Combinatorics/Computer Science

Invertible substitutions on a three-letter alphabet

Substitutions inversibles sur un alphabet de trois lettres

Bo Tan, Zhi-Xiong Wen, Yiping Zhang

Department of Mathematics, Wuhan University, 430072 Wuhan, Hubei, PR China

Received 29 October 2002; accepted 5 November 2002

Presented by Jean-Pierre Kahane

Abstract

We study the structure of invertible substitutions on a three-letter alphabet. We show that there exists a finite set \(S \) of invertible substitutions such that any invertible substitution can be written as \(I_w \circ \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_k \), where \(I_w \) is the inner automorphism associated with \(w \), and \(\sigma_j \in S \) for \(1 \leq j \leq k \). As a consequence, \(M \) is the matrix of an invertible substitution if and only if it is a finite product of non-negative elementary matrices.

Résumé

Nous étudions la structure des substitutions inversibles sur un alphabet à trois lettres. Nous prouvons qu’il existe un ensemble fini \(S \) de substitutions inversibles tel que toute substitution inversible puisse être écrite comme \(I_w \circ \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_k \), où \(I_w \) est l’automorphisme intérieur associé à \(w \) et où \(\sigma_j \in S \) pour \(1 \leq j \leq k \). Comme conséquence, \(M \) est la matrice d’une substitution inversible si et seulement si elle est un produit fini de matrices élémentaires non-négatives.

Version française abrégée

Soit \(A = \{a, b, c\} \) un alphabet de trois lettres. On désigne par \(A^* \) et \(\Gamma_A \) les monoïde et groupe libres engendrés par \(A \). Une substitution \(\sigma \) sur \(A \) (c’est-à-dire un endomorphisme de \(A^* \)) est dite inversible si elle se prolonge en un automorphisme de \(\Gamma_A \). On peut identifier \(\sigma \) au triplet de mots \((\sigma(a), \sigma(b), \sigma(c)) \). On pose \(\pi_1 = (b, a, c) \), \(\pi_2 = (c, b, a) \), \(\phi_l = (ba, b, c) \), \(\phi_r = (ab, b, c) \). Le monoïde des substitutions inversibles sur \(A \) sera noté \(IS(A^*) \).

Si \(w \in \Gamma_A \), on désigne par \(I_w \) l’automorphisme intérieur de \(\Gamma_A \) associé à \(w \) : \(I_w(u) := wuw^{-1} \).

La structure du monoïde des substitutions inversibles sur un alphabet de deux lettres est connue : il est engendré par une permutation et deux substitutions de Fibonacci [12]. Quand l’alphabet a plus de deux lettres, la situation...
est beaucoup plus compliquée. Dans [15], il est prouvé que le monoïde IS(A∗) n’est pas de type fini, mais sa structure restait jusqu’à présent inconnue.

Dans cette Note, nous prouvons les théorèmes suivants.

Théorème 1. Soit σ est une substitution inversible. Il existe w ∈ A∗ ou w−1 ∈ A∗ et σ1, . . . , σk ∈ {π1, π2, φl, φr} tels que

1. σ = Iw ◦ σ1 ◦ . . . ◦ σk.
2. De plus, on peut choisir pour w (ou w−1) un suffixe (ou un préfixe) commun aux mots σ(a), σ(b) et σ(c).

Théorème 2. Une matrice 3 × 3 à coefficients entiers positifs ou nuls est la matrice d’une substitution inversible si et seulement si c’est un produit fini de matrices élémentaires à coefficients positifs.

1. Introduction

 Le study of substitutions (the endomorphisms of free monoids of finite type) plays an important role in finite automata, symbolic dynamics, and fractal geometry [1,2,4]. It has various applications to quasicrystals, computational complexity, information theory. In addition, substitution is also a fundamental object studied in combinatorial group theory [6–8].

 Plenty of results have been obtained for substitutions over a two-letter alphabet [3,11,13]. The notion of invertible substitution appears in [10]: these are the substitutions which extend as automorphisms of the corresponding free group. Since then, they have been studied by many authors (for instance, see [3,5]). The invertible substitutions over a two-letter alphabet form a monoid whose structure in known [12]: this monoid can be generated by a permutation and two so-called Fibonacci substitutions. This result has had many applications, namely to the study of local isomorphisms of fixed points of substitutions [12,14] and to the study of trace maps [10].

 When the alphabet has more than two letters, the situation is much more complicated. In [15], it was shown, by enumerating infinitely many so-called indecomposable substitutions, that the monoid of invertible substitutions over three letters (which will be denoted by IS(A∗)) is not finitely generated. But, up to now the structure of IS(A∗) remained unknown. Here, we elucidate this structure. We show that if σ is an invertible substitution over a three-letter alphabet, there exists a word w such that Iw ◦ σ or Iw−1 ◦ σ is the composition of finitely many Fibonacci substitutions and permutations (Theorem 3.1). As a consequence, the matrix of an invertible substitution is positively decomposable (Theorem 3.2).

2. Preliminaries and notations

 Let us first recall some basic definitions and notations in the theory of substitutions (see [1,8] for a general theory).

 Set A = {a, b, c} and A = {a, b, c, a−1, b−1, c−1}. Let A∗ (resp. ΓA) be the free monoid (resp. the free group) generated by A (the unit element is the empty word ε). The elements of A∗ will be called “positive words” or simply “words” and those of ΓA “signed” or “mixed” words. The inverse of a positive word will be said to be “negative”.

 Let w ∈ ΓA: w = x1 · · · xk with xi ∈ A (i = 1, 2, . . . , k). If xi,xi+1 ̸= ε (for i = 1, . . . , k − 1), we say that x1 · · · xk is in the reduced form and that the length of w is k. This length will be denoted by |w|. Let w, wj (j = 1, . . . , k) ∈ ΓA. If w = w1w2 · · · wk satisfies |w| = |w1| + · · · + |wk|, we say that w1w2 · · · wk is a
reduced expression of \(w \). Then, we say that \(w_1 \) is a prefix of \(w \) and that \(w_k \) is a suffix of \(w \), and we write \(w_1 < w \) and \(w_k > w \).

A substitution \(\sigma \) over \(A \) is a morphism \(\sigma \) of \(A^* \). Such a morphism extends in a natural way to an endomorphism of \(\Gamma_A \); If this extension is an automorphism of \(\Gamma_A \), the substitution \(\sigma \) is said to be invertible. The set of substitutions (resp. invertible substitutions) is denoted by \(S(A^*) \) (resp. by \(IS(A^*) \)).

We often identify an endomorphism \(\sigma \) of \(\Gamma_A \) with the triple \((\sigma(a), \sigma(b), \sigma(c))\) of (maybe mixed) words. We define the length of \(\sigma \) to be \(|\sigma| = |\sigma(a)| + |\sigma(b)| + |\sigma(c)| \).

If \(U \) is a subset of a monoid, \((U) \) stands for the sub-monoid (not the sub-group, even when dealing inside a group) generated by \(U \). The use of the same notation for different groups and monoids will not generate any confusion.

We shall use the following basic invertible substitutions and automorphisms.

Permutations: Let \(\mathcal{P} = (\pi_1, \pi_2) \), where \(\pi_1 = (b, a, c) \) and \(\pi_2 = (c, b, a) \). Note that \(\mathcal{P} \) is a subgroup isomorphic to the symmetric group on \(A \).

Fibonacci type: Set \(\phi = (b, a, c), \phi' = (ab, b, c) \). Let \(\mathcal{L} = \{ \pi \circ \phi \circ \pi' \colon \pi, \pi' \in \mathcal{P} \}, \mathcal{R} = \{ \pi \circ \phi_l \circ \pi' \colon \pi, \pi' \in \mathcal{P} \}, \) and \(\mathcal{F} = \mathcal{L} \cup \mathcal{R} \). The elements in \(\mathcal{F} \) are called substitutions of Fibonacci type or simply Fibonacci substitutions.

Simple substitutions: Set \(S = (\pi_1, \pi_2, \phi_l, \phi_r) = (\mathcal{P}, \mathcal{F}, \mathcal{I}) \subset IS(A^*) \). The elements in \(S \) will be called simple substitutions.

Involutions: \(I_1 = (a^{-1}, b, c), I_2 = (a, b^{-1}, c), I_3 = (a, b, c^{-1}) \), \(\mathcal{I} = \{ I_i \colon 1 \leq i \leq 3 \} \).

According to Nielsen’s theory [8], \(\text{Aut}(\Gamma_A) = (\mathcal{P}, \mathcal{F}, \mathcal{I}) = (\pi_1, \pi_2, \phi_l, \phi_r, I_1) \).

Definition 2.1. An invertible substitution \(\sigma \) is said to be trivial if \(\sigma \in \mathcal{P} \). If there exist non-trivial invertible substitutions \(\sigma_1 \) and \(\sigma_2 \) such that \(\sigma = \sigma_1 \circ \sigma_2 \), we say that \(\sigma \) is decomposable.

The invertible substitutions which are not in \(\mathcal{P} \cup \mathcal{F} \) and not decomposable will be called non-simple indecomposable. As a matter of fact, there exist infinitely many such substitutions, hence \(IS(A^*) \) is not finitely generated [15].

Inner automorphisms: Let \(z \in \Gamma_A \). \(I_z \in \text{Aut}(\Gamma_A) \) is defined as follows: \(I_z(w) = zwz^{-1} \) (\(w \in \Gamma_A \)). That is \(I_z = (za^{-1}, zb^{-1}, zc^{-1}) \). We have \(I_z \circ (w_1, w_2, w_3) = (zw_1z^{-1}, zw_2z^{-1}, zw_3z^{-1}) \) and \(\sigma \circ I_z = I_{\sigma(z)} \circ \sigma \). Notice also that \(I_e = I \).

If \(w \in \Gamma_A \), one denotes by \(|w|_a \) (resp. \(|w|_b \) or \(|w|_c \)) the number (the algebraic sum of exponents) of appearances of \(a \) (resp. \(b \) or \(c \)) in \(w \) (e.g., \(|a^{-1}ba|_a = 0 \)). Let \(\sigma \in S(A^*) \). One associates a matrix \(M_\sigma \) with \(\sigma: M_\sigma = (\langle \sigma(\beta) \rangle)_{\alpha, \beta \in A} \). Let \(\sigma, \tau \in S(A^*) \). One has \(M_{\sigma \tau} = M_\sigma M_\tau \). If \(\sigma \in IS(A^*) \), then \(\text{det}(M_\sigma) = \pm 1 \).

The above definitions and equalities can be extended to the case when \(\sigma \) and \(\tau \) are endomorphisms of \(\Gamma_A \).

3. Main theorems

The following decomposition theorem characterizes the structure of \(IS(A^*) \): any invertible substitution is a simple one up to an inner automorphism.

Theorem 3.1. Let \(\sigma \in IS(A^*) \). There exists \(w \in A^* \) or \(w^{-1} \in A^* \) such that

\[
(1) \quad I_w \circ \sigma \text{ is a simple substitution. That is, there exist } \sigma_1, \ldots, \sigma_k \in \{ \pi_1, \pi_2, \phi_l, \phi_r \} \text{ such that } \sigma = I_{w^{-1}} \circ \sigma_1 \cdots \sigma_k.
\]
Furthermore, we can take \(w \) (or \(w^{-1} \)) to be a common suffix (or prefix) of \(\sigma(a) \), \(\sigma(b) \), and \(\sigma(c) \).

Remark 3.1. We point out that the decomposition theorem for the case of two-letter alphabet [12] is an easy consequence of Theorem 3.1.

As consequence we have:

Theorem 3.2. A \(3 \times 3 \)-matrix with non-negative integer coefficients is the matrix of some invertible substitution if and only if it is a finite product of non-negative elementary matrices.

4. Proofs

The symbol “+” (resp. “−”) will represent various non-empty positive words (resp. non-empty negative words). We also use the symbols like “++”, “−−” to represent various types of mixed words. As an example, \(u = +−+ \) means \(u = u_1 u_2^{-1} u_3 \), where \(u_j \in A^* \) and \(u_1 u_2^{-1} u_3 \) is a reduced expression. The meanings of “+”, “−”, “++”, “−−”, “+−+” etc. are now clear.

The following lemma is a simple version of Nielsen’s cancellation procedure that we use in the proofs. For the details, we refer the reader to [8,9].

Lemma 4.1. Let \(\sigma = (w_1, w_2, w_3) \in \text{Aut}(\Gamma_A) \). There exist \(k \geq 0 \) and \(\tau_1, \ldots, \tau_k \in \{ \pi_1, \pi_2, \phi_l, \phi_r, \iota \} \) such that, if one sets \(\sigma_0 = \sigma \) and \(\sigma_i = \sigma_{i-1} \circ \tau_i \) (for \(i = 1, \ldots, k \)), one has \(|\sigma_i| \leq |\sigma_{i-1}| \) (\(i = 1, \ldots, k \)) and \(\sigma_k \) is the identity.

Definition 4.1. We say that a non-trivial substitution \(\sigma = (w_1, w_2, w_3) \) is mixed if it satisfies \(w_i w_j^{-1} w_k = +−+ \) for all \((i,j,k)\) such that \(i \neq j \) and \(j \neq k \).

Lemma 4.2. Any mixed substitution is non-invertible.

Corollary 4.1. Let \(u \in \Gamma_A \) and \(x, y \in A^* \) non-empty. Suppose that \(u = x y \) and \(|u| = |x| + |y| \). Then we have either \(u \in A^* \) or \(u^{-1} \in A^* \).

When \(w = \alpha_1 \alpha_2 \cdots \alpha_{|w|} \in \Gamma_A \) (\(\alpha_i \in \bar{A} \)), we shall use the following notations:

\[
\begin{align*}
 h_i(w) &= \alpha_i \quad (i = 1, 2, \ldots, |w|), \\
 h_\infty(w) &= h_{|w|}(w).
\end{align*}
\]

The following lemmas study the “cancellation properties” between special words.

Lemma 4.4. Let \(u, v, x \) and \(y \) be non-empty words satisfying

\[
\begin{align*}
 h_1(u) \neq h_1(y) \quad \text{and} \quad h_\infty(x) \neq h_\infty(v), & \quad (4.1) \\
 x \ (\text{resp. } v) \text{ is not a prefix of } v \ (\text{resp. } x), & \quad (4.2) \\
 y \ (\text{resp. } u) \text{ is not a suffix of } u \ (\text{resp. } y). & \quad (4.3)
\end{align*}
\]

Set \(w_1 = ux, w_2 = uv, w_3 = yv \) and consider the following mixed word:

\[
w = w_1^{-\varepsilon_1} w_2^{-\varepsilon_2} \cdots w_{|w|}^{(-1)^{\varepsilon_k}},
\]

(4.4)
where $k \geq 0$, $\varepsilon \in \{+1, -1\}$, $i_m \in \{1, 2, 3\}$ ($m = 0, 1, \ldots, k$) and $i_m \neq i_{m+1}$ ($m = 0, 1, \ldots, k - 1$). Then we have

$$h_1(w) = h_1(w_{i_0}^{\varepsilon}), \ h_\infty(w) = h_\infty(w_{i_k}^{(-1)^{i_k} \varepsilon}),$$

$$|w| \geq 2. \tag{4.5}$$

The above lemma will be used to study substitutions of the form (ux, uv, yv). The following lemma is the corresponding version for (uxv, uv, y).

Lemma 4.5. Let u, v and y be non-empty words such that $h_1(u) \neq h_1(y)$, $h_\infty(v) \neq h_\infty(y)$, v is not a prefix of xv and u is not a suffix of ux.

Set $w_1 = uxv$, $w_2 = uv$, $w_3 = y$ and consider the mixed words of the form (4.4). Then

(i) (4.5) holds;
(ii) If $|y| > 1$, (4.6) holds;
(iii) If $|y| = 1$, (4.6) holds except when $k = 0$, and $w_{i_0} = w_3$.

Lemma 4.6. Under the notations and conditions of Lemma 4.4 (resp. Lemma 4.5), the substitution $\sigma = (w_1, w_2, w_3)$ is not invertible.

Proposition 4.1. Suppose that $\sigma = (w_1, w_2, w_3)$ is a non-simple indecomposable substitution. Then we have either $h_1(w_1) = h_1(w_2) = h_1(w_3)$ or $h_\infty(w_1) = h_\infty(w_2) = h_\infty(w_3)$. In other words, w_1, w_2, and w_3 must have a common non-empty prefix or suffix.

Lemma 4.7. Let $z, u, v, x, y \in A^*$. Assume that u, v, x, y satisfy (4.1), (4.2) and (4.3). Set $w_1 = ux$, $w_2 = uv$, $w_3 = yv$, then both substitutions (zw_1, zw_2, zw_3) and (w_1z, w_2z, w_3z) are not invertible.

Remark 4.1. When $x, y, u, v, w_1, w_2, w_3$ are given as in Lemma 4.5, conclusions similar to those of the above lemma hold.

Lemma 4.8. Suppose that $\sigma = (zu_1, zu_2, zu_3)$ (resp. $\sigma = (u_1z, u_2z, u_3z)$) is a non-simple indecomposable substitution, where z is a non-empty word. Suppose that u_1, u_2, u_3 have no common prefix and no common suffix.

Then there exist a non-trivial invertible substitution σ', a permutation $\pi \in P$ and a Fibonacci $f \in F$, such that $I_{z^{-1}} \circ \sigma = \sigma' \circ f \circ \pi$ (resp. $I_z \circ \sigma = \sigma' \circ f \circ \pi$).

Lemma 4.9. Let σ be a non-simple indecomposable substitution. Then there exists $z \in \Gamma_A$ such that $I_z \circ \sigma$ is decomposable. That is, there exist non-trivial invertible substitutions σ_1 and σ_2 such that $I_z \circ \sigma = \sigma_1 \circ \sigma_2$.

Furthermore, $|\sigma_i| < |\sigma|$ ($i = 1, 2$).

Now we are ready to prove our theorems.

Proof of Theorem 3.1. First we prove Theorem 3.1(1). Let σ be an invertible substitution. Then there exist $k \geq 1$ and indecomposable substitutions $\sigma_1, \ldots, \sigma_k$ such that $\sigma = \sigma_1 \circ \cdots \circ \sigma_k$.

If some σ_i is non-simple, then by Lemma 4.9, there exist $z \in \Gamma_A$, invertible substitutions σ_i' and σ_i'' such that $\sigma_i = I_{z^{-1}} \circ \sigma_i' \circ \sigma_i''$ and that

$$|\sigma_i'| < |\sigma_i|, \quad |\sigma_i''| < |\sigma_i|. \tag{4.7}$$

Then we repeat such decomposition for σ_i' (resp. σ_i'') and so on. By (4.7), such decomposition will terminate after a finite of steps. Finally every factor will be a simple substitution. Hence we can write $\sigma = I_{w_1} \circ \tau_1 \circ I_{w_2} \circ \tau_2 \circ$
\[\cdots \circ I_{w_n} \circ \tau_n, \text{ where } \tau_i (i = 1, \ldots, n) \text{ is a simple substitution and } w_i \in \Gamma_A \text{ (put } w_1 = \varepsilon \text{ if necessary). Thus we may write } \sigma = I_{w_1} \circ \tau_1 \circ \tau_2 \circ \cdots \circ \tau_n, \text{ where } w \in \Gamma_A. \]

Let \(\tau = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_n \). It is clear that \(\tau \) is a simple substitution.

Finally, since \(I_{w^{-1}} \circ \sigma = \tau \), Lemma 4.3 implies that \(w \in A^* \) or \(w^{-1} \in A^* \). Theorem 3.1(1) is thus proved.

For Theorem 3.1(2), denoting \(|\sigma|_{\text{min}} = \min\{|\sigma(a)|, |\sigma(b)|, |\sigma(c)|\} \), we only need to prove the following equivalent statement.

Claim. We can choose \(w \) in (1) such that \(|w| \leq |\sigma|_{\text{min}} \).

Let us prove the claim by induction on \(k = |\sigma| \).

If \(k \leq 4 \) the claim can be verified simply by enumerating all cases.

Suppose that the claim is true for \(k \leq n \) and that \(|\sigma| = n + 1 \). By the conclusion (1) of the theorem, there exists \(w \in A^* \) or \(w^{-1} \in A^* \) such that \(I_w \circ \sigma \) is simple. To be specific, we can suppose that \(w^{-1} \in A^* \), \(\sigma = (w_1, w_2, w_3) \) and that \(|w_1| = |\sigma|_{\text{min}} \).

If \(|w| \leq |\sigma|_{\text{min}} \), nothing needs to be proven. Suppose \(|w| > |\sigma|_{\text{min}} = |w_1| \). It is easy to see that \(w_1 \) is a common prefix of \(w_2, w_3 \). Let then \(w_2 = w_1 \w_2' \). We have \((w_1, w_2, w_3) = (w_1, w_2', w_2) \circ (a, ab, c) \), that is, \(\sigma = \sigma' \circ f \), where \(\sigma' = (w_1, w_2', w_2) \) is obviously an invertible substitution and \(f = (a, ab, c) \) is a Fibonacci substitution.

It is trivial that \(|\sigma'| < |\sigma'| = n + 1 \) and that \(|\sigma'|_{\text{min}} \leq |\sigma|_{\text{min}} \), hence by the hypothesis of induction we have the following fact:

There exists \(z \in A^* \) (or \(z^{-1} \in A^* \)) such that \(|z| \leq |\sigma'|_{\text{min}} \) and that \(g := I_z \circ \sigma' \) is simple.

Then it follows that \(I_z \circ \sigma = I_z \circ \sigma' \circ f = g \circ f \).

Since \(|z| \leq |\sigma'|_{\text{min}} \leq |\sigma|_{\text{min}} \) and \(g \circ f \) is (by definition) simple, the conclusion is proved.

Acknowledgement

The authors would like to thank Professors S. Ito, J. Peyrière, and Z.-Y. Wen for helpful discussions.

References