A note on GL_{2} converse theorems

A. Diaconu ${ }^{\text {a }}$, A. Perelli ${ }^{\text {b }}$, A. Zaharescu ${ }^{c}$
${ }^{\text {a }}$ Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
${ }^{\text {b }}$ Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova, Italy
${ }^{c}$ Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA

Received 13 December 2001; accepted 11 January 2002
Note presented by Hervé Jacquet.

Abstract

Weil's well-known converse theorem shows that modular forms $f \in \mathcal{M}_{k}\left(\Gamma_{0}(q)\right)$ are characterized by the functional equation for twists of $L_{f}(s)$. Conrey-Farmer had partial success at replacing the assumption on twists by the assumption of $L_{f}(s)$ having an Euler product of the appropriate form. In this Note we obtain a hybrid version of Weil's and Conrey-Farmer's results, by proving a converse theorem for all $q \geqslant 1$ under the assumption of the Euler product and, moreover, of the functional equation for the twists to a single modulus. To cite this article: A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 621-624. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Une note sur les théorèmes inverses de GL_{2}

Abstract

Résumé Le théorème bien connu de Weil montre que les formes modulaires $f \in \mathcal{M}_{k}\left(\Gamma_{0}(q)\right)$ sont caractérisées par l'équation fonctionnelle des fonctions L tordues attachées à f. ConreyFarmer ont partiellement réussi à remplacer cette hypothèse par celle où $L_{f}(s)$ a un produit eulérien. Dans cette Note, on obtient une version hybride des résultats de Weil et de ConreyFarmer, en prouvant un théorème inverse pour tout $q \geqslant 1$, sous l'hypothèse d'un produit eulérien et de l'équation fonctionnelle pour les fonctions L tordues par rapport à un seul module. Pour citer cet article : A. Diaconu et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 621-624. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

In this Note we obtain a kind of hybrid version of Weil's [5] and Conrey-Farmer's [1] converse theorems. In fact, we prove a converse theorem for all $q \geqslant 1$ under the assumption of the Euler product and, moreover, of the functional equation for the twists by all primitive characters to a single suitable prime modulus r. We keep the prototypical case considered by Conrey-Farmer, although a similar result can certainly be proved in more general GL_{2} situations. We follow the notation in Iwaniec's book [4] and in Conrey-Farmer [1]. Moreover, for a given primitive character χ modulo a prime r with $(q, r)=1$, we consider the functional equation

$$
\begin{equation*}
\Lambda_{f}(s, \chi)= \pm \mathrm{i}^{k} w(\chi) \Lambda_{f}(k-s, \bar{\chi}) \tag{1.1}
\end{equation*}
$$

where \pm is the sign of the functional equation satisfied by $L_{f}(s)$. Our result is

[^0]THEOREM. - Let $q, k \geqslant 1$ be integers, k even. Suppose $\Lambda_{f}(s)$ is EBV and $L_{f}(s)$ satisfies both a functional equation and an Euler product of degree 2, level q and weight k. Suppose further that for a prime r in a suitable arithmetic progression (depending on the algebraic structure of the group $\left.\Gamma_{1}(q)\right)$ a $(\bmod q c)$ with $(q c, a)=1$ and for any primitive character $\chi(\bmod r), \Lambda_{f}(s, \chi)$ is EBV and satisfies the functional equation (1.1). Then $f \in \mathcal{S}_{k}\left(\Gamma_{0}(q)\right)$.

We remark that a and c are effectively computable. We refer to Section 3 for a simple algorithm for finding a and c starting from a given set of generators of $\Gamma_{1}(q)$, and for an upper bound on r.

2. Proof of the theorem

Throughout the proof we use the slash operator of weight k extended to the group algebra $\mathbb{C}\left[\mathrm{GL}_{2}^{+}(\mathbb{R})\right]$ by linearity, i.e., $\left.f\right|_{\gamma}=\left.\sum_{j} a_{j} f\right|_{\gamma_{j}}$ if $\gamma=\sum_{j} a_{j} \gamma_{j}$. Let $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $W=W_{q}=\left(\begin{array}{ll}1 & 0 \\ q & 1\end{array}\right)$. Recall that $f_{\mid T}=f$ trivially, and by Hecke's theory it is well known that $f_{\mid \omega}= \pm f$ and $f_{\mid W}=f$, since $L_{f}(s)$ satisfies a functional equation of degree 2 , level q and weight k. For $p \nmid q$, the Hecke operator T_{p} is defined by

$$
T_{p}=\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)+\sum_{b=0}^{p-1}\left(\begin{array}{ll}
1 & b \\
0 & p
\end{array}\right)
$$

and $f_{\mid T_{p}}=a_{p} f$ since $L_{f}(s)$ has an Euler product of degree 2, level q and weight k. See, e.g., Lemma 1 of [1]. Further, any $\gamma_{0} \in \Gamma_{0}(q)$ can be decomposed as follows: for every $t, s \in \mathbb{Z}$

$$
\gamma_{0}=\left(\begin{array}{cc}
a_{0} & b_{0} \tag{2.1}\\
q c_{0} & d_{0}
\end{array}\right)=\left(\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
m & -b \\
-q c & d
\end{array}\right)\left(\begin{array}{cc}
1 & -s \\
0 & 1
\end{array}\right)
$$

with $m=a_{0}+q c_{0} t, d=d_{0}+q c_{0} s, c=-c_{0}$ and $-b=b_{0}+m s+d_{0} t$; see p. 130 of [4]. In view of (2.1), for any $m, b, c, d \in \mathbb{Z}$ with $m \neq 0$ and $m d-b q c=1$ we write

$$
\gamma\left(\frac{b}{m}\right)=\left(\begin{array}{cc}
m & -b \tag{2.2}\\
-q c & d
\end{array}\right) \in \Gamma_{0}(q)
$$

Note that given m, b with $(m, q b)=1$ there exist c, d such that $\gamma\left(\frac{b}{m}\right) \in \Gamma_{0}(q)$; we denote by $\gamma\left(\frac{b}{m}\right)$ any such matrix. Finally, for $x \in \mathbb{R}$ we write $\alpha(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ and $\beta\left(\frac{b}{m}\right)=\left(1-\gamma\left(\frac{b}{m}\right)\right) \alpha\left(\frac{b}{m}\right)$. We need some lemmas.

LEMMA 1 (Weil). - Let r be a prime with $(q, r)=1$. Suppose $L_{f}(s, \chi)$ satisfies (1.1) for any primitive character $\chi(\bmod r)$. Then $f_{\mid \beta(b / r)}$ does not depend on b for $(b, r)=1$.

Proof. - This is a special case of Lemma 7.9 of [4].
Let m be a non-zero integer with $(q, m)=1$ and let b run over a set of reduced residues modulo m. For each b choose any matrix $\gamma\left(\frac{b}{m}\right)$ as above, and consider its d-coefficient in (2.2). We denote by D the product of such d-coefficients, as b runs over a set of reduced residues modulo m. With this notation we have

LEMMA 2 (Conrey-Farmer). - Let m be a non-zero integer with $(q, m)=1$ and b run over a set of reduced residues $(\bmod m)$. Suppose $f_{\mid T}=f, f_{\mid \omega}= \pm f$ and for each $p \mid D, f_{\mid T_{p}}=\xi_{p} f$ with some $\xi_{p} \in \mathbb{C}$. Then $\sum_{b}^{\prime} f_{\mid \beta(b / m)}=0$, where b runs over the set of reduced residues $(\bmod m)$.

Proof. - This is Corollary 2 of [1].
Let r be as in Lemma 1. From Lemmas 1 and 2 we deduce that $f_{\mid \beta(b / r)}=0$, and hence

$$
\begin{equation*}
f_{\mid \gamma(b / r)}=f \quad \text { for any }(r, b)=1 \tag{2.3}
\end{equation*}
$$

since $\beta\left(\frac{b}{r}\right)=\left(1-\gamma\left(\frac{b}{r}\right)\right) \alpha\left(\frac{b}{r}\right)$ and $\alpha\left(\frac{b}{r}\right)$ is a translation.
We denote by H the group of $\gamma \in S L_{2}(\mathbb{Z})$ such that $f_{\mid \gamma}=f$. Clearly, T and W belong to H. Moreover, by (2.3), $\gamma\left(\frac{b}{r}\right)$ belongs to H for any $(r, b)=1$. Our aim is to show that $\Gamma_{0}(q) \subset H$.

LEMMA 3. - Let m be a non-zero integer with $(q, m)=1$ and suppose $\Gamma_{1}(q) \subset H$. Then $f_{\mid \gamma(b / m)}$ does not depend on b for $(m, b)=1$.

Proof. - Let b, b^{\prime} be coprime with m. We want to show that $f_{\mid \gamma(b / m)}=f_{\mid \gamma\left(b^{\prime} / m\right)}$. In fact,

$$
\gamma\left(\frac{b^{\prime}}{m}\right) \gamma\left(\frac{b}{m}\right)^{-1}=\left(\begin{array}{cc}
m d-q b^{\prime} c & m b-b^{\prime} m \\
q\left(c d^{\prime}-c^{\prime} d\right) & -q b c^{\prime}+m d^{\prime}
\end{array}\right)=\gamma
$$

with $m d-q b^{\prime} c,-q b c^{\prime}+m d^{\prime} \equiv 1(\bmod q)$, and hence $\gamma \in \Gamma_{1}(q)$. The result follows at once.
Proposition. - If $\Gamma_{1}(q) \subset H$ then $\Gamma_{0}(q) \subset H$.
Proof. - Let $\gamma_{0} \in \Gamma_{0}(q)$. Clearly, by Dirichlet's theorem we can choose t in (2.1) in such a way that $m=p, p$ prime with $(q, p)=1$. Accordingly, we have the decomposition

$$
\begin{equation*}
\gamma_{0}=T^{-t} \gamma\left(\frac{b}{p}\right) T^{-s} \tag{2.4}
\end{equation*}
$$

for some b. Writing $R_{p}=\sum_{a}^{\prime} \alpha\left(\frac{a}{p}\right)$, by Lemmas 2 and 3 we have

$$
\begin{equation*}
f_{\mid(1-\gamma(b / p)) R_{p}}=0 \tag{2.5}
\end{equation*}
$$

Denoting by I the 2×2 identity matrix, a computation shows that

$$
I+2 R_{p}+R_{p}^{2}=\left(I+R_{p}\right)^{2}=\sum_{a, a^{\prime}=1}^{p} \alpha\left(\frac{a+a^{\prime}}{p}\right)=p\left(I+R_{p}\right)
$$

and hence $I=R_{p}\left(\frac{1}{p-1} R_{p}-\frac{p-2}{p-1} I\right)$. Applying $\frac{1}{p-1} R_{p}-\frac{p-2}{p-1} I$ to the right of both sides of (2.5) we therefore get $f_{\mid \gamma(b / p)}=f$, and the result follows by (2.4).

Now we are ready for the proof of the theorem. In view of the proposition, it suffices to prove that $f_{\mid \gamma}=f$ for every $\gamma \in \Gamma_{1}(q)$. Let

$$
\gamma_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \tag{2.6}\\
q c_{j} & d_{j}
\end{array}\right), \quad j=1, \ldots, h
$$

be a set of generators of $\Gamma_{1}(q)$. It is enough to prove that $f_{\mid \gamma_{j}}=f$ for $j=1, \ldots, h$. We first show that if $\gamma_{1}, \ldots, \gamma_{h}$ are any set of matrices in $\Gamma_{1}(q)$ of the form (2.6) with entries satisfying

$$
\begin{equation*}
\left(q, c_{1} \cdots c_{h}\right)=1 \quad \text { and } \quad\left(c_{i}, c_{j}\right)=1 \quad \text { for } i \neq j \tag{2.7}
\end{equation*}
$$

then $f_{\mid \gamma_{j}}=f$ for $j=1, \ldots, h$. To this end, consider the system

$$
\begin{equation*}
x \equiv a_{j}\left(\bmod q\left|c_{j}\right|\right), \quad j=1, \ldots, h \tag{2.8}
\end{equation*}
$$

and note that every solution of the system

$$
\left\{\begin{array}{l}
x \equiv a_{j}\left(\bmod \left|c_{j}\right|\right), \quad j=1, \ldots, h \tag{2.9}\\
x \equiv 1(\bmod q)
\end{array}\right.
$$

is a solution of (2.8) as well. In fact, $a_{j} \equiv 1(\bmod q)$ for $j=1, \ldots, h$ since $\gamma_{j} \in \Gamma_{1}(q)$. Moreover, by the chinese remainder theorem, the system (2.9) has a solution $a\left(\bmod q\left|c_{1} \cdots c_{h}\right|\right)$ with some $\left(a, q c_{1} \cdots c_{h}\right)=$ 1. Therefore, by Dirichlet's theorem there exists a prime r with $(q, r)=1$ satisfying (2.8). Then, in view of the expression of m in (2.1), by the decomposition (2.1) there exist integers t_{j}, s_{j} and b_{j}^{\prime} with $\left(r, b_{j}^{\prime}\right)=1$ such that

$$
\begin{equation*}
\gamma_{j}=T^{-t_{j}} \gamma\left(\frac{b_{j}^{\prime}}{r}\right) T^{-s_{j}}, \quad j=1, \ldots, h \tag{2.10}
\end{equation*}
$$

Hence, supposing that such an r is the prime referred to in the theorem (which is consistent, since r belongs to a progression of type a modulo $q c$ with $(a, q c)=1)$, by (2.3) we get $f_{\mid \gamma_{j}}=f$ for $j=1, \ldots, h$.

It is therefore left to show that the generators of $\Gamma_{1}(q)$ can be suitably linked to matrices satisfying (2.7). To this end we note the following identity in $\mathrm{SL}_{2}(\mathbb{Z})$

$$
\omega\left(\begin{array}{cc}
a & b \tag{2.11}\\
q c & d
\end{array}\right) \omega^{-1}=\left(\begin{array}{cc}
d & -c \\
-q b & a
\end{array}\right)
$$

Next we observe that if $\gamma_{j}, j=1, \ldots, h$, are the generators in (2.6) and $t_{j} \in \mathbb{Z}$, then

$$
\gamma_{j} T^{t_{j}}=\left(\begin{array}{cc}
a_{j} & a_{j} t_{j}+b_{j} \\
q c_{j} & q c_{j} t_{j}+d_{j}
\end{array}\right) \in \Gamma_{1}(q), \quad j=1, \ldots, h
$$

Moreover, since $\left(a_{j}, b_{j}\right)=1$, by Dirichlet's theorem we can choose the t_{j} 's in such a way that $a_{j} t_{j}+b_{j}=$ $p_{j}=$ prime, $p_{i} \neq p_{j}$ and $\left(q, p_{j}\right)=1$. Writing $l_{j}=q c_{j} t_{j}+d_{j}$ we have $\gamma_{j} T^{t_{j}}=\binom{a_{j} p_{j}}{q c_{j} l_{j}}$ for $j=1, \ldots, h$, and hence by (2.11)

$$
\omega \gamma_{j} T^{t_{j}} \omega^{-1}=\left(\begin{array}{cc}
l_{j} & -c_{j} \tag{2.12}\\
-q p_{j} & a_{j}
\end{array}\right)=\gamma_{j}^{\prime} \in \Gamma_{1}(q), \quad j=1, \ldots, h
$$

say. Thus the entries of each γ_{j}^{\prime} satisfy the coprimality conditions in (2.7) and hence $f_{\mid \gamma_{j}^{\prime}}=f$ for $j=1, \ldots, h$.

In conclusion, from (2.12) we have that the generators $\gamma_{1}, \ldots, \gamma_{h}$ satisfy $\gamma_{j}=\omega^{-1} \gamma_{j}^{\prime} \omega T^{-t_{j}}$, $j=$ $1, \ldots, h$, with $\gamma_{j}^{\prime} \in H$, and hence $\Gamma_{1}(q) \subset H$. Finally, the assertion that $f \in \mathcal{S}_{k}\left(\Gamma_{0}(q)\right)$ is verified by the same argument in the proof of Corollary 1 of [1], and the theorem is proved.

3. An algorithm

We first note that the prime r referred to in the theorem can be obtained by applying the procedure leading to (2.10) to the matrices γ_{j}^{\prime} in (2.12) in place of the matrices γ_{j} in (2.6). Moreover, the numbers p_{j} in (2.12) do not need to be primes, the important property being that the entries of the matrices γ_{j}^{\prime} satisfy conditions (2.7). A simple algorithm to find the required prime r starting from a given set of generators of $\Gamma_{1}(q)$ can be described as follows.
Let $\gamma_{j}, j=1, \ldots, h$, be a set of generators of $\Gamma_{1}(q)$ with entries given by (2.6), and suppose that $\left|a_{j}\right| \leqslant A$ for $j=1, \ldots, h$. Choose p_{1} to be the least positive integer satisfying $p_{1} \equiv b_{1}\left(\bmod a_{1}\right)$ and $\left(q, p_{1}\right)=1$. Next choose p_{2} to be the least positive integer satisfying $p_{2} \equiv b_{2}\left(\bmod a_{2}\right)$ and $\left(q p_{1}, p_{2}\right)=1$, then p_{3} with $p_{3} \equiv b_{3}\left(\bmod a_{3}\right)$ and $\left(q p_{1} p_{2}, p_{3}\right)=1$ and so on. Thus we get matrices γ_{j}^{\prime} as in (2.12), with $\left(q, p_{1} \cdots p_{h}\right)=1$ and $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$. By sieve theory (see Theorem 8.4 of Halberstam-Richert [2]) it follows that for any fixed $\varepsilon>0$ one has

$$
\begin{equation*}
p_{j} \lll h, \varepsilon q^{\varepsilon} A^{1+\varepsilon}, \quad j=1, \ldots, h \tag{3.1}
\end{equation*}
$$

where the implied constant is effectively computable in terms of h and ε. Now we consider the system (2.9) with $a_{j}=l_{j}$ and $c_{j}=p_{j}, j=1, \ldots, h$, and its solution $a(\bmod q c)$, where $c=p_{1} \cdots p_{h}$. The required prime r can therefore be chosen as the least prime in the progression $a(\bmod q c)$. In view of HeathBrown's [3] bound $\mathrm{O}\left(q^{5.5}\right)$ for the least prime in an arithmetic progression $(\bmod q)$, by (3.1) we have the bound

$$
r \ll h, \varepsilon\left(q A^{h}\right)^{5.5+\varepsilon}
$$

References

[1] J.B. Conrey, D.W. Farmer, An extension of Hecke's converse theorem, Internat. Math. Res. Notices (1995) 445463.
[2] H. Halberstam, H.-E. Richert, Sieve Methods, Academic Press, 1974.
[3] D.R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992) 265-338.
[4] H. Iwaniec, Topics in Classical Automorphic Forms, American Mathematical Society, 1997.
[5] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionengleichungen, Math. Ann. 168 (1967) 149156.

[^0]: E-mail addresses: cad@math.columbia.edu (A. Diaconu); perelli@dima.unige.it (A. Perelli); zaharesc@math.uiuc.edu (A. Zaharescu).

