volatilités itérées

Résumé Dans le cas univarié l’existence de la prime instantanée de liquidité est démontrée, ceci
indépendamment de toute spécification du modéle ; ce taux donne une mesure quantitative
de la stabilité du marché. Nous établissons une formule mathématique donnant la prime
instantanée de liquidité en terms de termes de volatilités itérées, qui, pour les valeurs
objets d’un nombre élevé de cotations, sont économétriquement mesurables.Pour citer cet
article : P. Malliavin, M.E. Mancino, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 505–508.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

In the standard Black–Scholes setting, a lognormal diffusion process is assumed, moreover a constant
volatility which does not depend on time and on asset price is assumed. These assumptions are not
confirmed in real financial markets. To cope with this empirical evidence, asset price evolution is described
by more sophisticated stochastic differential equations. Two main effects are detected in the literature.
Asset price volatility depends on the asset price (feedback effects): volatility depends on the asset liquidity
and it is decreasing in asset price. This feature has been modeled assuming that the volatility of the asset
priceS(t) is given byσS(t)δ , 0< δ < 1 (CEV models,see[1]), instead ofσS(t) as in the classical Black–
Scholes paradigm. The second effect is given by the observation that volatility varies over time with a strong
autoregressive component. This effect has been modeled assuming that the volatility follows a stochastic
differential equation (continuous time GARCH models, [3]).
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In this Note we assume a feedback effect of asset price on its volatility, i.e., volatility depends on
the asset price itself. We will not specify the nature of this dependence, only assuming its existence.
We will deduce some econometrical approach to decipher it from the market behaviour. Werescale, in
real time, the Malliavin calculus, using as local scale, the scale associated to the historical volatility. We
prove that the rescaled variation satisfies a first order linear ordinary differential equation which determines
the instantaneous feedback effect. Note that the instantaneous liquidity rate is a fundamental quantity in
the computation of the so called Greeks. In fact in finance, classical Malliavin calculus considers the
propagation of an initial infinitesimal perturbation along the market future evolution; taking expectation
of this infinitesimal propagation on a contingent claim payoff, we solve the parabolic equation describing
the Greeks of the contingent claim (called delta, gamma, vega). These quantities are useful in an applied
perspective to hedge the contingent claim propagation. Actually in order to write these quantities it is
sufficient to have the knowledge of the rescaled variation process. Therefore we are able to compute the
Greeks in terms of the self cross-volatilities, which are econometrically measurable.

2. Main result

We consider the variation of the price of a single asset during a short period (say, few days). For this
reason the actualization by the basic interest rate will be considered as negligeable. Letx(t) be the logarithm
of the price process, suppose it follows the SDE associated to the risk free measure

dxW(t) = a
(
xW(t)

)
dW(t) − 1

2
a2(xW(t)

)
dt,

whereW is a Brownian motion and wherea(xW(·)) is an unknown function describing the feedback of the
prices on the volatility. We assume that this function does not depend ont , being considered in a short time
interval. Moreover, we assume thata belongs to C2b(R).

The meaning of this functiona is the following: in the period considered every trader has fixed his
strategy according to the price fluctuations. The resultant of all these individual strategies has the effect to
build up, for the period considered, this functiona. A statistical observation of the historical process will
allow us to determine at each time the value ofa together with its first and second derivative.

We emphasize that the risk-free process has an infinitesimal generator fully determined by its volatility.
This is not the case of the historical process. However, the historical process and the risk free process
have the same volatility. As the volatility of the historical process can be econometrically measured, the
infinitesimal generator of the risk-free process can be econometrically measured.

The data of an infinitesimal deformationxW(t) + εζ(t) will transform the risk free measure according to
the following Girsanov factor:

∫
ζ(t)

a(t)
dW(t).

The rescaled variation is defined as:

z(t) = ζ(t)

a(t)
.

THEOREM 2.1. – The rescaled variation is differentiable with respect tot ; its logarithmic derivative
λ(t) will be called theinstantaneous liquidity rate function. Therefore we have for everys < t :

z(t) = exp

(∫ t

s

λ(τ )dτ

)
z(s). (1)
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THEOREM 2.2. – Denoting by∗ the Itô contraction, define the following cross volatilities:

dx ∗ dx := Adt, dA ∗ dx := B dt, dB ∗ dx := C dt, (2)

then the infinitesimal liquidity rate functionλ has the following expression:

λ = 3

8

B2

A3 − 1

4

B

A
− 1

4

C

A2 . (3)

Proof of Theorem2.1. – The variation equation has the following expression:

dζ = a′ζ dW − a′aζ dt .

Using Ito calculus we have

d(a) = a′a dW − 1

2
a′a2 dt + 1

2
a′′a2 dt,

d

(
1

a

)
= −a′

a
dW + 1

2
a′ dt − 1

2
a′′ dt + 1

a

(
a′)2 dt .

Therefore the rescaled variation has the following Ito differential:

dz = ζ

((
a′

a
− a′

a

)
dW − 1

2

(
a′ + a′′)dt

)
.

Thenz(t) is a differentiable function oft and

ż(t) = −1

2
z(t)

(
a′(xW(t)

)
a
(
xW(t)

) + a′′(xW(t)
)
a
(
xW(t)

)) = λ(t)z(t),

where we have defined

λ = −1

2

(
a′a + a′′a

)
. ✷

Proof of Theorem2.2. – Consider the following Ito differentials:

dx = a dW − 1

2
a2 dt;

thenA = a2; B is the cross volatility ofA andx and has the following expression:

B dt = 2aa′ dx ∗ dx = 2a3a′ dt .

Therefore we get

aa′ = B

2a2 = 1

2

B

A
.

The cross volatility ofB andx is C, and we have

2 d
(
aa′) ∗ dx = 2

(
aa′′ + (

a′)2)
a2 dt,
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on the other side we have

2 d
(
aa′) ∗ dx = 1

A2

(
A(dB ∗ dx) − B(dA ∗ dx)

) = 1

A2

(
AC − B2)dt,

it follows

2aa′′ = C

A2 − 3

2

B2

A3 .

Finally we obtain

λ = − C

4A2 − B

4A
+ 3

8

B2

A3 . ✷
Remark2.3. – Asx is a logarithm of a price it is dimensionless. The functionA appears in the parabolic

equation

∂

∂t
+ 1

2
A2 ∂2

∂x2 .

ThereforeA has the dimension of the inverse of time, i.e.,A 
 T −1; by Itô calculus dIt x dI
t x = Adt , which

means that the Itô differentiation is

dI
t 
 T −1/2.

We get

B dt = dI
t AdI

t x 
 T −3/2T −1/2 = T −2,

B

A

 T −1,

B2

A3 
 T −4T 3 = T −1,

C dt = dI
t B dI

t x 
 T −5/2T −1/2 = T −3,

C

A2 
 T −3T 2 = T −1.

Finally λ has the dimension of the inverse of a time, as it should be in the interest rate category.

Remark2.4. – We want to stress that the sign ofλ(t) is a pathwise indicator of the market stability. If
λ(t) < −c < 0 for t ∈ [0,+∞] the Delta will vanish at an exponential rate wheret0 goes to+∞. The
market is memoryless (see[2]).

References

[1] J.C. Cox, The constant elasticity of variance option pricing model, J. Portfolio Management 23 (3) (1997) 15–17.
[2] A.B. Cruzeiro, P. Malliavin, Non perturbative construction of invariant measure through confinement by curvature,

J. Math. Pures Appl. 77 (1998) 527–538.
[3] J. Fouque, G. Papanicolau, R. Sircar, Derivatives in Financial Markets with Stochastic Volatility, Cambridge

University Press, 2000.
[4] P. Malliavin, M.E. Mancino, Fourier series method for measurement of multivariate volatilities, Finance and

Stochastics VI (2002) 49–61.

508


