C. R. Acad. Sci. Paris, Ser. I 334 (2002) 621-624

Théorie des nombres/Number Theory

A note on GL₂ converse theorems

A. Diaconu^a, A. Perelli^b, A. Zaharescu^c

^a Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA

^b Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova, Italy

^c Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA

Received 13 December 2001; accepted 11 January 2002

Note presented by Hervé Jacquet.

Abstract Weil's well-known converse theorem shows that modular forms $f \in \mathcal{M}_k(\Gamma_0(q))$ are characterized by the functional equation for twists of $L_f(s)$. Conrey–Farmer had partial success at replacing the assumption on twists by the assumption of $L_f(s)$ having an Euler product of the appropriate form. In this Note we obtain a hybrid version of Weil's and Conrey–Farmer's results, by proving a converse theorem for all $q \ge 1$ under the assumption of the Euler product and, moreover, of the functional equation for the twists to a single modulus. *To cite this article: A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002)* 621–624. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Une note sur les théorèmes inverses de GL₂

Résumé Le théorème bien connu de Weil montre que les formes modulaires $f \in \mathcal{M}_k(\Gamma_0(q))$ sont caractérisées par l'équation fonctionnelle des fonctions L tordues attachées à f. Conrey–Farmer ont partiellement réussi à remplacer cette hypothèse par celle où $L_f(s)$ a un produit eulérien. Dans cette Note, on obtient une version hybride des résultats de Weil et de Conrey–Farmer, en prouvant un théorème inverse pour tout $q \ge 1$, sous l'hypothèse d'un produit eulérien et de l'équation fonctionnelle pour les fonctions L tordues par rapport à un seul module. *Pour citer cet article : A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002)* 621–624. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

In this Note we obtain a kind of hybrid version of Weil's [5] and Conrey–Farmer's [1] converse theorems. In fact, we prove a converse theorem for all $q \ge 1$ under the assumption of the Euler product and, moreover, of the functional equation for the twists by all primitive characters to a *single* suitable prime modulus r. We keep the prototypical case considered by Conrey–Farmer, although a similar result can certainly be proved in more general GL₂ situations. We follow the notation in Iwaniec's book [4] and in Conrey–Farmer [1]. Moreover, for a given primitive character χ modulo a prime r with (q, r) = 1, we consider the functional equation

$$\Lambda_f(s,\chi) = \pm \mathbf{i}^k w(\chi) \Lambda_f(k-s,\overline{\chi}),\tag{1.1}$$

where \pm is the sign of the functional equation satisfied by $L_f(s)$. Our result is

E-mail addresses: cad@math.columbia.edu (A. Diaconu); perelli@dima.unige.it (A. Perelli); zaharesc@math.uiuc.edu (A. Zaharescu).

^{© 2002} Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1631-073X(02)02277-X/FLA

A. Diaconu et al. / C. R. Acad. Sci. Paris, Ser. I 334 (2002) 621-624

THEOREM. – Let $q, k \ge 1$ be integers, k even. Suppose $\Lambda_f(s)$ is EBV and $L_f(s)$ satisfies both a functional equation and an Euler product of degree 2, level q and weight k. Suppose further that for a prime r in a suitable arithmetic progression (depending on the algebraic structure of the group $\Gamma_1(q)$) a (mod qc) with (qc, a) = 1 and for any primitive character χ (mod r), $\Lambda_f(s, \chi)$ is EBV and satisfies the functional equation (1.1). Then $f \in S_k(\Gamma_0(q))$.

We remark that a and c are effectively computable. We refer to Section 3 for a simple algorithm for finding a and c starting from a given set of generators of $\Gamma_1(q)$, and for an upper bound on r.

2. Proof of the theorem

Throughout the proof we use the slash operator of weight k extended to the group algebra $\mathbb{C}[\operatorname{GL}_2^+(\mathbb{R})]$ by linearity, i.e., $f|_{\gamma} = \sum_j a_j f|_{\gamma_j}$ if $\gamma = \sum_j a_j \gamma_j$. Let $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $W = W_q = \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$. Recall that $f|_T = f$ trivially, and by Hecke's theory it is well known that $f|_{\omega} = \pm f$ and $f|_W = f$, since $L_f(s)$ satisfies a functional equation of degree 2, level q and weight k. For $p \nmid q$, the Hecke operator T_p is defined by

$$T_p = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} + \sum_{b=0}^{p-1} \begin{pmatrix} 1 & b \\ 0 & p \end{pmatrix},$$

and $f_{|T_p} = a_p f$ since $L_f(s)$ has an Euler product of degree 2, level q and weight k. See, e.g., Lemma 1 of [1]. Further, any $\gamma_0 \in \Gamma_0(q)$ can be decomposed as follows: for every $t, s \in \mathbb{Z}$

$$\gamma_0 = \begin{pmatrix} a_0 & b_0 \\ qc_0 & d_0 \end{pmatrix} = \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m & -b \\ -qc & d \end{pmatrix} \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix},$$
(2.1)

with $m = a_0 + qc_0t$, $d = d_0 + qc_0s$, $c = -c_0$ and $-b = b_0 + ms + d_0t$; see p. 130 of [4]. In view of (2.1), for any $m, b, c, d \in \mathbb{Z}$ with $m \neq 0$ and md - bqc = 1 we write

$$\gamma\left(\frac{b}{m}\right) = \begin{pmatrix} m & -b\\ -qc & d \end{pmatrix} \in \Gamma_0(q).$$
(2.2)

Note that given *m*, *b* with (m, qb) = 1 there exist *c*, *d* such that $\gamma(\frac{b}{m}) \in \Gamma_0(q)$; we denote by $\gamma(\frac{b}{m})$ any such matrix. Finally, for $x \in \mathbb{R}$ we write $\alpha(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ and $\beta(\frac{b}{m}) = (1 - \gamma(\frac{b}{m}))\alpha(\frac{b}{m})$. We need some lemmas.

LEMMA 1 (Weil). – Let r be a prime with (q, r) = 1. Suppose $L_f(s, \chi)$ satisfies (1.1) for any primitive character $\chi \pmod{r}$. Then $f_{|\beta(b/r)|}$ does not depend on b for (b, r) = 1.

Proof. – This is a special case of Lemma 7.9 of [4]. □

Let *m* be a non-zero integer with (q, m) = 1 and let *b* run over a set of reduced residues modulo *m*. For each *b* choose any matrix $\gamma(\frac{b}{m})$ as above, and consider its *d*-coefficient in (2.2). We denote by *D* the product of such *d*-coefficients, as *b* runs over a set of reduced residues modulo *m*. With this notation we have

LEMMA 2 (Conrey–Farmer). – Let *m* be a non-zero integer with (q, m) = 1 and *b* run over a set of reduced residues (mod *m*). Suppose $f_{|T} = f$, $f_{|\omega} = \pm f$ and for each p|D, $f_{|T_p} = \xi_p f$ with some $\xi_p \in \mathbb{C}$. Then $\sum_{b}' f_{|\beta(b/m)} = 0$, where *b* runs over the set of reduced residues (mod *m*).

Proof. – This is Corollary 2 of [1]. \Box

Let *r* be as in Lemma 1. From Lemmas 1 and 2 we deduce that $f_{|\beta(b/r)} = 0$, and hence

$$f_{|\gamma(b/r)} = f$$
 for any $(r, b) = 1$, (2.3)

since $\beta(\frac{b}{r}) = (1 - \gamma(\frac{b}{r}))\alpha(\frac{b}{r})$ and $\alpha(\frac{b}{r})$ is a translation.

We denote by *H* the group of $\gamma \in SL_2(\mathbb{Z})$ such that $f_{|\gamma} = f$. Clearly, *T* and *W* belong to *H*. Moreover, by (2.3), $\gamma(\frac{b}{r})$ belongs to *H* for any (r, b) = 1. Our aim is to show that $\Gamma_0(q) \subset H$.

To cite this article: A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 621-624

LEMMA 3. – Let *m* be a non-zero integer with (q, m) = 1 and suppose $\Gamma_1(q) \subset H$. Then $f_{|\gamma(b/m)}$ does not depend on *b* for (m, b) = 1.

Proof. – Let b, b' be coprime with m. We want to show that $f_{|\gamma(b/m)} = f_{|\gamma(b'/m)}$. In fact,

$$\gamma\left(\frac{b'}{m}\right)\gamma\left(\frac{b}{m}\right)^{-1} = \begin{pmatrix} md - qb'c & mb - b'm \\ q(cd' - c'd) & -qbc' + md' \end{pmatrix} = \gamma$$

with md - qb'c, $-qbc' + md' \equiv 1 \pmod{q}$, and hence $\gamma \in \Gamma_1(q)$. The result follows at once. \Box

PROPOSITION. – If $\Gamma_1(q) \subset H$ then $\Gamma_0(q) \subset H$.

Proof. – Let $\gamma_0 \in \Gamma_0(q)$. Clearly, by Dirichlet's theorem we can choose t in (2.1) in such a way that m = p, p prime with (q, p) = 1. Accordingly, we have the decomposition

$$\gamma_0 = T^{-t} \gamma \left(\frac{b}{p}\right) T^{-s} \tag{2.4}$$

for some *b*. Writing $R_p = \sum_{a}^{\prime} \alpha(\frac{a}{p})$, by Lemmas 2 and 3 we have

$$((1-\gamma(b/p))R_p = 0.$$
 (2.5)

Denoting by I the 2×2 identity matrix, a computation shows that

$$I + 2R_p + R_p^2 = (I + R_p)^2 = \sum_{a,a'=1}^p \alpha \left(\frac{a+a'}{p}\right) = p(I + R_p)$$

and hence $I = R_p(\frac{1}{p-1}R_p - \frac{p-2}{p-1}I)$. Applying $\frac{1}{p-1}R_p - \frac{p-2}{p-1}I$ to the right of both sides of (2.5) we therefore get $f_{|\gamma(b/p)} = f$, and the result follows by (2.4). \Box

Now we are ready for the proof of the theorem. In view of the proposition, it suffices to prove that $f_{|\gamma} = f$ for every $\gamma \in \Gamma_1(q)$. Let

$$\gamma_j = \begin{pmatrix} a_j & b_j \\ qc_j & d_j \end{pmatrix}, \quad j = 1, \dots, h,$$
(2.6)

be a set of generators of $\Gamma_1(q)$. It is enough to prove that $f_{|\gamma_j|} = f$ for j = 1, ..., h. We first show that if $\gamma_1, ..., \gamma_h$ are any set of matrices in $\Gamma_1(q)$ of the form (2.6) with entries satisfying

$$(q, c_1 \cdots c_h) = 1$$
 and $(c_i, c_j) = 1$ for $i \neq j$, (2.7)

then $f_{|\gamma_j|} = f$ for j = 1, ..., h. To this end, consider the system

$$x \equiv a_j \pmod{q|c_j|}, \quad j = 1, \dots, h, \tag{2.8}$$

and note that every solution of the system

$$\begin{cases} x \equiv a_j \pmod{|c_j|}, & j = 1, \dots, h, \\ x \equiv 1 \pmod{q} \end{cases}$$
(2.9)

is a solution of (2.8) as well. In fact, $a_j \equiv 1 \pmod{q}$ for j = 1, ..., h since $\gamma_j \in \Gamma_1(q)$. Moreover, by the chinese remainder theorem, the system (2.9) has a solution $a \pmod{q|c_1 \cdots c_h|}$ with some $(a, qc_1 \cdots c_h) = 1$. Therefore, by Dirichlet's theorem there exists a prime r with (q, r) = 1 satisfying (2.8). Then, in view of the expression of m in (2.1), by the decomposition (2.1) there exist integers t_j, s_j and b'_j with $(r, b'_j) = 1$ such that

$$\gamma_j = T^{-t_j} \gamma\left(\frac{b'_j}{r}\right) T^{-s_j}, \quad j = 1, \dots, h.$$
(2.10)

Hence, supposing that such an r is the prime referred to in the theorem (which is consistent, since r belongs to a progression of type a modulo qc with (a, qc) = 1), by (2.3) we get $f_{|\gamma_i|} = f$ for j = 1, ..., h.

A. Diaconu et al. / C. R. Acad. Sci. Paris, Ser. I 334 (2002) 621-624

It is therefore left to show that the generators of $\Gamma_1(q)$ can be suitably linked to matrices satisfying (2.7). To this end we note the following identity in $SL_2(\mathbb{Z})$

$$\omega \begin{pmatrix} a & b \\ qc & d \end{pmatrix} \omega^{-1} = \begin{pmatrix} d & -c \\ -qb & a \end{pmatrix}.$$
(2.11)

Next we observe that if γ_j , j = 1, ..., h, are the generators in (2.6) and $t_j \in \mathbb{Z}$, then

$$\gamma_j T^{t_j} = \begin{pmatrix} a_j & a_j t_j + b_j \\ q c_j & q c_j t_j + d_j \end{pmatrix} \in \Gamma_1(q), \quad j = 1, \dots, h.$$

Moreover, since $(a_j, b_j) = 1$, by Dirichlet's theorem we can choose the t_j 's in such a way that $a_j t_j + b_j = p_j = p_j$ and $(q, p_j) = 1$. Writing $l_j = qc_jt_j + d_j$ we have $\gamma_j T^{t_j} = \begin{pmatrix} a_j & p_j \\ qc_j & l_j \end{pmatrix}$ for j = 1, ..., h, and hence by (2.11)

$$\omega \gamma_j T^{t_j} \omega^{-1} = \begin{pmatrix} l_j & -c_j \\ -qp_j & a_j \end{pmatrix} = \gamma'_j \in \Gamma_1(q), \quad j = 1, \dots, h,$$
(2.12)

say. Thus the entries of each γ'_j satisfy the coprimality conditions in (2.7) and hence $f_{|\gamma'_j|} = f$ for j = 1, ..., h.

In conclusion, from (2.12) we have that the generators $\gamma_1, \ldots, \gamma_h$ satisfy $\gamma_j = \omega^{-1} \gamma'_j \omega T^{-t_j}$, $j = 1, \ldots, h$, with $\gamma'_j \in H$, and hence $\Gamma_1(q) \subset H$. Finally, the assertion that $f \in S_k(\Gamma_0(q))$ is verified by the same argument in the proof of Corollary 1 of [1], and the theorem is proved.

3. An algorithm

We first note that the prime *r* referred to in the theorem can be obtained by applying the procedure leading to (2.10) to the matrices γ'_j in (2.12) in place of the matrices γ_j in (2.6). Moreover, the numbers p_j in (2.12) do not need to be primes, the important property being that the entries of the matrices γ'_j satisfy conditions (2.7). A simple algorithm to find the required prime *r* starting from a given set of generators of $\Gamma_1(q)$ can be described as follows.

Let γ_j , j = 1, ..., h, be a set of generators of $\Gamma_1(q)$ with entries given by (2.6), and suppose that $|a_j| \leq A$ for j = 1, ..., h. Choose p_1 to be the least positive integer satisfying $p_1 \equiv b_1 \pmod{a_1}$ and $(q, p_1) = 1$. Next choose p_2 to be the least positive integer satisfying $p_2 \equiv b_2 \pmod{a_2}$ and $(qp_1, p_2) = 1$, then p_3 with $p_3 \equiv b_3 \pmod{a_3}$ and $(qp_1p_2, p_3) = 1$ and so on. Thus we get matrices γ'_j as in (2.12), with $(q, p_1 \cdots p_h) = 1$ and $(p_i, p_j) = 1$ for $i \neq j$. By sieve theory (*see* Theorem 8.4 of Halberstam–Richert [2]) it follows that for any fixed $\varepsilon > 0$ one has

$$p_j \ll_{h,\varepsilon} q^{\varepsilon} A^{1+\varepsilon}, \quad j = 1, \dots, h,$$
(3.1)

where the implied constant is effectively computable in terms of h and ε . Now we consider the system (2.9) with $a_j = l_j$ and $c_j = p_j$, j = 1, ..., h, and its solution $a \pmod{qc}$, where $c = p_1 \cdots p_h$. The required prime r can therefore be chosen as the least prime in the progression $a \pmod{qc}$. In view of Heath–Brown's [3] bound $O(q^{5.5})$ for the least prime in an arithmetic progression (mod q), by (3.1) we have the bound

$$r \ll_{h,\varepsilon} (q A^h)^{5.5+\varepsilon}.$$

References

- J.B. Conrey, D.W. Farmer, An extension of Hecke's converse theorem, Internat. Math. Res. Notices (1995) 445– 463.
- [2] H. Halberstam, H.-E. Richert, Sieve Methods, Academic Press, 1974.
- [3] D.R. Heath-Brown, Zero-free regions for Dirichlet *L*-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992) 265–338.
- [4] H. Iwaniec, Topics in Classical Automorphic Forms, American Mathematical Society, 1997.
- [5] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionengleichungen, Math. Ann. 168 (1967) 149– 156.