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Abstract We construct a general reduction scheme for the study of the quantum propagator of
molecular Schrödinger operators with smooth potentials. This reduction is made up to
infinitely (resp. exponentially) small error terms with respect to the inverse square root of
the mass of the nuclei, depending on the C∞ (resp. analytic) smoothness of the interactions.
Then we apply this result to the case when an electronic level is isolated from the rest of
the spectrum of the electronic Hamiltonian.To cite this article: A. Martinez, V. Sordoni,
C. R. Acad. Sci. Paris, Ser. I 334 (2002) 185–188.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

Un schéma général de réduction pour l’approximation de
Born–Oppenheimer dépendant du temps

Résumé On construit un schéma général de réduction pour l’étude du propagateur quantique de
l’opérateur de Schrödinger moléculaire. Cette réduction est faite modulo une erreur d’ordre
infini (respectivement exponentielle) par rapport à la racine carrée de l’inverse de la masse
des noyaux lorsque les interactions sont supposées C∞ (resp. analytiques). On applique
ensuite ce résultat au cas où l’un des niveaux électroniques reste isolé du reste du spectre
électronique.Pour citer cet article : A. Martinez, V. Sordoni, C. R. Acad. Sci. Paris, Ser. I
334 (2002) 185–188.  2002 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

In this Note we study the quantum propagator of the molecular Schrödinger operator in the Born–
Oppenheimer approximation of large nuclei masses. More precisely, we investigate, ash → 0+, the
solutions of the Schrödinger equation: {

ih
∂ϕ
∂t

=Hϕ,

ϕ|t=0 = ϕ0,
(1.1)

whereH = −h2�x −�y+V (x, y), x ∈ Rn represents the position of the nuclei,y ∈ Rp the position of the
electrons,h−2 is the quotient of their respective masses, andϕ0 ∈ L2(Rn+p) is arbitrary. We assume that
the real-valued potentialV is C∞(Rn+p) and bounded together with all its derivatives, and the electronic
Hamiltonian

Hel(x) := −�y + V (x, y)
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admits a gap in its spectrumσ(Hel(x)), so that we can write
σ
(
Hel(x)

) = σ1(x)∪ σ2(x) with inf
x∈Rn

dist
(
σ1(x), σ2(x)

)
� δ0> 0. (1.2)

With these notations we also assume thatσ1(x) depends continuously onx and
σ1(x) is uniformly bounded with respect tox ∈ R

n, (1.3)
and we denote�j (x) (j = 1,2) the spectral projections ofHel(x) corresponding toσj (x) (extending their
definition on L2(Rn+p) in an obvious way and denoting�j these extensions). Then, denoting(EH (λ))λ∈R

the family of spectral projections ofH , we have
THEOREM 1.1. – For any λ0 ∈ R there exists an orthogonal projection � on L2(Rn+p) such that

�=�1 +O(h)∼�1 +
∑
j�1

hj�(j)

and such that any solution ϕ of (1.1)with initial data ϕ0 ∈ RanEH((−∞, λ0]) satisfies
ϕ = e−itH1/h�ϕ0 + e−itH2/h(1−�)ϕ0 +O

(|t|h∞‖ϕ0‖
)

uniformly with respect to h small enough, t ∈ R and ϕ0 ∈ RanEH ((−∞, λ0]), with
H1 =�H�, H2 = (1−�)H(1−�).

Moreover, for any j � 1,�(j) is a semiclassical pseudodifferential operator with bounded operator-valued
symbol πj (x, ξ) ∈ C∞

b (R
2n;L(L2(R

p
y ))).

Remark 1.2. – Of course� is not unique but one can see that the operatorEH ((−∞, λ0])�EH((−∞, λ0])
is unique up toO(h∞). Moreover, the�(j)’s can be computed recursively by following the procedure of
[6,10].

THEOREM 1.3. – In the particular case where Rank�1(x)= k <∞ for all x ∈ Rn, then there exists a
semiclassical pseudodifferential operator

W : L2(
R
n+p) → (

L2(
R
n
))⊕k

with operator-valued symbol and a k× k selfadjoint matrix A of semiclassical pseudodifferential operators
on L2(Rn) such that the restriction U of W to Ran�:

U : Ran�→ (
L2(

R
n
))⊕k

is a unitary operator which satisfies

UH1�= AU�

(in particular, e−itH1/h� = U∗ e−itA/hU� for all t ∈ R). Moreover, the symbol a(x, ξ) of A has the
following form:

a(x, ξ)= ξ2Ik +µ(x)+ hr(x, ξ)∼ ξ2Ik +µ(x)+
∑
j�0

hj+1rj ,

where Ik is the identity matrix of Ck , µ(x) is the matrix of �1(x)Hel(x) in a smooth orthonormal basis
of (u1(x), . . . , uk(x)) of Ran�1, and the rj ’s satisfy ∂αrj (x, ξ) = O(〈ξ〉2) for any multi-index α and
uniformly with respect to (x, ξ) ∈ R2n and h > 0 small enough.

Using the standard construction of the quantum evolution for scalar semiclassical pseudodifferential
operators (see, e.g., [7,5] and references therein), we immediately deduce from this theorem the following
result:

COROLLARY 1.4. – Assume in addition k = 1. Then, for any t ∈ R there exists a semiclassical Fourier-
integral operator Ft on L2(Rn) of the following form:

Ftψ(x)= (2πh)−n
∫

eiφ(t,x,y,η)/hb(t, x, y, η;h)ψ(y)dydη (1.4)

(where b ∼ ∑
j h

jbj is a semiclassical symbol of order 0 and φ is a smooth phase function with non
negative imaginary part), such that any solution ϕ of (1.1)with initial data ϕ0 satisfying∥∥(1−�)ϕ0

∥∥ + ∥∥EH ([λ0,+∞)
)
ϕ0

∥∥ =O
(
h∞)
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can be written as

ϕ =W∗FtWϕ0 +O
(
h∞)

. (1.5)
In the analytic case, these results can be improved as follows:
THEOREM 1.5 (Analytic case). –If in addition V is analytic with respect to x and bounded in a complex

strip {| Imx| � δ} for some δ > 0, then the statements of Theorem 1.1and Corollary 1.4remain valid if one
replaces every “O(h∞)” by “O(e−ε/h) for some ε > 0”.

Remark 1.6. – Without going too much into details, let us observe that the exponential rateε can be
specified in function of various parameters related to the operator-valued symbolξ2 +Hel(x). In particular
if g = infx∈Rn dist(σ1(x), σ2(x)) denotes the gap in the electronic spectrum, then it is not difficult to get
from the proof thatε � cg wherec > 0 depends onλ0 and on the L∞-norms of thex-derivatives ofV only.

Remark 1.7. – In the particular caseϕ0 =�ψ whereψ is a wave packet as in [1], then the formula (1.5)
permits by a stationary phase argument to get a full asymptotic expansion ofϕ ash→ 0+. In particular,
the constructions of [1] can be recovered in that way, at least under our stronger global gap condition (1.2).
However, since our constructions are microlocal – that is, are based on the symbolic calculus only – they can
be performed in any domain-⊂ Rn where the gap condition is valid and indeed one can see that they give
rise to a full recovery of the results of [1]: this point will be detailed in a forthcoming paper. Alternatively,
starting from Theorems 1.1 and 1.3, one can then use the method of [8] to get full asymptotics (also for
times of order logh−1). Our methods also permit to improve the results of [11].

Remark 1.8. – In a forthcoming paper, we plan to generalize our results to the case whereHel(x) does
not necessarily admits a gap in its spectrum, but a gap exists inσ(Hel(x)) ∩ (−∞, λ0]. We also plan to
investigate the case of Coulomb-interactions by using the tools developed in [2].

Proof of Theorem 1.1. – The proof is based on the constructions made in [10] (see also [6]): Takingf ∈
C∞

0 (R) such thatf = 1 on [inf σ(H),λ0] and following these constructions, one obtains a semiclassical
pseudodifferential operator (with operator-valued symbol)

�=�(x,hDx;h)∼
∑
j�0

hj�(j)(x,hDx)

such that� is an orthogonal projection,�=�1 +O(h) and∥∥f (H)[�,H ]∥∥ =O(h∞).
Then, observing thatϕ = f (H)ϕ for all time, we can use� to diagonalize (up toO(h∞)) the evolution of
H and the result follows (see [4] for more details). ✷

Proof of Theorem 1.3. – Since� − �1 = O(h), for h small enough we can consider the operatorU
defined by

U = (
�1�+ (1−�1)(1−�)

)(
1− (�−�1)

2)−1/2

and straightforward computations show that
U∗U = UU∗ = 1 and �1U = U�.

Moreover,U is a semiclassical pseudodifferential operator with operator-valued symbol and it differs from
the identity byO(h). Then, given a smooth orthonormal basis of(u1(x), . . . , uk(x)) of Ran�1, we define
W by

Wψ = 〈
Uψ,u1(x, y)

〉
L2(R

p
y )

⊕ · · · ⊕ 〈
Uψ,uk(x, y)

〉
L2(R

p
y )
.

By the properties ofU we see thatW�=W , and sinceW∗(α1 ⊕ · · · ⊕ αk)= U∗(α1u1 + · · · + αkuk) we
also obtain

W∗W = U∗�1U =�, WW∗ = 1,
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which implies the unitarity of the restrictionU of W to Ran�. Moreover, definingA := UH1U
∗, we see

thatA satisfies all the assertions of Theorem 1.3.✷
Proof of Corollary 1.4. – By the assumptions we have

ϕ = e−itH/hϕ0 = e−itH/hEH
(
(−∞, λ0]

)
ϕ0 +O

(
h∞)

and thus, using Theorem 1.1,
ϕ = e−itH1/h�EH((−∞, λ0])ϕ0 +O(h∞)= e−itH1/h�ϕ0 +O

(
h∞)

.

Now, by Theorem 1.3,

e−itH1/h�=U∗ e−itA/hU�
which finally gives

ϕ =U∗ e−itA/hU�ϕ0 +O
(
h∞) =W∗ e−itA/hWϕ0 +O

(
h∞)

.

Then the result follows from standard results on the quantum evolution of scalar semiclassical pseudodif-
ferential operators (see [7,5] and references therein).✷

Proof of Theorem 1.5. – When V is analytic, the construction of� made in [10] satisfies analytic
estimates of the type ∥∥�(j)∥∥ � Cj+1j !,
whereC > 0 is a constant (which depends onλ0), andj runs over all the integers. By resummation (and
following ideas of [9]), this permits to obtain∥∥f (H)[�,H ]∥∥ =O

(
e−ε/h)

for someε > 0. Then the proof of Theorem 1.1 can be followed again, allowing error terms exponentially
small ash→ 0+.

The improvement of Corollary 1.4 is less direct, but it can be performed by first remaining at a level
of formal power series inh. These series appear to be analytic symbols in some sense, despite an in-
creasing growth as|ξ | becomes large. However, because of the localization in energy, the final series can
be resummed in an analytic way giving rise to exponentially small error terms. We refer to [4] for more
details. ✷
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