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ABSTRACT

We prove some ergodic-theoretic rigidity properties of the action of SL(2,R) on moduli space. In particular, we
show that any ergodic measure invariant under the action of the upper triangular subgroup of SL(2,R) is supported on
an invariant affine submanifold.

The main theorems are inspired by the results of several authors on unipotent flows on homogeneous spaces, and
in particular by Ratner’s seminal work.
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1. Introduction

Suppose g ≥ 1, and let α = (α1, . . . , αn) be a partition of 2g − 2, and let H(α) be a
stratum of Abelian differentials, i.e. the space of pairs (M,ω) where M is a Riemann sur-
face and ω is a holomorphic 1-form on M whose zeroes have multiplicities α1 . . . αn. The
form ω defines a canonical flat metric on M with conical singularities at the zeros of ω.
Thus we refer to points of H(α) as flat surfaces or translation surfaces. For an introduction to
this subject, see the survey [Zo].

The space H(α) admits an action of the group SL(2,R) which generalizes the
action of SL(2,R) on the space GL(2,R)/SL(2,Z) of flat tori. In this paper we prove
ergodic-theoretic rigidity properties of this action.

In what follows, we always replace H(α) by a finite cover X0 which is a manifold.
Such a cover can be found by e.g. considering a level 3 structure (see Section 3). However,
in the introduction, we suppress this from the notation.

Let � ⊂ M denote the set of zeroes of ω. Let {γ1, . . . , γk} denote a sym-
plectic Z-basis for the relative homology group H1(M,�,Z). We can define a map
� :H(α)→C

k by

�(M,ω)=
(∫

γ1

ω, . . . ,

∫
γk

ω

)
.

The map � (which depends on a choice of the basis {γ1, . . . , γk}) is a local coordinate sys-
tem on (M,ω). Alternatively, we may think of the cohomology class [ω] ∈ H1(M,�,C)

as a local coordinate on the stratum H(α). We will call these coordinates period coordinates.
We can consider the measure λ on H(α) which is given by the pullback of the

Lebesgue measure on H1(M,�,C) ≈ C
k . The measure λ is independent of the choice
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of basis {γ1, . . . , γk}, and is easily seen to be SL(2,R)-invariant. We call λ the Lebesgue or
the Masur-Veech measure on H(α).

The area of a translation surface is given by

a(M,ω)= i

2

∫
M
ω ∧ ω̄.

A “unit hyperboloid” H1(α) is defined as a subset of translation surfaces in H(α) of area
one. The SL(2,R)-invariant Lebesgue measure λ(1) on H1(α) is defined by disintegration
of the Lebesgue measure λ on H1(α), namely

dλ= cdλ(1)da,

where c is a constant. A fundamental result of Masur [Mas1] and Veech [Ve1] is that
λ(1)(H1(α)) <∞. In this paper, we normalize λ(1) so that λ(1)(H1(α))= 1 (and so λ(1) is
a probability measure).

For a subset M1 ⊂H1(α) we write

RM1 =
{
(M, tω) | (M,ω) ∈M1, t ∈R \ {0}}⊂H(α).

Definition 1.1. — An ergodic SL(2,R)-invariant probability measure ν1 on H1(α) is called

affine if the following conditions hold:

(i) The support M1 of ν1 is an immersed submanifold of H1(α), i.e. there exists a

manifold N and a proper continuous map f :N →H1(α) so that M1 = f (N ). The

self-intersection set of M1, i.e. the set of points of M1 which do not have a unique preimage

under f , is a closed subset of M1 of ν1-measure 0. Furthermore, each point in N has a

neighborhood U such that locally Rf (U) is given by a complex linear subspace defined over

R in the period coordinates.

(ii) Let ν be the measure supported on M= RM1 so that dν = dν1da. Then each point in

N has a neighborhood U such that the restriction of ν to Rf (U) is an affine linear measure

in the period coordinates on Rf (U), i.e. it is (up to normalization) the induced measure of

the Lebesgue measure λ to the subspace Rf (U).

Definition 1.2. — We say that any suborbifold M1 for which there exists a measure ν1 such

that the pair (M1, ν1) satisfies (i) and (ii) is an affine invariant submanifold.

We also consider the entire stratum H(α) to be an (improper) affine invariant
submanifold. It follows from [EMiMo, Theorem 2.2] that the self-intersection set of an
affine invariant manifold is itself a finite union of affine invariant manifolds of lower
dimension.

For many applications we need the following:

Proposition 1.3. — Any stratum H1(α) contains at most countably many affine invariant

submanifolds.
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Proposition 1.3 is deduced as a consequence of some isolation theorems in
[EMiMo]. This argument relies on adapting some ideas of G. A. Margulis to the Te-
ichmüller space setting. Another proof is given by A. Wright in [Wr1], where it is proven
that affine invariant submanifolds are always defined over a number field.

The classification of the affine invariant submanifolds is complete in genus 2 by
the work of McMullen [Mc1] [Mc2] [Mc3] [Mc4] [Mc5] and Calta [Ca]. In genus 3
or greater it is an important open problem. See [Mö1], [Mö2], [Mö3], [Mö4], [BoM],
[BaM], [HLM], [LN1], [LN2], [LN3], [Wr1], [Wr2], [MW], [NW], [ANW], [Fi1] and
[Fi2] for some results in this direction.

1.1. The main theorems. — Let

N =
{(

1 t

0 1

)
, t ∈R

}
, A =

{(
et 0
0 e−t

)
, t ∈R

}
,

N̄ =
{(

1 0
t 1

)
, t ∈R

}

Let rθ =
(

cos θ sin θ
− sin θ cos θ

)
, and let SO(2) = {rθ | θ ∈ [0,2π)}. Then N, N̄, A and SO(2) are

subgroups of SL(2,R). Let P = AN denote the set of upper triangular matrices of deter-
minant 1, which is a subgroup of SL(2,R).

Theorem 1.4. — Let ν be any ergodic P-invariant probability measure on H1(α). Then ν is

SL(2,R)-invariant and affine.

The following (which uses Theorem 1.4) is joint work with A. Mohammadi and is
proved in [EMiMo]:

Theorem 1.5. — Suppose S ∈H1(α). Then, the orbit closure PS = SL(2,R)S is an affine

invariant submanifold of H1(α).

For the case of strata in genus 2, the SL(2,R) part of Theorems 1.4 and 1.5 were
proved using a different method by Curt McMullen [Mc6].

The proof of Theorem 1.4 uses extensively entropy and conditional measure tech-
niques developed in the context of homogeneous spaces (Margulis-Tomanov [MaT],
Einsiedler-Katok-Lindenstrauss [EKL]). Some of the ideas came from discussions with
Amir Mohammadi. But the main strategy is to replace polynomial divergence by the
“exponential drift” idea of Benoist-Quint [BQ].

Stationary measures. — Let μ be an SO(2)-invariant compactly supported measure
on SL(2,R) which is absolutely continuous with respect to Lebesgue measure. A measure
ν on H1(α) is called μ-stationary if μ ∗ ν = ν, where

μ ∗ ν =
∫

SL(2,R)
(g∗ν)dμ(g).
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Recall that by a theorem of Furstenberg [F1], [F2], restated as [NZ, Theorem
1.4], there exists a probability measure ρ on SL(2,R) such that ν→ ρ ∗ ν is a bijection
between ergodic P-invariant measures and ergodic μ-stationary measures. Therefore,
Theorem 1.4 implies the following:

Theorem 1.6. — Any ergodic μ-stationary measure on H1(α) is SL(2,R)-invariant and

affine.

Counting periodic trajectories in rational billiards. — Let Q be a rational polygon, and let
N(Q,T) denote the number of cylinders of periodic trajectories of length at most T for
the billiard flow on Q. By a theorem of H. Masur [Mas2] [Mas3], there exist c1 and c2

depending on Q such that for all t > 1,

c1e2t ≤ N
(
Q, et

)≤ c2e2t.

Theorem 1.4 and Proposition 1.3 together with some extra work (done in [EMiMo])
imply the following “weak asymptotic formula” (cf. [AEZ]):

Theorem 1.7. — For any rational polygon Q, there exists a constant c = c(Q) such that

lim
t→∞

1
t

∫ t

0
N
(
Q, es

)
e−2sds = c.

The constant c in Theorem 1.7 is the Siegel-Veech constant (see [Ve2], [EMZ])
associated to the affine invariant submanifold M= SL(2,R)S where S is the flat surface
obtained by unfolding Q.

It is natural to conjecture that the extra averaging on Theorem 1.7 is not neces-
sary, and one has limt→∞ N(Q, et)e−2t = c. This can perhaps be shown if one obtains a
classification of the measures invariant under the subgroup N of SL(2,R). Such a result
is in general beyond the reach of the current methods. However it is known in a few very
special cases, see [EMS], [EMM], [CW] and [Ba].

Other applications to rational billiards. — All the above theorems apply also to the mod-
uli spaces of flat surfaces with marked points. Thus one should expect applications to the
“visibility” and “finite blocking” problems in rational polygons as in [HST]. It is likely
that many other applications are possible.

2. Outline of the paper

2.1. Some notes on the proofs. — The theorems of Section 1.1 are inspired by the re-
sults of several authors on unipotent flows on homogeneous spaces, and in particular by
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Ratner’s seminal work. In particular, the analogues of Theorems 1.4 and 1.5 in homoge-
neous dynamics are due to Ratner [Ra4], [Ra5], [Ra6], [Ra7]. (For an introduction to
these ideas, and also to the proof by Margulis and Tomanov [MaT] see the book [Mor].
See also the papers [Dan1], [Dan2], [Dan3], [Dan4], [DM1], [DM2], [DM3], [DM4],
[Mar1], [Mar2], [Mar3], [Mar4], [Ra1], [Ra2], [Ra3], [MoSh]. The homogeneous ana-
logue of the fact that P-invariant measures are SL(2,R)-invariant is due to Mozes [Moz]
and is based on Ratner’s work. All of these results are based in part on the “polynomial
divergence” of the unipotent flow on homogeneous spaces.

However, in our setting, the dynamics of the unipotent flow (i.e. the action of N)
on H1(α) is poorly understood, and plays no role in our proofs. The main strategy is to
replace the “polynomial divergence” of unipotents by the “exponential drift” idea in the
recent breakthrough paper by Benoist and Quint [BQ].

One major difficulty is that we have no apriori control over the Lyapunov spectrum
of the geodesic flow (i.e. the action of A). By [AV1] the Lyapunov spectrum is simple
for the case of Lebesgue (i.e. Masur-Veech) measure, but for the case of an arbitrary
P-invariant measure this is not always true, see e.g. [Fo2], [FoM].

In order to use the Benoist-Quint exponential drift argument, we must show that
the Zariski closure (or more precisely the algebraic hull, as defined by Zimmer [Zi2]) of
the Kontsevich-Zorich cocycle is semisimple. The proof proceeds in the following steps:

Step 1. — We use an entropy argument inspired by the “low entropy method” of
[EKL] (using [MaT] together with some ideas from [BQ]) to show that any P-invariant
measure ν on H1(α) is in fact SL(2,R) invariant. We also prove Theorem 2.1 which
gives control over the conditional measures of ν. This argument occupies Sections 3–13
and is outlined in more detail in Section 2.3.

Step 2. — By some results of Forni (see Appendix A), for an SL(2,R)-invariant
measure ν, the absolute cohomology part of the Kontsevich-Zorich cocycle A :
SL(2,R) × H1(α) → Sp(2g,Z) is semisimple, i.e. has semisimple algebraic hull. For
an exact statement see Theorem A.6.

Step 3. — We pick an SO(2)-invariant compactly supported measure μ on
SL(2,R) which is absolutely continuous with respect to Lebesgue measure, and work
in the random walk setting as in [F1] [F2] and [BQ]. Let B denote the space of infi-
nite sequences g0, g1, . . . , where gi ∈ SL(2,R). We then have a skew product shift map
T : B × H1(α) → B × H1(α) as in [BQ], so that T(g0, g1, . . . ; x) = (g1, g2, . . . ; g−1

0 x).
Then, we use (in Appendix C) a modification of the arguments by Guivarc’h and Raugi
[GR1], [GR2], as presented by Goldsheid and Margulis in [GM, §4–5], and an argument
of Zimmer (see [Zi1] or [Zi2]) to prove Theorem C.5 which states that the Lyapunov
spectrum of T is always “semisimple”, which means that for each SL(2,R)-irreducible
component of the cocycle, there is a T-equivariant non-degenerate inner product on the
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Lyapunov subspaces of T (or more precisely on the successive quotients of the Lyapunov
flag of T). This statement is trivially true if the Lyapunov spectrum of T is simple.

Step 4. — We can now use the Benoist-Quint exponential drift method to show that
the measure ν is affine. This is done in Sections 14–16. At one point, to avoid a prob-
lem with relative homology, we need to use a result, Theorem 14.3 about the isometric
(Forni) subspace of the cocycle, which is proved in joint work with A. Avila and M. Möller
[AEM].

Finally, we note that the proof relies heavily on various recurrence to compact sets
results for the SL(2,R) action, such as those of [EMa] and [Ath]. All of these results
originate in the ideas of Margulis and Dani [Mar1], [Dan1], [EMM1], [EMM2].

2.2. Notational conventions. — For t ∈R, let

gt =
(

et 0
0 e−t

)
, ut =

(
1 t

0 1

)
.

Let A = {gt : t ∈R}, N = {ut : t ∈R}. Let P = AN.
Let X0 denote a finite cover of the stratum H1(α) which is a manifold (see Sec-

tion 3). Let X̃0 denote the universal cover of X0. Let π : X̃0 → X0 denote the natural
projection map.

We will need at some point to consider a certain measurable finite cover X of X0.
This cover will be constructed in Section 4.6 below. Let X̃ denote the “universal cover”
of X, see Section 4.6 for the exact definition. We abuse notation by denoting the covering
map from X̃ to X also by the letter π .

If f is a function on X0 or X we sometimes abuse notation by denoting f ◦ π
by f and write f (x) instead of f (π(x)). A point of H(α) is a pair (M,ω), where M
is a compact Riemann surface, and ω is a holomorphic 1-form on M. Let � denote
the set of zeroes of ω. The cohomology class of ω in the relative cohomology group
H1(M,�,C) ∼= H1(M,�,R2) is a local coordinate on H(α) (see [Fo]). For x ∈ X̃0, let
V(x) denote a subspace of H1(M,�,R2). Then we denote by the image of V(x) under
the affine exponential map, i.e.

V[x] = { y ∈ X̃0 : y− x ∈ V(x)
}
.

(For some subspaces V, we can define V[x] for x ∈ X̃ as well. This will be explained in
Section 4.6. Also, depending on the context, we sometimes consider V[x] to be a subset
of X or X0.)

Let p : H1(M,�,R)→ H1(M,R) denote the natural map. Let

(2.1) H1
⊥(x)=

{
v ∈ H1(M,�,R) : p(Re x)∧ p(v)= p(Im x)∧ p(v)= 0

}
,



102 ALEX ESKIN, MARYAM MIRZAKHANI

where we are considering the “real part map” Re and the “imaginary part map” Im as
maps from H1(M,�,C)∼= H1(M,�,R2) to H1(M,�,R). Let

W(x)=R(Im x)⊕H1
⊥(x)⊂ H1(M,�,R),

so that

W(x)= {v ∈ H1(M,�,R) : p(Im x)∧ p(v)= 0
}
.

Let π−
x : W(x)→ H1(M,�,R) denote the map (defined for a.e. x ∈ X̃0)

(2.2) π−
x (c Im x + v)= c Re x + v c ∈R, v ∈ H1

⊥(x),

so that

π−
x

(
W(x)

)= {v ∈ H1(M,�,R) : p(Re x)∧ p(v)= 0
}
.

We have H1(M,�,R2)=R
2 ⊗H1(M,�,R). For a subspace V(x)⊂ W(x), we write

V+(x)= (1,0)⊗V(x), V−(x)= (0,1)⊗ π−
x

(
V(x)

)
.

Then W+[x] and W−[x] play the role of the unstable and stable foliations for the action
of gt on X0 for t > 0, see Lemma 3.5.

Starred subsections. — Some technical proofs are relegated to subsections marked
with a star. These subsections can be skipped on first reading. The general rule is that no
statement from a starred subsection is used in subsequent sections.

2.3. Outline of the proof of Step 1. — The general strategy is based on the idea of
additional invariance which was used in the proofs of Ratner [Ra4], [Ra5], [Ra6], [Ra7]
and Margulis-Tomanov [MaT].

The aim of Step 1 is to prove the following:

Theorem 2.1. — Let ν be an ergodic P-invariant measure on X0. Then ν is SL(2,R)-
invariant. In addition, there exists an SL(2,R)-equivariant system of subspaces L(x) ⊂ W(x) such

that for almost all x, the conditional measures of ν along W+[x] are the Lebesgue measures along L+[x],
and the conditional measures of ν along W−[x] are the Lebesgue measures along L−[x].

In the sequel, we will often refer to a (generalized) subspace U+[x] ⊂ W+[x] on
which we already proved that the conditional measure of ν is Lebesgue. The proof of
Theorem 2.1 will be by induction, and in the beginning of the induction, U+[x] = Nx.
(Note: generalized subspaces are defined in Section 6.)

In this introductory subsection, let U+(x)⊂ W+(x) denote the subspace { y − x :
y ∈ U+[x]}. (This definition has to be modified when we are dealing with generalized
subspaces, see Section 6.)
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FIG. 1. — Outline of the proof of Theorem 2.1

Outline of the proof of Theorem 2.1. — Let ν be an ergodic P-invariant probability
measure on X0. Since ν is N-invariant, the conditional measure νW+ of ν along W+

is non-trivial. This implies that the entropy of A is positive, and thus the conditional
measure νW− of ν along W− is non-trivial (see e.g. [EL]). This implies that on a set of
almost full measure, we can pick points q and q′ in the support of ν such that q and q′ are
in the same leaf of W− and d(q, q′)≈ 1/100, see Figure 1.

Let � > 0 be a large parameter. Let q1 = g�q and let q′1 = g�q
′. Then q1 and q′1 are

very close together. We pick u ∈ U+(q1) with ‖u‖ ≈ 1/100, and pick (as described below)
u′ ∈ U+(q′1). Consider the points uq1 and u′q′1. With our choice of u′, the points uq1 and
u′q′1 will be close, but they are no longer in the same leaf of W−, and we expect them
to diverge under the action of gt as t → +∞. Let t be chosen so that q2 = gtuq1 and
q′2 = gtu

′q′1 be such that d(q2, q′2)≈ ε, where ε > 0 is fixed.
Consider the bundle (which we will denote for short H1) whose fiber above x ∈

H(α) is H1(M,�,R). The presence of the integer lattice H1(M,�,Z) in H1(M,�,R)

allows one to identify the fibers at nearby points. This defines a flat connection, called the
Gauss-Manin connection on this bundle.

The action of SL(2,R) and in particular the geodesic flow gt on H(α), extends to
an action on the bundle H1, where the action on the fibers is by parallel transport with
respect to the Gauss-Manin connection. The action on the bundle takes the form

gt(x, v)=
(
gtx,A(gt, v)

)
,

where A : SL(2,R)×H1(α)→ GL(H1(M,�,R)) is the Kontsevich-Zorich cocycle. It
is continuous (in fact locally constant) and log-integrable. Thus the multiplicative ergodic
theorem can be applied.

Let

1 = λ1

(
H1
)
> λ2

(
H1
)≥ · · · ≥ λk−1

(
H1
)
> λk

(
H1
)=−1
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denote the Lyapunov spectrum of the Kontsevich-Zorich cocycle. (The fact that λ2 < 1
is due to Veech [Ve1] and Forni [Fo].) We have

H1(M,�,R)=
k⊕

i=1

Vi

(
H1
)
(x)

where Vi(H1)(x) is the Lyapunov subspace corresponding to λi(H1) (see Section 4). Note
that V1(H1)(x) corresponds to the unipotent direction inside the SL(2,R) orbit. In the
first step of the induction, U+(x)= V1(H1)(x).

In general, for y ∈ U+[x], if we identify H1 at x and y using the Gauss-Manin
connection, we have (see Lemma 4.1),

(2.3) Vi

(
H1
)
(y)⊂

⊕
j≤i

Vj

(
H1
)
(x).

We say that the Lyapunov exponent λi(H1) is U+-inert if for a.e. x, Vi(H1)(x) �⊂ U+(x)
and also, for a.e. y ∈ U+[x],

Vi

(
H1
)
(y)⊂ U+(x)+ Vi

(
H1
)
(x).

(In other words, Vi(H1)(x) is constant (modulo U+) along U+[x].) Note that in view of
(2.3), λ2(H1) is always U+-inert. We now assume for simplicity that λ2(H1) is the only
U+-inert exponent.

We may write

u′q′1 − uq1 =w+ + gs(uq1)+w−

where w+ ∈ W+(uq1), w− ∈ W−(uq1), and s ∈ R. Furthermore, due to the assumption
that λ2 is the only inert exponent, after possibly making a small change to u and u′ (see
Section 6), we may write

w+ =
n∑

i=2

vi

where vi ∈ Vi(H1)(uq1), and furthermore, ‖v2‖/‖u′q′1 − uq1‖ is bounded from below.
Then, q′2 − q2 will be approximately in the direction of V2(H1)(q2), see Section 8 for
the details.

Let f2(x) denote the conditional measure of ν along (V1 +V2)(H1)[x]. (This condi-
tional measure can be defined since ν is U+-invariant.) Let q3 = gsq1 and q′3 = gsq

′
1 where

s > 0 is such that the amount of expansion along V2(H1) from q1 to q3 is equal to the
amount of expansion along V2(H1) from uq1 to q2. Then, as in [BQ],

(2.4) f2(q2)= A∗f2(q3), and f2
(
q′2
)= A′

∗f2
(
q′3
)
,
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where A and A′ are essentially the same bounded linear map. But q3 and q′3 approach
each other, so that

f2(q3)≈ f2
(
q′3
)
.

Hence

(2.5) f2(q2)≈ f2
(
q′2
)
.

Taking a limit as �→∞ of the points q2 and q′2 we obtain points q̃2 and q̃′2 in the same
leaf of (V1 + V2)(H1) and distance ε apart such that

(2.6) f2(q̃2)= f2
(
q̃′2
)
.

This means that the conditional measure f2(q̃2) is invariant under a shift of size approx-
imately ε. Repeating this argument with ε → 0 we obtain a point p such that f2(p) is
invariant under arbitrarily small shifts. This implies that the conditional measure f2(p)

restricts to Lebesgue measure on some subspace Unew of (V1 + V2)(H1), which is distinct
from the orbit of N. Thus, we can enlarge U+ to be U+ ⊕Unew.

Technical Problem #1. — The argument requires that all eight points q, q′, q1, q′1,
q2, q′2, q3, q′3 belong to some “nice” set K of almost full measure. We will give a very
rough outline of the solution to this problem here; a more detailed outline is given at the
beginning of Section 5.

We have the following elementary statement:

Lemma 2.2. — If νW− is non-trivial, then for any δ > 0 there exist constants c(δ) > 0 and

ρ(δ) > 0 such that for any compact K ⊂ X0 with ν(K) > 1 − δ there exists a compact subset

K′ ⊂ K with ν(K′) > 1− c(δ) so that for any q ∈ K′ there exists q′ ∈ K∩W−[q] with

ρ(δ) < d
(
q, q′
)
< 1/100.

Furthermore, c(δ)→ 0 as δ→ 0.

In other words, there is a set K′ ⊂ K of almost full measure such that every point
q ∈ K′ has a “friend” q′ ∈ W−[q], with q′ also in the “nice” set K, such that

d
(
q, q′
)≈ 1/100.

Thus, q can be chosen essentially anywhere in X0. (In fact we use a variant of Lemma 2.2,
namely Proposition 5.3 in Section 5.)

We also note the following trivial statement:
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FIG. 2. — (a) We keep track of the relative position of the subspaces U+[x] and U ′ in part by picking a transversal Z(x) to
U+[x], and noting the distance between U+[x] and U ′ along Z[x]. (b) If we apply the flow gt to the entire picture in (a), we
see that the transversal gtZ[x] can get almost parallel to gtU+[x]. Then, the distance between gtU+[x] and gtU ′ along gtZ[x]
may be much larger then the distance between gtx ∈ gtU+[x] and the closest point in gtU ′

Lemma 2.3. — Suppose ν is a measure on X0 invariant under the flow gt . Let τ̂ : X0 ×
R→R be a function such that there exists κ > 1 so that for all x ∈ X0 and for t > s,

(2.7) κ−1(t − s)≤ τ̂ (x, t)− τ̂ (x, s)≤ κ(t − s).

Let ψt : X0 → X0 be given by ψt(x)= gτ̂ (x,t)x. Then, for any Kc ⊂ X0 and any δ > 0, there exists

a subset E ⊂R of density at least (1− δ) such that for t ∈ E,

ν
(
ψ−1

t

(
Kc
))≤ (κ2/δ

)
ν
(
Kc
)
.

(We remark that the maps ψt are not a flow, since ψt+s is not in general ψt ◦ψs. However,
Lemma 2.3 still holds.)

In Section 7 we show that roughly, q2 = ψt(q), where ψt is as in Lemma 2.3.
(A more precise statement, and the strategy for dealing with this problem is given at
the beginning of Section 5.) Then, to make sure that q2 avoids a “bad set” Kc of small
measure, we make sure that q ∈ ψ−1

t (K) which by Lemma 2.3 has almost full measure.
Combining this with Lemma 2.2, we can see that we can choose q, q′ and q2 all in an a
priori prescribed subset K of almost full measure. A similar argument can be done for all
eight points, see Section 12, where the precise arguments are assembled.

Technical Problem #2. — Beyond the first step of the induction, the subspace U+(x)
may not be locally constant as x varies along W+(x). This complication has a ripple
effect on the proof. In particular, instead of dealing with the divergence of the points
gtuq1 and gtu

′q′1 we need to deal with the divergence of the affine subspaces U+[gtuq1] and
U+[gtu

′q′1]. As a first step, we project U+[gtu
′q′1] to the leaf of W+ containing U+[gtuq1],

to get a new affine subspace U ′. One way to keep track of the relative location of U+ =
U+[gtu

′q′1] and U ′ is (besides keeping track of the linear parts of U+ and U ′) to pick
a transversal Z(x) to U+[x], and to keep track of the intersection of U ′ and Z(x), see
Figure 2.

However, since we do not know at this point that the cocycle is semisimple, we
cannot pick Z in a way which is invariant under the flow. Thus, we have no choice except
to pick some transversal Z(x) to U+(x) at ν-almost every point x ∈ X0, and then deal with
the need to change transversal.
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It turns out that the formula for computing how U ′ ∩ Z changes when Z changes
is non-linear (it involves inverting a certain matrix). However, we would really like to
work with linear maps. This is done in two steps: first we show that we can choose the
approximation U ′ and the transversals Z(x) in such a way that changing transversals
involves inverting a unipotent matrix. This makes the formula for changing transversals
polynomial. In the second step, we embed the space of parameters of affine subspaces
near U+[x] into a certain tensor power space H(x) so that on the level of H(x) the change
of transversal map becomes linear. The details of this construction are in Section 6.

Technical Problem #3. — There may be more than one U+-inert Lyapunov expo-
nent. In that case, we do not have precise control over how q2 and q′2 diverge. In particular
the assumption that q2 − q′2 is nearly in the direction of V2(H1)(q2) is not justified. Also
we really need to work with U+[q2] and U+[q′2]. So let v ∈ H(q2) denote the vector corre-
sponding to (the projection to W+(q2) of) the affine subspace U+[q′2]. (This vector v takes
on the role of q2−q′2.) We have no a-priori control over the direction of v (even though we
know that ‖v‖ ≈ ε, and we know that v is almost contained in E(q2)⊂ H(q2), where E(x)
is defined in Section 8 as the union of the Lyapunov subspaces of H(x) corresponding to
the U+-inert Lyapunov exponents).

The idea is to vary u (while keeping q1, q′1, � fixed). To make this work, we need to
define a finite collection of subspaces E[ij],bdd(x) of H(x) (which actually only make sense
on a certain finite measurable cover X of X0) such that

(a) By varying u (while keeping q1, q′1, � fixed) we can make sure that the vector v
becomes close to one of the subspaces E[ij],bdd , and

(b) For a suitable choice of point q3 = q3,ij = gsij
q1, the map

(gtug−sij
)∗E[ij],bdd(q3)→ E[ij],bdd(q2)

is a linear map whose norm is bounded independently of the parameters.
(c) Also, for a suitable choice of point q′3 = q′3,ij = gs′ij q1, the map

(gtug−s′ij )∗E[ij],bdd

(
q′3
)→ E[ij],bdd

(
q′2
)

is a linear map whose norm is bounded independently of the parameters.

For the precise conditions see Proposition 10.1 and Proposition 10.2. This construction
is done in detail in Section 10. The general idea is as follows: Suppose v ∈ Ei(x)⊕ Ej(x)

where Ei(x) and Ej(x) are the Lyapunov subspaces corresponding to the U+-inert (simple)
Lyapunov exponents λi and λj . Then, if while varying u, the vector v does not swing
towards either Ei or Ej , we say that λi and λj are “synchronized”. In that case, we consider
the subspace E[i](x)= Ei(x)⊕Ej(x) and show that (b) and (c) hold.

The conditions (b) and (c) allow us to define in Section 11 conditional measures
fij on W+(x) which are associated to each subspace E[ij],bdd . In fact the measures are sup-
ported on the points y ∈ W+[x] such that the affine subspace U+[ y] maps to a vector in
E[ij],bdd(x)⊂ H(x).
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Technical Problem #4. — More careful analysis (see the discussion following the state-
ment of Proposition 11.4) shows that the maps A and A′ of (2.4) are not exactly the same.
Then, when one passes to the limit �→∞ one gets, instead of (2.6),

fij(q̃2)= P+(q̃2, q̃′2
)
∗fij
(
q̃′2
)

where P+ : W+(q̃2)→ W+(q̃′2) is a certain unipotent map (defined in Section 4.2). Thus
the conditional measure fij(q̃2) is invariant under the composition of a translation of size
ε and a unipotent map. Repeating the argument with ε → 0 we obtain a point p such
that the conditional measure at p is invariant under arbitrarily small combinations of
(translation + unipotent map). This does not imply that the conditional measure fij(p)

restricts to Lebesgue measure on some subspace of W+, but it does imply that it is in
the Lebesgue measure class along some polynomial curve in W+. More precisely, for
ν-a.e x ∈ X there is a subgroup Unew = Unew(x) of the affine group of W+(x) such that
the conditional measure of fij(x) on the polynomial curve Unew[x] ⊂ W+[x] is induced
from the Haar measure on Unew. (We call such a set a “generalized subspace”.) The exact
definition is given in Section 6.

Thus, during the induction steps, we need to deal with generalized subspaces. This
is not a very serious complication since the general machinery developed in Section 6 can
deal with generalized subspaces as well as with ordinary affine subspaces.

Completion of the proof of Theorem 2.1. — Let L(x) ⊂ H1(M,�,R) be the smallest
subspace such that νW−(x) is supported on L−(x). Roughly, the above argument can be
iterated until we know the conditional measure νW+(x) is Lebesgue on a subspace U+[x],
where U(x) ⊂ H1(M,�,R) contains L(x). (The precise condition for when the induc-
tion stops is given by Lemma 6.15 and Proposition 6.16.) Then a Margulis-Tomanov
style entropy comparison argument (see Section 13) shows that U(x) = L(x), and the
conditional measures along L−(x) are Lebesgue. Since U+(x) contains the orbit of the
unipotent direction N, this implies that L−(x) contains the orbit of the opposite unipotent
direction N̄ ⊂ SL(2,R). Thus, the conditional measure along the orbit of N̄ is Lebesgue,
which means that ν is N̄-invariant. This, together with the assumption that ν is P = AN-
invariant implies that ν is SL(2,R)-invariant, completing the proof of Theorem 2.1.

3. Hyperbolic properties of the geodesic flow

The spaces X0 and X̃0. — Let X0 be a finite cover of the stratum H1(α) which is
a manifold. (Such a cover may be obtained by choosing a level 3 structure, i.e. a basis
for the mod 3 homology of the surface.) Let X̃0 be the universal cover of X0. Then the
fundamental group π1(X0) acts properly discontinuously on X̃0. Let ν be a P-invariant
ergodic probability measure on X0.

We recall the following standard fact:
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Lemma 3.1 (Mautner phenomenon). — Let ν be an ergodic P-invariant measure on a space Z.

Then ν is A-ergodic.

Proof. — See e.g. [Moz]. �

Lemma 3.2. — For almost all x ∈ X0, the affine exponential map from W+(x) to W+[x]
is globally defined and is bijective, endowing W+[x] with a global affine structure. The same holds for

W−[x].

Proof. — Since W− and W+ play the role of the stable and unstable foliations for
the action of gt ∈ A (cf. Lemma 3.5), this follows from the Poincaré recurrence theorem. �

The bundle H1. — Let H1 denote the bundle whose fiber above x ∈ X0 is
H1(M,�,R). We denote the fiber above the point x ∈ X0 by H1(x).

The geodesic flow acts on H1 by parallel transport using the Gauss-Manin connec-
tion (see Section 2.3).

The bundles H1
+ and H1

−. — Let H1
+ denote the same bundle as H1 except that the

action of gt on H1
+ includes an extra multiplication by et on the fiber. (In other words, if

ht(x, v)= (x, etv) and i : H1 → H1
+ is the identity map, then gt ◦ i(x, v)= ht ◦ i ◦ gt(x, v).)

Similarly, let H1
− denote the same bundle as H1 except that the action of gt includes an

extra multiplication by e−t on the fiber.
We use the notation H1

+(x) and H1
−(x) to refer to the fiber of the corresponding

bundle above the point x ∈ X0.

The bundles Hbig , H(+)
big , H(−)

big , H(++)
big and H(−−)

big . — In this paper, we will need to deal
with several bundles derived from the Hodge bundle H1. It is convenient to introduce a
bundle Hbig so that every bundle we will need will be a subbundle of Hbig . Let d ∈ N be
a large integer chosen later (it will be chosen in Section 6 and will depend only on the
Lyapunov spectrum of the Kontsevich-Zorich cocycle). Let

Ĥbig(x)=
d⊕

k=1

k⊕
j=1

( j⊗
i=1

H1(x)⊗
k−j⊗
l=1

(
H1(x)

)∗)
,

Ĥ(+)
big (x)=

d⊕
k=1

k⊕
j=1

( j⊗
i=1

H1
+(x)⊗

k−j⊗
l=1

(
H1

+(x)
)∗)

,

Ĥ(−)
big (x)=

d⊕
k=1

k⊕
j=1

( j⊗
i=1

H1
−(x)⊗

k−j⊗
l=1

(
H1

−(x)
)∗)

,
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and let

H̃big(x)= Ĥbig(x)⊕ Ĥ(+)
big (x)⊕ Ĥ(−)

big (x).

Suppose L1 ⊂ L2 ⊂ H̃big are gt-invariant subbundles. We say that L2/L1 is an admissi-
ble quotient if the cocycle on L2/L1 is measurably conjugate to a conformal cocyle (see
Lemma 4.3), and also L2/L1 is maximal in the sense that if L′

2 ⊃ L2 and L′
1 ⊂ L1 are

gt-invariant subbundles with the cocycle L′
2/L′

1 measurably conjugate to a conformal co-
cycle, then L′

2 = L2 and L′
1 = L1. We then let�big denote the set of all admissible quotients

of H̃big and let

Hbig(x)=
⊕

Q∈�big

Q(x).

(We apply a similar operation to the bundles Ĥ(+)
big and Ĥ(−)

big to get bundles H(+)
big and H(−)

big .)
The flow gt acts on the bundle Hbig in the natural way. We denote the action on the

fibers by (gt)∗. Let H(++)
big (x) denote the direct sum of the positive Lyapunov subspaces of

Hbig(x). Similarly, let H(−−)
big (x) denote the direct sum of the negative Lyapunov subspaces

of Hbig(x).

Lemma 3.3. — The subspaces H(++)
big (x) are locally constant along W+[x], i.e. for almost all

x ∈ X̃0 and almost all y ∈ W+[x] close to x we have H(++)
big (y)= H(++)

big (x). Similarly, the subspaces

H(−−)
big (x) are locally constant along W−[x].

Proof. — Note that

H(++)
big (x)=

{
v ∈ Hbig(x) : lim

t→∞
1
t

log
‖(g−t)∗v‖
‖v‖ < 0

}

Therefore, the subspace H(++)
big (x) depends only on the trajectory g−tx as t →∞. How-

ever, if y ∈ W+[x] then g−ty will for large t be close to g−tx, and so in view of the affine
structure, (g−t)∗ will be the same linear map on Hbig(x) and Hbig(y). This implies that
H(++)

big (x)= H(++)
big (y). �

The Avila-Gouëzel-Yoccoz norm. — The Avila-Gouëzel-Yoccoz norm on the relative
cohomology group H1(M,�,R) is described in Appendix A. This then induces a norm
which we will denote by ‖ · ‖Y and then, as the projective cross norm, also on Hbig . We
also use the notation ‖ · ‖Y,x to denote the AGY norm at x ∈ X0.

The distance d+(x, y). — Since the tangent space to W+[x] is included in H1(M,

�,R), the AGY norm on H1(M,�,R) defines a distance on W+[x]. We denote this
distance by d+(·, ·). (Thus, for y, z ∈ W+[x], d+(y, z) is the length of the shortest path in
W+[x] connecting y and z, where lengths of paths are measured using the AGY norm.)
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The ball B+(x, r). — Let B+(x, r)⊂ W+[x] denote the ball of radius r centered at x,
in the metric d+(·, ·).

The following is a rephrasing of [AG, Proposition 5.3]:

Proposition 3.4. — For all x ∈ X0, x + v is well defined for v ∈ W+(x) with ‖v‖Y ≤ 1/2.

Also, for all y, z ∈ B+(x,1/50), we have

1
2
‖y− z‖Y,y ≤ ‖y− z‖Y,z ≤ 2‖y− z‖Y,y,

and

1
2
‖y− z‖Y,y ≤ d+(y, z)≤ 2‖y− z‖Y,y.

Note that we have a similar distance d−(·, ·) on W−[x], and the analogue of Propo-
sition 3.4 holds.

The “distance” dX0(·, ·). — Suppose x, y ∈ X̃0 are not far apart. Then, there exist
unique z ∈ W+[x] and t ∈R such that gtz ∈ W−[ y]. We then define

dX0(x, y)= d+(x, z)+ |t| + d−(gtz, y).

Thus, if y ∈ W+[x] then dX0(x, y)= d+(x, y), and if y ∈ W−[x], then dX0(x, y)= d−(x, y).
We sometimes abuse notation by using the notation dX0(x, y) where x, y ∈ X0. By

this we mean dX0(x̃, ỹ) where x̃ and ỹ are appropriate lifts of x and y.
Choose a compact subset K′

thick ⊂ X0 with ν(K′
thick) ≥ 5/6. Let Kthick = {x ∈ X0 :

dX0(x,K′
thick)≤ 1/100}.

Lemma 3.5. — There exists α > 0 such that the following holds:

(a) Suppose x ∈ X0 and t > 0 are such that the geodesic segment from x to gtx spends at least

half the time in Kthick . Then, for all v ∈ W−(x),

‖(gt)∗v‖Y ≤ e−αt‖v‖Y.

(b) Suppose x ∈ X0 and t > 0 are as in (a). Then, for all v ∈ W+(x),

‖(gt)∗v‖Y ≥ eαt‖v‖Y.

(c) For every ε > 0 there exist a compact subset K′′
thick ⊂ X0 with ν(K′′

thick) > 1 − ε and

t0 > 0 such that for x ∈ K′′
thick , t > t0 and all v ∈ H(++)

big (x),

‖(gt)∗v‖Y ≥ eαt‖v‖Y.
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(d) For all v ∈ W+(x), all x ∈ X0 and all t > 0,

‖(gt)∗v‖Y ≥ ‖v‖Y.

Proof. — Parts (a), (b) and (d) follow from Theorem A.2. Part (c) follows immediately
from the Osceledets multiplicative ergodic theorem. �

We also have the following simpler statement:

Lemma 3.6. — There exists N > 0 such that for all x ∈ X0, all t ∈R, and all v ∈ Hbig(x),

e−N|t|‖v‖Y ≤ ‖(gt)∗v‖Y ≤ eN|t|‖v‖Y.

For v ∈ W+[x], we can take N = 2.

Proof. — This follows immediately from Theorem A.2. �

Proposition 3.7. — Suppose C ⊂ X0 is a set with ν(C) > 0, and T0 : C → R
+ is a

measurable function which is finite a.e. Then we can find x0 ∈ X̃0, a subset C1 ⊂ W−[x0] ∩ π−1(C)
and for each c ∈ C1 a subset E+[c] ⊂ W+[c] of diameter in the AGY metric at most 1/200 and a

number t(c) > 0 such that if we let

Jc =
⋃

0≤t<t(c)

g−tE+[c],

then the following holds:

(a) E+[c] is relatively open in W+[c].
(b) π( Jc)∩ π( Jc′)= ∅ if c �= c′.
(c) π( Jc) is embedded in X0, i.e. if π(g−tx)= π(g−t′x

′) where x, x′ ∈ E+[c] and 0 ≤ t <

t(c), 0 ≤ t′ < t(c) then x = x′ and t = t′.
(d)
⋃

c∈C1
π( Jc) is conull in X0.

(e) For every c ∈ C1 there exists c′ ∈ C1 such that π(g−t(c)E+[c])⊂ π(E+[c′]).
(f) t(c) > T0(c) for all c ∈ C1.

Remark. — All the construction in Section 3 will depend on the choice of C and T0,
but we will suppress this from the notation. The set C and the function T0 will be finally
chosen in Lemma 4.14.

The proof of Proposition 3.7 relies on the following:

Lemma 3.8. — Suppose C ⊂ X0 is a set with ν(C) > 0, and T0 : C →R
+ is a measurable

function which is finite a.e. Then we can find x0 ∈ X̃0, a subset C1 ⊂ W−[x0] ∩ π−1(C) and for each

c ∈ C1 a subset E+[c] ⊂ W+[c] of diameter in the AGY metric at most 1/200 so that the following

hold:
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(0) E+[c] is a relatively open subset of W+[c].
(1) The set E = π(

⋃
c∈C1

E+[c]) is embedded in X0, i.e. if π(x)= π(x′) where x ∈ E+[c]
and x′ ∈ E+[c′], then x = x′ and c = c′.

(2) For some ε > 0, ν(
⋃

t∈(0,ε) gtE) > 0.

(3) If t > 0 and c ∈ C1 is such that π(g−tE+[c])∩E �= ∅, then π(g−tE+[c])⊂ π(E+[c′])
for some c′ ∈ C1.

(4) Suppose t, c, c′ are as in (3). Then t > T0(c).

Proof. — This proof is essentially identical to the proof of Lemma B.1, except that
we need to take care that (4) is satisfied. In this proof, for x ∈ C, we denote by νW±[x] the
conditional measure of ν along W±[x] ∩ C.

Choose T1 > 0 so that if we let C4 = {x ∈ C : T0(x) < T1} then ν(C4) > ν(C)/2.
Let Xper denote the union of the periodic orbits of gt . By the P-invariance of ν and
the ergodicity of gt , ν(Xper) = 0, and the same is true of the set X′

per =
⋃

x∈Xper
W−[x].

Therefore there exists x0 ∈ π−1(C4) and a compact subset C3 ⊂ W−[x0] ∩ π−1(C4) with
νW−[x0](C3) > 0 such that for x ∈ C3 and 0 < t < T1, π(g−tx) /∈ π(C3). Then, since
C3 is compact, we can find a small neighborhood V+ ⊂ W+ of the origin such that
the set π(

⋃
c∈C3

V+[c]) is embedded in X0 and for x ∈ ⋃c∈C3
V+[c] and 0 < t < T1,

π(g−tx) /∈ π(⋃c∈C3
V+[c]).

There exists C2 ⊂ C3 with νW−[x0](C2) > 0 and N > T1 such that for all c ∈ C2 and
all T > N,

∣∣{t ∈ [0,T] : π(g−t c) ∈ K′
thick

}∣∣≥ T/2.

Then, for c ∈ C2, T > N and x ∈ V+[c],
∣∣{t ∈ [0,T] : π(g−tx) ∈ Kthick

}∣∣≥ T/2.

Let

M = sup
{‖v‖Y,x

‖v‖Y,y
: x ∈ V+[c], y ∈ V+[c], c ∈ C2, v ∈ W+(x)

}

Let α > 0 be as in Lemma 3.5, and choose N1 > N such that M2e−αN1 < 1/10. Then, for
c ∈ C2, x, y ∈ π(V+[c]) and t > N1 such that g−tx ∈ π(⋃c∈C2

V+[c]), in view of Lemma 3.5
and Proposition 3.4,

dX0(g−tx, g−ty)≤ 1
10

dX0(x, y).

Now choose C1 ⊂ C2 with νW−[x0](C1) > 0 so that if we let Y = π(
⋃

c∈C1
V+[x]) then g−tY∩

Y = ∅ for 0 < t < max(T1,N1), in other words, the first return time to Y is at least
max(T1,N1). (This can be done e.g. by Rokhlin’s Lemma.) Condition (4) now follows
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since T0(c) < T1 for all c ∈ C1. The rest of the proof is essentially the same as the proof of
Lemma B.1, applied to the first return map of g−t to Y. �

Proof of Proposition 3.7. — For x ∈ E, let t(x) ∈ R
+ be the smallest such that

g−t(x)x ∈ E. By property (3), the function t(x) is constant on each set of the form π(E+[c]).
Let Ft = {x ∈ E : t(x)= t}. (We have Ft = ∅ if t < N1.) By property (2) and the ergodicity
of g−t , up to a null set,

X0 =
⊔
t>0

⊔
s<t

g−sFt.

Then properties (a)–(f) are easily verified. �

Notation. — For x ∈ X0, let J[x] denote the set π( Jc) containing x. For x ∈ X̃0, let
J[x] denote γ Jc where γ ∈ π1(X0) is such that γ −1x ∈ Jc.

Lemma 3.9. — Suppose x ∈ X̃0, y ∈ W+[x] ∩ J[x]. Then for any t > 0,

g−ty ∈ J[g−tx] ∩W+[g−tx].
Proof. — This follows immediately from property (e) of Proposition 3.7. �

Notation. — For x ∈ X0, let

Bt[x] = π
(
g−t

(
J[gt x̃] ∩W+[gt x̃]

))
, where x̃ is any element of π−1(x).

Lemma 3.10.

(a) For t′ > t ≥ 0, Bt′ [x] ⊂Bt[x].
(b) Suppose t ≥ 0, t′ ≥ 0, x ∈ X0 and x′ ∈ X0 are such that Bt[x] ∩Bt′ [x′] �= ∅. Then

either Bt[x] ⊇Bt′ [x′] or Bt′ [x′] ⊇Bt[x] (or both).

Proof. — Part (a) is a restatement of Lemma 3.9. For (b), without loss of generality,
we may assume that t′ ≥ t. Then, by (a), we have Bt[x] ∩Bt[x′] �= ∅.

Suppose y ∈Bt[x] ∩Bt[x′]. Then gty ∈B0[gtx] and gty ∈B0[gtx
′]. Since the sets

B0[z], z ∈ X0 form a partition, we must have B0[gtx] = B0[gtx
′]. Therefore, Bt[x] =

Bt[x′], and thus, by (a),

Bt′
[
x′
]⊂Bt

[
x′
]=Bt[x]. �

By construction, the sets B0[x] are the atoms of a measurable partition of X0 sub-
ordinate to W+ (see Definition B.4). Then, let νW+[x] denote the conditional measure of
ν along the atom of the partition containing x. For notational simplicity, for E ⊂ W+[x],
we sometimes write νW+(E) instead of νW+[x](E).
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Lemma 3.11. — Suppose δ > 0 and K ⊂ X0 is such that ν(K) > 1− δ. Then there exists

a subset K∗ ⊂ K with ν(K∗) > 1− δ1/2 such that for any x ∈ K∗, and any t > 0,

νW+
(
K∩Bt[x]

)≥ (1− δ1/2
)
νW+
(
Bt[x]

)
.

Proof. — Let E = Kc, so ν(E)≤ δ. Let E∗ denote the set of x ∈ X0 such that there
exists some τ ≥ 0 with

(3.1) νW+
(
E∩Bτ [x]

)≥ δ1/2νW+
(
Bτ [x]

)
.

It is enough to show that ν(E∗) ≤ δ1/2. Let τ(x) be the smallest τ > 0 so that (3.1)
holds for x. Then the (distinct) sets {Bτ(x)[x]}x∈E∗ cover E∗ and are pairwise disjoint by
Lemma 3.10(b). Let

F =
⋃
x∈E∗

Bτ(x)[x].

Then E∗ ⊂ F. For every set of the form B0[ y], let �(y) denote the set of distinct sets
Bτ(x)[x] where x varies over B0[ y]. Then, by (3.1)

νW+
(
F∩B0[ y])=∑

�(y)

νW+(Bτ(x))

≤ δ−1/2
∑
�(y)

νW+
(
E∩Bτ(x)[x]

)≤ δ−1/2νW+
(
E∩B0[ y]).

Integrating over y, we get ν(F)≤ δ−1/2ν(E). Hence,

ν
(
E∗)≤ ν(F)≤ δ−1/2ν(E)≤ δ1/2. �

4. General cocycle lemmas

4.1. Lyapunov subspaces and flags. — Let Vi(H1)(x), 1 ≤ i ≤ k denote the Lyapunov
subspaces of the Kontsevich-Zorich cocycle under the action of the geodesic flow gt , and
let λi(H1), 1 ≤ i ≤ k denote the (distinct) Lyapunov exponents. Then we have for almost
all x ∈ X0,

H1(M,�,R)=
k⊕

i=1

Vi

(
H1
)
(x)

and for all non-zero v ∈ Vi(H1)(x),

lim
t→±∞

1
t

log
‖(gt)∗v‖
‖v‖ = λi

(
H1
)
,
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where ‖ · ‖ is any reasonable norm on H1(M,�,R) for example the Hodge norm or
the AGY norm defined in Section A.1. By the notation (gt)∗v we mean the action of the
geodesic flow (i.e. parallel transport using the Gauss-Manin connection) on the Hodge
bundle H1(M,�,R). We note that the Lyapunov exponents of the geodesic flow (viewed
as a diffeomorphism of X0) are in fact 1+ λi , 1 ≤ i ≤ k and −1+ λi , 1 < i ≤ k.

We have

1 = λ1

(
H1
)
> λ2

(
H1
)
> · · ·> λk

(
H1
)=−1.

It is a standard fact that dimV1(H1) = dimVk(H1) = 1, V1(H1) corresponds to the
direction of the unipotent N and Vk(H1) corresponds to the direction of N̄. Let p :
H1(M,�,R)→ H1(M,R) denote the natural map. Recall that if x ∈ X0 denotes the
pair (M,ω), then

H1
⊥(x)=

{
α ∈ H1(M,�,R) : p(α)∧Re(ω)= p(α)∧ Im(ω)= 0

}
.

Then

H1
⊥(x)=

k−1⊕
i=2

Vi

(
H1
)
(x).

We note that the subspaces H1
⊥(x) are equivariant under the SL(2,R) action on X0 (since

so is the subspace spanned by Reω and Imω). Since the cocycle preserves the symplectic
form on p(H1

⊥), we have

λk+1−i

(
H1
)=−λi

(
H1
)
, 1 ≤ i ≤ k.

Let

V≤i

(
H1
)
(x)=

i⊕
j=1

Vj

(
H1
)
(x), V≥i

(
H1
)
(x)=

k⊕
j=i

Vj

(
H1
)
(x).

Then we have the Lyapunov flags

{0} = V≤0

(
H1
)
(x)⊂ V≤1

(
H1
)
(x)⊂ · · · ⊂ V≤k

(
H1
)
(x)= H1(M,�,R)

and

{0} = V>k

(
H1
)
(x)⊂ V>k−1

(
H1
)
(x)⊂ · · · ⊂ V>0

(
H1
)
(x)= H1(M,�,R).

We record some simple properties of the Lyapunov flags:
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Lemma 4.1.

(a) The subspaces V≤i(H1)(x) are locally constant along W+[x], i.e. for almost all x ∈ X0,

for almost all y ∈ W+[x] close to x we have V≤i(H1)(y)= V≤i(H1)(x) for all 1 ≤ i ≤ k.

(Here and in (b) we identify H1(x) with H1(y) using the Gauss-Manin connection.)

(b) The subspaces V≥i(H1)(x) are locally constant along W−[x], i.e. for almost all x ∈ X0 and

for almost all y ∈ W−[x] close to x we have V≥i(H1)(y)= V≥i(H1)(x) for all 1 ≤ i ≤ k.

Proof. — To prove (a), note that

V≤i

(
H1
)
(x)=

{
v ∈ H1(M,�,R) : lim

t→∞
1
t

log
‖(g−t)∗v‖
‖v‖ ≤−λi

}
.

Therefore, the subspace V≤i(H1)(x) depends only on the trajectory g−tx as t →∞. How-
ever, if y ∈ W+[x] then g−ty will for large t be close to g−tx, and so in view of the affine
structure, (g−t)∗ will be the same linear map on H1(M,�,R) at x and y, as in Section 3.
This implies that V≤i(H1)(x)= V≤i(H1)(y). The proof of property (b) is identical. �

The action on H1
+ and H1

−. — Recall that the bundles H1
+ and H1

− were defined in
Section 3. All of the results of Section 4.1 also apply to these bundles. Also,

λi

(
H1

+
)= 1+ λi

(
H1
)
, λi

(
H1

−
)=−1+ λi

(
H1
)
.

Furthermore, under the natural identification by the identity map, for all x ∈ X0,

Vi

(
H1

+
)
(x)= Vi

(
H1

−
)
(x)= Vi

(
H1
)
(x).

4.2. Equivariant measurable flat connections. — Let L be a subbundle of H(++)
big . Re-

call that by Lemma 3.2, typical leaves of W+ are simply connected. By an equivariant
measurable flat W+-connection on L we mean a measurable collection of linear “parallel
transport” maps:

F(x, y) : L(x)→ L(y)

defined for ν-almost all x ∈ X0 and νW+[x] almost all y ∈ W+[x] such that

(4.1) F(y, z)F(x, y)= F(x, z),

and

(4.2) (gt)∗ ◦ F(x, y)= F(gtx, gty) ◦ (gt)∗.

For example, if L = W+(x), then the Gauss-Manin connection (which in period local
coordinates is the identity map) is an equivariant measurable flat W+ connection on H1.
However, there is another important equivariant measurable flat W+-connection on H1

which we describe below.
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The maps P+(x, y) and P−(x, y). — Recall that Vi(H1)(x)⊂ H1(x) are the Lyapunov
subspaces for the flow gt . Recall that the Vi(H1)(x) are not locally constant along leaves
of W+, but by Lemma 4.1, the subspaces V≤i(H1)(x)=∑i

j=1 Vj(W+)(x) are locally con-
stant along the leaves of W+. Now suppose y ∈ W+[x]. Any vector v ∈ Vi(H1)(x) can be
written uniquely as

v = v′ + v′′ v′ ∈ Vi

(
H1
)
(y), v′′ ∈ V<i

(
H1
)
(y).

Let P+
i (x, y) : Vi(H1)(x)→ Vi(H1)(y) be the linear map sending v to v′. Let P+(x, y) be

the unique linear map which restricts to P+
i (x, y) on each of the subspaces Vi(H1)(x). We

call P+(x, y) the “parallel transport” from x to y. The following is immediate from the
definition:

Lemma 4.2. — Suppose x, y ∈ W+[z]. Then

(a) P+(x, y)Vi(H1)(x)= Vi(H1)(y).

(b) P+(gtx, gty)= (gt)∗ ◦ P+(x, y) ◦ (g−1
t )∗.

(c) P+(x, y)V≤i(H1)(x)= V≤i(H1)(y). If we identify H1(x) with H1(y) using the Gauss-

Manin connection, then the map P+(x, y) is unipotent.

(d) P+(x, z)= P+(y, z) ◦ P+(x, y).

Note that the map P+ on H1
+ is the same as on H1, provided we identify H1

+ with
H1 via the identity map.

The statements (b) and (d) imply that the maps P+(x, y) define an equivariant mea-
surable flat W+-connection on H1. This connection is in general different from the Gauss-
Manin connection, and is only measurable.

If y ∈ W−[x], then we can define a similar map which we denote by P−(x, y). This
yields an equivariant measurable flat W−-connection on H1.

Clearly the connection P+(x, y) induces an equivariant measurable flat W+-con-
nection on H(++)

big . This connection preserves the Lyapunov subspaces of the gt-action on
H(++)

big , as in Lemma 4.2(a). In view of Proposition 4.12 below, the connection P+(x, y) also
induces an equivariant measurable flat W+-connection on any gt-equivariant subbundle
of H(++)

big .

Equivariant measurable flat U+-connections. — Suppose U+[x] ⊂ W+[x] is a gt-equi-
variant family of algebraic subsets, with U+[ y] = U+[x] for y ∈ U+[x]. In fact, we will
only consider families compatible with ν as defined in Definition 6.2. We denote the con-
ditional measure of ν along U+[x] by νU+[x]. In the cases we will consider, these measures
are well defined a.e. and are in the Lebesgue measure class, see Section 6.

By an equivariant measurable flat U+-connection on a bundle L ⊂ H(++)
big we mean

a measurable collection of linear maps F(x, y) : L(x)→ L(y) satisfying (4.1) and (4.2),
defined for ν-almost all x ∈ X0 and νU+[x]-almost all y ∈ U+[x].
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4.3. The Jordan canonical form of a cocycle.

Zimmer’s amenable reduction. — The following is a general fact about linear cocycles
over an action of R or Z. It is often called “Zimmer’s amenable reduction”. We state it
only for the cases which will be used.

Lemma 4.3. — Suppose Li is a gt-equivariant subbundle of H(++)
big . (For example, we could

have Li(x)= Vi(H1
+)(x).) Then, there exists a measurable finite cover σLi

: XLi
→ X0 such that for

σ−1
Li
(ν)-a.e x ∈ XLi

there exists an invariant flag

(4.3) {0} = Li,0(x)⊂ Li,1(x)⊂ · · · ⊂ Li,ni
(x)= Li(x),

and on each Lij(x)/Li,j−1(x) there exists a nondegenerate quadratic form 〈·, ·〉ij,x and a cocycle λij :
XLi

×R→R such that for all u, v ∈ Lij(x)/Li,j−1(x),

〈
(gt)∗u, (gt)∗v

〉
ij,gt x

= eλij (x,t)〈u, v〉ij,x.

(Note: For each i, the pullback measures σ−1
Li
(ν) is uniquely defined by the condition that for almost all

x0 ∈ X0, the conditional of σ−1
Li
(ν) on the (finite) set σ−1

Li
(x0) is the normalized counting measure.)

Remark. — The statement of Lemma 4.3 is the assertion that on the finite cover XLi

one can make a change of basis at each x ∈ XLi
so that in the new basis, the matrix of the

cocycle restricted to Li is of the form

(4.4)

⎛
⎜⎜⎜⎝

Ci,1 ∗ . . . ∗
0 Ci,2 . . . ∗
...

...
. . . ∗

0 0 . . . Ci,ni

⎞
⎟⎟⎟⎠ ,

where each Ci,j is a conformal matrix (i.e. is the composition of an orthogonal matrix and
a scaling factor λij ).

We call a cocycle block-conformal if all the off-diagonal entries labeled ∗ in (4.4) are 0.

Proof of Lemma 4.3. — See [ACO] (which uses many of the ideas of Zimmer). The
statement differs slightly from that of [ACO, Theorem 5.6] in that we want the cocycle
in each block to be conformal (and not just block-conformal). However, our statement
is in fact equivalent because we are willing to replace the original space X0 by a finite
cover XLi

. �

4.4. Covariantly constant subspaces. — The main result of this subsection is the fol-
lowing:
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Proposition 4.4. — Suppose L is a gt-equivariant subbundle over the base X0. We can write

L(x)=
⊕

i

Li(x),

where Li(x)≡ Vi(L)(x) is the Lyapunov subspace corresponding to the Lyapunov exponent λi . Suppose

there exists an equivariant flat measurable W+-connection F on L, such that

(4.5) F(x, y)Li(x)= Li(y).

Suppose that M is a finite collection of subspaces of L which is gt-equivariant. Then, for almost all

x ∈ X0 and almost all y ∈B0[x],
F(x, y)M(x)=M(y),

i.e. the collection of subspaces M is locally covariantly constant with respect to the connection F.

Remark. — The same result holds if F is only assumed to be a measurable U+-con-
nection, and B0[x] is replaced by B[x].

The following is a generalization of Lemma 4.1:

Corollary 4.5. — Suppose M ⊂ H1(M,�,R) is a gt-equivariant subbundle over the base X0.

Suppose also for a.e x ∈ X0, V<i(x) ⊂ M(x) ⊂ V≤i(x). Then (up to a set of measure 0), M(x) is

locally constant along W+(x).

Proof of Corollary 4.5. — By Lemma 4.1, L(x) ≡ V≤i(x)/V<i(x) is locally constant
along W+[x]. Let F(x, y) denote the Gauss-Manin connection (i.e. the identity map) on
L(x). Note that the action of gt on L(x) has only one Lyapunov exponent, namely λi .
Thus, (4.5) is trivially satisfied. Then, by Proposition 4.4, M(x)/V<i(x) ⊂ L(x) is locally
constant along W+[x]. Since V<i(x) is also locally constant (by Lemma 4.1), this implies
that M(x) is locally constant. �

Remark. — Our proof of Proposition 4.4 is essentially by reference to [L, Theo-
rem 1]. It is given in Section 4.9∗ and can be skipped on first reading. For similar results
in a partially hyperbolic setting see [AV2], [ASV], [KS].

4.5. Some estimates on Lyapunov subspaces. — Let (V,‖ · ‖Y) be a normed vector
space. By a splitting E = (E1, . . . ,En) of V we mean a direct sum decomposition

V = E1 ⊕ · · · ⊕ En

Suppose E = (E1, . . . ,En) and E′ = (E′
1, . . . ,E′

n) are two splittings of V, with dim Ei =
dim E′

i for 1 ≤ i ≤ n.
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We define

D+(E,E′)= max
1≤i≤n

sup
v∈⊕

j≤i

Ej\{0}
inf
{‖w‖Y

‖v‖Y
: v +w ∈

⊕
j≤i

E′
j, and w ∈

⊕
j>i

Ej

}
,

and

D−(E,E′)= max
1≤i≤n

sup
v∈⊕

j≥i

Ej\{0}
inf
{‖w‖Y

‖v‖Y
: v +w ∈

⊕
j≥i

E′
j, and w ∈

⊕
j<i

Ej

}
.

Note that D+(E,E′) depends on E′ only via the flag
⊕

j≤i E′
j , 1 ≤ i ≤ n. Similarly,

D−(E,E′) depends on E′ only via the flag
⊕

j≥i E′
j , 1 ≤ i ≤ n. Also D+(E,E′) =

D−(E,E′) = 0 if E = E′, and D+(E,E′) =∞ if some
⊕

j≤i E′
j has non-trivial intersec-

tion with
⊕

j>i Ej .

In this subsection, we write Vi(x) for Vi(H1)(x), etc. For almost all x in X̃0, we have
the splitting

H1(x)= V1(x)⊕ · · · ⊕ Vn(x).

For x, y ∈ X̃0, we have the Gauss-Manin connection PGM(x, y), which is a linear
map from H1(x) to H1(y) (see Section 2.3). Let

D+(x, y)= D+((V1(x), . . . ,Vn(x)
)
,
(
PGM(y, x)V1(y), . . . ,PGM(y, x)Vn(y)

))
.

D−(x, y)= D−((V1(x), . . . ,Vn(x)
)
,
(
PGM(y, x)V1(y), . . . ,PGM(y, x)Vn(y)

))
.

Distance between subspaces. — For a subspace V of H1(x), let SV denote the intersec-
tion of V with the unit ball in the AGY norm.

For subspaces V1,V2 of H1(x), we define

(4.6) dY(V1,V2)= The Hausdorff distance between SV1 and SV2

measured with respect to the AGY norm at x.

Lemma 4.6. — There exists a continuous function C0 : X0 → R
+ such that for subspaces

V1,V2 of H1(x) of the same dimension,

C0(x)
−1dY(V1,V2)≤ δY(V1,V2)≤ dY(V1,V2),

where

δY(V1,V2)= max
v1∈SV1

min
v2∈SV2

‖v1 − v2‖Y.
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Proof. — SincedY(V1,V2) = max(δY(V1,V2), δY(V2,V1)), the inequality on the
left follows immediately from the definition of the Hausdorff distance. To prove
the inequality on the right it is enough to show that for some continuous function
C0 : X0 →R

+,

(4.7) C0(x)
−1δY(V2,V1)≤ δY(V1,V2).

To prove (4.7), pick some arbitrary inner product 〈·, ·〉0 on H1(M,�,R), and let ‖ · ‖0 be
the associated norm. Then, there exists a continuous function C1 : X0 → R

+ such that
for all v ∈ H1(x),

C1(x)
−1‖v‖0 ≤ ‖v‖Y ≤ C1(x)‖v‖0.

Let δ0(·, ·) and d0(·, ·) be the analogues of δY(·, ·) and dY(·, ·) for the norm ‖ · ‖0. Then,
it is enough to prove that there exists a constant c2 > 0 depending only on the dimension
such that for subspaces V1, V2 of equal dimension,

(4.8) c2δ0(V2,V1)≤ δ0(V1,V2).

For subspaces U,V of equal dimension n, let u1, . . . , un and v1, . . . , vn be orthonormal
bases for U and V respectively. Then, we have

(4.9)
( n∑

i=1

inf
v∈V

‖ui − v‖2
0

)1/2

=
(

n−
n∑

i=1

n∑
j=1

〈ui, vj〉2
0

)1/2

Note that the expression on the left in (4.9) is independent of the basis for V, and the
expression on the right of (4.9) is symmetric in U and V. Thus, the expression in (4.9)
is independent of the basis for U as well, and thus defines a function dH(U,V). (This
function is called the Frobenius or chordal distance between subspaces, see e.g. [De],
[WWF].)

From the expression on the left of (4.9) it is clear that there exists a constant c3

depending only on the dimension so that

c3dH(V1,V2)≤ d0(V1,V2)≤ c−1
3 dH(V1,V2).

Since dH(V1,V2)= dH(V2,V1), (4.8) follows. �

Lemma 4.7. — There exists α > 0 depending only on the Lyapunov spectrum, and a function

C : X0 →R
+ finite almost everywhere such that the following holds:

(a) For all t > 0, and all x ∈ X̃0, and all y ∈ X̃0 such that dX0(gsx, gsy) ≤ 1/100 for

0 ≤ s ≤ t, we have, for all 1 ≤ i ≤ n,

dY

(
V≤i(gtx),PGM(gty, gtx)V≤i(gty)

)≤ min
0≤s≤t

C(gsx)
(
1+D+(x, y)

)
e−αt.



INVARIANT AND STATIONARY MEASURES 123

(b) For all t > 0, and all x ∈ X̃0, and all y ∈ X̃0 such that dX0(g−sx, g−sy) ≤ 1/100 for

0 ≤ s ≤ t, we have, for all 1 ≤ i ≤ n,

dY

(
V≥i(g−tx),PGM(g−ty, g−tx)V≥i(g−ty)

)≤ min
0≤s≤t

C(g−sx)
(
1+D−(x, y)

)
e−αt.

The proof of Lemma 4.7 is a straightforward but tedious argument using the
Osceledets multiplicative ergodic theorem. It is done in Section 4.8∗.

Lemma 4.8. — There exists a function C3 : X0 →R
+ finite almost everywhere, such that for

all x ∈ X̃0, all y ∈ W−[x] with dX0(x, y) < 1/100 we have D+(x, y) ≤ C3(x)C3(y). Similarly,

for all x ∈ X̃0, all y ∈ W+[x] with dX0(x, y) < 1/100 we have D−(x, y)≤ C3(x)C3(y).

Proof of Lemma 4.8. — For ε > 0, let Kε ⊂ X0 be a compact set with measure at
least 1− ε on which the functions x → Vi(x) are continuous. Then there exists ρ = ρ(ε)

such that if x′ ∈ π−1(Kε), y′ ∈ W−[x] ∩ π−1(Kε) and dX0(x′.y′) < ρ then D+(x′, y′) < 1.
Then, by the Birkhoff ergodic theorem and Lemma 3.5, there exists a compact K′

ε ⊂ X0

with ν(K′
ε) > 1 − 2ε and C2 = C2(ε) such that for all x ∈ π−1(K′

ε), all y ∈ W−[x] ∩
π−1(K′

ε) with dX0(x, y) < 1/100 there exists C2(ε) < t′ < 2C2(ε) with gt′x ∈ Kε , gt′y ∈ Kε

and dX0(x, y) < ρ(ε). Thus, D+(gt′x, gt′y) < 1, which implies that D+(x, y) < C′
2 = C′

2(ε).
Without loss of generality, we may assume that C′

2 ≥ 1 and that K′
ε and C′

2(ε) both
decrease as functions of ε. Now for x ∈ X0, let ϒ(x)= {ε : x ∈ K′

ε}, and let

C3(x)= inf
{
C′

2(ε) : ε ∈ϒ(x)
}
.

The proof of the second assertion is identical. �

Corollary 4.9. — There exists a measurable function C1 : X0 → R
+ finite a.e such that if

x ∈ X0, y ∈ W−[x] with dX0(x, y) < 1/100, we have for all t > 0,

(4.10) ‖P−(gtx, gty)PGM(gty, gtx)− I‖Y ≤ C1(x)C1(y)e
−αt,

where α > 0 depends only on the Lyapunov spectrum. Consequently, for almost all x ∈ X0, and almost

all y ∈ W−[x],
(4.11) lim

t→∞‖P−(gtx, gty)PGM(gty, gtx)− I‖Y = 0.

The same assertions hold if W− is replaced by W+, gt by g−t and P− by P+.

Proof of Corollary 4.9. — Let C1(x)= C(x)C3(x), where C(·) is as in Lemma 4.7 and
C3(·) is as in Lemma 4.8. Then, by Lemmas 4.7 and 4.8,

dY

(
V≤i(gtx),PGM(gty, gtx)V≤i(gty)

)≤ C1(x)C1(y)e
−αt.
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Since by Lemma 4.1, V≥i(x)= PGM(y, x)V≥i(y), we get, for t > 0,

dY

(
Vi(gtx),PGM(gty, gtx)Vi(gty)

)≤ C1(x)C1(y)e
−αt.

This, by the definition of P−(x, y), implies that (4.10) holds as required. Even if we do not
assume that dX0(x, y) < 1/100, then for almost all x and almost all y ∈ W−[x], for t large
enough dX0(gtx, gty) < 1/100, and thus, in view of (4.10), (4.11) holds. �

4.6. The cover X. — Let L = Hbig viewed as a bundle over X0. Let Li = Vi(L). By
Lemma 4.3, there exists a measurable finite cover X of X0 such that Lemma 4.3 holds
on X for all the Li . We always assume that the degree of the covering map σ0 : X → X0

is as small as possible.

The set �(x0). — For x0 ∈ X0, let �i(x0) denote the set of flags

�i(x0)=
{{0} = Li,0(x)⊂ Li,1(x)⊂ · · · ⊂ Li,ni

(x)= Li(x) : x ∈ σ−1
0 (x0)

}
.

Let �(x0) denote the Cartesian product of the �i(x0). Then, we can think of a point
x ∈ X as a pair (x0,F) where F ∈�(x0).

The measure ν on X. — We can use σ0 to define a pullback of the invariant measure
ν on X0 to X, by requiring that the pushforward of the pullback measure by σ0 is ν, and
that the conditionals of the pullback measure on the fibers of σ0 are the (normalized)
counting measure. We abuse notation by denoting the pullback measure also by ν.

Lemma 4.10. — The measure ν is ergodic for the action of gt on X.

Proof. — Suppose E is a gt-invariant set of X with ν(E) > 0. Then by the ergodicity
of the action of gt on X0, σ(E) is conull. Let N(x0) denote the cardinality of σ−1

0 (x0)∩E.
Then, again by the ergodicity of gt , N(x0) is constant almost everywhere. If E does not
have full measure, then we have that N(x0) is smaller than the degree of the cover σ0.
Then, we could replace X by E, contradicting the assumption that the degree of the
covering map σ0 is as small as possible. �

The space X̃. — Recall that X̃0 is the universal cover of X0. Let X̃ denote the cover
of X̃0 corresponding to the cover σ0 : X → X0. More precisely,

X̃ = {(x0,F) : x0 ∈ X̃0, F ∈�(x0)
}
.

We denote the covering map from X̃ to X̃0 again by σ0.
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Stable and unstable manifolds for X and X̃. — Suppose x = (x0,F) ∈ X̃. We define

W+[x] = {( y0,F
′) ∈ X̃ : y0 ∈ W+[x0], and F

′ = P+(x0, y0)F
}
.(4.12)

W−[x] = {( y0,F
′) ∈ X̃ : y0 ∈ W−[x0], and F

′ = P−(x0, y0)F
}
.(4.13)

This definitions make sense, since by Proposition 4.4,

P+(x0, y0)�(x0)=�(y0) for y0 ∈ W+[x0],
P−(x0, y0)�(x0)=�(y0) for y0 ∈ W−[x0].

Remark. — Even though X̃ itself does not have a manifold structure, for almost all
x ∈ X̃, the sets W+[x] and W−[x] have the structure of an affine manifold (intersected
with a set of full measure in X̃), see Lemma 3.2. Lemma 4.11 below asserts that these
can be interpreted as the strong stable and strong unstable manifolds for the action of gt

on X̃.

Notation. — If x ∈ X̃ and V is a subspace of W+(x) or W−(x) we write

V[x] = { y ∈ W±[x] : y− x ∈ V(x)
}
.

The “distance” dX(·, ·). — For x = (x0,F) ∈ X̃, and y = (y0,F
′) ∈ X̃ and y ∈ W+[x]

or W−[x] define

(4.14) dX(x, y)= dX0(x0, y0)+ dY

(
F,PGM(y0, x0)F

′),
where we extend the distance dY between subspaces defined in (4.6) to a distance between
flags.

Lemma 4.11. — For almost all x ∈ X̃ and almost all y ∈ W+[x], dX(gtx, gty)→ 0 as

t →−∞. Similarly, for almost all x ∈ X̃ and almost all y ∈ W−[x], we have dX(gtx, gty)→ 0 as

t →∞.

Proof. — This follows immediately from Corollary 4.9. �

Notational convention. — If f is an object on X0, and x ∈ X, we write f (x) instead of
f (σ0(x)). Thus, we can define Vi(Hbig)(x) for x ∈ X, P+(x, y) for x ∈ X and y ∈ W+[x],
etc. Also, if x ∈ X̃, we write f (x) instead of f (π ◦ σ0(x)) etc.

The partitions Bt of X. — Suppose x = (x0,F) ∈ X. We define

Bt[x] =
{(

y0,F
′) : y0 ∈Bt[x0], F′ = P+(x0, y0)F

}
.
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Then Bt is a measurable partition of X subordinate to W+. In a similar way, we can
define sets J[x] for x ∈ X and E+[c] for c ∈ σ−1

0 (C1), where C1 is as in Proposition 3.7.
Proposition 3.7 and all subsequent results of Section 3 apply to X as well as X0.

The following is an alternative version of Proposition 4.4 adapted to the cover X.

Proposition 4.12. — Suppose L is a gt-equivariant subbundle of Hbig . For almost all x ∈ X,

we can write

L(x)=
⊕

i

Li(x),

where Li(x) is the Lyapunov subspace corresponding to the Lyapunov exponent λi . Suppose there exists

an equivariant flat measurable W+-connection F on L, such that

F(x, y)Li(x)= Li(y),

and that M ⊂ L is a gt-equivariant subbundle. Then,

(a) For almost all y ∈B0[x],
F(x, y)M(x)= M(y),

i.e. the subbundle M is locally covariantly constant with respect to the connection F.

(b) For all i, the decomposition (4.3) of Li is locally covariantly constant along W+, i.e. for

νW+[x]-almost all y ∈B0[x], for all i ∈ I and for all 1 ≤ j ≤ ni,

(4.15) Lij(y)= F(x, y)Lij(x).

Also, up to a scaling factor, the quadratic forms 〈·, ·〉i,j are locally covariantly constant

along W+, i.e. for almost all y ∈B0[x], and for v,w ∈ Lij(x)/Li,j−1(x),

(4.16)
〈
F(x, y)v,F(x, y)w

〉
ij,y
= c(x, y)〈v,w〉ij,x.

Proposition 4.12 will be proved in Section 4.9∗. The proof also shows the following:

Remark 4.13. — Proposition 4.12 applies also to U+-connections, provided the
measure along U+[x] is in the Lebesgue measure class, and provided that in the state-
ment, the set B0[x] is replaced by B[x] =B0[x] ∩U+[x].

4.7. Dynamically defined norms. — In this subsection we work on the cover X. We
define a norm on ‖ · ‖ on H(++)

big , which has some advantages over the AGY norm ‖ · ‖Y.

Notation. — In Section 4.7 we let L denote the entire bundle H++
big , write Li for

Vi(L), and for each i, consider the decomposition (4.3).
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The function �(x). — For x ∈ X, let

�+(x)= sup
ij

sup
{〈v, v〉1/2

ij,x : v ∈ Lij(x)/Li,j−1(x), ‖v‖Y,x = 1
}
,

and let

�−(x)= inf
ij

inf
{〈v, v〉1/2

ij,x : v ∈ Lij(x)/Li,j−1(x), ‖v‖Y,x = 1
}
.

Let

�(x)=�+(x)/�−(x).

We have �(x)≥ 1 for all x ∈ X. For x0 ∈ X0, we define �(x0) to be maxx∈σ−1
0 (x0)

�(x).
Let dY(·, ·) be the distance between subspaces defined in (4.6). Let C0 ⊂ X0

with ν(C0) > 0 and M0 ≥ 1 be chosen later. (We will choose them immediately before
Lemma 6.8 in Section 6.)

Lemma 4.14. — Fix ε > 0 smaller than mini |λi|, and smaller than mini �=j |λi − λj|,
where the λi are the Lyapunov exponents of H(++)

big . There exists a compact subset C ⊂ C0 ⊂ X0 with

ν(C) > 0 and a function T0 : C → R
+ with T0(x) <∞ for ν a.e. x ∈ C such that the following

hold:

(a) There exists σ > 0 such that for all c ∈ C, and any subset S of the Lyapunov exponents,

dY

(⊕
i∈S

Li(c),
⊕
j /∈S

Lj(c)

)
≥ σ.

(b) There exists M′ > 1 such that for all c ∈ C, �(c)≤ M′.
(b′) There exists a constant M′′ <∞ such that for all x ∈ π−1(C), for all y ∈ π−1(C) ∩

W+[x] with dX0(x, y) < 1/100, the Gauss-Manin connection PGM satisfies the estimate:

‖PGM(x, y)‖Y ≡ sup
v �=0

‖PGM(x, y)v‖Y,y

‖v‖Y,x
≤ M′′.

(c) For all c ∈ C, for all t > T0(c) and for any subset S of the Lyapunov spectrum,

dY

(⊕
i∈S

Li(g−t c),
⊕
j /∈S

Lj(g−t c)

)
≥ e−εt.

Hence, for all c ∈ C and all t > T0(c) and all c′ ∈ C ∩W+[g−t c] with dX0(g−t c, c′) <
1/100,

(4.17) M−2
0 ρ1e−εt ≤ ∥∥P+(g−t c, c′

)∥∥
Y
≡ sup

v �=0

‖P+(g−t c, c′)v‖Y,c′

‖v‖Y,g−t c

≤ M0ρ
−1
1 eεt,

where ρ1 = ρ1(M′, σ,M′′,M0) > 0.
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(d) There exists ρ > 0 such that for all c ∈ C, for all t > T0(c), for all i and all v ∈ Li(c),

e−(λi+ε)tρ1ρ
2‖v‖Y,c ≤ ‖g−tv‖Y,g−t c ≤ ρ−1

1 ρ−2e−(λi−ε)t‖v‖Y,c.

Proof. — Parts (a) and (b) hold since the inverse of the angle between Lyapunov
subspaces and the ratio of the norms are finite a.e., therefore bounded on a set of almost
full measure. To see (c), note that by the Osceledets multiplicative ergodic theorem, [KH,
Theorem S.2.9 (2)] for ν-a.e. x ∈ X0,

lim
t→∞

1
t

log

∣∣∣∣ sin∠
(⊕

i∈S

Li(g−tx),
⊕
j /∈S

Lj(g−tx)

)∣∣∣∣= 0.

Also, (d) follows immediately from the multiplicative ergodic theorem. �

We now choose the set C and the function T0 of Proposition 3.7 and Lemma 3.8
to be as in Lemma 4.14.

The main result of this subsection is the following:

Proposition 4.15. — For almost all x ∈ X there exists an inner product 〈·, ·〉x on H(++)
big (x)

(or on any bundle for which the conclusions of Lemma 4.14 hold) with the following properties:

(a) For a.e. x ∈ X, the distinct eigenspaces Li(x) are orthogonal.

(b) Let L′
ij(x) denote the orthogonal complement, relative to the inner product 〈·, ·〉x of Li,j−1(x)

in Lij(x). Then, for a.e. x ∈ X, all t ∈R and all v ∈ L′
ij(x)⊂ H(++)

big (x),

(gt)∗v = eλij (x,t)v′ + v′′,

where λij(x, t) ∈ R, v′ ∈ L′
ij(gtx), v

′′ ∈ Li,j−1(gtx), and ‖v′‖ = ‖v‖. Hence (since v′

and v′′ are orthogonal),

‖(gt)∗v‖ ≥ eλij (x,t)‖v‖.
(c) There exists a constant κ > 1 such that for a.e. x ∈ X and for all t > 0,

κ−1t ≤ λij(x, t)≤ κ t.

(d) There exists a constant κ > 1 such that for a.e x ∈ X and for all v ∈ H(++)
big (x), and all

t ≥ 0,

eκ
−1t‖v‖ ≤ ‖(gt)∗v‖ ≤ eκ t‖v‖.

(e) For a.e. x ∈ X, and a.e. y ∈B0[x] and all t ≤ 0,

λij(x, t)= λij(y, t).
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(f) For a.e. x ∈ X, a.e. y ∈B0[x], and any v,w ∈ H(++)
big (x),

〈
P+(x, y)v,P+(x, y)w

〉
y
= 〈v,w〉x.

We often omit the subscript from 〈·, ·〉x and from the associated norm ‖ · ‖x.
The inner product 〈·, ·〉x is first defined for x ∈ E+[c] for c ∈ σ−1

0 (C1) (in the nota-
tion of Section 3, see also Section 4.6). We then interpolate between x ∈ E+[c] and g−t(c)x

(again in the notation of Section 3). The details of the proof of Proposition 4.15, which
can be skipped on first reading, are given in Section 4.10∗.

The dynamical norm ‖ · ‖ on X0. — The dynamical inner product 〈·, ·〉x and the
dynamical norm ‖ · ‖x of Proposition 4.15 are defined for x ∈ X. For x0 ∈ X0, and v,w ∈
Hbig(x0) we define

(4.18) 〈v,w〉x0 =
1

|σ−1
0 (x0)|

∑
x∈σ−1

0 (x0)

〈v,w〉x, ‖v‖x0 = 〈v, v〉1/2
x0
.

Remark 4.16. — The inner product and norm on X0 satisfy properties (a) and (d)
of Proposition 4.15.

Lemma 4.17. — For every δ > 0 there exists a compact subset K(δ)⊂ X0 with ν(K(δ)) >
1− δ and a number C1(δ) <∞ such that for all x ∈ K(δ) and all v on H(++)

big (x) or H(−−)
big (x),

C1(δ)
−1 ≤ ‖v‖x

‖v‖Y,x
≤ C1(δ),

where ‖ · ‖x is the dynamical norm defined in this subsection and ‖ · ‖Y,x is the AGY norm.

Proof. — Since any two norms on a finite dimensional vector space are equivalent,
there exists a function �0 : X →R

+ finite a.e. such that for all x ∈ X and all v ∈ H(++)
big (x),

�0(x)
−1‖v‖Y,x ≤ ‖v‖x ≤�0(x)‖v‖Y,x.

Since
⋃

N∈N{x : �0(x) < N} is conull in X, we can choose K(δ)⊂ X and C1 = C1(δ) so
that �0(x) < C1(δ) for x ∈ K(δ) and ν(K(δ))≥ (1− δ). �

4.8∗. Proof of Lemma 4.7. — We first prove (a). Note that the action of gt commutes
with PGM, i.e.

PGM(gtx, gty) ◦ gt = gt ◦ PGM(x, y).

Let α0 = mini �=j |λi − λj|, where the λi = λi(H1). We will choose 0 < ε < α0/100. For
every ε > 0 there exists a compact set K0 = K0(ε) ⊂ X0 with ν(K0) > 1 − ε/4 and
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σ = σ(ε) > 0 such that for any subset S of the Lyapunov exponents,

(4.19) dY

(⊕
i∈S

Vi(x),
⊕
j /∈S

Vj(x)

)
> σ for all x ∈ π−1(K0).

By the multiplicative ergodic theorem and the Birkhoff ergodic theorem, there exists a set
K = K(ε)⊂ K0 with ν(K) > 1 − ε/2 and a constant C = C(ε) such that such that for
all z ∈ π−1(K), all s ∈R and all v ∈ Vi(z),

(4.20) C(ε)−1/2‖v‖Yeλi s−(ε/6)|s| ≤ ‖gsv‖Y ≤ C(ε)1/2‖v‖Yeλi s+(ε/6)|s|,

and also for any interval I ⊂R containing the origin of length at least 4 log C(ε)/α0, and
any z ∈ π−1(K),

(4.21) |{s ∈ I : gsz ∈ K0}| ≥ (1− ε)|I|.
Suppose the set {gsx : 0 ≤ s ≤ t} intersects K. We will show that for all y ∈ X̃0 such that
dX0(gsx, gsy)≤ 1/100 for 0 ≤ s ≤ t,

(4.22) dY

(
V≤i(gtx),PGM(gty, gtx)V≤i(gty)

)≤ C0(x)C(σ )C(ε)2
(
1+D+(x, y)

)
e−αt,

where C0(x) is as in Lemma 4.6. Let ϒ(x)= {ε : x ∈ K(ε)} and let

C(x)= C0(x) inf
{
C(σ )C(ε)2 : ε ∈ϒ(x)}.

Since the union as ε → 0 of the sets K = K(ε) is conull, (4.22) implies part (a) of the
lemma.

We now prove (4.22). We may assume that t > 4 log C(ε)/α0, otherwise (4.22)
trivially holds. Then, by (4.21), there exists (1 − ε)t < t′ ≤ t with gt′x ∈ K0. In view of
Lemma 3.6 the inequality (4.22) for t′ implies the inequality (4.22) for t (after replacing α
by α− 4ε). Thus, we may assume without loss of generality that gtx ∈ K0.

By assumption, there exists 0 < s < t such that gsx ∈ K. Let z = gsx. Then, applying
(4.20) twice at z, we get, for all v ∈ Vi(x),

(4.23) C(ε)−1‖v‖Yeλi t−(ε/3)t ≤ ‖gtv‖Y ≤ C(ε)‖v‖Yeλi t+(ε/3)t.

Let v′ ∈ PGM(gty, gtx)V≤i(gty) be such that ‖v′‖Y = 1 and

dY

(
v′,V≤i(gtx)

)= δY

(
PGM(gty, gtx)V≤i(gty),V≤i(gtx)

)
,

where δY(·, ·) is as in Lemma 4.6. Then, v′ = gtv for some v ∈ PGM(y, x)V≤i(y). We may
write

v = v0 +w, v0 ∈ V≤i(x), w ∈ V>i(x).
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We have, by the definition of D+(·, ·),
‖w‖Y ≤ D+(x, y)‖v0‖Y.

Then, we have

v′ = gtv = gtv0 + gtw,

and by (4.23),

‖gtv0‖Y ≥ C(ε)−1e(λi−ε/3)t‖v0‖Y,

and

‖gtw‖Y ≤ C(ε)e(λi+1+ε/3)t‖w‖Y.

Thus,

‖gtw‖Y ≤ C(ε)2D+(x, y)e−(α0−2ε/3)t‖gtv0‖Y.

Since gtv0 ∈ V≤i(gtx) and gtw ∈ V>i(gtx), this, together with (4.19) implies

dY

(
v′,V≤i(gtx)

)≤ C(σ )C(ε)2
(
1+D+(x, y)

)
e−(α0−2ε/3)t.

This, together with Lemma 4.6, completes the proof of (4.22).
The proof of (b) is identical. �

4.9∗. Proof of Propositions 4.4 and 4.12. — The proof of Proposition 4.4 will essen-
tially be by reference to [L, Theorem 1]. We recall the setup (in our notation):

Let (X, ν) be a measure space, and let T : X → X be a measure preserving trans-
formation. Let B be a σ -subalgebra of the σ -algebra of Borel sets on X, such that B
is T-decreasing (i.e. T−1B ⊂ B). Let B−∞ denote the σ -algebra generated by all the
σ -algebras TnB, n ∈ Z.

Let V be a vector space, and let A : X → GL(V) be a log-integrable B-measurable
function. Let

A(n)(x)= A
(
Tn−1x

)
. . .A(x) for n > 0

A(0)(x)= Id

and

A(n)(x)= A−1
(
Tnx
)
. . .A−1

(
T−1x

)
for n < 0

We have a skew-product map T̂ : X×V → X×V given by

T̂(x, v)= (Tx,A(x)v
)
,
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and then,

T̂n(x, v)= (Tnx,A(n)(x)v
)
.

Let

γ+ = lim
n→∞

1
n

∫
X

log‖A(n)(x)‖dν(x),

γ− = lim
n→∞−1

n

∫
X

log
∥∥(A(n)(x)

)−1∥∥dν(x),

where ‖ · ‖ is the operator norm. The limits exist by the subadditive ergodic theorem.
The matrix A also naturally acts on the projective space P(V). We use the notation

T̂ to denote also the associated skew-product map X× P(V)→ X× P(V).
We have the following:

Theorem 4.18 (Ledrappier, [L, Theorem 1]). — Suppose

(a) γ+ = γ−.

(b) x → νx is a family of measures on P(V) defined for almost every x such that A(x)νx = νTx

and such that the map x → νx is B−∞-measurable.

Then, x → νx is B-measurable.

Proof of Proposition 4.4. — We first make some preliminary reductions. For x ∈ X0,
write M(x)= {M1(x), . . . ,Mk(x)}. Since M(x) is gt-equivariant, for 1 ≤ j ≤ k,

Mj(x)=
⊕

Mj

i(x), Mj

i(x)⊂ Li(x).

Let Mi(x)= {M1
i (x), . . . ,Mk

i (x)}. Thus, it is enough to show that

F(x, y)Mi(x)=Mi(y).

Without loss of generality, we may assume that for a fixed i, all the Mj

i have the same
dimension. Suppose x ∈ Jc, where Jc is as in Proposition 3.7. Then the sets {g−t c : 0 ≤ t ≤
t(c)} and B0[x] = Jc ∩ W+[x] intersect at a unique point x0 ∈ X0. Then, we can replace
the bundle L(x) by L̃(x)≡ F(x, x0)L(x). Then, for y ∈B0[x],

L̃(y)= F(y, x0)L(y)= F(y, x0)F(x, y)L(x)= F(x, x0)L(x)= L̃(x),

i.e. L̃(x) is locally constant along W+(x). Also, by (4.2), the action of (gt)∗ on L̃ is locally
constant. Thus, without loss of generality, we may assume that F is locally constant (or
else we replace L by L̃). Thus, it is enough to show that assuming the subspaces Li(x) are
almost everywhere locally constant along W+, the set of subspaces Mi(x) is also almost
everywhere locally constant along W+. In other words, we assume that the functions
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x → Li(x) are B0-measurable, and would like to show that the functions x →Mi(x) are
B0-measurable.

Let T = g1 denote the time 1 map of the geodesic flow. Fix i and j, and let
di = dim M1

i = · · · = dim Mk
i . Let V(x)=∧di(Li(x)/Li−1(x)). Note that V(x) is B0-mea-

surable and gt-equivariant.
We can write the action of (gt)∗ (for t = 1) on the bundle V as

(g1)∗(x, v)=
(
g1x,A(x)v

)
.

Then, A(x) is B1-measurable (where Bt is as in Section 3). Also, the condition γ+ = γ−
follows from the multiplicative ergodic theorem. (In fact, γ+ = γ− = diλi , where λi is the
Lyapunov exponent corresponding to Li .)

Let ν j
x denote the Dirac measure on (the line through) v1 ∧ · · · ∧ vd , where

{v1, . . . , vd} is any basis for Mj

i(x), and let

νx = 1
k

k∑
j=1

ν j
x.

Then, since the Mi(x) are gt-equivariant, the measures νx are T̂-invariant. Also note that
B−∞ is the partition into points. Thus, we can apply Theorem 4.18 (with B=B1). We
conclude that the function x → νx is B1-measurable, which implies that the Mi(x) are
locally constant on atoms of B1. Since the Mi(x) are gt-equivariant, this implies that
the Mi(x) are also locally constant (in particular the function x →Mi(x) is B0-mea-
surable). �

Proof of Proposition 4.12. — Note that (a) and also (4.15) follow immediately from
Proposition 4.4.

We now prove (4.16). After making the same reductions as in the proof of Propo-
sition 4.4, we may assume that the Lij and F are locally constant. Let K ⊂ Kε denote
a compact subset with ν(K) > 0.9 where 〈·, ·〉ij is uniformly continuous. Consider the
points gtx and gty, as t →−∞. Then dX0(gtx, gty)→ 0. Let

vt = e−λij (x,t)(gt)∗v, wt = e−λij (x,t)(gt)∗w,

where λij(x, t) is as in Lemma 4.3. Then, by Lemma 4.3, we have

(4.24) 〈vt,wt〉ij,gt x = 〈v,w〉ij,x, 〈vt,wt〉ij,gt y = c(x, y, t)〈v,w〉ij,y,

where c(x, y, t)= eλij (x,t)−λij (y,t).
Now take a sequence tk →∞ with gtk x ∈ K, gtk y ∈ K (such a sequence exists for

ν-a.e. x and y with y ∈B0[x]). Then, since the Lij(x) and the connection F are assumed
to be locally constant, c(x, y, tk) is bounded between two constants. Also,

〈vtk ,wtk〉ij,gtk
x − 〈vtk ,wtk〉ij,gtk

y → 0.

Now Equation (4.16) follows from (4.24). �
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4.10∗. Proof of Proposition 4.15. — To simplify notation, we assume that M0 = 1
(where M0 is as in Lemma 4.14).

The inner products 〈·, ·〉ij on E+[c]. — Note that the inner products 〈·, ·〉ij and the
R-valued cocycles λij of Lemma 4.3 are not unique, since we can always multiply 〈·, ·〉ij,x

by a scalar factor c(x), and then replace λij(x, t) by λij(x, t)+ log c(gtx)− log c(x). In view of
(4.16) in Proposition 4.12(b), we may (and will) use this freedom to make 〈·, ·〉ij,x constant
on each set E+[c], where c ∈ σ−1

0 (C1) and E+[c] is as in Section 3 (see also Section 4.6).

The inner product 〈·, ·〉x on E+[c]. — Let

(4.25) {0} = V≤0 ⊂ V≤1 ⊂ · · ·
be the Lyapunov flag for H(++)

big , and for each i, let

(4.26) V≤i−1 = V≤i,0 ⊂ Vi,1 ⊂ · · ·V≤i,ni
= V≤i

be a maximal invariant refinement.
Let Li = Vi(H

(++)
big ) denote the Lyapunov subspaces for H(++)

big . Then we have a
maximal invariant flag

{0} = Li,0 ⊂ Li,1 ⊂ · · · ⊂ Li,ni
= Li,

where Lij = Li ∩ V≤i,j .
Let c ∈ σ−1

0 (C1), E+[c] be as in Section 3 and Section 4.6. By Lemma 4.14(b),
we can (and do) rescale the inner products 〈·, ·〉ij,c so that after the rescaling, for all v ∈
Lij(c)/Li,j−1(c),

(
M′)−1‖v‖Y,c ≤ 〈v, v〉1/2

ij,c ≤ M′‖v‖Y,c,

where ‖ · ‖Y,c is the AGY norm at σ0(c) and M′ > 1 is as in Lemma 4.14. We then
choose L′

ij(c)⊂ Lij(c) to be a complementary subspace to Li,j−1(c) in Lij(c), so that for all
v ∈ Li,j−1(c) and all v′ ∈ L′

ij(c),

‖v + v′‖Y,c ≥ ρ ′′ max
(‖v‖Y,c,‖v′‖Y,c

)
,

and ρ ′′ > 0 depends only on the dimension.
Then,

L′
ij(c)

∼= Lij(c)/Li,j−1(c)∼= V≤i,j(c)/V≤i,j−1(c).

Let πij : V≤i,j → V≤i,j/V≤i,j−1 be the natural quotient map. Then the restriction of πij to
L′

ij(c) is an isomorphism onto V≤i,j(c)/V≤i,j−1(c).
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We can now define for u, v ∈ H(++)
big (c),

〈u, v〉c ≡
∑

ij

〈
πij(uij),πij(vij)

〉
ij,c
,

where u =
∑

ij

uij, v =
∑

ij

vij, uij ∈ L′
ij(c), vij ∈ L′

ij(c).

In other words, the distinct L′
ij(c) are orthogonal, and the inner product on each L′

ij(c)

coincides with 〈·, ·〉ij,c under the identification πij of L′
ij(c) with V≤i,j(c)/V≤i,j−1(c).

We now define, for x ∈ E+[c], and u, v ∈ H(++)
big (x)

〈u, v〉x ≡
〈
P+(x, c)u,P+(x, c)v

〉
c
,

where P+(·, ·) is the connection defined in Section 4.2. Then for x ∈ E+[c], the inner
product 〈·, ·〉x induces the inner product 〈·, ·〉ij,x on V≤i,j(x)/V≤i,j−1(x).

Symmetric space interpretation. — We want to define the inner product 〈·, ·〉x for any
x ∈ J[c] by interpolating between 〈·, ·〉c and 〈·, ·〉c′ , where c′ is such that g−t(c)c ∈ E+[c′]. To
define this interpolation, we recall that the set of inner products on a vector space V is
canonically isomorphic to SO(V)\GL(V), where GL(V) is the general linear group of V
and SO(V) is the subgroup preserving the inner product on V. In our case, V = H(++)

big (c)

with the inner product 〈·, ·〉c.
Let Kc denote the subgroup of GL(H(++)

big (c)) which preserves the inner product
〈·, ·〉c. Let Q denote the parabolic subgroup of GL(H(++)

big (c)) which preserves the flags
(4.25) and (4.26), and on each successive quotient V≤i,j(c)/V≤i,j−1(c) preserves 〈·, ·〉ij,c. Let
KcA′ denote the point in Kc\GL(H(++)

big (c)) which represents the inner product 〈·, ·〉c′ , i.e.

〈u, v〉c′ =
〈
A′u,A′v

〉
c
.

Then, since 〈·, ·〉c′ induces the inner products 〈·, ·〉ij,c′ on the space V≤i,j(c
′)/V≤i,j−1(c

′)
which is the same as V≤i,j(g−t(c)c)/V≤i,j−1(g−t(c)c), we may assume that the matrix product
A′(g−t(c))∗ is in Q.

Let NQ be the normal subgroup of Q in which all diagonal blocks are the identity,
and let Q′ = Q/NQ. (We may consider Q′ to be the subgroup of Q in which all off-
diagonal blocks are 0.) Let π ′ denote the natural map Q→Q′.

Claim 4.19. — We may write

A′(g−t(c))∗ =�A′′,

where � ∈ Q′ is the diagonal matrix which is scaling by e−λi t(c) on Li(c), A′′ ∈ Q and ‖A′′‖ =
O(eεt(c)).
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Proof of claim. — Suppose x ∈ E+[c] and t =−t(c) < 0 where c ∈ C1 and t(c) is as in
Proposition 3.7. By construction, t(c) > T0(c), where T0(c) is as in Lemma 4.14. Then,
the claim follows from (4.17) and Lemma 4.14(d). �

Interpolation. — We may write A′′ = DA1, where D is diagonal, and det A1 = 1. In
view of Claim 4.19, ‖D‖ = O(eεt) and ‖A1‖ = O(eεt).

We now connect Kc\A1 to the identity by the shortest possible path � : [−t(c),0]→
Kc\KcQ, which stays in the subset Kc\KcQ of the symmetric space Kc\SL(V). (We
parametrize the path so it has constant speed.) This path has length O(εt) where the
implied constant depends only on the symmetric space.

Now for −t(c)≤ t ≤ 0, let

(4.27) A(t)= (�D)−t/t(c)�(t).

Then A(0) is the identity map, and A(−t(c))= A′(g−t(c))∗. Then, we define, for x ∈ E+[c]
and −t(c)≤ t ≤ 0,〈

(gt)∗u, (gt)∗v
〉
gt x
= 〈A(t)u,A(t)v

〉
x
.

Proof of Proposition 4.15. — Suppose first that x = c, where c and E+[c] are as in
Section 3 and Section 4.6. Then, by construction, (a) and (b) hold. Also, from the con-
struction, it is clear that the inner product 〈·, ·〉c induces the inner product 〈·, ·〉ij,c on
Lij(c)/Li,j−1(c).

Now by Proposition 4.12, for x ∈ E+[c], P+(x, c)Lij(x) = Lij(c), and for ū, v̄ ∈
Lij(x)/Li,j−1(x), 〈u, v〉ij,x = 〈P+(x, c)u,P+(x, c)v〉ij,c. Therefore, (a), (b), (e) and (f) hold
for x ∈ E+[c], and also for x ∈ E+[c], the inner product 〈·, ·〉x induces the inner prod-
uct 〈·, ·〉ij,x on Lij(x)/Li,j−1(x). Now, (a), (b), (e) and (f) hold for arbitrary x ∈ J[c] since
A(t) ∈Q.

Let ψij :Q′ → R+ denote the homomorphism taking the block-conformal matrix
Q′ to the scaling part of block corresponding to Lij/Li,j−1. Let ϕij = ψij ◦ π ′; then ϕij :
Q→R+ is a homomorphism.

From (4.27), we have, for x ∈ E+[c] and −t(c)≤ t ≤ 0,

λij(x, t)= logϕij

(
A(t)

)= tλi + γij(x, t),

where tλi is the contribution of �t/t(c) and γij(x, t) is the contribution of Dt/t(c)�(t). By
Claim 4.19, for all −t(c)≤ t ≤ 0,

(4.28)

∣∣∣∣ ∂∂ t
γij(x, t)

∣∣∣∣= O(ε)

where ε > 0 is as in Claim 4.19, and the implied constant depends only on the symmetric
space. Without loss of generality, the function T0(x) in Lemma 4.14 can be chosen large
enough so that since t(c) > T0(c), (c) holds.
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The lower bound in (d) now follows immediately from (b) and (c). The upper bound
in (d) follows from (4.28). �

5. Conditional measure lemmas

In Sections 5–8 we work on X0 (and not on X).

Motivation. — We use notation from Section 2.3. Recall that L−(q) is the smallest
linear subspace of W−(q) containing the support of the conditional measure νW−(q). For
two (generalized) subspaces U ′ and U ′′ and x ∈ X̃0 let hdX0

x (U ′,U ′′) denote the Hausdorff
distance between U ′ ∩ BX0(x,1/100) and U ′′ ∩ BX0(x,1/100), where BX0(x, r) denotes
{ y ∈ X̃0 : dX0(x, y) < r}. For x ∈ X0, we will sometimes write hdX0

x (U ′,U ′′) instead of
hd

X0
x̃ (U ′,U ′′) as long as the proper lift x̃ ∈ X̃0 of x is clear from the context.

We can write

hdX0
q2

(
U+[q′2],U+[q2]

)= Q t

(
q′ − q

)
,

where Q t :L−(q)→R is a map depending on q, u, �, and t. The map Q t is essentially the
composition of flowing forward for time �, shifting by u ∈ U+ and then flowing forward
again for time t. We then adjust t so that hdX0

q2
(U+[q′2],U+[q2]) ≈ ε, where ε > 0 is a

priori fixed.
In order to solve “technical difficulty #1” of Section 2.3, it is crucial to ensure that

t does not depend on the precise choice of q′ (it can depend on q, u, �). The idea is to use
the following trivial:

Lemma 5.1. — For any ρ > 0 there is a constant c(ρ) with the following property: Let

A : V →W be a linear map between Euclidean spaces. Then there exists a proper subspace M⊂ V
such that for any v with ‖v‖ = 1 and d(v,M) > ρ, we have

‖A‖ ≥ ‖Av‖ ≥ c(ρ)‖A‖.
Proof of Lemma 5.1. — The matrix AtA is symmetric, so it has a complete orthog-

onal set of eigenspaces W1, . . . ,Wm corresponding to eigenvalues μ1 >μ2 > · · ·μm. Let
M= W⊥

1 . �

Now suppose the map Q t :L−(q)→R is of the form Q t(v)= ‖Qt(v)‖ where Qt :
L−(q)→ H(q2) is a linear map, and H(q2) a vector space. This in fact happens in the first
step of the induction where U+ is the unipotent N (and we can take H(q2)= W+(q2)/N).
We can then choose t, depending only on q, u and �, such that the operator norm

‖Qt‖ ≡ sup
v∈L−(q)

‖Qt(v)‖
‖v‖ = ε.



138 ALEX ESKIN, MARYAM MIRZAKHANI

Then, we need to prove that we can choose q′ ∈ L−[q] such that ‖q′ − q‖ ≈ 1/100,
q′ avoids an a priori given set of small measure, and also q′ − q is at least ρ away from the
“bad subspace” M=Mu(q, �) of Lemma 5.1. (Actually, since we do not want the choice
of q′ to depend on the choice of u, we want to choose q′ such that q′ − q avoids most of
the subspaces Mu as u ∈ U+ varies over a unit box.) Then, for most u,

c(ρ)ε ≤ ∥∥Qt

(
q′2 − q2

)∥∥≤ ε,

and thus

(5.1) c(ρ)ε ≤ hdq2

(
U+[q2],U+[q′2])≤ ε,

as desired. In general we do not know that the map Qt is linear, because we do not know
the dependence of the subspace U+(q) on q. To handle this problem, we can write

Qt

(
q′ − q

)=At

(
F
(
q′
)− F(q)

)
where the map At : Lext[q](r) → W+(q2) is linear (and can depend on q, u, �), and the
measurable map F : L−[q] → Lext[q](r) depends only on q. (See Proposition 6.11 below
for a precise statement.) The map F and the space Lext[q](r) are defined in this section,
and the linear map At =A(q, u, �, t) is defined in Section 6.1.

We then proceed in the same way. We choose t = τ̂ (q, u, �, ε) so that ‖At‖ = ε.
(A crucial bilipshitz type property of the function τ̂ similar to (2.7) is proved in Section 7.)
In this section we prove Proposition 5.3, which roughly states that (for most q) we can
choose q′ ∈ L−[q] while avoiding an a priori given set of small measure, so that ‖F(q′)−
F(q)‖ ≈ 1/100 and also F(q′)−F(q) avoids most of a family of linear subspaces of Lext[q](r)
(which will be the “bad subspaces” of the linear maps At as u varies over U+). Then as
above, for most u, (5.1) holds. We can then proceed using (a variant of) Lemma 2.3 as
outlined in Section 2.3.

In view of the above discussion, we need to keep track of the way U+[ y] varies as y

varies over W−[x]. In view of Proposition 4.12(a), all bundles equivariant with respect to
the geodesic flow are, when restricted to W−, equivariant with respect to the connection
P−(x, y) defined in Section 4.2. Thus, it will be enough for us to keep track of the maps
P−(x, y). However, this is a bit awkward, since P−(x, y) depends on two points x and y.
Thus, it is convenient to prove the following:

Lemma 5.2. — There exists a subbundle Y ⊂ H(−)
big , locally constant under the Gauss-

Manin connection along W−, and for almost all x ∈ X0 an invertible linear map P(x) : X0 →
Hom(Y(x),H1(M,�,R)), such that for almost all x, y,

(5.2) P−(x, y)=P(y) ◦P(x)−1.

The proof of Lemma 5.2 is simple, but notationally heavy, and is relegated to Section 5.1∗.
It may be skipped on first reading.
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The spaces L−(x) and Lext(x). — Let the subspace L−(x) ⊂ W−(x) be the smallest
such that the conditional measure νW−[x] is supported on L−[x]. Since ν is invariant un-
der N, the entropy of any gt ∈ A is positive. Therefore for ν-almost all x ∈ X0, L−(x) �= {0}
(see Proposition B.5).

In the same spirit, let

Lext[x] ⊂ Hom
(
Y(x),H1(M,�,R)

)
denote the smallest affine subspace which for almost every y ∈ W−[x] contains the vector
P(y). (This makes sense since Y(x) is locally constant along W−[x].) We also set Lext(x)

to be the vector space spanned by all vectors of the form P(y)−P(x) as y varies over
W+[x]. Then,

Lext(x)=Lext[x] −P(x).

Note that for almost all x and almost all y ∈ W−[x], Lext[ y] =Lext[x].
The space Lext(x)

(r) and the function F. — For a vector space V we use the notation
V⊗m to denote the m-fold tensor product of V with itself. If f : V → W is a linear map,
we write f ⊗m for the induced linear map from V⊗m to W⊗m. Let j⊗m : V → V⊗m denote
the map v→ v⊗ · · · ⊗ v (m-times).

Let V�m denote
⊕m

k=1 V⊗k . If f : V → W is a linear map, we write f �m for the
induced linear map from V�m to W�m given by

f �m(v)= (f ⊗1(v), f ⊗2(v), . . . f ⊗m(v)
)
.

Now if V and W are affine spaces, then we can still canonically define V�m and W�m, and
an affine map f : V → W induces an affine map f �m : V�m → W�m.

Let r be an integer to be chosen later. Let F : X0 → Lext[x]�r denote the diagonal
embedding

F(x)=P(x)�r.

Let

Lext[x](r) ⊂Lext(x)
�r

denote the smallest affine subspace which contains the vectors F(y) for almost all y ∈
W−[x]. We also set

Lext(x)
(r) =Lext[x](r) − F(x).

Note that for y ∈ W−[x], Lext[ y](r) =Lext[x](r).
In this section, let (B, | · |) be a finite measure space. (We will use the following

proposition with B ⊂ U+ is a “unit box”. The precise setup will be given in Section 6.)
To carry out the program outlined at the beginning of Section 5, we need the

following:



140 ALEX ESKIN, MARYAM MIRZAKHANI

Proposition 5.3. — For every δ > 0 there exist constants c1(δ) > 0, ε1(δ) > 0 with

c1(δ)→ 0 and ε1(δ)→ 0 as δ→ 0, and also constants ρ(δ) > 0, ρ ′(δ) > 0, and C(δ) <∞
such that the following holds:

For any subset K′ ⊂ X0 with ν(K′) > 1 − δ, there exists a subset K ⊂ K′ with ν(K) >
1− c1(δ) such that the following holds: suppose for each x ∈ X0 we have a measurable map from B to

proper subspaces of Lext(x)
(r), written as u →Mu(x), where Mu(x) is a proper subspace of Lext(x)

(r).

Then, for any q ∈ K there exists q′ ∈ K′ with

(5.3) ρ ′(δ)≤ dX0
(
q, q′
)≤ 1/100

and

(5.4) ρ(δ)≤ ∥∥F
(
q′
)− F(q)

∥∥
Y
≤ C(δ)

and so that

(5.5) dY

(
F
(
q′
)− F(q),Mu(q)

)
> ρ(δ) for at least

(
1− ε1(δ)

)
-fraction of u ∈ B.

This proposition is proved in Section 5.2∗. The proof uses almost nothing about
the maps F or the measure ν, other than the definition of Lext(x). It may be skipped on
first reading.

5.1∗. Proof of Lemma 5.2. — As in Section 4.1, let Vi(x) ≡ Vi(H1)(x) ⊂ H1(M,

�,R) denote the subspace corresponding to the (cocycle) Lyapunov exponent λi . Let

Y(x)=
k⊕

i=1

V≥i(x)/V>i(x),

where V≥j and V>j are as in Section 4.1. Let πi : V≥i(x)→ V≥i(x)/V>i(x) denote the
natural projection.

For x ∈ X0, let Pi,x ∈ Hom(V≥i(x)/V>i(x),H1(M,�,R)) denote the unique linear
map such that for x̄ ∈ V≥i(x)/V>i(x), Pi,x(x̄) ∈ Vi(H1)(x) and πi(Pi,x(x̄)) = x̄. Note that
the Pi,x satisfy the following:

(5.6) Pi,gt x = gt ◦ Pi,x ◦ g−1
t ,

and

(5.7) Pi,x(ū)− Pi,y(ū) ∈ V>i(x).

Example. — The space V≥1/V>1 is one dimensional, and corresponds to the Lya-
punov exponent λ1 = 1. If we identify it with R in the natural way then P1,x : R →
H1(M,�,R) is given by the formula

(5.8) P1,x(ξ)= (Im x)ξ

where for x = (M,ω), we write Im x for the imaginary part of ω.
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Let

P : X0 →
k⊕

i=1

Hom
(
V≥i(x)/V>i(x),H1(M,�,R)

)

be given by

P(x)= (P1,x, . . .Pk,x).

Then, we can think of P(x) as a map from Y(x) to H1(M,�,R) and (5.2) holds, where
P−(x, y) is as in Section 4.2. �

5.2∗. Proof of Proposition 5.3.

The measure ν̃x. — Let ν̃x = F∗(νW−[x]) denote the pushforward of νW− under F.
Then ν̃x is a measure supported on Lext[x](r). (Note that for y ∈ W−[x], ν̃x = ν̃y.)

Lemma 5.4. — For ν-almost all x ∈ X0, for any ε > 0 (which is allowed to depend on x),

the restriction of the measure ν̃x to the ball B(F(x), ε)⊂ Lext[x](r) is not supported on a finite union of

proper affine subspaces of Lext[x](r).
Outline of proof. — Suppose not. Let N(x) be the minimal integer N such that for

some ε = ε(x) > 0, the restriction of ν̃x to B(F(x), ε) is supported on N affine subspaces.
Note that in view of (5.6) and (5.7), the induced action on Lext (and hence on L(r)

ext ) of g−t

for t ≥ 0 is expanding. Then N(x) is invariant under g−t , t ≥ 0. This implies that N(x)
is constant for ν-almost all x, and also that the only affine subspaces of Lext[x](r) which
contribute to N(·) pass through F(x). Then, N(x) > 1 almost everywhere is impossible.
Indeed, suppose N(x) = k a.e., then pick y near x such that F(y) is in one of the affine
subspaces through F(x); then there must be exactly k affine subspaces of non-zero mea-
sure passing though F(y), but then at most one of them passes through F(x). Thus, the
measure restricted to a neighborhood of F(x) gives positive weight to at least k + 1 sub-
spaces, contradicting our assumption. Thus, we must have N(x)= 1 almost everywhere;
but then (after flowing by g−t for sufficiently large t > 0) we see that for almost all x, ν̃x

is supported on a proper subspace of Lext[x](r) passing through x, which contradicts the
definition of Lext(x)

(r). �

Remark. — Besides Lemma 5.4, the rest of the proof of Proposition 5.3 uses only
the measurability of the map F.

The measure ν̂x. — Let B−
0 be the analogue of the partition B0 constructed in Sec-

tion 3 but along the stable leaves W−. (The only properties we use here is that B−
0 is

a measurable partition subordinate to W− with atoms of diameter at most 1/100.) Let
B

−
0 [x] ⊂ W−[x] denote the atom of the partition B

−
0 containing x.
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Let ν̂x = F∗(νW−[x]|B−
0 [x]), i.e. ν̂x is the pushforward under F of the restriction of

νW−[x] to B
−
0 [x]. Then, for y ∈B

−
0 [x], ν̂x = ν̂y. Suppose δ > 0 is given. Since

lim
C→∞

ν̂x

(
B
(
F(x),C

))= ν̂x

(
Lext[x](r)

)
,

there exists a function c(x) > 0 finite almost everywhere such that for almost all x,

ν̂x

(
B
(
F(x), c(x)

))
>
(
1− δ1/2

)
ν̂x

(
Lext[x](r)

)
.

Therefore, we can find C = C(δ) > 0 and a compact set K′
δ with ν(K′

δ) > 1 − δ1/2 such
that for each x ∈ K′

δ ,

(5.9) ν̂x

(
B
(
F(x),C

))
>
(
1− δ1/2

)
ν̂x

(
Lext[x](r)

)
for all x ∈ K′

δ.

In the rest of Section 5.2∗, C will refer to the constant of (5.9).

Lemma 5.5. — For every η > 0 and every N > 0 there exists β1 = β1(η,N) > 0, ρ1 =
ρ1(η,N) > 0 and a compact subset Kη,N of measure at least 1 − η such that for all x ∈ Kη,N, and

any proper subspaces M1(x), . . . ,MN(x)⊂Lext(x)
(r),

(5.10) ν̂x

(
B
(
F(x),C

) \
N⋃

k=1

Nbhd
(
Mk(x), ρ1

))≥ β1ν̂x

(
B
(
F(x),C

))
.

Outline of proof. — By Lemma 5.4, there exist βx = βx(N) > 0 and ρx = ρx(N) > 0
such that for any subspaces M1(x), . . .MN(x)⊂Lext(x)

(r),

(5.11) ν̂x

(
B
(
F(x),C

) \
N⋃

k=1

Nbhd
(
M(x), ρx

))≥ βxν̂x

(
B
(
F(x),C

))
.

Let E(ρ1, β1) be the set of x such that (5.10) holds. By (5.11),

ν

(⋃
ρ1>0
β1>0

E(ρ1, β1)

)
= 1.

Therefore, we can choose ρ1 > 0 and β1 > 0 such that ν(E(ρ1, β1)) > 1− η. �

Lemma 5.6. — For every η > 0 and every ε1 > 0 there exists β = β(η, ε1) > 0, a compact

set Kη = Kη(ε1) of measure at least 1 − η, and ρ = ρ(η, ε1) > 0 such that the following holds:

Suppose for each u ∈ B let Mu(x) be a proper subspace of Lext(x)
(r). Let

Egood(x)=
{
v ∈ B

(
F(x),C

) : for at least (1− ε1)-fraction of u in B,

dY

(
v − F(x),Mu(x)

)
> ρ/2

}
.

Then, for x ∈ Kη,

(5.12) ν̂x

(
Egood(x)

)≥ βν̂x

(
B
(
F(x),C

))
.
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Proof. — Let n = dimLext[x](r). By considering determinants, it is easy to show that
for any C > 0 there exists a constant cn = cn(C) > 0 depending on n and C such that
for any η > 0 and any points v1, . . . , vn in a ball of radius C with the property that for
all 1 < i ≤ n, vi is not within η of the subspace spanned by v1, . . . , vi−1, then v1, . . . , vn

are not within cnη of any n − 1 dimensional subspace. Let kmax ∈ N denote the smallest
integer greater then 1 + n/ε1, and let N = N(ε1) =

(
kmax

n−1

)
. Let β1, ρ1 and Kη,N be as in

Lemma 5.5. Let β = β(η, ε1)= β1(η,N(ε1)), ρ = ρ(η, ε1)= ρ1(η,N(ε1))/cn, Kη(ε1)=
Kη,N(ε1). Let Ebad(x)= B(F(x),C) \ Egood(x). To simplify notation, we choose coordinates
so that F(x)= 0. We claim that Ebad(x) is contained in the union of the ρ1-neighborhoods
of at most N subspaces. Suppose this is not true. Then, for 1 ≤ k ≤ kmax we can induc-
tively pick points v1, . . . , vk ∈ Ebad(x) such that vj is not within ρ1 of any of the subspaces
spanned by vi1, . . . , vin−1 where i1 ≤ · · · ≤ in−1 < j. Then, any n-tuple of points vi1, . . . , vin

is not contained within ρ = cnρ1 of a single subspace. Now, since vi ∈ Ebad(x), there exists
Ui ⊂ B with |Ui| ≥ ε1|B| such that for all u ∈ Ui , dY(vi,Mu) < ρ/2. We now claim that
for any 1 ≤ i1 < i2 < · · ·< in ≤ k,

(5.13) Ui1 ∩ · · · ∩Uin = ∅.
Indeed, suppose u belongs to the intersection. Then each of the vi1, . . . vin is within ρ/2
of the single subspace Mu, but this contradicts the choice of the vi . This proves (5.13).
Now,

ε1kmax|B| ≤
kmax∑
i=1

|Ui| ≤ n

∣∣∣∣
kmax⋃
i=1

Ui

∣∣∣∣≤ n|B|.

This is a contradiction, since kmax > 1 + n/ε1. This proves the claim. Now (5.10) implies
that

ν̂x

(
Egood(x)

)≥ ν̂x

(
B
(
F(x),C

) \
N⋃

k=1

Nbhd
(
Mk(x), ρ1

))

≥ βν̂x

(
B
(
F(x),C

))
. �

Proof of Proposition 5.3. — Let

K′′ = {x ∈ X0 : νW−[x]
(
K′ ∩B

−
0 [x]

)≥ (1− δ1/2
)
νW−[x]

(
B

−
0 [x]

)}
.

By Lemma 3.11, we have ν(K′′)≥ 1− δ1/2.
We have, for x ∈ K′′,

(5.14) ν̂x

(
F
(
K′ ∩B

−
0 [x]

))≥ (1− δ1/2
)
ν̂x

(
Lext[x](r)

)
.

Let β(η, ε1) be as in Lemma 5.6. Let

c(δ)= δ + inf
{(
η2 + ε2

1

)1/2 : β(η, ε1)≥ 8δ1/2
}
.
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We have c(δ)→ 0 as δ→ 0. By the definition of c(δ) we can choose η= η(δ) < c(δ) and
ε1 = ε1(δ) < c(δ) so that β(η, ε1)≥ 8δ1/2.

Now suppose x ∈ K′′ ∩K′
δ . Then, by (5.9) and (5.14),

(5.15) ν̂x

(
F
(
K′ ∩B

−
0 [x]

)∩ B
(
F(x),C

))≥ (1− 2δ1/2
)
ν̂x

(
B
(
F(x),C

))
.

By (5.12), for x ∈ Kη,

(5.16) ν̂x

(
Egood(x)

)≥ 8δ1/2ν̂x

(
B
(
F(x),C

))
.

Let K = K′ ∩K′′ ∩K′
δ∩Kη. We have ν(K)≥ 1−δ−2δ1/2− c(δ), so ν(K)→ 1 as δ→ 0.

Also, if q ∈ K, by (5.15) and (5.16),

F
(
K′ ∩B

−
0 [q]

)∩ Egood(q)∩ B
(
F(x),C

) �= ∅.
Thus, we can choose q′ ∈ K′ ∩B

−
0 [q] such that F(q′) ∈ Egood(q) ∩ B(F(q),C). Then (5.5)

holds with ρ = ρ(η(δ), ε1(δ)) > 0. Also the upper bound in (5.3) holds since B
−
0 [q] has

diameter at most 1/100, and the upper bound in (5.4) holds since F(q′) ∈ B(F(q),C).
Since all Mu(q) contain the origin q, the lower bound in (5.4) follows from (5.5). Finally,
the lower bound in (5.3) follows from lower bound in (5.4) since in view of (5.8), q − q′ is
essentially a component of F(q)− F(q′). �

6. Divergence of generalized subspaces

The groups G, G+ and G++. — Recall that H1(x) denotes H1(M,�,R). (In fact the
dependence on x is superfluous, but we find it useful to consider H1(x) as the fiber over
X0 of a flat bundle.) Let G(x) = (SL(H1)� H1)(x) which is isomorphic to the group of
affine maps of H1(x) to itself. We can write g ∈ G(x) as a pair (L, v) where L ∈ SL(H1(x))

and v ∈ H1(x). We call L the linear part of g, and v the translational part.
Let Q+(x) denote the group of linear maps from H1(x) to itself which preserve the

flag {0} ⊂ V≤1(H1)(x)⊂ · · · ⊂ V≤k(H1)(x)= H1(x), and let Q++(x)⊂ Q+(x) denote the
unipotent subgroup of maps which are the identity on V≤i(H1)(x)/V<i(H1)(x) for all i.
Let G+(x) denote the subgroup of G(x) in which the linear part lies in Q+(x), and let
G++(x) denote the subgroup of G+(x) in which the linear part lies in Q++(x). Note that
G++(x) is unipotent. Also, since W+(x)= V≤k−1(H1)(x), G++(x) preserves W+(x).

For y near x, we have the Gauss-Manin connection PGM(x, y) : H1(x)→ H1(y).
This induces a map PGM

∗ (x, y) : G(x)→ G(y). In view of Lemma 4.1, for y ∈ W+[x],
PGM
∗ (y, x)G+(y)= G+(x), PGM

∗ (y, x)Q+(y)= Q+(x),

PGM
∗ (y, x)Q++(y)= Q++(x) and PGM

∗ (y, x)G++(y)= G++(x).
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We may consider elements of G+(x) and G++(x) as affine maps from W+[x] to
W+[x]. More precisely, g = (L, v) ∈ G(x) corresponds to the affine map W+[x]→ W+[x]
given by:

(6.1) z → x + L(z − x)+ v.

Then, Q++(x) is the stabilizer of x in G++(x). We denote by Lie(G++)(x) the Lie algebra
of G++(x), etc.

We will often identify W+(x) with the translational part of Lie(G++)(x). Then, we
have an exponential map exp : W+(x)→ G++(x), taking v ∈ W+(x) to expv ∈ G++(x).
Then, expv : W+[x]→ W+[x] is translation by v.

The maps Tr(x, y) and tr(x, y). — For h ∈ G(x), let Conj(h) to be the conjugation
map g → hgh−1, and let Ad(h) : Lie(G)(x) → Lie(G)(x) be the adjoint map. Suppose
y ∈ W+[x]. Let Tr(x, y) : G(x)→ G(y) and tr(x, y) : Lie(G)(x)→ Lie(G)(y) be defined as

Tr(x, y)= PGM
∗ (x, y) ◦Conj

(
exp(x − y)

)
,

tr(x, y)= PGM
∗ (x, y) ◦Ad

(
exp(x − y)

)
.

The following lemma is clear from the definitions:

Lemma 6.1. — Suppose y ∈ W+[x]. Then the elements gx ∈ G(x) and gy ∈ G(y) correspond

to the same affine map of W+[x] = W+[ y] (in the sense of (6.1)) if and only if gy = Tr(x, y)gx.

Admissible partitions. — By an admissible measurable partition we mean any parti-
tion B0 as constructed in Section 3 (with some choice of C and T0(x)).

Generalized subspaces. — Let U′(x)⊂ G++(x) be a connected Lie subgroup. We write

U′[x] = {ux : u ∈ U′(x)
}

and call U′[x] a generalized subspace. We have U′[x] ⊂ W+[x].
Definition 6.2. — Suppose that for almost all x ∈ X0 we have a distinguished subgroup U+(x)

of G++(x). We say that the family of subgroups U+(x) is compatible with ν if the following hold:

(i) The assignment x → U+(x) is measurable and gt-equivariant.

(ii) For any admissible measurable partition B′ of X0, the sets of the form U+[x] ∩B′[x] are

a measurable partition of X0.

(iii) For any admissible measurable partition B′ of X0, for almost every x ∈ X0, the conditional

measure of ν along U+[x]∩B′[x] is a multiple of the unique U+(x) invariant measure on

U+[x] ∼= U+(x)/(U+(x) ∩ Q++(x)). (Note that both U+(x) and U+(x) ∩ Q++(x)
are unimodular, since they are unipotent. Hence there is a well-defined Haar measure on the

quotient U+(x)/(U+(x)∩Q++(x)).)
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(iv) We have, for almost all x ∈ X0 and almost all u ∈ U+(x),

(6.2) U+(ux)= Tr(x, ux)U+(x).

(This is motivated by Lemma 6.1 and the fact that we want U+[ux] = U+[x].) Thus,

(6.3) Lie
(
U+)(ux)= tr(x, ux)Lie

(
U+)(x).

(v) U+(x) ⊃ exp N(x) where N(x) ⊂ W+(x) is the direction of the orbit of the unipotent

N ⊂ SL(2,R).

Standing assumption. — We are assuming that for almost every x ∈ X0 there is a
distinguished subgroup U+(x) of G++(x) so that the family of subgroups U+(x) is com-
patible with ν in the sense of Definition 6.2. This will be used as an inductive assumption
in Section 12.

We emphasize that U+(x) is defined for x ∈ X0. Using our notational conventions,
for x ∈ X, we write U+(x) for U+(σ0(x)) etc.

The unipotent N as a compatible system of measures. — At the start of the induction
we have U+(x) = exp N(x) ⊂ G++(x). We now verify that U+(x) = exp N(x) is a fam-
ily of subgroups compatible with ν in the sense of Definition 6.2. Note that N(x) =
V≤1(H1)(x)= V1(H1)(x). In particular, by Lemma 4.1, for y ∈ W+[x],

(6.4) N(y)= PGM(x, y)N(x).

This implies (i) and (ii) of Definition 6.2.
The subgroup U+(x) = exp N(x) ⊂ G++(x) consists of pure translations (i.e.

U+(x) ∩Q++(x) is only the identity map). In particular, U+[x] = N[x]. This, together
with the N-invariance of ν implies (iii) of Definition 6.2.

Note that since U+(x) consists of pure translations, for any y ∈ W+[x], Conj(exp(y−
x))(U+(x))= U+(x). This, together with (6.4) implies (iv) of Definition 6.2.

The sets B[x], Bt[x] and B(x). — Recall the partitions Bt[x] from Section 3. Let
Bt[x] = U+[x] ∩Bt[x]. We will also use the notation B[x] for B0[x].

For notational reasons, we will make the following construction: let

Bt(x)=
{
u ∈ U+(x)/

(
U+(x)∩Q++(x)

) : ux ∈ Bt[x]
}
.

We also write B(x) for B0(x).
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The Haar measure. — Let | · | denote the conditional measure of ν on B[x]. (By our
assumptions, this measure is U+(x)-invariant where it makes sense.) We also denote the
Haar measure (with some normalization) on B(x) by | · |. Unless otherwise specified, all
statements will be independent of the choice of normalization.

The same argument as Lemma 3.11 also proves the following:

Lemma 6.3. — Suppose δ > 0, θ ′ > 0 and K ⊂ X, with ν(K) > 1− δ. Then there exists

a subset K∗ ⊂ K with ν(K∗) > 1− δ/θ ′ such that for any x ∈ K∗, and any t > 0,

|K∩Bt[x]| ≥
(
1− θ ′

)|Bt[x]|,
and thus

∣∣{u ∈ Bt(x) : ux ∈ K
}∣∣≥ (1− θ ′

)|Bt(x)|.

The “ball” B(x, r). — For notational reasons, for 0 < r ≤ 1/50, and x ∈ X0 we
define

B(x, r)= {u ∈ U+(x)/
(
U+(x)∩Q++(x)

) : d+(ux, x) < r
}
,

where d+(·, ·) is as in Section 3. In view of Proposition 3.4, we will normally use the ball
B(x,1/100)⊂ U+(x)/(U+(x)∩Q++(x)).

Lyapunov subspaces. — Suppose W is a subbundle of Hbig . Let λ1(W) > λ2(W) >

· · ·> λn(W) denote the Lyapunov exponents of the action of gt on W, and for x ∈ X0 let
Vi(W)(x) denote the corresponding subspaces. Let V≤i(W)=⊕i

j=1 Vi(W).

Notational convention. — In this subsection, we write Vi(x), V≤i(x) and λi instead of
Vi(Lie(G++))(x), V≤i(Lie(G++))(x) and λi(Lie(G++)).

Since Lie(U+)(x) and Lie(Q++)(x) are equivariant under the gt action, we have

Lie
(
U+)(x)=⊕

i

Lie
(
U+)(x)∩ Vi(x),

Lie(Q++)(x)=
⊕

i

Lie(Q++)(x)∩ Vi(x).

The spaces H+(x) and H++(x). — Let H+(x) = Hom(Lie(U+)(x),Lie(G++)(x)).
(Here, Hom means linear maps between vector spaces, not Lie algebra homomorphisms.)

For every M ∈H+(x), we can write

(6.5) M =
∑

ij

Mij where Mij ∈ Hom
(
Lie
(
U+)(x)∩ Vj(x),Lie(G++)(x)∩ Vi(x)

)
.
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Let

H++(x)=
{
M ∈H+(x) : Mij = 0 if λi ≤ λj

}
.

Then, H++ is the direct sum of all the positive Lyapunov subspaces of the action of gt

on H+.

Parametrization of generalized subspaces. — Suppose M ∈ H+(x) is such that (I +
M)Lie(U+)(x) is a subalgebra of Lie(G++)(x). We say that the pair (M, v) ∈H+(x)×
W+(x) parametrizes the generalized subspace U if

U = {exp
[
(I+M)u

]
(x + v) : u ∈ Lie

(
U+)(x)}.

(Thus, U is the orbit of the subgroup exp[(I+M)Lie(U+)(x)] through the point x+ v ∈
W+[x].) In this case we write U = U(M, v).

Remark. — In this discussion, U is a generalized subspace which passes near the
point x ∈ X0. However, U need not be U+[x], or even U+[ y] for any y ∈ X0.

Remark. — From the definitions, it is clear that any generalized subspace U ⊂
W+[x] can be parametrized by a pair (M, v) ∈H+(x)×W+(x). Also, if v = v′ and

(6.6) I+M = (I+M′) ◦ J,

where J : Lie(U+)(x)→ Lie(U+)(x) is a linear map, then (M, v) ∈H+(x)× W+(x) and
(M′, v′) ∈H+(x)× W+(x) are two parameterizations of the same generalized subspace
U .

Example 1. — We give an example of a non-linear generalized subspace. (The
example does not satisfy condition (v) of Definition 6.2 but this is not relevant for the
discussion.) Suppose for simplicity that W+ has two Lyapunov exponents λ1(W+) and
λ2(W+)with λ1(W+)= 2λ2(W+). Let e1(x) and e2(x) be unit vectors so that V1(W+)(x)=
Re1(x), and V2(W+)(x)=Re2(x).

Let i : W+(x)→R
3 be the map sending ae1(x)+ be2(x)→ (a, b,1) ∈R

3. We iden-
tify W+(x) with its image in R

3 under i. Then, we can identify

G++(x)=
⎛
⎝1 ∗ ∗

0 1 ∗
0 0 1

⎞
⎠ , Lie

(
G++(x)

)=
⎛
⎝0 ∗ ∗

0 0 ∗
0 0 0

⎞
⎠ .

Suppose

U+(x)=
⎧⎨
⎩
⎛
⎝1 t t2

2
0 1 t

0 0 1

⎞
⎠ : t ∈R

⎫⎬
⎭ ,
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Lie
(
U+(x)

)=
⎧⎨
⎩
⎛
⎝0 t 0

0 0 t

0 0 0

⎞
⎠ : t ∈R

⎫⎬
⎭ .

Then, U+[x] is the parabola {x + te2(x)+ t2

2 e1(x) : t ∈R} ⊂ W+[x].
Transversals. — Note that we have, as vector spaces,

Lie(G++)(x)= Lie(Q++)(x)⊕W+(x)

where we identify W+(x) with the subspace of Lie(G++)(x) corresponding to pure trans-
lations.

For each i, and each x ∈ X0, let Zi1(x)⊂ W+(x) ∩ Vi(x)⊂ Lie(G++)(x) ∩ Vi(x) be
a linear subspace so that

Lie(G++)(x)∩ Vi(x)= Zi1(x)⊕
((

Lie
(
U+)+ Lie(Q++)

)
(x)∩ Vi(x)

)
.

Let Zi2(x)⊂ Lie(Q++)(x)∩ Vi(x) be such that(
Lie
(
U+)+ Lie(Q++)

)
(x)∩ Vi(x)=

(
Lie
(
U+)(x)∩ Vi(x)

)⊕ Zi2(x).

Let Zi(x)= Zi1(x)⊕Zi2(x), and let Z(x)=⊕i Zi(x). We always assume that the function
x → Z(x) is measurable. We say that Z(x)⊂ Lie(G++)(x) is a Lyapunov-admissible transversal

to Lie(U+)(x). All of our transversals will be of this type, so we will sometimes simply use
the word “transversal”.

Note that Zi1(x)= Z(x)∩W+(x)∩ Vi(x).

Example 2. — Suppose U+(x) is as in Example 1. Then (since λ1(W+)−λ2(W+)=
λ2(W+)),

λ1 ≡ λ1

(
Lie(G++)

)= λ1

(
W+) λ2 ≡ λ2

(
Lie(G++)

)= λ2

(
W+),

V1 ≡ V1

(
Lie(G++)

)=
⎛
⎝0 0 ∗

0 0 0
0 0 0

⎞
⎠ ,

V2 ≡ V2

(
Lie(G++)

)
(x)=

⎛
⎝0 ∗ 0

0 0 ∗
0 0 0

⎞
⎠ ,

(
Lie(Q++)∩ V2

)
(x)=

⎛
⎝0 ∗ 0

0 0 0
0 0 0

⎞
⎠ ,

(
Lie
(
U+)∩ V2

)
(x)=

⎧⎨
⎩
⎛
⎝0 t 0

0 0 t

0 0 0

⎞
⎠ : t ∈R

⎫⎬
⎭ ,
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and (Lie(U+)∩ V1)(x)= (Lie(Q++)∩ V1)(x)= {0}. Therefore, Z12(x)= {0}, and

Z22(x)=
⎛
⎝0 ∗ 0

0 0 0
0 0 0

⎞
⎠ Z11(x)=

⎛
⎝0 0 ∗

0 0 0
0 0 0

⎞
⎠ , Z21(x)= {0}.

We note that in this example, the transversal Z was uniquely determined (and is
in fact invariant under the flow gt ). This is a consequence of the fact that we chose an
example with simple Lyapunov spectrum, and would not be true in general.

Parametrization adapted to a transversal. — We say that the parametrization (M, v) ∈
H+(x) × W+(x) of a generalized subspace U = U(M, v) is adapted to the transversal
Z(x) if

v ∈ Z(x)∩W+(x)

and

Mu ∈ Z(x) for all u ∈ Lie
(
U+)(x).

The following lemma implies that adapting a parametrization to a transversal is
similar to inverting a nilpotent matrix.

Lemma 6.4. — Suppose the pair (M′, v′) ∈H++(x)× W+(x) parametrizes a generalized

subspace U . Let Z(x) be a Lyapunov-admissible transversal. Then, there exists a unique pair (M, v) ∈
H++(x)×W+(x) which parametrizes U and is adapted to Z(x). If we write

M′ =
∑

ij

M′
ij

as in (6.5), and

v′ =
∑

j

v′j ,

where v′j ∈ W+(x)∩ Vj(x), then M =∑ij Mij and v =∑i vi are given by formulas of the form

(6.7) vi = Liv
′
i + pi

(
v′,M′)

(6.8) Mij = LijM′
ij + pij

(
M′)

where Li is a linear map and pi is a polynomial in the v′j and M′
jk which depends only on the v′j with

λj < λi and the M′
jk with λj − λk < λi . Similarly, Lij is a linear map, and pij is a polynomial which

depends on the M′
kl with λk − λl < λi − λj .

If we assume in addition that (M′, v′) is adapted to another Lyapunov-admissible transversal

Z′(x), then Li and Lij can be taken to be invertible linear maps (depending only on Z(x) and Z′(x)).



INVARIANT AND STATIONARY MEASURES 151

The proof of Lemma 6.4 is a straightforward but tedious calculation. It is done in
Section 6.4∗.

The map SZ
x . — Suppose Z is a Lyapunov-admissible transversal to U+(x). Then,

let SZ
x :H++(x)×W+(x)→H++(x)×W+(x) be given by

SZ
x

(
M′, v′

)= (M, v)

where M and v are given by (6.8) and (6.7) respectively. Note that SZ
x is a polynomial, but

is not a linear map in the entries of M′ and v′. To deal with the non-linearity, we work
with certain tensor product spaces defined below.

Tensor products: the spaces Ĥ, H̃ and the maps j. — As in Section 5, for a vector space
V and a map f : V → W we use the notations V⊗m, V�m, f ⊗m, f �m, j⊗m, j�m.

Let m be the number of distinct Lyapunov exponents on H++, and let n be the
number of distinct Lyapunov exponents on W+. Let (α;β)= (α1, . . . , αm;β1, . . . , βn) be
a multi-index, and let

H̃(α;β)(x)=
m⊗

i=1

(
Vi(H++)(x)

)⊗αi ⊗
n⊗

j=1

(
Vj

(
W+)(x))⊗βj

and let

Ĥ(α;β)(x)=
m⊗

i=1

H++(x)⊗αi ⊗
n⊗

j=1

W+(x)⊗βj .

We have a natural map π̂ (α;β) : Ĥ(α;β)(x)→ H̃(α;β)(x) given by

π̂ (α;β)(Y1 ⊗ · · · ⊗Ym ⊗
(
Y′

1

)⊗ · · · ⊗ (Y′
n

))
= π

⊗α1
1 (Y1)⊗ · · · ⊗ π⊗αm

m (Ym)⊗
(
π ′

1

)⊗β1
(
Y′

1

)⊗ · · · ⊗ (π ′
n

)⊗βn
(
Y′

n

)
,

where πi : H++(x) → Vi(H++)(x) and π ′
j : W+(x)→ Vj(W+)(x) are the natural pro-

jections associated to the direct sum decompositions H++(x) =⊕m

i=1 Vi(H++)(x) and
W+(x)=⊕n

j=1 Vj(W+)(x).
Let S be a finite collection of multi-indices (chosen in Lemma 6.6 below). Then,

let

(6.9) H̃0(x)=
⊕

(α;β)∈S
H̃(α;β), Ĥ0(x)=

⊕
(α;β)∈S

Ĥ(α;β)

Let π̂ : Ĥ0(x)→ H̃0(x) be the linear map with coincides with π̂ (α;β) on each Ĥ(α;β).
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Let ĵ(α;β) :H++(x)×W+(x)→ Ĥ(α;β)(x) be the “diagonal embedding”

ĵ(α;β)(M, v)= M⊗M · · · ⊗M⊗ v⊗ · · · ⊗ v,

and let ĵ :H++(x)×W+(x)→ Ĥ0(x) be the linear map
⊕

(α;β)∈S ĵ(α;β). Let

(6.10) j :H++(x)×W+(x)→ H̃0(x)

denote π̂ ◦ ĵ. Let Ĥ(x) denote the linear span of the image of ĵ, and let H̃(x) denote the
linear span of the image of j.

Induced linear maps on Ĥ(x) and H̃(x). — Suppose Ft : H++(x) → H++(y) and
F′

t : W+(x)→ W+(y) are linear maps. Let ft = (Ft,F′
t). Then, ft induces a linear map

f̂t : Ĥ(x)→ Ĥ(y). If Ft sends each Vi(H++)(x) to each Vi(H++)(y) and F′
t sends each

Vj(W+)(x) to Vj(W+)(y), then ft also induces a linear map f̃t : H̃(x)→ H̃(y).
Note that H̃(x)⊂ Ĥ(x)⊂ H(++)

big (x) where H(++)
big (x) is as in Section 3.

Notation. — For an invertible linear map A : W+(x) → W+(y), let A∗ :
Lie(G++)(x)→ Lie(G++)(y) denote the map

(6.11) A∗(Y)= A ◦Y1 ◦A−1 +A ◦Y2

where for Y ∈ Lie(G++)(x), Y1 is the linear part of Y and Y2 is the pure translation part.

Lemma 6.5. — Suppose x ∈ X0, u ∈ U+(x). Then, there exists a linear map u∗ :H++(x)×
W+(x)→H++(ux)×W+(ux) with the following properties:

(a) If (M′, v′) ∈H++(x)×W+(x) parametrizes a generalized subspace U , then (M, v)=
u∗(M′, v′) parametrizes the same generalized subspace U .

(b) If (M, v)= u∗(M′, v′), then M and v are given by formulas of the form (6.7) and (6.8).

Proof. — In fact we claim that

(6.12) u∗
(
M′, v′

)= (tr(x, ux) ◦M′ ◦ tr(ux, x), exp
((

I+M′)Y)(x+ v′
)− exp(Y)x

)
,

where Y = log u.
This can be verified as follows. Let U = U(M′, v′) denote the generalized subspace

parametrized by (M′, v′), and let U′ = exp((I+M′)Lie(U+)(x)), so that U′ is a subgroup
of G++(x). Then, for any w ∈ U , U = U′w. Then, in view of Lemma 6.1 and (6.1),

U = Tr(x, ux)U′(ux + (w− ux)
)
.

Thus, (M, v) ∈H++(ux)×W+(ux) parametrizes U if

(6.13) exp
(
(I+M)Lie

(
U+)(ux)

)= Tr(x, ux)U′
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and

(6.14) v =w− ux for some w ∈ U .

Now let (M, v) be the right-hand-side of (6.12). We claim that (6.13) and (6.14) hold.
Indeed, by (6.3),

tr(ux, x)Lie
(
U+)(ux)= Lie

(
U+)(x),

and furthermore, tr(ux, x)(Lie(U+)∩ V≤i)(ux)= (Lie(U+)∩ V≤i)(x). Now,

Tr(x, ux)U′ = exp
(
tr(x, ux)Lie

(
U′))= exp

(
tr(x, ux)

(
I+M′)Lie

(
U+)(x))

= exp
(
tr(x, ux)

(
I+M′)tr(ux, x)Lie

(
U+(ux)

))
= exp

(
(I+M)Lie

(
U+)(ux)

)
,

verifying (6.13). Also, let

w = exp
((

I+M′)Y)(x + v′
) ∈ U = U

(
M′, v′

)
.

Therefore, since exp(Y)x = ux,

w− ux = (exp
((

I+M′)Y)(x + v′
)− exp(Y)x

)= v,

and hence (6.14) holds. Thus, u∗(M′, v′) ∈ H++(ux) × W+(ux) as defined in (6.12)
parametrizes the same generalized subspace U as (M′, v′) ∈H++(x)×W+(x). This com-
pletes the proof of part (a).

It is clear from (6.12) that part (b) of the lemma holds. �

Lemma 6.6. — For an appropriate choice of S , the following hold:

(a) Let Z(x) be a Lyapunov-admissible transversal to U+(x). There exists a linear map SZ(x)
x :

H̃(x)→ H̃(x) such that for all (M, v) ∈H++(x)×W+(x),
(
SZ(x)

x ◦ j
)
(M, v)= (j ◦ SZ(x)

x

)
(M, v).

(b) Suppose u ∈ U+(x), and let Z(ux) be a Lyapunov-admissible transversal to U+(ux). Then,

there exists a linear map (u)∗ : H̃(x)→ H̃(ux) such that for all (M, v) ∈H++(x)×
W+(x),

(
(u)∗ ◦ j

)
(M, v)= (j ◦ SZ(ux)

ux ◦ u∗
)
(M, v),

where u∗ :H++(x)×W+(x)→H++(ux)×W+(ux) is as in (6.12).
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Proof. — Part (a) formally follows from the universal property of the tensor prod-
uct and the partial ordering in (6.7) and (6.8). We now make a brief outline: see also
Example 3 below.

Let H̃S(x) and jS be as in (6.9) and (6.10) with the dependence on S explicit.
Let S0 denote the set of multi-indices of the form (0, . . . ,0,1,0, . . . ,0;0, . . . ,0) or
(0, . . . ,0;0, . . . ,0,1,0, . . . ,0). Then jS0 is an isomorphism between H++(x)× W+(x)
and H̃S0(x).

Let (M, v)= SZ(x)
x (M′, v′). By (6.7), (6.8) and the universal property of the tensor

product, there exists S1 ⊃ S0 and a linear map S1 : H̃S1(x)→ H̃S0(x) such that

jS0(M, v)= S1 ◦ jS1
(
M′, v′

)
.

We now repeat this procedure to get a sequence Sj of multi-indices. More precisely, at
each stage, for each (α;β) ∈ Sj , we may write, by (6.7), (6.8) and the universal property
of the tensor product,

j(α;β)(M, v)= L(α;β)(j(α;β)(M, v)
)+ S(α;β)

j+1

( ⊕
(α′;β ′)∈S(α;β)

j(α
′;β ′)(M′, v′

))
,

where L(α;β) and S(α;β)
j+1 are linear maps; we then define Sj+1 = Sj ∪⋃(α;β)∈Sj

S(α;β).
Putting these maps together, we then get a linear map Sj such that

jSj (M, v)= Sj ◦ jSj+1
(
M′, v′

)
.

Because of the partial order in (6.7) and (6.8), we may assume that S(α;β) consists of
multi-indices (α′;β ′) where either α′ has more zero entries than α or β ′ has more zero
entries than β . Therefore, this procedure eventually terminates, so that Sj+1 = Sj for large
enough j. We then define S to be the eventual common value of the Sj ; then part (a) of
Lemma 6.6 holds.

To prove part (b) of Lemma 6.6, note that part (b) of Lemma 6.5 and the proof
of part (a) of Lemma 6.6 show that there exists a map ũ∗ : H̃(x) → H̃(ux) such that
ũ∗ ◦ j = j ◦ u∗, where u∗ is as in (6.12). Now, we can define (u)∗ : H̃(x)→ H̃(ux) to be
SZ(ux)

ux ◦ ũ∗, where SZ(ux)
ux is as in (a). Thus (u)∗ denotes the induced action of u on H(x). �

Example 3. — Suppose U+ is as in Examples 1 and 2. Let

F =
⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ , E1 =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ , E2 =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ .

Then, (Lie(U+) ∩ V2)(x)=RF, (Lie(G++) ∩ V1)(x)=RE1. Then, for M ∈H++(x), the
only non-zero component is M12 ∈ Hom((Lie(U+)∩V2)(x), (Lie(G++)∩V1)(x)), which
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is 1-dimensional. Let

� ∈ Hom
((

Lie
(
U+)∩ V2

)
(x),

(
Lie(G++)∩ V1

)
(x)
)

denote the element such that �F = E1, so that H++ =R� .
With the choice of transversal Z given in Example 2, Equations (6.7) and (6.8)

become:

(6.15) v1 =−M′
12v

′
2 + v′1 −

(
v′2
)2
, v2 = 0, M12 = M′

12.

Then we can choose S = {(1;0,0), (0;1,0), (0;0,1), (1;0,1), (0;0,2)}, so that (drop-
ping the (x)),

H̃0 =H++ ⊕ V1

(
W+)⊕ V2

(
W+)⊕ (H++ ⊗ V2

(
W+))

⊕ (V2

(
W+)⊗ V2

(
W+)).

(Since for any vector space V, V⊗0 = R, we have omitted such factors in the above for-
mula.) Let S = SZ(x)

x . Then, the linear map S : H̃(x)→ H̃(x) is given by

S(�)=�, S(E1)= E1, S(E2)= 0, S(� ⊗ E2)=−E1,

S(E2 ⊗ E2)=−E1.

Example 4. — We keep all notation from Examples 1–3. Suppose u = exp Y, where
Y = tF. We now compute the map (u)∗.

Note that by Lemma 4.1, we have e1(ux) = e1(x). Also note that by Example 1,
at x, the tangent vector to U+[x] coincides with e2(x). Recall that we are assuming that
the foliation whose leaves are U+[x] is invariant under the geodesic flow. This implies that
at the point ux, the tangent vector to the parabola U+[x] is e2(ux). Therefore,

e1(ux)= e1(x), e2(ux)= te1(x)+ e2(x).

Therefore,

P+(x, ux)e1(x)= e1(ux), P+(x, ux)e2(x)= e2(ux)= te1(x)+ e2(x).

Suppose U is parametrized by (M′, v′), where M′ = M′
12� , v′ = v′1e1(x)+ v′2e2(x).

Then

exp
[(

I+M′)Y]=
⎛
⎝1 t 1

2 t2 +M′
12t

0 1 t

0 0 1

⎞
⎠ , exp(Y)=

⎛
⎝1 t 1

2 t2

0 1 t

0 0 1

⎞
⎠ .

Therefore,

exp
[(

I+M′)Y](x + v′
)− exp(Y)x =

⎛
⎝v

′
1 + tv′2 + tM′

12
v′2
0

⎞
⎠ .
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Let � ′ ∈ Hom((Lie(U+) ∩ V2)(ux), (Lie(G++) ∩ V1)(ux)) be the analogue of � , but at
the point ux. Then,

u∗
(
M′, v′

)= u∗
(
M′

12�,v
′
1e1(x)+ v′2e2(x)

)
= (M′

12�
′,
(
v′1 + tv′2 + tM′

12

)
e1(x)+ v′2e2(x)

)
= (M′

12�
′,
(
v′1 + tM′

12

)
e1(ux)+ v′2e2(ux)

)
Then, in view of (6.15), (SZ(ux)

ux ◦ u∗)(M′, v′)= (M12�
′, v1e1(ux)+ v2e2(ux)), where

v1 =−M′
12v

′
2 + v′1 + tM′

12 −
(
v′2
)2
, v2 = 0, M12 = M′

12.

Then, (u)∗ : H̃(x)→ H̃(ux) is given by

(u)∗(�)=� ′ + tE1, (u)∗(E1)= E1, (u)∗(E2)= 0,

(u)∗(� ⊗ E2)=−E1, (u)∗(E2 ⊗ E2)=−E1.

The dynamical system Gt . — Suppose we fix some Lyapunov-admissible transversal
Z(x) for every x ∈ X0. Suppose (M, v) ∈H++(x)×W+(x) is adapted to Z(x). Let

Gt(M, v)= SZ(gt x)
gt x

(
gt ◦M ◦ g−1

t , (gt)∗v
) ∈H++(gtx)×W+(gtx),

where (gt)∗ on the right-hand side is gt acting on W+(x), and gt on the right-hand
side is the natural map Lie(Q++)(x) → Lie(Q++)(gtx), which maps Lie(U+)(x) to
Lie(U+)(gtx). Then, if U ′ is the generalized subspace parametrized by (M, v) then
(M′′, v′′)= Gt(M, v) ∈H++(gtx)× W+(gtx) parametrizes gtU ′ and is adapted to Z(gtx).
From the definition, we see that

Gt+s = Gt ◦Gs.

Also, it is easy to see that for (M, v) ∈H++(x)×W+(x),

Gt(M, v)= (gt ◦M′ ◦ g−1
t , (gt)∗v′

)
, where

(
M′, v′

)= Sg−1
t Z(gt x)

x (M, v).

The bundle H(x). — Suppose we are given a Lyapunov adapted transversal Z(x) at
each x ∈ X0. Let

H(x)= SZ(x)
x H̃(x)

denote the image of H̃(x) under SZ(x)
x . Then, if (M, v) ∈H++(x)× W+(x) is adapted to

Z(x), then j(M, v) ∈ H(x). We can also consider (u)∗ as defined in Lemma 6.6(b) to be a
map

(u)∗ : H(x)→ H(ux).
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The bundle H and the flow gt . — Let Z(x) be an admissible transversal to U+(x) for
every x ∈ X0. Let (gt)∗ : H(x)→ H(gtx) be given by

(6.16) (gt)∗ = SZ(gt x)
gt x

◦ f̃t where ft(M, v)= (gt ◦M ◦ g−1
t , (gt)∗v

)
,

f̃t is the map induced by ft on H̃ ⊃ H, (gt)∗ on the right-hand side is gt acting on W+(x),
gt on the right-hand side is the natural map Lie(U+)(x)→ Lie(U+)(gtx), and SZ

x is as in
Lemma 6.6. Then (gt)∗ is a linear map, and for (M, v) ∈H++(x)×W+(x),

(6.17) (gt)∗
(
j(M, v)

)= j
(
Gt(M, v)

)
.

Since Gt ◦Gs = Gt+s, and the linear span of j(H++(x)×W+(x)) is H̃(x)⊃ H(x), it follows
from (6.17) that (gt)∗ ◦ (gs)∗ = (gt+s)∗.

Lemma 6.7.

(a) Suppose u′x = ux ∈ U+[x] and v ∈ H(x). Then (u)∗v = (u′)∗v.

(b) Suppose u ∈ U+(gtx). Then there exists u′ ∈ U+(x) such that gtu
′x = ugtx. Furthermore,

for any choice of u′ satisfying gtu
′x = ugtx and any v ∈ H(x), we have (u)∗(gt)∗v =

(gt)∗(u′)∗v.

Proof. — It is enough to prove (a) for v = j(M, v) where (M, v) ∈H++(x)×W+(x).
Let U be the generalized subspace parametrized by (M, v). Then, (u)∗v = j(M′, v′)
where (M′, v′) ∈ H++(ux) × W+(ux) is the (unique) parametrization of U adapted to
Z(ux). But then (u′)∗v is also a parametrization of U adapted to Z(ux). Therefore
(u′)∗v = (u)∗v.

The proof of (b) is essentially the same. �

Choosing M0 and C0. — For a.e. x ∈ X, let M+(x)= ‖SZ(x)
x ‖, and let

M−(x)= sup
w∈SZ(x)

x (H̃(x))

1
‖w‖ inf

{‖v‖ : v ∈ H̃(x), SZ(x)
x (v)= w

}
.

Choose M0 > 1 sufficiently large so that C0 ≡ {x ∈ X0 : max(M+(x),M−(x)) < M0} has
positive measure. Let C ⊂ C0 and T0 : C → R be as in Lemma 4.14 (with this choice of
M0, C0).

Adjusting the transversal Z(x). — For c ∈ C, let E+[c], t(c) and Jc be as in Propo-
sition 3.7. For x ∈ E+[c] we define Z(x) = P+(c, x)∗Z(c), and for 0 ≤ t < t(c), we define
Z(g−tx)= g−tZ(x). This defines Z(y) for y ∈ Jc. From now on, we assume that the transver-
sal Z is obtained via this construction.
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Lemma 6.8. — Let (gt)∗ : H(x)→ H(gtx) and f̃t : H̃(x)→ H̃(gtx) be as in (6.16). Then

the Lyapunov subspaces for (gt)∗ at x are the image under SZ(x)
x of the Lyapunov subspaces of f̃t at x, and

the Lyapunov exponents of gt are those Lyapunov exponents of f̃t whose Lyapunov subspace at a generic

point x is not contained in the kernel of SZ(x)
x .

Proof. — Let Vi(H̃)(x) and Vi(H)(x) denote the Lyapunov subspaces of the flow f̃t

and gt respectively, and let λi(H̃) and λi(H) denote the corresponding Lyapunov expo-
nents. Then, for v ∈ Vi(H̃), by the multiplicative ergodic theorem, for every ε > 0,

‖gtSZ(x)
x v‖ = ‖SZ(gt x)

gt x
f̃tv‖Y ≤ ‖SZ(gt x)

gt x
‖‖f̃tv‖ ≤ Cε(x)C1(gtx)e

λi(H̃)t+ε|t|.

Taking t →∞ and t →−∞ we see that λi(H)= λi(H̃) and SZ(x)
x v ∈ Vi(H)(x). �

The measurable flat connection P+(x, y). — Recall that the measurable flat gt-equi-
variant W+-connection map P+ on H1 induces a measurable flat gt-equivariant connec-
tion on H(++)

big , and thus on H̃. We will call this connection P̃+(x, y). Then, we can define
a measurable flat W+-connection P+(x, y) : H(x)→ H(y) by

(6.18) P+(x, y)= SZ(y)
y ◦ P̃+(x, y), y ∈ W+[x].

Without loss of generality, we may assume that Lemma 4.3 applies to subbundles of H
as well as subbundles of H(++)

big (or else we can replace X by a measurable finite cover).
Then, Proposition 4.12 applies to P+.

The dynamical inner product 〈·, ·〉x and the dynamical norm ‖ · ‖x on H. — Even though H
is not formally a subbundle of H(++)

big , H ⊂ H̃ ⊂ H(++)
big . Thus, the AGY norm makes sense

in H. Note that by our choices of C0 and M0, (4.17) holds for P+ in place of P+ (and 1 in
place of M0). Then, the proof of Proposition 4.15 goes through. Thus, Proposition 4.15
also applies to H, with a norm which may be different from the norm obtained from
thinking of H as a subset of H(++)

big .

6.1. Approximation of generalized subspaces and the map A(·, ·, ·, ·).

Hausdorff distance between generalized subspaces. — For x ∈ X̃0, and two generalized
subspaces U ′ and U ′′, let hdX0

x (U ′,U ′′) denote the Hausdorff distance using the metric
dX0(·, ·) defined in Section 3 between U ′ ∩ BX0(x,1/100) and U ′′ ∩ BX0(x,1/100). (The
balls BX0(·, ·) are defined in Section 5.)

Lemma 6.9. — Suppose x ∈ X̃0, (M, v) ∈H++(x)×W+(x), and

hdX0
x

(
U+[x],U(M, v)

)≤ 1/100.
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(a) We have for some absolute constant C > 0,

hdX0
x

(
U+[x],U(M, v)

)≤ C max(‖v‖Y,‖M‖Y).

Also if (M, v) ∈H++(x)× W+(x) is adapted to Z(x), then there exists c(x) > 0 such

that

hdX0
x

(
U+[x],U(M, v)

)≥ c(x)max(‖v‖Y,‖M‖Y).

(b) For some c1(x) > 0, we have, for (M, v) ∈H++(x)×W+(x) adapted to Z(x),

c1(x)‖j(M, v)‖Y ≤ hdX0
x

(
U+[x],U(M, v)

)≤ c1(x)
−1‖j(M, v)‖Y.

Proof. — Part (a) is immediate from the definitions and Proposition 3.4. To see (b)
note that part (a) implies that max(‖M‖Y,‖v‖Y) = O(1), and thus all the higher order
terms in j(M, v) which are polynomials in Mij and vj , have size bounded by a constant
multiple of the size of the first order terms, i.e. by max(‖M‖Y,‖v‖Y). �

We will be dealing with Hausdorff distances of particularly well-behaved sets (i.e.
generalized subspaces parametrized by elements of H++(x) × W+(x)). For such sub-
spaces, the following holds:

Lemma 6.10. — Suppose x ∈ X̃0, and U ′ ⊂ W+[x] is a generalized subspace. Then,

(a) We have, for t ∈R,

e−2|t|hdX0
x

(
U+[x],U ′)≤ hdX0

gt x

(
U+[gtx], (gt)∗U ′)≤ e2|t|hdX0

x

(
U+[x],U ′),

provided the quantity on the right is at most 1/100. (The first inequality in the above line

holds as long as the quantity in the middle is at most 1/100.)

(b) Suppose that U ′ is parametrized by an element of H++(x)×W+(x). There exists a func-

tion C : X0 → R
+ finite almost everywhere and β > 0 depending only on the Lyapunov

spectrum, such that, for t ≥ 0,

C(x)−1eβthdX0
x

(
U+[x],U ′)≤ hdX0

gt x

(
U+[gtx], (gt)∗U ′),

provided the quantity on the right is at most 1/100. Also, for t < 0,

hdX0
gt x

(
U+[gtx], (gt)∗U ′)≤ C(x)e−β|t|hdX0

x

(
U+[x],U ′),

provided the quantity on the right is at most 1/100.

Proof. — Recall that B+(x, r)= BX0(x, r)∩W+[x] denotes the ball of radius r in the
metric d+(·, ·). Suppose t ≥ 0. Note that, by Lemma 3.5(d), for t > 0,

B+
t [x] ≡ g−1

t B+(gtx,1/100)⊂ B+(x,1/100).
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Note that the action of gt can expand in any direction by at most e2t , see also Lemma 3.6.
Therefore,

hdX0
gt x

(
(gt)∗U+[x], (gt)∗U ′)≤ e2thdX0

x

(
U+[x] ∩ B+

t [x],U ′ ∩ B+
t [x]

)
≤ e2thdX0

x

(
U+[x],U ′).

This completes the proof of the second inequality in (a). The first inequality in (a) follows
after renaming x to gtx.

We now begin the proof of (b). We assume t ≥ 0 (the proof for the case t < 0 is
identical). It is enough to show that for any δ > 0 there exists C = C(δ) <∞ and a set
K(δ) with measure at least 1− δ such that for x ∈ K(δ) and t > 0,

(6.19) C(δ)−1eβthdX0
x

(
U+[x],U ′)≤ hdX0

gt x

(
U+[gtx], (gt)∗U ′).

For any η > 0 let Kη be the set where c1(x) > η, where c1(x) is as in Lemma 6.9. Choose
η so that Kη has measure at least 1− δ/4. By the Birkhoff ergodic theorem we may find
a set K′ of measure at least 1− δ/2 and t1 > 0 such that for x ∈ K′ and t > t1, there exists
t′ ∈R with |t − t′|< εt, and gt′x ∈ Kη.

Let α > 0 be as in Lemma 3.5. Choose ε < α/2. By Lemma 3.5(c), we may find a
set K′′ ⊂ Kη of measure at least 1− δ/2, and a constant t2 = t2(δ) such that for all x ∈ K′′

all t > t2 and all v ∈ H(x),

(6.20) ‖(gt)∗v‖Y ≥ eαt‖v‖Y.

Let K(δ)= K′ ∩K′′, and let t0 = max(t1, t2). If 0 ≤ t < (1+ε)t0, then (6.19) holds in view
of Lemma 6.10(a). Suppose t > (1 + ε)t0, and let t′ be as in the definition of K′. Since
x ∈ Kη and gt′x ∈ Kη, by Lemma 6.9 and (6.20),

hdX0
gt′ x
(
U+[gt′x], (gt′)∗U ′)≥ η2eαthdX0

x

(
U+[x],U ′).

Then, again using Lemma 6.10(a), we get

hdX0
gt x

(
U+[gtx], (gt)∗U ′)≥ e−εthdX0

gt′ x
(
U+[gt′x], (gt′)∗U ′).

Now, (6.19) follows, with β = (α− ε). �

Motivation. — We work in the universal cover X̃0. Let q1, q′1 be as in Section 2.3,
so in particular, q′1 ∈ W−[q1]. Suppose u ∈ B(q1,1/100) and t > 0. Note that the gener-
alized subspace U+[gtq1] = U+[gtuq1] passes through the point gtuq1. If t is not too large,
the generalized subspace U+[gtq

′
1] will pass near gtuq1. These subspaces are not on the

same leaf of W+ (even though the leaf W+[gtq
′
1] containing U+[gtq

′
1] gets closer to the leaf

W+[gtq1] = W+[gtuq1] containing U+[gtuq1] as t →∞). It is convenient to find a way to
“project” the part of U+[gtq

′
1] near gtuq1 to W+[gtuq1]. In particular, we want the projec-

tion to be again a generalized subspace (i.e. an orbit of a subgroup of G++(gtuq1)). We also
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want the projection to be exponentially close, in a ball of radius 1/100 about gtuq1, to the
original generalized subspace U+[gtq

′
1]. Furthermore, in order to carry out the program

outlined in the beginning of Section 5, we want the pair (M′′, v′′) parameterizing the pro-
jection to be such that j(M′′, v′′) ∈ H(gtuq1) depends polynomially on P−(q1, q′1). Then it
will depend linearly on F(q)− F(q′) since any fixed degree polynomial in P−(q1, q′1) can
be expressed as a linear function of F(q)− F(q′) as long as r in the definition of Lext(q)

(r)

is chosen large enough.
More precisely, we need the following:

Proposition 6.11. — Suppose α3 > 0 is a constant. We can choose r sufficiently large (de-

pending only on α3 and the Lyapunov spectrum) so that there exists a linear map A(q1, u, �, t) :
Lext(g−�q1)

(r) → H(gtuq1), defined for almost all q1 ∈ X̃0, almost all u ∈ U+[x], all �≥ 0 and all

t ≥ 0, and a constant α1 > 0 depending only on α3 and the Lyapunov spectrum such that the following

hold:

(i) We have

(6.21) A
(
q1, u, �+ �′, t + t′

)= gt′ ◦A(q1, u, �, t) ◦ g�′ .

(ii) Suppose δ > 0, and � is sufficiently large depending on δ. There exists a set K = K(δ)
with ν(K) > 1−δ and constants C1(δ) and C2(δ) such that the following holds: Suppose

q1 ∈ π−1(K). Let q = g−�q1 (see Figure 1). Suppose q′ ∈ π−1(K) ∩ W−[q] satisfies

the upper bounds in (5.3) and (5.4) with the same constant δ, and write q′1 = g�q
′. For all

u ∈ B(q1,1/100) such that uq1 ∈ π−1(K), and any t > 0 such that

t ≤ α3�,(6.22)

dX0
(
gtuq1,U+[gtq

′
1

])≤ 1/100,(6.23)

and also

(6.24) C1(δ)e
−α1� ≤ hdX0

gt uq1

(
U+[gtuq1],U+[gtq

′
1

])
,

we have

C(gtuq1)
−1
∥∥A(q1, u, �, t)

(
F
(
q′
)− F(q)

)∥∥
Y

(6.25)

≤ hdX0
gt uq1

(
U+[gtuq1],U+[gtq

′
1

])
≤ C(gtuq1)

∥∥A(q1, u, �, t)
(
F
(
q′
)− F(q)

)∥∥
Y
,

where C : X0 →R
+ is a measurable function finite almost everywhere.

(iii) Suppose δ, �, q, u, q′, q′1, are as in (ii), and t satisfies (6.22) and (6.23). Then, we have

(6.26) A(q1, u, �, t)
(
F
(
q′
)− F(q)

)= j
(
M′′, v′′

)
,
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where the pair (M′′, v′′) ∈H++(gtuq1)×W+(gtuq1) (which will be chosen in the proof)

is adapted to Z(gtuq1) and parametrizes a generalized subspace U(M′′, v′′)⊂ W+(gtuq1)

satisfying

(6.27) hdX0
gt uq1

(
U+[gtq

′
1

]
,U
(
M′′, v′′

))≤ C3(δ)e
−α1�.

Part (ii) of Proposition 6.11 is key to resolving “Technical Problem #1” of Sec-
tion 2.3 (see the discussion at the beginning of Section 5). We claim part (ii) of Proposi-
tion 6.11 follows easily from part (iii) of Proposition 6.11 and Lemma 6.9(b). Indeed, by
the triangle inequality,

hdX0
gt uq1

(
U+[gtuq1],U+[gtq

′
1

])= hdX0
gt uq1

(
U+[gtuq1],U

(
M′′, v′′

))
(6.28)

+O
(
hdX0

gt uq1

(
U
(
M′′, v′′

)
,U+[gtq

′
1

]))
.

The O(·) term on the right-hand-side of (6.28) is bounded by (6.27), and the size
of the first term on the right-hand-side of (6.28) is comparable to ‖j(M′′, v′′)‖Y by
Lemma 6.9(b). Thus, (6.25) follows from (6.26).

Lemma 6.12. — For any δ > 0, there exists K′ = K′(δ) ⊂ X0 with ν(K′) > 1 − c(δ)

where c(δ)→ 0 as δ → 0, and constants C′
1(δ) > 0, C′

2(δ) > 0 and C′
4(δ) > 0 such that in

Proposition 6.11(ii) and (iii), the conditions (6.23) and (6.24) can be replaced by either

(a) gtuq1 ∈ K′ and

(6.29) C′
1(δ)e

−α1� ≤ ∥∥A(q1, u, �, t)
(
F
(
q′
)− F(q)

)∥∥
Y
≤ C′

2(δ),

or by

(b)

(6.30) C′
4(δ)e

−α� ≤ hdX0
gt uq1

(
U+[gtuq1],U

(
M′′, v′′

))≤ 1/400,

where U(M′′, v′′) is as in (6.26).

Proof of Lemma 6.12. — Let c1(x) be as in Lemma 6.9(b). There exists a compact
K′ ⊂ X0 with ν(K′) > 1− c(δ), with c(δ)→ 0 as δ→ 0, and a constant 1 < C′(δ′) <∞
with C′(δ′)→∞ as δ → 0 such that c1(x)

−1 < C′(δ′) for all x ∈ K′. Then, in view of
Lemma 6.9(b), there exist 0 < C′

1(δ) < C′
2(δ) and C′

4(δ) > 0 such that for t such that
gtuq1 ∈ K′ and (6.29) holds, (6.30) also holds. Thus, it is enough to show that if for some
t > 0 (6.22) and (6.30) hold, then (6.23) and (6.24) also hold.

Let tmax = min{s ∈ R
+ : dX0(gsuq1,U+[gsq

′
1]) ≥ 1/100}, so that for 0 ≤ t ≤ tmax

(6.23) holds. If tmax ≥ α3�, then for t ∈ [0, α3�), (6.23) is automatically satisfied. Now as-
sume tmax < α3�. Then, by the definition of tmax and Proposition 6.11(iii), (i.e. (6.26) and
(6.27)), and assuming � is sufficiently large (depending on δ) we have

dX0
(
gtmax

uq1,U
(
M′′, v′′

))≥ 1/200.
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Let U0 = g−tmax
U(M′′, v′′) ⊂ W+[uq1]. By Proposition 6.11(iii), for 0 ≤ t ≤ tmax, gtU0 is

parametrized by (Mt, vt) satisfying (6.26).
Suppose t > 0 satisfies (6.22) and (6.30). Let

t1 = max
{
s ∈R

+ : dX0(gsuq1, gsU0)≤ 1/200
}
.

Since by Lemma 3.5(iv) the function s → dX0(gsuq1, gsU0) is monotone increasing, we have
t < t1 ≤ tmax. Thus, since t < tmax, (6.23) holds. In particular, Proposition 6.11(iii) applies
and then, (6.27) and (6.30) (with a proper choice of C4(δ)) imply (6.24). �

Corollary 6.13. — Suppose δ, �, q, u, q′, q′1, are as in Proposition 6.11(ii), and s ≥ 0 is such

that (6.22), (6.23), and (6.24) hold for s in place of t. Suppose t ∈ R is such that 0 < t + s < α3�.

Then, there exists C4(δ) > 0 such that

(a) We have, for t ∈R such that 0 < t + s < α3�,

e−2|t|hdX0
gsuq1

(
U+[gsuq1],U+[gsq

′
1

])−C4(δ)e
−α�

≤ hdX0
gs+t uq1

(
U+[gs+tuq1],U+[gs+tq

′
1

])
≤ e2|t|hdX0

gsuq1

(
U+[gsuq1],U+[gsq

′
1

])+C4(δ)e
−α�,

provided the quantity on the right is at most 1/800. (The first inequality in the above line

holds as long as the quantity in the middle is at most 1/800.)

(b) There exists a function C : X0 → R
+ finite almost everywhere and β > 0 depending only

on the Lyapunov spectrum, such that, for t ≥ 0,

C(gsuq1)
−1eβthdX0

gsuq1

(
U+[gsuq1],U+[gsq

′
1

])−C4(δ)e
−α�

≤ hdX0
gs+t uq1

(
U+[gs+tuq1],U+[gs+tq

′
1

])
,

provided the quantity on the right is at most 1/800. Also, for t < 0,

hdX0
gs+t uq1

(
U+[gs+tuq1],U+[gs+tq

′
1

])
≤ C(gsuq1)e

−β|t|hdX0
gsuq1

(
U+[gsuq1],U+[gsq

′
1

])+C4(δ)e
−α�,

provided the quantity on the right is at most 1/800.

Proof. — Suppose 0 ≤ t ≤ α3�, and � is sufficiently large depending on δ. Let Ut

denote the generalized subspace of Proposition 6.11(iii). Then, by Proposition 6.11 if
dX0(gtuq1,U+[gtq

′
1]) < 1/200, then dX0(gtuq1,Ut) < 1/100. Conversely, by (the proof of)

Lemma 6.12(b), if dX0(gtuq1,Ut) < 1/400, then dX0(gtuq1,U+[gtq
′
1]) < 1/200. Also, by

Proposition 6.11(iii) and Lemma 6.12(b), if either of these conditions holds, then (6.27)
holds. Thus, the corollary follows from Lemma 6.10. �
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Proposition 6.11 is proved by constructing a linear map P̃s(uq1, q′1) : W+(uq1)→
W+(q′1) with nice properties; then the approximating subspace U(M′′, v′′) is given by
gtP̃s(uq1, q′1)

−1U+[q′1]. The construction is technical, and is postponed to Section 6.5∗.
Then, Proposition 6.11 is proved in Section 6.6∗. From the proof, we will also deduce the
following lemma (which will be used in Section 12):

Lemma 6.14. — For every δ > 0 there exists ε > 0 and a compact set K ⊂ X0 with ν(K) >
1 − δ so that the following holds: Suppose ε0 < 1/100. Suppose q ∈ π−1(K), � > 0 is sufficiently

large depending on δ, and suppose q′ ∈ W−[q] ∩ π−1(K) is such that (5.3) and (5.4) hold. Let

q1 = g�q, q′1 = g�q
′ (see Figure 1). Fix u ∈ B(q1,1/100), and suppose t > 0 is such that

hdX0
gt uq1

(
U+[gtuq1],U+[gtq

′
1

])≤ ε� ε0.

Furthermore, suppose q1, q′1, uq1, q′1, and gtuq1 all belong to π−1(K). Suppose x ∈ U+[gtuq1] ∩
BX0(gtuq1,1/100). Let

At = U+[gtuq1] ∩ BX0(x, ε0),

A′
t = U+[gtq

′
1

]∩ BX0(x, ε0).

Then,

κ−1 |g−tAt|
|U+[q1] ∩ B+(q1,1/100)| ≤

|g−tA′
t|

|U+[q′1] ∩ B+(q′1,1/100)|
≤ κ

|g−tAt|
|U+[q1] ∩ B+(q1,1/100)| ,

where κ depends only on δ and the Lyapunov spectrum, the “Haar measure” | · | is defined at the

beginning of Section 6, and the ball B+(x, r) is defined in Section 3. Also,

hdX0
(
g−tAt, g−tA′

t

)≤ e−α�,

where hdX0(·, ·) denotes the Hausdorff distance, and α depends only on the Lyapunov spectrum.

This lemma will also be proved in Section 6.6∗.

6.2. The stopping condition. — We now state and prove Lemma 6.15 and Proposi-
tion 6.16 which tell us when the inductive procedure outlined in Section 2.3 stops.

Recall the notational conventions Section 2.2.

The sets L−(q) and L−[q]. — For a.e q ∈ X0, let L−[q] ⊂ W−[q] denote the smallest
real-algebraic subset containing, for some ε > 0, the intersection of the ball of radius
ε with the support of the measure νW−[q], which is the conditional measure of ν along
W−[q]. Then, L−[q] is gt-equivariant. Since the action of g−t is expanding along W−[q],
we see that for almost all q and any ε > 0, L−[q] is the smallest real-algebraic subset of
W−(q) such that L−[q] contains support(νW−[q])∩ BX0(q, ε). Let L−(q)= L−[q] − q.
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The sets L+(q) and L+[q]. — Let π̂+ : W(x)→ W+(x) and π̂− : W(x)→ W−(x)
denote the maps

π̂+
q1
(v)= (1,0)⊗ v, π̂−

q1
(v)= (0,1)⊗ π−

q1
(v),

where π−
q1

is as in (2.2). Let L+(q)= π̂+
q ◦ (π̂−

q )
−1L−(q), and let L+[q] = q + L+(q).

The automorphism ht and the set S+[x]. — Let ht denote the automorphism of the
affine group G++(x) which is the identity on the linear part and multiplication by e2t on
the translational part. For x ∈ X0, let

S+[x] =
⋂
t∈R

ht

(
U+)[x].

It is clear from the definition that S+[x] is relatively closed in W+[x], S+[x] ⊂ U+[x], and
also S+[x] is star-shaped relative to x (so that if x + v ∈ S+[x], so is x + tv for all t > 0).

Lemma 6.15. — The following are equivalent:

(a) L+[x] ⊂ S+[x] for almost all x ∈ X0.

(b) There exists E ⊂ X0 with ν(E) > 0 such that L+[x] ⊂ S+[x] for x ∈ E.

(c) There exists E ⊂ X0 with ν(E) > 0 such that L+[x] ⊂ U+[x] for x ∈ E.

Proof. — It is immediately clear that (a) implies (b). Also, since S+[x] ⊂ U+[x],
(b) immediately implies (c). It remains to prove that (c) implies (a).

Now suppose (c) holds. Let � ⊂ X0 be the set such that for q1 ∈ �, gtq1 spends a
positive proportion of the time in E. Then, by the ergodicity of gt , � is conull. For q1 ∈�,
we have, for a positive fraction of t,

L+[gtq1] ⊂ U+[gtq1].
Let A(x, t) denote the Kontsevich-Zorich cocycle. Then gt acts on W+ by etA(q1, t) and
acts on W− by e−tA(q1, t). Therefore, L−(gtq1)= e−tA(q1, t)L−(q1), and thus L+(gtq1)=
e−tA(q1, t)L+(q1). Also, we have U+(gtq1)= etA(q1, t)U+(q1). Thus, for a positive measure
set of t, we have

(6.31) L+(q1)⊂ e2tU+(q1)= ht

(
U+)(q1),

where ht is as in the statement of Proposition 6.16. Since both sides of (6.31) depend
analytically on t, we see that (6.31) holds for all t. Then, L+[q1] ⊂ S+[q1]. �

Proposition 6.16. — Suppose the equivalent conditions of Lemma 6.15 do not hold. Then, there

exist constants α′
1 > 0, α′

2 > 0 and α′′
1 > 0 depending only on the Lyapunov spectrum, such that for

any δ > 0 and any sufficiently small (depending on δ) ε > 0, there exist �0(δ, ε) > 0 and a compact
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K ⊂ X0 with ν(K) > 1− δ such that for q1 ∈ K there exists a subset Q(q1)⊂ B(q1,1/100) with

|Q(q1)|> (1 − δ)|B(q1,1/100)|, such that for � > �0(δ, ε), for u ∈ Q(q1), and for t > 0 such

that

(6.32) −α′′
1�≤ α′

2t − α′
1�≤ 0,

we have

(6.33) ‖A(q1, u, �, t)‖ ≥ e−α
′
1�eα

′
2t.

Consequently, if ε > 0 is sufficiently small depending on δ, � > �0(δ, ε), q1 ∈ K, u ∈ Q(q1), and

t > 0 is chosen to be as small as possible so that

‖A(q1, u, �, t)‖ = ε,

then t < 1
2α3�, where α3 = α′

1/α
′
2 depends only on the Lyapunov spectrum.

Remark. — The constant α3 constructed during the proof of Proposition 6.16 de-
pends only on the Lyapunov spectrum. This value of α3 is then used in Proposition 6.11
to construct the function A(·, ·, ·, ·), which is referred to in (6.33).

6.3∗. Proof of Proposition 6.16.

Lemma 6.17. — Suppose k ∈ N, and ε > 0. For every sufficiently small δ > 0, and every

compact K′ with ν(K′) > 1 − δ, there exists a constant β(ε, k, δ) > 0 and compact set K′′ =
K′′(ε,K′, k, δ)⊂ K′ with ν(K′′) > 1− c1(δ) where c1(δ)→ 0 as δ→ 0 such that the following

holds:

Suppose q ∈ π−1(K′′) and H ⊂ L−[q] is a connected, degree at most k, R-algebraic set which

is a proper subset of L−[q]. Then there exists q′ ∈ π−1(K′)∩ L−[q] with dX0(q′, q) < ε and

dX0
(
q′,H

)
> β.

Proof. — This argument is virtually identical to the proof of Lemma 5.4 and of
Lemma 5.5. �

Lemma 6.18. — Suppose k ∈ N, m ∈ N, q1 ∈ X̃0, and U ′ ⊂ W+[q1] is the image of a

polynomial map of degree at most k from R
m to W+[q1]. Suppose furthermore that U+[q1] is also the

image of a polynomial map of degree at most k from R
m to W+[q1], and ε > 0 is such that there exists

u ∈ B(q1,1/100) with

dX0
(
uq1,U ′)= ε.

Suppose δ > 0. Then, for at least (1− δ)-fraction of u ∈ B(q1,1/100),

dX0
(
uq1,U ′)> βε,

where β > 0 depends only on k, m, δ and the dimension.
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Proof. — This is a compactness argument. If the lemma was false, we would (after
passing to a limit) obtain polynomial maps whose images are Hausdorff distance ε > 0
apart, yet coincide on a set of measure at least δ. This leads to a contradiction. �

The following lemma is stated in terms of the distance dX0(·, ·). However, in view
of Proposition 3.4, it is equivalent to the analogous statement for the Euclidean distance
on W+[x].

Lemma 6.19. — There exists C : X0 → R
+ finite a.e and α > 0 depending only on the

Lyapunov spectrum such that for all q1 ∈ X̃0 and all z ∈ L+[x] with dX0(z, q1) < 1/100,

dX0
(
z,U+[x])≥ C(x)dX0

(
z,U+[x] ∩ L+[x])α.

Proof. — By the Łojasiewicz inequality [KuSp, Theorem 2] for any x ∈ X̃0 and any
k-algebraic sets U ⊂ W+[x], L ⊂ W+[x], and any z with dX0(z, x) < 1/100,

dX0(z,U)+ dX0(z,L)≥ c(U,L)dX0(z,U∩ L)α,

where c(U,L) > 0 and α > 0 depends only on k and the dimension.
In our case, U = U+[x]. L = L+[x], and z ∈ L+[x]. The lemma follows. �

Recall that for x near q1, πW+(q1)(x) is the unique point in W+[q1] ∩ AW−[x]. Let
nτ =

(
1 τ
0 1

)⊂ N ⊂ SL(2,R).

Lemma 6.20. — Suppose q1 ∈ X̃0, q′1 ∈ W−[q1]. Then, we have

πW+(q1)

(
nτq

′
1

)= nτ ′
(
q1 + (1,0)⊗ τ(1+ cτ)−1

(
π̂−

q1

)−1(
q′1 − q1

))
,

where c = p(v)∧ p(Im q1), q′1 − q1 = (0,1)⊗ v, and τ ′ = (1− c)τ (1+ cτ)−1.

Proof. — Abusing notation, we work in period coordinates. Since q′1 ∈ W−[q1], we
can write q′1 = q1 + (0,1)⊗ v, where p(v)∧ p(Re q1)= 0. Then,

nτq
′
1 = (1,0)⊗ (Re q1 + τ(Im q1 + v)

)+ (0,1)⊗ (Im q1 + v).

Let

w = v + cτ(1+ cτ)−1 Im q1.

Then, p(w)∧ p(Re(nτq′1))= 0, and thus, (0,1)⊗w ∈ W−(nτq′1). Therefore,

nτq
′
1 − (0,1)⊗w = (1,0)⊗ (Re q1 + τ(Im q1 + v)

)
+ (0,1)⊗ (1+ cτ)−1 Im q1 ∈ W−[nτq′1].
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We have
(
(1+cτ)−1 0

0 1+cτ

) ∈ A. Therefore,

(6.34) (1,0)⊗ (1+ cτ)−1
(
Re q1 + τ(Im q1 + v)

)+ (0,1)⊗ Im q1 ∈ AW−[nτq′1].
It is easy to check that (6.34) is in W+[q1]. Therefore,

πW+(q1)

(
nτq

′
1

)= (1,0)⊗ (1+ cτ)−1
(
Re q1 + τ(Im q1 + v)

)
+ (0,1)⊗ Im q1

= q1 + (1,0)⊗ τ(1+ cτ)−1
(
Im q1 + v′

)
,

where v′ ∈ H1
⊥ is such that v = c Re q1 + v′. Also

n−1
τ ′ πW+(q1)

(
nτq

′
1

)= πW+(q1)

(
nτq

′
1

)− (1,0)⊗ τ ′ Im q1

= πW+(q1)

(
nτq

′
1

)− (1,0)⊗ (1− c)τ (1+ cτ)−1 Im q1.

Therefore,

n−1
τ ′ πW+(q1)

(
nτq

′
1

)= q1 + (1,0)⊗ τ(1+ cτ)−1
(
c Im q1 + v′

)
.

Also,

c Im q1 + v′ = (π−
q1

)−1
(v)= (π̂−

q1

)−1(
q′1 − q1

)
.

This completes the proof of the lemma. �

Proof of Proposition 6.16. — Suppose the equivalent conditions of Lemma 6.15 do
not hold. For x ∈ X0, let U−(x)= π̂−

x ◦ (π̂+
x )

−1U+(x), and let U−[x] = x +U−(x). Then,
for a.e x ∈ X0, L−[x] �⊂ U−[x], and hence U−[x] ∩ L−[x] is a proper algebraic subset of
L−[x].

By Lemma 6.17, there exists a K′ ⊂ X0 with ν(K′) > 1 − δ/4 and K′′ ⊂ X0 with
ν(K′′) > 1 − δ/2 such that for any q ∈ π−1(K′′) and any degree k proper real algebraic
subset H of L−[q], there exists q′ ∈ L−[q] satisfying the upper bounds in (5.3) and (5.4)
such that dX0(q′,H) > β ′(δ).

Now assume that q ≡ g−�q1 ∈ π−1(K′′). (We will later remove this assumption.)
Then, we apply Lemma 6.17 with H = g−�(U−[q1] ∩L−[q1]) to get q′ ∈ L−[q] ∩π−1(K′′)
satisfying the upper bounds in (5.3) and (5.4) and so that

dX0
(
q′, g−�

(
U−[q1] ∩ L−[q1]

))≥ β ′(δ).

In view of Lemma 3.6 and Proposition 3.4, there exists N > 0 such that for all
x ∈ X̃0 and all y ∈ W−[x] with dX0(x, y) < 1/100 and all t > 1,

dX0(gtx, gty) > e−NtdX0(x, y).
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Let q′1 = g�q
′. Then, q′1 ∈ L−[q1], and

dX0
(
q′1,U−[q1] ∩ L−[q1]

)≥ β ′(δ)e−N�.

Let z ∈ L+[q1] be such that π̂+
q1
◦ (π̂−

q1
)−1(q′1)= z. Then, we have

dX0
(
z,U+[q1] ∩ L+[q1]

)≥ β ′(δ)e−N�,

and thus by Lemma 6.19,

(6.35) dX0
(
z,U+[q1]

)≥ β(δ)β ′(δ)e−αN�.

Let U = U+[q′1]. Then, U is a generalized subspace, and q′1 ∈ U . Furthermore,
both U and U+[q1] are invariant under the action of N ⊂ SL(2,R).

Without loss of generality, we may assume that � is large enough so that the con-
stant c in Lemma 6.20 satisfies c < 1/2. Now choose τ so that τ(1+ cτ)−1 = 1, and let τ ′

be as in Lemma 6.20.
Let U ′ = πW+(q1)(U). Then, since nτq

′
1 ∈ U , we have, by Lemma 6.20,

nτ ′z = πW+(q1)

(
nτq

′
1

) ∈ U ′.

But, since U+[q1] is N-invariant and (6.35) holds, we have

dX0
(
nτ ′z,U+[q1]

)
> β ′′(δ)e−αN�.

Thus (because of nτ ′z and Lemma 6.18),

hdX0
q1

(
U+[q1],U ′)> β ′′(δ)e−αN�.

Then, by Lemma 6.18, for (1− δ)-fraction of u ∈ B(q1,1/100),

(6.36) dX0
(
uq1,U ′)> β ′′′(δ)e−αN�.

By Lemma 3.5, and Proposition 3.4, there exists a compact set K2 of measure at least
(1 − δ) and λmin depending only on the Lyapunov spectrum such that for x ∈ π−1(K2)

and y ∈ W+[x],
dX0(gtx, gty) > c(δ)eλmintdX0(x, y),

as long as t > 0 and dX0(gtx, gty) < 1/100. Let t0 > 0 be the smallest such that
dX0(gt0x, gt0U ′) = 1/100. Therefore, assuming uq1 ∈ π−1(K2) in addition to (6.36) we
have, for 0 < t < t0,

dX0
(
gtuq1, gtU ′)> c(δ)β ′′′(δ)eλmint−αN�.

Hence, for 0 < t < t0,

hdX0
gt uq1

(
U+[gtuq1], gtU ′)> c1(δ)e

λmint−αN�,
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and thus, in view of Proposition 6.11(iii) and Lemma 6.12(b),

hdX0
gt uq1

(
U+[gtuq1], gtU

)
> c2(δ)e

λmint−αN�.

Let α′
2 = λmin/2, α′

1 = 2αN, and let α3 = α′
1/α

′
2. Let α1 > 0 be as in Proposition 6.11 for

this choice of α3. Then we can choose α′′
1 > 0 to be smaller than α1, so that if (6.32) holds

and � is sufficiently large then (6.24) holds. Hence, by Proposition 6.11(ii) if (6.32) holds,
0 < t < t0, (and assuming that gtuq1 ∈ π−1(K′′′) where K′′′ is a compact set of measure at
least 1− δ), ∥∥A(q1, u, �, t)

(
F
(
q′
)− F(q)

)∥∥≥ c3(δ)e
λmint−αN�

Then, for 0 < t < t0 satisfying (6.32),

‖A(q1, u, �, t)‖ ≥ c4(δ)e
λmint−αN�

If t ≥ t0 satisfies (6.32), then

‖A(q1, u, �, t)‖ ≥ ‖A(q1, u, �, t0)‖ ≥ c5(δ)≥ c5(δ)e
λmint−αN�

Thus, for all t such that (6.32) holds,

‖A(q1, u, �, t)‖ ≥ c6(δ)e
λmint−αN�.

This implies (6.33), assuming that � is sufficiently large (depending on δ), q ∈ π−1(K′′)
and gtuq1 ∈ π−1(K′′′).

For the general case (i.e. without the assumptions that q ∈ π−1(K′′) and gtuq1 ∈
π−1(K′′′)), note that we can assume that g−�q1 ∈ π−1(K′′) for a set of � of density at least
(1 − 2δ), and also gtuq1 ∈ π−1(K′′′) for a set of t of density at least (1 − 2δ). Now the
general case of (6.33) follows from the special case, Proposition 6.11(i) and Lemma 3.6. �

6.4∗. Proof of Lemma 6.4. — We can choose a subspace T(x)⊂ Lie(U+)(x), so that

Lie
(
U+)(x)+ Lie(Q++)(x)= T(x)⊕ Lie(Q++)(x).

(In particular, if Lie(U+)(x)∩ Lie(Q++)= {0}, T(x)= Lie(U+)(x).) Then,

Lie(G++)(x)=
(
Z(x)∩W+(x)

)⊕T(x)⊕ Lie(Q++)(x).

Thus, for any vector Y ∈ Lie(G++)(x), we can write

(6.37) Y = πQ(Y)+ πZ(Y)+ πT(Y),

where πQ(Y) ∈ Lie(Q++)(x), πZ(Y) ∈ Z(x)∩W+(x), πT(Y) ∈ T(x).
Suppose there exists ũ ∈ T(x) such that (in W+(x))

(6.38) x + v ≡ exp
[(

I+M′)ũ](x + v′
) ∈ x + Z(x)∩W+(x).
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Then there exists q ∈ Lie(Q++)(x), z ∈ Z(x)∩W+(x) such that in G++(x),

(6.39) exp
[(

I+M′)ũ] exp
(
v′
)= exp(z) exp(q).

In this subsection, we write Vi(x) for Vi(Lie(G++))(x), and λi for λi(Lie(G++)). We also
write V<i(x)=⊕i−1

j=1 Vj(x).
Write ũ = ∑i ũi, where ũi ∈ (Lie(U+) ∩ Vi)(x). Also, write q = ∑i qi , where

qi ∈ (Lie(Q++) ∩ Vi)(x), v = ∑i vi , where vi ∈ (W+ ∩ Vi)(x), and z = ∑i zi where
zi ∈ Zi1(x)= Z(x)∩W+(x)∩ Vi(x).

For h ∈ G++(x) we may write h = h1h2 where h1 ∈ Q++(x), and h2 ∈ W+(x) is a
pure translation. Let î(h) denote the element of Lie(G++)(x) whose linear part is h1 − I
and whose pure translation part is h2. Then, î : G++(x) → Lie(G++)(x) is a bijective
gt-equivariant map.

Recall that our Lyapunov exponents are numbered so that λi > λj for i < j. Then,
we claim that

î
(
exp
[(

I+M′)ũ] exp
(
v′
))+ V<i(x)(6.40)

= ũi + v′i + î

(
exp
[(

I+M′)∑
j>i

ũj

]
exp
[∑

j>i

v′j

])
+ V<i(x).

Indeed, any term involving ũj or v′j for j < i would belong to V<i(x) (since it would lie in a
subspace with Lyapunov exponent bigger than λi ). Also, for the same reason, any terms
involving ũi or v′i other than those written on the left-hand-side of (6.40) would belong to
V<i(x). Similarly,

î
(
exp(z) exp(q)

)+ V<i(x)(6.41)

= zi + qi + î

(
exp
(∑

j>i

zj

)
exp
(∑

j>i

qj

))
+ V<i(x).

We now apply î to both sides of (6.39), plug in (6.40) and (6.41), and compare terms in
Vi(x). We get equations of the form

ũi + v′i + pi = zi + qi,

where pi is a polynomial in the ũj and qj for λj < λi , and in the M′
jk for λj −λk < λi . Then,

the equation can be solved inductively, starting with the equation with i maximal (and
thus λi minimal). Thus, Equation (6.38) can indeed be solved for ũ and we get,

ũi =−πT

(
v′i + pi

)
, zi = πZ

(
v′i + pi

)
, qi = πQ

(
v′i + pi

)
,

where πQ, πT and πZ as in (6.37). This shows that v = exp(z)v′ has the form given in
(6.7).



172 ALEX ESKIN, MARYAM MIRZAKHANI

Let U′ = exp((I+M′)Lie(U+)(x)). By our assumptions, U′ is a subgroup of G++.
Therefore, for ũ as in (6.38),

U = U′ · (x + v′
)= U′ exp

(−(I+M′)ũ) · (x + v)= U′ · (x + v).

Then, (M′, v) is also a parametrization of U . To make M′ adapted to Z(x) we proceed
as follows:

For u ∈ Lie(G++)(x), we can write u = u′′ + z′′, where u′′ ∈ Lie(U+)(x) and z′′ ∈
Z(x). Let πZ

U+ : Lie(G++)→ Lie(U+) be the linear map sending u to u′′.
In view of (6.6), we need to find a linear map J : Lie(U+)(x)→ Lie(U+)(x), so that

if we define M via the formula (6.6), then M is adapted to Z(x). Write u′ = Ju. Then,
u′ ∈ Lie(U+)(x) must be such that u′ +M′u′ = u+ z, where z ∈ Z. Then,

u′ + πZ
U+
(
M′u′

)= u,

hence u′ = Ju must be given by the formula

u′ = (I+ πZ
U+ ◦M′)−1

u.

Thus, in view of (6.6), we define M by

(6.42) M = (I+M′)(I+ πZ
U+ ◦M′)−1 − I.

Then for all u ∈ Lie(U+)(x), Mu = (I+M)u− u = (I+M′)u′ − u ∈ Z(x). Thus (M, v) is
adapted to Z(x). Since M′ ∈H++(x),

πZ
U+ ◦M′ =

∑
i<j

πZ
U+ ◦M′

ij,

where M′
ij ∈ Hom(Lie(U+) ∩ Vj,Lie(G++) ∩ Vi). Since Z(x) is a Lyapunov-admissible

transversal, πZ
U+ takes Lie(G++)∩ Vj to Lie(U+)∩ Vi . Therefore,

πZ
U+ ◦M′

ij ∈ Hom
(
Lie
(
U+)∩ Vj,Lie

(
U+)∩ Vi

)
.

Thus, πZ
U+ ◦M′ is nilpotent. Then (6.8) follows from (6.42).

This argument shows the existence of a pair (M, v) which parametrizes U and is
adapted to Z(x). The uniqueness follows from the same argument. Essentially one shows
that any (M, v) which parametrizes U and is adapted to Z(x) must satisfy equations
whose unique solution is given by (6.7) and (6.8). �
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6.5∗. Construction of the map A(q1, u, �, t).

Motivation. — Suppose q1 ∈ X̃0, q′1 ∈ W−[q1], u ∈ U+(q1), so uq1 ∈ W+[q1]. To con-
struct the generalized subspace U = U(M′′, v′′) of Proposition 6.11, we first let U = gtU0

and construct the generalized subspace U0 ⊂ W+[uq1]. Let z = πW+(q′1)(uq1), so that z is
the unique point in W+[q′1] ∩ AW−[uq1]. In particular, W+[q′1] = W+[z]. (Note that we
are not assuming any ergodic properties of z; in particular the Lyapunov subspaces at z

may not be defined.)
We will construct a π1(X0)-equivariant linear map P̃s(uq1, q′1) : W+(uq1) →

W+(z), and let U0 = P̃s(uq1, q′1)
−1U+[q′1]. (This makes sense since U+[q′1] ⊂ W+[q′1] =

W+[z].) We want P̃s(uq1, q′1) to have the following properties:

(P1) P̃s(uq1, q′1) depends only on W+[q′1], i.e. for z′ ∈ W+[q′1], we have P̃s(uq1, z′)=
P̃s(uq1, q′1). In particular, for any u′ ∈ U+(q′1), P̃s(uq1, q′1)= P̃s(uq1, u′q′1).

(P2) For nearby x, y ∈ X̃0, let PGM(x, y) : H1(x)→ H1(y) denote the Gauss-Manin
connection. For u ∈ B(q1,1/100), u′ ∈ B(q′1,1/50) and t ≥ 0 with

(6.43) dX0
(
gtuq1, gtu

′q′1
)
< 1/100,

let z′ = πW+(gt u′q′1)(gtuq1). Then, there exists α1 > 0 depending only on the Lya-
punov spectrum such that ‖P̃s(gtuq1, gtu

′q′1)
−1PGM(gtuq1, z′)− I‖Y = O(e−α1�),

for all t > 0 such that (6.43) holds. (Also note that the points uq1 and u′q′1
satisfy dX0(g−τuq1, g−τu′q′1)= O(1) for all 0 ≤ τ ≤ �.)

Note that as long as (6.43) holds, dX0(gtuq1, z′)= O(1) and dX0(z′, gtu
′q′1)=

O(1) so that PGM(gtuq1, z′) connects nearby points. This would not be the
case if we defined P̃s(uq1, q′1) to be a linear map from W+(uq1) to W+(q′1),
since gtuq1 and gtq

′
1 would quickly become far apart.

(P3) The (entries of the matrix) P̃s(uq1, q′1)
−1 are polynomials of degree at most s

in (the entries of the matrix) P−(q1, q′1).
(P4) The generalized subspace U = P̃s(uq1, q′1)

−1U+[q′1] can be parametrized
by (M′′, v′′) ∈ H++(uq1) × W+(uq1) (and not by an arbitrary element of
H+(uq1)×W+(uq1)).

The construction will take place in several steps.

Notation. — In this subsection, Vi(x) refers to Vi(H1)(x).

The map P̂(x, y). — There exists a set K of full measure such that each point x in K
is Lyapunov-regular with respect to the bundle W+, i.e.

H1(x)=
⊕

i

Vi(x),
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where Vi(x)= Vi(H1)(x) are the Lyapunov subspaces, and the multiplicative ergodic the-
orem holds. We have the flag

(6.44) {0} ⊂ V≤1(x)⊂ · · · ⊂ V≤n(x)= H1(x),

where V≤j(x)=⊕j

i=1 Vi(x). Note that V≤n−1(x)= W+(x). If y ∈ W+[x] is also Lyapunov-
regular, then the flag (6.44) at y agrees with the flag at x, provided we identify H1(y) with
H1(x) using the Gauss-Manin connection. Thus, we may define (6.44) at any point x such
that W+[x] contains a regular point.

Now suppose x and y are restricted to a subset where the Vi vary continuously.
Then, for nearby x and y, we have, for each i,

(6.45) H1(x)= V≤i(y)⊕
n⊕

j=i+1

Vj(x).

Let z = πW+(y)(x), and let P̂i : Vi(x)→ H1(z) be the map taking v ∈ Vi(x) to its V≤i(y)

component under the decomposition (6.45). Let P̂(x, y) : H1(x)→ H1(z) be the linear
map which agrees with P̂i on each Vi(x). Note that P̂(x, y) is defined for all nearby x, y

such that (6.45) holds for all i. Let P̂[x, y] be the affine map from W+[x] to W+[ y] whose
linear part is P̂(x, y) and such that x maps to z = πW+(y)(x). To simplify notation, we will
denote P̂[x, y] also by P̂(x, y).

We have

P̂(gtx, gty)= gt ◦ P̂(x, y) ◦ g−t,

and

(6.46) P̂(x, y)V≤i(x)= PGM(y, z)V≤i(y)= V≤i(z).

(Since z ∈ W+[ y], we can define V≤i(z) to be PGM(y, z)V≤i(y) even if Vi(z) were not
originally defined.)

The following lemma essentially states that the map P̂(uq1, q′1) has properties (P1)
and (P2).

Lemma 6.21. — Suppose δ > 0, α3 > 0 and � is sufficiently large depending on δ and

α3. Suppose q ∈ X̃0 and q′ ∈ W−[q] satisfy the upper bounds in (5.3) and (5.4). Let q1 = g�q (see

Figure 1), and write q′1 = g�q
′. Then, for almost all u ∈ B(q1,1/100) and t with 0 < t < α3� such

that

dX0
(
gtuq1,U+[gtq

′
1

])
< 1/100,

the following holds:
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Let Û = P̂(uq1, q′1)
−1(U+[q′1]). Then Û ⊂ W+[q1] is a generalized subspace, and

hdX0
gt uq1

(
gtÛ ,U+[gtq

′
1

])≤ C(q1)C(uq1)e
−α(t+�),

where α > 0 depends only on α3 and the Lyapunov spectrum, and C : X0 → R
+ is finite almost

everywhere.

Proof. — In this proof, we write Vi(x) for Vi(H1)(x) and V≤i(x) for V≤i(H1)(x). For
convenience, we also choose u′ ∈ B(q′1,1/50) with

dX0
(
gtuq1, gtu

′q′1
)= dX0

(
gtuq1,U+[gtq

′
1

])≤ 1/100.

(Nothing in the proof will depend on the choice of u′.)
Let q2 = gtuq1, q′2 = gtu

′q′1. We claim that

(6.47) dY

(
V≤i(q2),PGM

(
q′2, q2

)
V≤i

(
q′2
))≤ C(q1)C(uq1)e

−α(t+�),

where α > 0 depends only on the Lyapunov spectrum, and C : X0 →R
+ (which depends

on δ) is finite a.e.
We will apply Lemma 4.7 (with t + � in place of t) to the points x = g−(t+�)q2 and

y = g−(t+�)q′2. Thus, we need to bound D+(x, y). In the following argument, we identify
H1(x), H1(y), H1(q) and H1(q′) using the Gauss-Manin connection, while suppressing
PGM from the notation.

Suppose v′ ∈ V≤i(y) realizes the supremum in the definition of D+(x, y), i.e. v′ =
v +w where v ∈ V≤i(x), w ∈ V>i(x), and D+(x, y)= ‖w‖Y/‖v‖Y.

Note that V≤i(x)= V≤i(q) and V≤i(y)= V≤i(q
′). Thus, v′ ∈ V≤i(q

′). Also note that
V>i(q

′)= V>i(q) for all i, P−(q′, q)Vi(q
′)= Vi(q), and by Lemma 4.2(c), P−(q′, q) is lower

triangular and unipotent. By the upper bound in (5.4), ‖P−(q′, q)‖Y ≤ C′(δ). (In par-
ticular, we have a lower bound, depending on δ, on the angles between the Lyapunov
subspaces Vi(q

′).) Hence we can write

v′ = v′′ +w′′ v′′ ∈ V≤i(q), w′′ ∈ V>i(q), ‖w′′‖Y ≤ C(δ)‖v′′‖Y.

Since V≤i(x)= V≤i(q), we have v′′ ∈ V≤i(x). By Corollary 4.9 (applied with x = q1, y = uq1

and t = �) we can write

w′′ = v2 +w2 v2 ∈ V≤i(x),w2 ∈ V>i(x),

and ‖v2‖Y ≤ C1(q1)C1(uq1)e
−α�‖w′′‖Y.

Thus,

v = v′′ + v2, w =w2.
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If � is bounded depending on C1(q1)C1(uq1) and δ, then (in view of the condition t < α3�),
the desired estimate (6.47) is trivially true. Thus, we may assume that � is sufficiently large
so that

C1(q1)C1(uq1)e
−α� ≤ 1.

Then,

‖w2‖Y ≤ ‖w′′‖Y + ‖v2‖Y ≤ 2‖w′′‖Y ≤ 2C(δ)‖v′′‖Y.

But,

‖v2‖Y ≤ C1(q1)C1(uq1)e
−α�‖w2‖Y ≤ 2C(δ)C1(q1)C1(uq1)e

−α�‖v′′‖Y.

Arguing as above, we may assume, without loss of generality, that � is sufficiently large so
that

‖v‖Y ≥ ‖v′′‖Y − ‖v2‖Y ≥ (1/2)‖v′′‖Y.

Then,

D+(x, y)= ‖w2‖Y

‖v‖Y
≤ 4C(δ).

Hence, by Lemma 4.7, (6.47) follows.
By Lemma 4.14(c), for any ε > 0 and any subset S of the Lyapunov exponents,

(6.48) dY

(⊕
i∈S

Vi(q2),
⊕
j /∈S

Vj(q2)

)
> Cε(uq1)e

−εt > Cε(uq1)e
−ε(t+�).

Choose ε < α/2, where α is as in (6.47). Then, by (6.48), (6.47), and the definition of
P̂(q2, q′2)= P̂(gtuq1, gtu

′q′1),

(6.49)
∥∥P̂
(
gtuq1, gtu

′q′1
)−1

PGM
(
gtuq1, g′t u

′q′1
)− I

∥∥
Y
≤ C′

ε(uq1)C′(q1)e
−α′(�+t),

where α′ = α − ε depends only on the Lyapunov spectrum, and C′(·), C′
ε(·) are finite

a.e. Also note that by the upper bound in (5.3) and Lemma 3.5, we have

dY(uq1, z)≤ Cε(q1)e
−α′�,

and again by Lemma 3.5,

(6.50) dY(gtuq1, gtz) < Cε(uq1)e
−α′tdY(uq1, z)≤ Cε(q1)Cε(uq1)e

−α′(t+�).

Note that Û is the orbit of a subgroup Û of G(uq1) whose Lie algebra is

P̂
(
uq1, q′1

)−1

∗ Lie
(
U+)(q′1)
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(and we are using the notation (6.11)). By (6.46) and the fact that Lie(U+)(q′1) ∈ G++(q′1)
we have Lie(Û) ∈ G++(uq1). Thus, Û is a generalized subspace.

Since U+[q′1] is a generalized subspace, for all u′ ∈ U+(q′1), U+[q′1] = U+[u′q′1]. We
have

gtÛ = gtP̂
(
uq1, u′q′1

)−1
U+[u′q′1]= P̂

(
gtuq1, gtu

′q′1
)−1

U+[gtu
′q′1
]
.

Therefore, the lemma follows from (6.49) and (6.50). �

Motivation. — Suppose q1 ∈ X̃0, u ∈ U+(q1), q′1 ∈ W−[q1]. In view of Lemma 6.21,
P̂(uq1, q′1) has properties (P1) and (P2). We claim that it does not in general have the
properties (P3) and (P4).

Let z = πW+(q′1)(uq1) so in particular P̂(uq1, q′1)= P̂(uq1, z) and let

(6.51) Q̂
(
uq1; q′1

)= P̂(uq1, z)−1PGM
(
q′1, z

)
P−(q1, q′1

) ◦ P+(uq1, q1),

so that

(6.52) P̂(uq1, z)Q̂
(
uq1; q′1

)= PGM
(
q′1, z

)
P−(q1, q′1

)
P+(uq1, q1).

Then, Q̂(uq1; q′1) : H1(uq1) → H1(uq1) and Q̂(uq1; q′1)V≤i(uq1) = V≤i(uq1), hence
Q̂(uq1; q′1) ∈ Q+(uq1). In particular Q̂(uq1; q′1)W

+(uq1)= W+(uq1).
We now show how to compute P̂(uq1, q′1) and Q̂(uq1; q′1) in terms of P+ =

P+(uq1, q1) and P− = P−(q1, q′1). In view of Lemma 4.2, P+ is upper triangular with 1’s
along the diagonal in terms of a basis adapted to Vi(uq1). Also by Lemma 4.2 applied
to P− instead of P+, P− is lower triangular with 1’s along the diagonal in terms of a ba-
sis adapted to Vi(q1). Therefore, since P+ takes Vi(uq1) to Vi(q1), (P+)−1P−P+ is lower
triangular with 1’s along the diagonal in terms of a basis adapted to Vi(uq1).

Let P̂ = P̂(uq1, q′1), Q̂ = Q̂(uq1; q′1). Then, in view of the definition of P̂, P̂ is lower
triangular with 1’s along the diagonal in terms of a basis adapted to Vi(uq1) (and we
identify H1(q′1) with H1(uq1) using the Gauss-Manin connection). Also, since Q̂ preserves
the flag V≤i(uq1), Q̂ is upper triangular in terms of the basis adapted to Vi(uq1). Thus,
(6.52) can we written as

(6.53) P̂Q̂ = P−P+ = P+((P+)−1
P−P+)

Recall that the Gaussian elimination algorithm shows that any matrix A in neigh-
borhood of the identity I can be written uniquely as A = LU where L is lower tri-
angular with 1’s along the diagonal and U is upper triangular. Thus, P̂ = P̂(uq1, q′1)
and Q̂ = Q̂(uq1; q′1) are the L and U parts of the LU decomposition of the matrix
A = P−(q1, q′1)P

+(uq1, q1). (Note that we are given A = U′L′ where U′ = P+ is upper
triangular and L′ = (P+)−1P−P+ is lower triangular, so we are really solving the equation
LU = U′L′ for L and U.)
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Since the Gaussian elimination algorithm involves division, the entries of
P̂(uq1, q′1)

−1 are rational functions of the entries of P+(uq1, q1) and P−(q1, q′1), but not
in general polynomials. This means that P̂(uq1, q′1) does not in general have property
(P3). Also, the diagonal entries of Q̂(uq1; q′1) are not 1. This eventually translates to the
failure of the property (P4). Both problems are addressed below.

The maps P̂s(uq1, q′1) and P̃s(uq1, q′1). — For s > 1, let Q̂s(uq1; q′1) be the order s

Taylor approximation to Q̂(uq1; q′1), where the variables are the entries of P−(q1, q′1) (and
u, q1 and the entries of P+(uq1, q1) are considered constants). Then, Q̂s = Q̂s(uq1; q′1) ∈
Q+(uq1). We may write

Q̂s = Ds + Q̃s,

where Ds preserves all the subspaces Vi(uq1) and Q̃s = Q̃s(uq1; q′1) ∈ Q++(uq1). Let
P̃s(uq1, q′1)= P̃s(uq1, z) be defined by the relation:

(6.54) P̃s

(
uq1, q′1

)−1 = Q̃s

(
uq1; q′1

)
P+(q1, uq1)P−(q′1, q1

)
PGM

(
z, q′1

)
.

Motivation. — We will effectively show that for s sufficiently large (chosen at the end
of the proof of Proposition 6.11) the map P̃s(uq1, q′1) has the properties (P1), (P2), (P3) and
(P4).

We have, by (6.54),

P̃s

(
uq1, q′1

)−1V≤i

(
q′1
)= P̃s

(
uq1, q′1

)−1V≤i(z)= V≤i(uq1).

As a consequence,

P̃s

(
uq1, q′1

)−1 ◦Y ◦ P̃s

(
uq1, q′1

) ∈ G++(uq1) for all Y ∈ G++
(
q′1
)
.

Thus, for any subalgebra L of Lie(G++)(q′1), it follows that P̃s(uq1, q′1)
−1
∗ (L) is a subalgebra

of Lie(G++)(uq1), where P̃s(uq1, q′1)
−1
∗ : Lie(G++)(q′1)→ Lie(G++)(uq1) is as in (6.11).

The map iu,q1,s.

Motivation. — For q1 ∈ X0 and u ∈ B(q1,1/100), we want iu,q1,s : Lext(q1) →
H++(uq1)×W+(uq1) to be such that

iu,q1,s

(
P
(
q′1
)−P(q1)

)= (Ms, vs),

where the pair (Ms, vs) ∈ H++(uq1) × W+(uq1) parametrizes the approximation
P̃s(uq1, q′1)

−1U+[q′1] to U+[q′1] constructed above. Furthermore, we want iu,q1,s to be a
polynomial map of degree at most s in the entries of P(q′1)−P(q1).



INVARIANT AND STATIONARY MEASURES 179

By Proposition 4.12(a), we have

(6.55) Lie
(
U+)(q′1)= P−(q1, q′1

)
∗ ◦ P+(uq1, q1)∗

(
Lie
(
U+)(uq1)

)
,

where we used the notation (6.11). Let U ′
s = P̃s(uq1, q′1)

−1U+[q′1]. We first find (M′
s, v

′
s) ∈

H+(q1)×W+(q1) which parametrizes U ′
s . Let

vs = P̃s

(
uq1, q′1

)−1
q′1 ∈ U ′

s ⊂ W+[q1] = W+[uq1].
By (6.55), U ′

s = Us · vs where the subgroup Us of G++(uq1) is such that

Lie(Us)= P̃s(uq1, z)−1
∗ ◦ PGM

(
q′1, z

)
∗ ◦ P−(q1, q′1

)
∗

◦ P+(uq1, q1)∗
(
Lie
(
U+)(uq1)

)
.

By (6.54),

(6.56) Lie(Us)= Q̃s

(
uq1; q′1

)
∗ Lie

(
U+)(uq1).

Let

Ms = Q̃s

(
uq1; q′1

)
∗ − I.

Then (Ms, vs) parametrizes U ′
s . Since Q̃s(uq1; q′1) ∈ Q++(uq1), Ms ∈H++(q1).

Note that by (5.8), we can recover Im q1 from P(q1). Also, since q1 is considered
known and fixed here, knowing Im q′1 is equivalent to knowing q′1 since Re q1 = Re q′1.

Also, since by Proposition 4.12(a), for q′1 ∈ W−[q1],
(6.57) Lie

(
U+)(q′1)= P−(q1, q′1

)
∗ Lie

(
U+)(q1)=

(
P
(
q′1
) ◦P(q1)

−1
)
∗ Lie

(
U+)(q1),

we can reconstruct U+(q′1) if we know P(q1), U+(q1) and P(q′1). Now let iu,q1,s :
Lext(q1)→H++(uq1)×W+(uq1) be the map taking P(q′1)−P(q1) to (Ms, vs). In view of
(6.56), this is a polynomial map, since Q̃s is a polynomial, and both Im q′1 and Lie(U+)(q′1)
can be recovered from P(q′1) using (5.8) and (6.57). (Note that q1 is considered fixed here,
so knowing P(q′1)−P(q1) is equivalent to knowing P(q′1).)

The maps (iu,q1,s)∗ and iu,q1,s. — For a ∈ N, let ĵ⊗a : Lext(x)→ Lext(x)
⊗a be the “diag-

onal embedding”

ĵ⊗a(v)= v⊗ · · · ⊗ v, (a times)

and let ĵ�a denote the corresponding map Lext(x)→Lext(x)
�a.

Since iu,q1,s :Lext(q1)→H++(uq1)×W+(uq1) is a polynomial map, by the universal
property of the tensor product, there exists a > 0 and a linear map (iu,q1,s)∗ : Lext(q1)

�a →
H++(uq1)×W+(uq1) such that

iu,q1,s = (iu,q1,s)∗ ◦ ĵ�a.
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Furthermore, there exists r > a and a linear map iu,q1,s :Lext(q1)
�r → H̃(uq1) such that

(6.58) j ◦ (iu,q1,s)∗ = iu,q1,s ◦ ĵ�r,

where j is as in (6.10). Then iu,q1,s takes F(q′1)− F(q1) ∈ Lext(q1)
�r to j(Ms, vs) ∈ H̃(uq1),

where (Ms, vs) is a parametrization of the approximation P̃s(uq1; q′1)
−1U+[q′1] to U+[q′1].

Construction of the map A(q1, u, �, t). — Let s ∈N be a sufficiently large integer to be
chosen later. (It will be chosen near the end of the proof of Proposition 6.11, depending
only on the Lyapunov spectrum.) Let r ∈ N be such that (6.58) holds. Suppose q1 ∈ X0

and u ∈ B(q1,1/100). For � > 0 and t > 0, let

A(q1, u, �, t) :Lext(g−�q1)
(r) → H(gtuq1),

be given by

A(q1, u, �, t)= (gt)∗ ◦ SZ(uq1)
uq1

◦ π̂ ◦ iu,q1,s ◦ (g�)�r
∗

where (g�)∗ : Lext(q)→Lext(g�q) is given by

(g�)∗(P)= g� ◦ P ◦ g−1
� .

Then A(q1, u, �, t) is a linear map. Unraveling the definitions, we have, for P ∈Lext(g−�q1),

A(q1, u, �, t)
(
ĵ�r(P)

)= j
(
G+

t ◦ SZ(uq1)
uq1

◦ (iu,q1,s) ◦ (g�)∗(P)
)

Thus, for q′ satisfying the upper bounds in (5.3) and (5.4),

(6.59) A(q1, u, �, t)
(
F(q)− F

(
q′
))= j

(
M′′, v′′

)
,

where (M′′, v′′) ∈H++(gtuq1)×W+(uq1) is a parametrization of the approximation

gtP̃s

(
uq1, u′q′1

)−1
U+[u′q′1]

to U+[gtu
′q′1], where u′q′1 ∈ U+[q′1] is such that dX0(gtuq1, gtu

′q′1) < 1/100.

6.6∗. Proofs of Proposition 6.11 and Lemma 6.14. Proof of Proposition 6.11. — Note that
Proposition 6.11(i) follows immediately from the definition of A(·, ·, ·, ·). We now begin
the proof of Proposition 6.11(iii). Let P =P(q′)−P(q) ∈Lext(q). Let

P1 = (g�)∗(P)= g� ◦ P ◦ g−1
� ∈Lext(q1).

Let

(Ms, vs)= iu,q1,s(P1).
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Let Ũs = Ũs(Ms, vs) be the generalized subspace parametrized by (Ms, vs). Then

(6.60) Ũs = P̃s

(
uq1, q′1

)−1
U+[q′1].

Let

(6.61) Û = P̂
(
uq1, q′1

)−1
U+[q′1], Ûs = P̂s

(
uq1, q′1

)−1
U+[q1].

Suppose (6.23) holds. By Lemma 6.21,

(6.62) hdX0
gt uq1

(
Û ,U+[gtu

′q′1
])= Ouq1

(
e−α1t

)
,

where α1 depends only on the Lyapunov spectrum. We have, in view of (5.3) and (5.4),
for � sufficiently large depending on δ,

(6.63)
∥∥P−(q1, q′1

)
PGM

(
q′1, q1

)− I
∥∥

Y
= Oq1

(
e−α2�

)
where α2 depends only on the Lyapunov spectrum. Therefore,

hdX0
uq1

(
U+[uq1],U+[q′1])= Oq1

(
e−α2�

)

To go from Q̂ to Q̂s we are doing order s Taylor expansion of the solution to (6.53)
in the entries of P−(q1, q′1)P

GM(q′1, q1)− I. Thus, by (6.63),
∥∥Q̂s

(
uq1; q′1

)− Q̂
(
uq1; q′1

)∥∥
Y
= Oq1,uq1

(
e−α2(s+1)�

)
and thus, by (6.54),

(6.64)
∥∥P̂s

(
uq1, q′1

)−1 − P̂
(
uq1, q′1

)−1∥∥
Y
= Oq1,uq1

(
e−α2(s+1)�

)
Then, by (6.61),

hdX0
uq1
(Û , Ûs)= Oq1,uq1

(
e−α2(s+1)�

)
.

Then, by Lemma 6.10(a),

(6.65) hdX0
gt uq1

(gtÛ , gtÛs)= Oq1,uq1

(
e−α2(s+1)�+2t

)
.

Also, by (6.63), (6.51) and (6.49), we have
∥∥Q̂
(
uq1; q′1

)− I
∥∥

Y
= Oq1,uq1

(
e−α2�

)
,

and therefore
∥∥Q̂s

(
uq1; q′1

)− I
∥∥

Y
= Oq1,uq1

(
e−α2�

)
.
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Thus,

‖Ds‖Y =
∥∥Q̃s

(
uq1; q′1

)− Q̂s

(
uq1; q′1

)∥∥
Y
= Oq1

(
e−α2�

)
Therefore, since Ds preserves all the eigenspaces Vi , and the Osceledets multiplicative
ergodic theorem, for sufficiently small ε > 0 (depending on the Lyapunov spectrum),

‖gt ◦Ds ◦ g−1
t ‖Y ≤ C1(q1)C2(uq1, ε)e

−α2�+εt ≤ C1(q1)C′
2(uq1)e

−(α2/2)�.

Thus,

(6.66)
∥∥P̃s

(
gtuq1, gtu

′q′1
)−1 − P̂s

(
gtuq1, gtu

′q′1
)−1∥∥= Ouq1

(
e−(α2/2)�

)
and hence by (6.60) and (6.61),

(6.67) hdX0
gt uq1

(gtÛs, gtŨs)= Ouq1

(‖gt ◦Ds ◦ g−1
t ‖Y

)= Ouq1

(
e−(α2/2)�

)
.

We now choose s so that α2α3(s + 1)− 3 > α2. Then, by (6.22), (6.62), (6.65), and (6.67),

(6.68) hdX0
gt uq1

(
gtŨs,U+[gtq

′
1

])≤ C(q1)C(uq1)e
−α�,

where α depends only on the Lyapunov spectrum. In view of (6.59), the pair (M′′, v′′)
parametrizes gtŨs. Therefore, (6.26) holds. Finally, (6.27) is an immediate consequence of
(6.68). This completes the proof of Proposition 6.11(iii). (Note that is was shown imme-
diately after the statement of Proposition 6.11 that Proposition 6.11(iii) implies Proposi-
tion 6.11(ii).) �

Proof of Lemma 6.14. — In the proof of this lemma we normalize the measure | · |
on U+[q1] so that |U+[q1] ∩ B+(q1,1/100)| = 1 and similarly we normalize the measure
| · | on U+[q′1] so that |U+[q′1] ∩ B+(q′1,1/100)| = 1. As in the proof of Lemma 6.21, we
choose u′ ∈ B(q′1,1/50) with Vi(gtu

′q′1) and U+[gtu
′q′1] = U+[gtq

′
1] defined and

dX0
(
gtuq1, gtu

′q′1
)≤ hdX0

gt uq1

(
U+[gtuq1],U+[gtq

′
1

])≤ ε.

(Nothing in the proof will depend on the choice of u′.)
Let A0 = g−tAt , A′

0 = g−tA′
t . Let P̃s be as in (6.54). Let Ãt = P̃s(gtuq1, gtu

′q′1)
−1A′

t .
Then,

Ã0 ≡ g−tÃt = P̃s

(
uq1, u′q′1

)−1
A′

0.

As in the proof of Proposition 6.11 (i.e. by combining (6.49), (6.64) and (6.66)), we have
∥∥P̃s

(
uq1, u′q′1

)−1
PGM

(
uq1, u′q′1

)− I
∥∥

Y
= O

(
e−α�
)
.∥∥P̃s

(
gtuq1, gtu

′q′1
)−1

PGM
(
gtuq1, g′t u

′q′1
)− I

∥∥
Y
= O

(
e−α�
)
.
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Hence, |Ãt| is comparable to |A′
t| and |Ã0| is comparable to |A′

0|. Thus, it is enough to
show that |Ã0| is comparable to |A0|.

As in the proof of Proposition 6.11, let (M′′, v′′) be the pair parameterizing gtŨs =
P̃s(gtuq1, gtu

′q1)
−1U+[gtu

′q′1]. Let f̃t : Lie(U+)(gtuq1)→ gtŨs be the “parametrization” map

f̃t(Y)= exp
[(

I+M′′)Y](gtuq1)
(
gtuq1 + v′′

)
.

Similarly, let ft : Lie(U+)(gtuq1)→ U+[gtuq1] be the exponential map

ft(Y)= exp(Y)gtuq1.

Then, provided that ε is sufficiently small, we have

(6.69) 0.5f −1(At)⊂ f̃ −1
t (Ãt)⊂ 2f −1(At)

Let M0 = g−1
t ◦M′′ ◦ gt , v0 = g−1

t v′′. Then, g−1
t ◦ f̃t ◦ gt = f̃0, where f̃0 : Lie(U+)(uq1)→ Us

is given by

f̃0(Y)= exp
[
(I+M0)Y

]
(gtuq1)(gtuq1 + v0).

Similarly, g−1
t ◦ ft ◦ gt = f0, where f0 : Lie(U+)(uq1)→ U+[uq1] is given by the exponential

map

f0(Y)= exp(Y)uq1.

Then, it follows from applying g−1
t to (6.69) that

(6.70) 0.5f −1
0 (A0)⊂ f̃ −1

0 (Ã0)⊂ 2f −1
0 (A0)

Thus, |f̃ −1
0 (Ã0)| is comparable to |f −1

0 (A0)| = |A0|. But, since M′′ ∈H++(gtuq1) and v′′ ∈
W+(gtuq1) are O(ε), M0 and v0 are exponentially small. Therefore, the map f̃0 is close
to f0 (and since Y is small, it is close to the identity). Therefore, |f̃ −1

0 (Ã0)| is comparable
to |Ã0|. The second assertion of the Lemma also follows from (6.70) and the fact that M0

and v0 are exponentially small. �

7. Bilipshitz estimates

In this section, we continue working on X0 (and not X). Let ‖ · ‖ be the norm on
H(++)

big defined in (4.18). Since H ⊂ H(++)
big , ‖ · ‖ is also a norm on H. We can also define

a norm on H(−−)
big in an analogous way. Since Lext(x)

(r) ⊂ H(−−)
big (x), the norm ‖ · ‖x is also

a norm on Lext(x)
(r). Let A(q1, u, �, t)= ‖A(q1, u, �, t)‖ where the operator norm is with

respect to the dynamical norms ‖·‖ at g−�q1 and gtuq1. In the rest of this section we assume
that the equivalent conditions of Lemma 6.15 do not hold, and then by Proposition 6.16,
(6.33) holds.
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For 1/100 > ε > 0, almost all q1 ∈ X0, almost all u ∈ B(q1,1/100) and � > 0, let

τ̂(ε)(q1, u, �)= sup
{
t : t > 0 and A(q1, u, �, t)≤ ε

}
.

Note that τ̂(ε)(q1, u,0) need not be 0.
For x ∈ X0, let A+(x, t) : H(x)→ H(gtx) denote the action of gt on H as in (6.16).

Let A−(x, s) :L(r)
ext (x)→L(r)

ext (gsx) denote the action of gs on L(r)
ext (x).

Lemma 7.1. — There exist absolute constants N > 0, α > 0 such that for almost all x, and

t > 0,

e−αt ≥ ‖A−(x, t)‖ ≥ e−Nt, eαt ≤ ‖A+(x, t)‖ ≤ eNt,

and,

eNt ≥ ‖A−(x,−t)‖ ≥ eαt, e−Nt ≤ ‖A+(x,−t)‖ ≤ e−αt.

Proof. — This follows immediately from Proposition 4.15. �

Lemma 7.2. — Suppose 0 < ε < 1/100. There exists κ1 > 1 (depending only on the Lya-

punov spectrum) with the following property: for almost all q1 ∈ X0, u ∈ B(q1,1/100), for all � > 0
and s > 0,

τ̂(ε)(q1, u, �+ s) > τ̂(ε)(q1, u, �)+ κ−1
1 s.

Proof. — Note that by (6.21),

A(q1, u, �+ s, t + τ)=A+(gtuq1, τ )A(q1, u, �, t)A−(g−(�+s)q1, s).

Let t = τ̂(ε)(q1, u, �), so that A(q1, u, �, t)= ε. Therefore,

A(q1, u, �+ s, t + τ)≤ ‖A+(gtuq1, τ )‖A(q1, u, �, t)‖A−(g−(�+s)q1, s)‖
≤ ε‖A+(qtuq1, τ )‖‖A−(g−(�+s)q1, s)‖ ≤ εeNτ−αs,

where we have used the fact that A(q1, u, �, t) = ε and Lemma 7.1. If t + τ =
τ̂(ε)(q1, u, �+ s) then A(q1, u, �+ s, t+τ)= ε. It follows that Nτ−αs ≥ 0, i.e. τ ≥ (α/N)s.
Hence,

τ̂(ε)(q1, u, �+ s)≥ τ̂(ε)(q1, u, �)+ (α/N)s. �

Lemma 7.3. — Suppose 0 < ε < 1/100. There exists κ2 > 1 (depending only on the Lya-

punov spectrum) such that for almost all q1 ∈ X0, almost all u ∈ B(q1,1/100), all � > 0 and all

s > 0,

τ̂(ε)(q1, u, �+ s) < τ̂(ε)(q1, u, �)+ κ2s.
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Proof. — We have

A(q1, u, �, t)=A+(gt+τuq1,−τ)A(q1, u, �+ s, t + τ)A−(g−�q1,−s).

Let t + τ = τ̂(ε)(q1, u, �+ s). Then, by Lemma 7.1,

A(q1, u, �, t)≤ ‖A+(qt+τuq1,−τ)‖A(q1, u, �+ s, t + τ)‖A−(g−�q1,−s)‖
≤ ε‖A+(qt+τuq1,−τ)‖‖A−(g−�q1,−s)‖ ≤ εe−ατ+Ns,

where we have used the fact that A(q1, u, � + s, t + τ) = ε. Since A(q1, u, �, t) = ε, it
follows that −ατ +Ns > 0, i.e. τ < (N/α)s. It follows that

τ̂(ε)(q1, u, �+ s) < τ̂(ε)(q1, u, �)+ (N/α)s �

Proposition 7.4. — There exists κ > 1 depending only on the Lyapunov spectrum, and such

that for almost all q1 ∈ X0, almost all u ∈ B(q1,1/100), any � > 0 and any measurable subset

Ebad ⊂R
+,

∣∣τ̂(ε)(q1, u,Ebad)∩
[
τ̂(ε)(q1, u,0), τ̂(ε)(q1, u, �)

]∣∣≤ κ|Ebad ∩ [0, �]|∣∣{t ∈ [0, �]| : τ̂(ε)(q1, u, t) ∈ Ebad

}∣∣≤ κ
∣∣Ebad ∩

[
τ̂(ε)(q1, u,0), τ̂(ε)(q1, u, �)

]∣∣.
Proof. — Let κ = max(κ−1

1 , κ2), where κ1, κ2 are as in Lemmas 7.2 and 7.3. Then,
for fixed q1, u, τ̂(ε)(q1, u, �) is κ-bilipshitz as a function of �. The proposition follows
immediately. �

8. Preliminary divergence estimates

In this section, we continue working on X0 (and not X).

Motivation. — Suppose in the notation of Section 2.3, q1 and q′1 are fixed, but u ∈
B(q1,1/100) and u′ ∈ B(q′1,1/100) vary. Then, as u and u′ vary, so do the points q2

and q′2, and thus the subspaces U+[q2] and U+[q′2]. Let U = U(M′′(u), v′′(u)) be the
approximation to U+[q′2] given by Proposition 6.11, and as in Proposition 6.11, let v(u)=
j(M′′(u), v′′(u)) ∈ H(q2) be the associated vector in H(q2).

In this section we define a certain gt-equivariant and (u)∗-equivariant subbundle
E ⊂ H such that, for fixed q1, q′1, for most u ∈ U+[q1], v = v(u) is near E(q2) (see Propo-
sition 8.5(a) below for the precise statement). We call E the U+-inert subbundle of H.
The subbundle E is the direct sum of subbundles Ei , where Ei is contained in the i-th
Lyapunov subspace of H, and also each Ei is both gt-equivariant and (u)∗-equivariant.
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8.1. The U+-inert subspaces E(x). — We apply the Osceledets multiplicative ergodic
theorem to the action on H(x) (see (6.16)). We often drop the ∗ and denote the action
simply by gt . In this section, λi denotes the i-th Lyapunov exponent of the flow gt on the
bundle H.

Let

V≤i(x)=
⊕

j≤i

Vj(H)(x), V<i(x)=
⊕

j<i

Vj(H)(x),

V≥i(x)=
⊕

j≥i

Vj(H)(x), V>i(x)=
⊕

j>i

Vj(H)(x).

This means that for almost all x ∈ X0 and for v ∈ V≤i(x) such that v /∈ V<i(x),

(8.1) lim
t→−∞

1
t

log
‖gtv‖
‖v‖ = λi,

and for v ∈ V≥i(x) such that v /∈ V>i(x),

(8.2) lim
t→∞

1
t

log
‖gtv‖
‖v‖ = λi.

By e.g. [GM, Lemma 1.5], we have for a.e. x ∈ X0,

(8.3) H(x)= V≤i(x)⊕V>i(x).

Let

(8.4) F≥j(x)=
{
v ∈ H(x) : for almost all u ∈ B(x), (u)∗v ∈ V≥j(ux)

}
,

where (u)∗ is as in Lemma 6.6. In other words, if v ∈ F≥j(x), then for almost all u ∈ B(x),

(8.5) lim sup
t→∞

1
t

log‖(gt)∗(u)∗v‖ ≤ λj.

From the definition of F≥j(x), we have

(8.6) {0} = F≥n+1(x)⊂ Fn(x)⊂ F≥n−1(x)⊂ · · ·F2(x)⊂ F1(x)= H(x).

Let

Ej(x)= F≥j(x)∩V≤j(x).

In particular, E1(x)= V≤1(x)= V1(H)(x). We may have Ej(x)= {0} if j �= 1.
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Lemma 8.1. — For almost all x ∈ X0 the following holds: suppose v ∈ Ej(x) \ {0}. Then for

almost all u ∈ B(x),

(8.7) lim
t→∞

1
t

log‖(gt)∗(u)∗(v)‖ = λj .

Thus (recalling that Vj(H) denotes the subspace of H corresponding to the Lyapunov exponent λj ), we

have for almost all x, using Fubini’s theorem,

Ej(x)⊂ Vj(H)(x).

In particular, if i �= j , Ei(x)∩Ej(x)= {0} for almost all x ∈ X0.

Proof. — Suppose v ∈ Ej(x). Then v ∈ V≤j(x). Since in view of (8.1), V≤j(ux) =
(u)∗V≤j(x) for all u ∈ U+(x), we have for almost all u ∈ B(x), (u)∗v ∈ V≤j(ux). It follows
from (8.3) that (outside of a set of measure 0), (u)∗v /∈ V>j(ux). Now (8.7) follows from
(8.2). �

Lemma 8.2. — After possibly modifying Ej(x) and F≥j(x) on a subset of measure 0 of X, the

following hold:

(a) Ej(x) and F≥j(x) are gt-equivariant, i.e. (gt)∗Ej(x) = Ej(gtx), and (gt)∗F≥j(x) =
F≥j(gtx).

(b) For almost all u ∈ U+(x), Ej(ux)= (u)∗Ej(x), and F≥j(ux)= (u)∗F≥j(x).

Proof. — Note that for t > 0, gtB[x] ⊃ B[gtx]. Therefore, (a) for the case t > 0
follows immediately from the definitions of Ej(x) and F≥j(x). Since the flow {gt}t>0 is
ergodic, it follows that almost everywhere (8.4) holds with B[x] replaced by arbitrary
large balls in U+[x]. This implies that almost everywhere,

F≥j(x)=
{
v ∈ H(x) : for almost all u ∈ U+, (u)∗v ∈ V≥j(ux)

}
,

where (u)∗v is as in Lemma 6.6. Therefore (b) holds. Then, (a) for t < 0 also holds, as
long as both x and gtx belong to a subset of full measure. By considering a transversal for
the flow gt , it is easy to check that it is possible to modify Ej(x) and F≥j(x) on a subset
of measure 0 of X0 in such a way that (a) holds for x in a subset of full measure and all
t ∈R. �

Lemma 8.3. — For x ∈ X0, let

Q(v)= {u ∈ B(x) : (u)∗v ∈ V≥j(ux)
}
.

Then for almost all x, either |Q(v)| = 0, or |Q(v)| = |B(x)| (and thus v ∈ F≥j(x)).
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Proof. — For a subspace V ⊂ H(x), let

Q(V)= {u ∈ B(x) : (u)∗V ⊂ V≥j(ux)
}
.

Let d be the maximal number such that there exists E′ ⊂ X0 with ν(E′) > 0 such that
for x ∈ E′ there exists a subspace V ⊂ H(x) of dimension d with |Q(V)|> 0. For a fixed
x ∈ E′, let W(x) denote the set of subspaces V of dimension d for which |Q(V)| > 0.
Then, by the maximality of d , if V and V′ are distinct elements of W(x) then Q(V) ∩
Q(V′) has measure 0. Let Vx ∈W(x) be such that |Q(Vx)| is maximal (among elements
of W(x)).

Let ε > 0 be arbitrary, and suppose x ∈ E′. By the same Vitali-type argument as in
the proof of Lemma 3.11, there exists t0 > 0 and a subset Q(Vx)

∗ ⊂ Q(Vx)⊂ B(x) such
that for all u ∈ Q(Vx)

∗ and all t > t0,

(8.8) |Bt(ux)∩Q(Vx)| ≥ (1− ε)|Bt(ux)|.
(In other words, Q(Vx)

∗ are “points of density” for Q(Vx), relative to the “balls” Bt .) Let

E∗ = {ux : x ∈ E′, u ∈ Q(Vx)
∗}.

Then, ν(E∗) > 0. Let � = {x ∈ X0 : g−tx ∈ E∗ for an unbounded set of t > 0 }. Then
ν(�)= 1. Suppose x ∈�. We can choose t > t0 such that g−tx ∈ E∗. Note that

(8.9) B[x] = gtBt[g−tx].
Let x′ = g−tx, and let Vt,x = (gt)∗Vx′ . Then in view of (8.8) and (8.9),

|Q(Vt,x)| ≥ (1− ε)|B(x)|.
By the maximality of d (and assuming ε < 1/2), Vt,x does not depend on t. Hence, for
every x ∈ �, there exists V ⊂ H(x) such that dim V = d and |Q(V)| ≥ (1 − ε)|B(x)|.
Since ε > 0 is arbitrary, for each x ∈ �, there exists V ⊂ H(x) with dim V = d , and
|Q(V)| = |B(x)|. Now the maximality of d implies that if v /∈ V then |Q(v)| = 0. �

By Lemma 8.1, Ej(x)∩Ek(x)= {0} if j �= k. Let

�′ = {i : Ei(x) �= {0} for a.e. x
}
.

Let the U+-inert subbundle E be defined by

E(x)=
⊕
i∈�′

Ei(x).

Then E(x)⊂ H(x).
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In view of (8.5), (8.6) and Lemma 8.1, we have F≥j(x) = F≥j+1(x) unless j ∈ �′.
Therefore if we write the elements of �′ in decreasing order as i1, . . . , im we have the flag
(consisting of distinct subspaces)

(8.10) {0} = F≥im+1 ⊂ F≥im(x)⊂ F≥im−1(x)⊂ · · ·F≥i2(x)⊂ F≥i1(x)= H(x).

For a.e. x ∈ X0, and 1 ≤ r ≤ m, let F′
ir
(x) be the orthogonal complement (using the inner

product 〈·, ·〉x defined in Section 4.7) to F≥ir+1(x) in F≥ir (x).

Lemma 8.4. — Given δ > 0 there exists a compact K01 ⊂ X0 with ν(K01) > 1 − δ,

β(δ) > 0, β ′(δ) > 0, and for every x ∈ K01 any j ∈ �′ any v′ ∈ P(F′
j)(x) a subset Q01 =

Q01(x,v′) ⊂ B(x) with |Q01| > (1 − δ)|B(x)| such that for any j ∈ �′ any v′ ∈ F′
j(x) and

any u ∈ Q01, we can write

(u)∗v′ = vu +wu, vu ∈ Ej(ux), wu ∈ V>j(ux),

with ‖vu‖ ≥ β(δ)‖v′‖, and ‖vu‖> β ′(δ)‖wu‖.

Proof. — This is a corollary of Lemma 8.3. Let � ⊂ X0 be the conull set where
(8.3) holds and where F≥i(x)= F≥i+1(x) for all i /∈�′. Suppose x ∈�.

Let F≥k(x) ⊂ F≥j(x) be the next subspace in the flag (8.10) (i.e. F≥k = {0} if j is
the maximal index in �′ and otherwise we have k > j be minimal such that k ∈ �′).
Then F≥j+1(x) = F≥k(x). Since F′

j(x) is complementary to F≥k(x) we have that F′
j(x) is

complementary to F≥j+1(x).
By Lemma 8.2, F≥j is gt-equivariant, and therefore, by the multiplicative ergodic

theorem applied to F≥j , F≥j is the direct sum of its Lyapunov subspaces. Therefore, in
view of (8.3), for almost all y ∈ X0,

(8.11) F≥j(y)=
(
F≥j(y)∩V≤j(y)

)⊕ (F≥j(y)∩V>j(y)
)
.

Since F′
j(x) ⊂ F≥j(x), we have by Lemma 8.2, (u)∗v′ ∈ F≥j(ux) for almost all u ∈ B(x).

By the definition of F≥j+1(x), since v′ /∈ F≥j+1(x), for almost all u if we decompose using
(8.11),

(u)∗v′ = vu +wu, vu ∈ F≥j(ux)∩V≤j(ux), wu ∈ F≥j(ux)∩V>j(ux),

then vu �= 0. Since by definition F≥j(ux)∩V≤j(ux)= Ej(ux) we have vu ∈ Ej(ux). Let

En(x)=
{

v′ ∈ P
(
F′(x)

) :
∣∣∣∣
{

u ∈ B(x) : ‖vu‖ ≥ 1
n
‖v′‖

}∣∣∣∣> (1− δ/2)|B(x)|
}
.

Then the En(x) are an increasing family of open sets, and
⋃∞

n=1 En(x)= P(F′
j(x)). Since

P(F′
j(x)) is compact, there exists n(x) such that En(x)(x) = P(F′

j(x)). We can now choose
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K′
01 ⊂� with ν(K′

01) > 1− δ/2 such that for x ∈ K′
01, n(x) < 1/β(δ). This shows that for

x ∈ K′
01, for any v′ ∈ P(F′

j(x)), for (1−δ/2)-fraction of u ∈ B(x)we have ‖vu‖> β(δ)‖v′‖.
To prove the final estimate note that there exists a set K′′

01 with ν(K′′
01) > 1 − δ/2

and a constant C(δ) such that for all x ∈ K′′
01 and at least (1 − δ/2)-fraction of u ∈ B(x),

we have ‖(u)∗v′‖ ≤ C(δ)‖v′‖. Let K01 = K′
01 ∩K′′

01. Then, for at least (1− δ)-fraction of
u ∈ B(x), we have

‖wu‖ ≤ ‖(u)∗v′‖ ≤ C(δ)‖v′‖ ≤ C(δ)β(δ)−1‖vu‖. �

Proposition 8.5.

(a) For every δ > 0 there exists K ⊂ X0 of measure at least 1 − δ and a number L2(δ) > 0
such that the following holds: Suppose x ∈ K, v ∈ H(x). Then, for any L′ > L2(δ) there

exists L′ < t < 2L′ such that for at least (1− δ)-fraction of u ∈ B(g−tx),

d

(
(gs)∗(u)∗(g−t)∗v
‖(gs)∗(u)∗(g−t)∗v‖ ,E(gsug−tx)

)
≤ C(δ)e−αt,

where s > 0 is such that

(8.12) ‖(gs)∗(u)∗(g−t)∗v‖ = ‖v‖,
and α depends only on the Lyapunov spectrum.

(b) There exists ε ′ > 0 (depending only on the Lyapunov spectrum) and for every δ > 0 a

compact set K′′ with ν(K′′) > 1− c(δ) where c(δ)→ 0 as δ→ 0 such that the following

holds: Suppose there exist arbitrarily large t > 0 with g−tx ∈ K′′ so that for at least (1−δ)-

fraction of u ∈ B(x), the number s > 0 satisfying (8.12), also satisfies

(8.13) s ≥ (1− ε ′
)
t.

Then v ∈ E(x).

Proof. — Let ε > 0 be smaller than one third of the difference between any two
Lyapunov exponents for the action on H. By the Osceledets multiplicative ergodic theo-
rem, there exists a compact subset K1 ⊂ X0 with ν(K1) > 1− δ2 and L > 0 such that for
x ∈ K1 and all j and all t > L,

‖(gt)∗v‖ ≤ e(λj+ε)t‖v‖, v ∈ V≥j(x)

and

‖(gt)∗v‖ ≥ e(λj−ε)t‖v‖, v ∈ V≤j(x).

By Fubini’s theorem there exists K∗
1 ⊂ X0 with ν(K∗

1) > 1− 2δ such that for x ∈ K∗
1,∣∣{u ∈ B(x) : ux ∈ K1

}∣∣≥ (1− δ/2)|B(x)|.
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Let K′′ = K01 ∩K∗
1, where K01 is as in Lemma 8.4 (with δ replaced by δ/2). Let K, L2(δ)

be such that for all x ∈ K and all L′ > L2, there exists t with L′ < t < 2L′ and g−tx ∈ K′′.
Write

(8.14) (g−t)∗v =
∑
j∈�′

v′j, v′j ∈ F′
j(g−tx).

We have g−tx ∈ K01 ∩ K∗
1. Suppose u ∈ Q01(g−tx) and ug−tx ∈ K1. Then, by Lemma 8.4,

we have

(8.15) (u)∗(g−t)∗v =
∑
j∈�′

(vj +wj),

where vj ∈ Ej(ug−tx), wj ∈ V>j(ug−tx), and for all j ∈�′,

(8.16) ‖vj‖ ≥ β ′(δ)‖wj‖.
Then,

‖(gs)∗wj‖ ≤ e(λj+1+ε)s‖wj‖,
and,

(8.17) ‖(gs)∗vj‖ ≥ e(λj−ε)s‖vj‖ ≥ e(λj−ε)sβ ′(δ)‖wj‖.
Thus, for all j ∈�′,

‖(gs)∗wj‖ ≤ e−(λj−λj+1+2ε)sβ ′(δ)−1‖(gs)∗vj‖.
Since (gs)∗vj ∈ E and using part (a) of Proposition 4.15, we get (a) of Proposition 8.5.

To prove (b), suppose v /∈ E(x). We may write

v =
∑
i∈�′

v̂i, v̂i ∈ F′
i(x)

Let j be minimal such that v̂j /∈ Ej(x). Let k > j be such that F≥k(x)⊂ F≥j(x) is the sub-
space preceding F≥j(x) in (8.10). Then, F≥i(x)= F≥j(x) for k + 1 ≤ i ≤ j.

Since v̂j /∈ Ej(x), v̂j must have a component in Vi(H)(x) for some i ≥ j + 1. There-
fore, by looking only at the component in Vi(H), we get

‖(g−t)∗v‖ ≥ C(v)e−(λj+1+ε)t.

Also since F≥k is gt-equivariant we have F≥k(x)=⊕m F≥k(x) ∩ Vm(H). Note that by the
multiplicative ergodic theorem, the restriction of g−t to Vi(H) is of the form e−λi tht , where
‖ht‖ = O(eεt). Therefore (again by looking only at the component in Vi(H) and using
Proposition 4.15(a)), we get

d
(
(g−t)∗v,F≥k(g−tx)

)≥ C(v)e−(λj+1+2ε)t.



192 ALEX ESKIN, MARYAM MIRZAKHANI

(Here and below, d(·, ·) denotes the distance on H(x) given by the dynamical norm ‖ ·‖x.)
Therefore (since (g−t)∗v ∈ F≥j(g−tx)), we see that if we decompose (g−t)∗v as in (8.14), we
get

‖v′j‖ ≥ C(v)e−(λj+1+2ε)t.

We now decompose (u)∗(g−t)∗v as in (8.15). Then, from (8.16) and (8.17),

(8.18) ‖(gs)∗vj‖ ≥ e(λj−ε)s‖vj‖ ≥ e(λj−ε)sβ(δ)‖v′j‖ ≥ e(λj−ε)sβ(δ)C(v)e−(λj+1+2ε)t.

If s satisfies (8.12), then ‖(gs)∗vj‖ = O(1). Therefore, in view of (8.18),

e(λj−ε)se−(λj+1+2ε)t ≤ c = c(v, δ).

Therefore,

s ≤ (λj+1 + 2ε)t + log c(v, δ)
(λj − ε)

.

Since λj > λj+1, this contradicts (8.13) if ε is sufficiently small and t is sufficiently large. �

9. The action of the cocycle on E

In this section, we work on the finite cover X defined in Section 4.6. Recall that if
f (·) is an object defined on X0, then for x ∈ X we write f (x) instead of f (σ0(x)) (where
σ0 : X → X0 is the covering map).

In this section and in Section 10, assertions will hold at best for a.e x ∈ X, and never
for all x ∈ X. This will be sometimes suppressed from the statements of the lemmas.

9.1. The Jordan canonical form of the cocycle on E(x). — We consider the action of
the cocycle on E. The Lyapunov exponents are λi , i ∈�′. We note that by Lemma 8.2,
the bundle E admits the equivariant measurable flat U+-connection given by the maps
(u)∗ : E(x)→ E(y), where (u)∗ is as in Lemma 6.6. This connection satisfies the condition
(4.5), since by Lemma 8.2, (u)∗Ej(x)= Ej(y). For each i ∈�′, we have the maximal flag
as in Lemma 4.3,

(9.1) {0} ⊂ Ei1(x)⊂ · · · ⊂ Ei,ni
(x)= Ei(x).

Let �′′ denote the set of pairs ij which appear in (9.1). By Proposition 4.12 and Re-
mark 4.13, we have for a.e. u ∈ B(x),

(u)∗Eij(x)= Eij(ux).

Let ‖ · ‖x and 〈·, ·〉x denote the restriction to E(x) of the norm and inner product on
H(x) defined in Section 4.7 and Section 6. (We will often omit the subscript from 〈·, ·〉x
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and ‖ · ‖x.) Then, the distinct Ei(x) are orthogonal. For each ij ∈ �′′ let E′
ij(x) be the

orthogonal complement (relative to the inner product 〈·, ·〉x) to Ei,j−1(x) in Eij(x).
Then, by Proposition 4.15, we can write, for v ∈ E′

ij(x),

(9.2) (gt)∗v = eλij (x,t)v′ + v′′,

where v′ ∈ E′
ij(gtx), v′′ ∈ Ei,j−1(gtx), and ‖v′‖ = ‖v‖. Hence (since v′ and v′′ are orthogo-

nal),

‖(gt)∗v‖ ≥ eλij (x,t)‖v‖.

In view of Proposition 4.15 there exists a constant κ > 1 such that for a.e x ∈ X and for
all v ∈ E(x) and all t ≥ 0,

(9.3) eκ
−1t‖v‖ ≤ ‖(gt)∗v‖ ≤ eκ t‖v‖.

Lemma 9.1. — For a.e. x ∈ X and for a.e. y = ux ∈ B[x], the connection (u)∗ : E(x)→
E(y) agrees with the restriction to E of the connection P+(x, y) induced from the map P+(x, y) defined

in Section 4.2.

Proof. — Let V≤i(x) = V≤i(H1)(x) and Vi(x) = Vi(H1)(x), where V≤i(H1)(x) and
Vi(H1)(x) are as in Section 4.1. Consider the definition (6.12) of u∗ in Section 6. For a
fixed Y = log u ∈ Lie(U+)(x) and M ∈H++(x), let h : W+(x)→ W+(ux) be given by

h(v)= exp
(
(I+M)Y

)
(x + v)− exp(Y)x.

From the form of h, we see that h(V≤i(x))= V≤i(ux), and also, h induces the identity map
on V≤i(x)/V<i(x)= V≤i(ux)/V<i(ux). Thus, for v ∈ Vi(x),

h(v) ∈ P+(x, ux)v + V<i(ux).

Similarly, M′′ ≡ tr(x, ux) ◦M ◦ tr(ux, x) agrees with M up to higher Lyapunov exponents.
Then, in view of (6.12), (6.18) and Lemma 6.8, for v ∈ Ei(x),

(u)∗v ∈ P+(x, ux)v+V<i(ux).

But, for v ∈ Ei(x), (u)∗v ∈ Ei(ux) (and thus has no component in V<i(ux)). Hence, for all
v ∈ Ei(x), we have (u)∗v = P+(x, ux)v. �
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9.2. Time changes.

The flows g
ij
t and the time changes τ̂ij(x, t). — We define the time changed flow g

ij
t so that

(after the time change) the cocycle λij(x, t) of (9.2) becomes λi t. We write g
ij
t x = gτ̂ij (x,t)x.

Then, by construction, λij(x, τ̂ij(x, t))= λi t. We note the following:

Lemma 9.2. — Suppose y ∈B0[x]. Then for any ij ∈�′′ and any t > 0,

g
ij
−ty ∈B0

[
g

ij
−tx
]
.

Proof. — This follows immediately from property (e) of Proposition 4.15, and the
definition of the flow g

ij
−t . �

In view of Proposition 4.15, we have

(9.4)
1
κ
|t − t′| ≤ ∣∣τ̂ij(x, t)− τ̂ij

(
x, t′
)∣∣≤ κ|t − t′|

where κ depends only on the Lyapunov spectrum.

9.3. The foliations Fij , Fv and the parallel transport R(x, y). — For x ∈ X̃, let

G[x] = {gsug−tx : t ≥ 0, s ≥ 0, u ∈ B(g−tx)
}⊂ X̃.

For y = gsug−tx ∈ G[x], let

R(x, y)= (gs)∗(u)∗(g−t)∗.

Here (gs)∗ is as in (6.16) and (u)∗ : H(g−tx)→ H(ug−tx) is as in Lemma 6.6. It is easy to
see using Lemma 6.7 that R(x, y) : H(x)→ H(y) depends only on x, y and not on the
choices of t, u, s. We will usually consider R(x, y) as a map from E(x)→ E(y).

In view of (9.2), Lemma 9.1 and Proposition 4.15(e) and (f), we have, for v ∈ E′
ij(x),

and any y = gsug−tx ∈ G[x],

(9.5) R(x, y)v = eλij(x,y)v′ + v′′

where v′ ∈ E′
ij(y), v′′ ∈ Ei,j−1(y), and ‖v′‖ = ‖v‖. In (9.5), we have

(9.6) λij(x, y)= λij(x,−t)+ λij(ug−tx, s).
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Notational convention. — We sometimes use the notation R(x, y) when x ∈ X (instead
of X̃) and y ∈ G[x].

For x ∈ X̃ and ij ∈ �′′, let Fij[x] denote the set of y ∈ G[x] such that there exists
�≥ 0 so that

(9.7) g
ij

−�y ∈ B
[
g

ij

−�x
]
.

By Lemma 9.2, if (9.7) holds for some �, it also holds for any bigger �. Alternatively,

Fij[x] =
{
g

ij

�ug
ij

−�x : �≥ 0, u ∈ B
(
g

ij

−�x
)}⊂ X̃.

As above, when x ∈ X, we can think of the leaf of the foliation Fij[x] as a subset of X
(not X̃).

In view of (9.6), it follows that

(9.8) λij(x, y)= 0 if y ∈Fij[x].
We refer to the sets Fij[x] as leaves. Locally, the leaf Fij[x] through x is a piece of U+[x].
More precisely, for y ∈Fij[x],

Fij[x] ∩B0[ y] ⊂ U+[ y].
Then, for any compact subset A ⊂ Fij[x] there exists � large enough so that g

ij

−�(A) is
contained in a set of the form B[z] ⊂ U+[z]. Then the same holds for g

ij
−t(A), for any

t > �.
Recall (from the start of Section 6) that the sets B[x] support a “Lebesgue measure”

| · |, namely the pushforward of the Haar measure on U+(x)/(U+(x) ∩ Q++(x))(x) to
B[x] under the map u → ux. (Recall that Q++(x) is the stabilizer of x in the affine group
G++(x).) As a consequence, the leaves Fij[x] also support a Lebesgue measure (defined
up to normalization), which we also denote by | · |. More precisely, if A ⊂ Fij[x] and
B ⊂Fij[x] are compact subsets, we define

(9.9)
|A|
|B| ≡

|gij

−�(A)|
|gij

−�(B)|
,

where � is chosen large enough so that both g
ij

−�(A) and g
ij

−�(B) are contained in a set of
the form B[z], z ∈ X. It is clear that if we replace � by a larger number, the right-hand-
side of (9.9) remains the same.

We define the “balls” Fij[x, �] ⊂Fij[x] by

(9.10) Fij[x, �] =
{

y ∈Fij[x] : g
ij

−�y ∈ B
[
g

ij

−�x
]}
.

Lemma 9.3. — Suppose x ∈ X̃ and y ∈Fij[x]. Then, for � large enough,

Fij[x, �] =Fij[ y, �].
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Proof. — Suppose y ∈ Fij[x]. Then, for � large enough, g
ij

−�y ∈ B[gij

−�x], and then
B[gij

−�y] = B[gij

−�x]. �

The “flows” gv
t . — Suppose x ∈ X̃ and v ∈ E(x). Let gv

t x = gτ̂v(x,t)x, where the time
change τ̂v(x, t) is chosen so that

∥∥(gv
t

)
∗v
∥∥

gv
t x
= et‖v‖x.

(Note that we are not defining gv
t y for y �= x.) We have, for x ∈ X̃,

gv
t+sx = g(gt)∗v

s gv
t x.

By (9.3), (9.4) holds for τ̂v instead of τ̂ij .
For y ∈ G[x] and � ∈R, let

(9.11) g̃
v,x
−� = gw

−�y, where w = R(x, y)v.

(When there is no potential for confusion about the point x and the vector v used, we
denote g̃

v,x
−� by g̃−�.) Note that Lemma 9.2 still holds if g

ij
−t is replaced by g̃

v,x
−t .

The foliations Fv. — For v ∈ E(x) we can define the foliations Fv[x] and the “balls”
Fv[x, �] as in (9.7) and (9.10), with g̃

v,x
−t replacing the role of g

ij
−t .

For y ∈Fv[x], we have

Fv[x] =Fw[ y], where w = R(x, y)v.

We can define the measure (up to normalization) | · | on Fv[x, �] as in (9.9).
Lemma 9.3 holds for Fv[x] without modifications.

The following follows immediately from the construction:

Lemma 9.4. — For a.e. x ∈ X̃, any v ∈ E(x), and a.e. y ∈Fv[x], we have

‖R(x, y)v‖y = ‖v‖x.

9.4. A maximal inequality.

Lemma 9.5. — Suppose K ⊂ X with ν(K) > 1 − δ. Then, for any θ ′ > 0 there exists a

subset K∗ ⊂ X with ν(K∗) > 1− 2κ2δ/θ ′ such that for any x ∈ K∗ and any � > 0,

(9.12) |Fij[x, �] ∩K|> (1− θ ′
)|Fij[x, �]|.
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Proof. — For t > 0 let

Bij
t [x] = g

ij
−t

(
B0

[
g

ij
t x
]∩U+[gij

t x
])= Bτ [x],

where τ is such that gτx = g
ij
t x. Let s > 0 be arbitrary. Let Ks = g

ij
−sK. Then ν(Ks) >

1 − κδ. Then, by Lemma 6.3, there exists a subset K′
s with ν(K′

s) ≥ (1 − 2κδ/θ ′) such
that for x ∈ K′

s and all t > 0,

|Ks ∩Bij
t [x]| ≥

(
1− θ ′/2

)|Ks|.

Let K∗
s = gij

s K′
s, and note that gij

s B
ij
t [x] = Fij[gij

s x, s − t]. Then, for all x ∈ K∗
s and all 0 <

s − t < s,

|Fij[x, s − t] ∩K| ≥ (1− θ ′/2
)|Fij[x, s − t]|.

We have ν(K∗
s )≥ (1 − 2κ2δ/θ ′). Now take a sequence sn →∞, and let K∗ be the set of

points which are in infinitely many K∗
sn

. �

10. Bounded subspaces and synchronized exponents

Recall that �′′ indexes the “fine Lyapunov spectrum” on E. In this section we
define an equivalence relation called “synchronization” on �′′; the equivalence class
of ij ∈ �′′ is denoted by [ij] and the set of equivalence classes is denoted by �̃. For
each ij ∈�′′ we define a gt-equivariant and locally (u)∗-equivariant (in the sense of
Lemma 6.6(b)) subbundle Eij,bdd of the bundle Ei ≡ Vi(E) and we define

E[ij],bdd(x)=
∑
kr∈[ij]

Ekr,bdd(x).

In fact we will show that there exists a subset [ij]′ ⊂ [ij] such that

(10.1) E[ij],bdd(x)=
⊕
kr∈[ij]′

Ekr,bdd(x).

Then, we claim that the following three propositions hold:

Proposition 10.1. — There exists θ > 0 depending only on ν and n ∈ N depending only on

the dimension of X such that the following holds: for every δ > 0 and every η > 0, there exists a subset

K = K(δ, η) of measure at least 1− δ and L0 = L0(δ, η) > 0 such that the following holds: Suppose

x ∈ X, v ∈ E(x), L ≥ L0, and

|g[−1,1]K∩Fv[x,L]| ≥ (1− (θ/2)n+1
)|Fv[x,L]|.
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Then, for at least (θ/2)n-fraction of y ∈Fv[x,L],

d

(
R(x, y)v
‖R(x, y)v‖ ,

⋃
ij∈�̃

E[ij],bdd(y)

)
< η.

Proposition 10.2. — There exists a function C3 : X →R
+ finite almost everywhere so that for

all x ∈ X̃, for all y ∈Fij[x], for all v ∈ E[ij],bdd(x),

C3(x)
−1C3(y)

−1‖v‖ ≤ ‖R(x, y)v‖ ≤ C3(x)C3(y)‖v‖.
(Recall from Section 2.2 that by C3(x) we mean C3(π(x)).)

Proposition 10.3. — There exists θ > 0 (depending only on ν) and a subset � ⊂ X with

ν(�)= 1 such that the following holds:

Suppose x ∈ � , v ∈ H(x), and there exists C > 0 such that for all � > 0, and at least

(1− θ)-fraction of y ∈Fij[x, �],
‖R(x, y)v‖ ≤ C‖v‖.

Then, v ∈ E[ij],bdd(x).

Proposition 10.1 is what allows us to choose u so that there exists u′ such that the
vector in H associated to the difference between the generalized subspaces U+[gtu

′q′1]
and U+[gtuq1] points close to a controlled direction, i.e. close to E[ij],bdd(gtuq1). This allows
us to address “Technical Problem #3” from Section 2.3. Then, Proposition 10.2 and
Proposition 10.3 are used in Section 11 to define and control conditional measures fij

associated to each [ij] ∈ �̃, so we can implement the outline in Section 2.3. We note that
it is important for us to define a family of subspaces so that all three propositions hold.

The number θ > 0, the synchronization relation and the subspaces Eij,bdd are de-
fined in Section 10.1∗. Also Proposition 10.1 is proved in Section 10.1∗. Proposition 10.2
and Proposition 10.3 are proved in Section 10.2∗. Both subsections may be skipped on
first reading.

Example. — To completely understand the example below, it necessary to read at
least Section 10.1∗. However, we include it here to give some flavor of the construction.

Suppose we have a basis {e1(x),e2(x),e3(x),e4(x)} for E(x), relative to which the
cocycle has the form (for y ∈ G[x]):

R(x, y)=

⎛
⎜⎜⎝

eλ11(x,y) u12(x, y) 0 0
0 eλ12(x,y) 0 0
0 0 eλ31(x,y) 0
0 0 0 eλ41(x,y)

⎞
⎟⎟⎠ .
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Suppose E1(x) = Re1(x) ⊕ Re2(x) (so e1 and e2 correspond to the Lyapunov expo-
nent λ1), E3(x)=Re3(x), E4(x)=Re4(x) (so that e3 and e4 correspond to the Lyapunov
exponents λ3 and λ4 respectively). Therefore the Lyapunov exponents λ3 and λ4 have
multiplicity 1, while λ1 has multiplicity 2.

Then, we have

E31,bdd(x)=Re3(x), E41,bdd(x)=Re4(x), E11,bdd(x)=Re1(x).

(For example, if y ∈F31[x] then λ31(x, y)= 0, so that by (9.5), ‖R(x, y)e3‖ = ‖e3‖.)
Now suppose that 31 and 41 are synchronized, but all other pairs are not synchro-

nized. (See Definition 10.8 for the exact definition of synchronization, but roughly this
means that |λ41(x, y)| is bounded as y varies over F31[x], but for all other distinct pairs ij

and kl, |λij(x, y)| is essentially unbounded as y varies over Fkl[x].) Then,

E[31],bdd(x)=Re3(x)⊕Re4(x).

Depending on the boundedness behavior of u12(x, y) as y varies over F12[x] we would
have either

E12,bdd(x)= {0} or E12,bdd(x)=Re2(x).

Since [11]′ = {11} and [12]′ = {12}, we have E[11],bdd(x) = E11,bdd(x) and E[12],bdd(x) =
E12,bdd(x).

10.1∗. Bounded subspaces and synchronized exponents. — For x ∈ X̃, y ∈ X̃, let

ρ(x, y)=
{
|t| if y = gtx,

∞ otherwise.

If x ∈ X̃ and E ⊂ X̃, we let ρ(x,E)= infy∈E ρ(x, y).

Lemma 10.4. — For every η > 0 and η′ > 0 there exists h = h(η′, η) such that the following

holds: Suppose v ∈ Eij(x) and

d

(
v
‖v‖ ,Ei,j−1(x)

)
> η′.

Then if y ∈Fv[x] and

ρ
(

y,Fij[x]
)
> h

then

d
(
R(x, y)v,Ei,j−1(y)

)≤ η‖v‖.
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Proof. — There exists t ∈R such that y′ = gty ∈Fij[x]. Then

ρ
(

y,Fij[x]
)= ρ

(
y, y′
)= |t|> h.

We have the orthogonal decomposition v = v̂ + w, where v̂ ∈ E′
ij(x) and w ∈ Ei,j−1(x).

Then by (9.5) we have the orthogonal decomposition.

R
(
x, y′
)
v̂ = eλij(x,y

′)v′ +w′,

where v′ ∈ E′
ij

(
y′
)
, w′ ∈ Ei,j−1

(
y′
)
, ‖v̂‖ = ‖v′‖.

Since R(x, y′)w ∈ Ei,j−1(y
′), we have

∥∥R
(
x, y′
)
v
∥∥2 = e2λij (x,y

′)‖v̂‖2 + ∥∥w′ +R
(
x, y′
)
w
∥∥2 ≥ e2λij (x,y

′)‖v̂‖2.

By (9.8), we have λij(x, y′)= 0. Hence,

∥∥R
(
x, y′
)
v
∥∥≥ ‖v̂‖ ≥ η′‖v‖.

Since y ∈Fv[x], ‖R(x, y)v‖ = ‖v‖. Since |t|> h, we have either t > h or t <−h. If t <−h,
then by (9.3) and Lemma 9.4,

‖v‖ = ‖R(x, y)v‖ = ∥∥(g−t)∗R
(
x, y′
)
v
∥∥≥ eκ

−1h
∥∥R
(
x, y′
)
v
∥∥≥ eκ

−1hη′‖v‖,

which is a contradiction if h > κ log(1/η′). Hence we may assume that t > h. We have,

R(x, y)v = eλij(x,y)v′′ +w′′

where v′′ ∈ E′
ij(y) with ‖v′′‖ = ‖v̂‖, and w′′ ∈ Ei,j−1(y). Hence,

d
(
R(x, y)v,Ei,j−1(y)

)= eλij (x,y)‖v̂‖ ≤ eλij(x,y)‖v‖.

But,

λij(x, y)= λij

(
x, y′
)+ λij

(
y′,−t

)≤−κ−1t

by (9.8) and Proposition 4.15. Therefore,

d
(
R(x, y)v,Ei,j−1(y)

)≤ e−κ
−1t‖v‖ ≤ e−κ

−1h‖v‖. �
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The bounded subspace. — Fix θ > 0. (We will eventually choose θ sufficiently small
depending only on the dimension.)

Definition 10.5. — Suppose x ∈ X̃. A vector v ∈ Eij(x) is called (θ, ij)-bounded if there

exists C <∞ such that for all � > 0 and for (1− θ )-fraction of y ∈Fij[x, �],
(10.2) ‖R(x, y)v‖ ≤ C‖v‖.

Remark. — From the definition and (9.5), it is clear that every vector in Ei1(x) is
(θ, i1)-bounded for every θ . Indeed, we have E′

i1 = Ei1, and λi1(x, y)= 0 for y ∈ Fi1[x],
thus for y ∈Fi1[x] and v ∈ Ei1(x), ‖R(x, y)v‖ = ‖v‖.

Lemma 10.6. — Let n = dim Eij(x) (for a.e x). If there exists no non-zero θ/n-bounded vector

in Eij(x) \ Ei,j−1(x), we set Eij,bdd = {0}. Otherwise, we define Eij,bdd(x) ⊂ Eij(x) to be the linear

span of the θ/n-bounded vectors in Eij(x). This is a subspace of Eij(x), and any vector in this subspace

is θ -bounded. Also,

(a) Eij,bdd(x) is gt-equivariant, i.e. (gt)∗Eij,bdd(x)= Eij,bdd(gtx).

(b) For almost all u ∈ B(x), Eij,bdd(ux)= (u)∗Eij,bdd(x).

Proof. — Let Eij,bdd(x)⊂ Eij(x) denote the linear span of all (θ/n, ij)-bounded vec-
tors. If v1, . . . ,vn are any n (θ/n, ij)-bounded vectors, then there exists C > 1 such that for
1 − θ fraction of y in Fij[x,L], (10.2) holds. But then (10.2) holds (with a different C) for
any linear combination of the vi . This shows that any vector in Eij,bdd(x) is (θ, ij)-bounded.
To show that (a) holds, suppose that v ∈ Eij(x) is (θ/n, ij)-bounded, and t < 0. In view
of Lemma 8.2, it is enough to show that v′ ≡ (g

ij
t )∗v ∈ Eij(g

ij
t x) is (θ/n, ij)-bounded. (This

would show that for t < 0, (gij
t )∗Eij,bdd(x)⊂ Eij,bdd(g

ij
t x) which, in view of the ergodicity of

the action of gt , would imply (a).)
Let x′ = g

ij
t x. By (9.3), there exists C1 = C1(t) such that for all z ∈ X and all w ∈

E(z),

(10.3) C−1
1 ‖w‖ ≤ ∥∥(gij

t

)
∗w
∥∥≤ C1‖w‖.

Suppose y ∈ Fij[x,L] satisfies (10.2). Let y′ = g
ij
t y. Then y′ ∈ Fij[x′]. Let v′ = (g

ij
t )∗v. (See

Figure 3.) Note that

R
(
x′, y′

)
v′ = R

(
y, y′
)
R(x, y)R

(
x′, x
)
v′ = R

(
y, y′
)
R(x, y)v

hence by (10.3), (10.2), and again (10.3),∥∥R
(
x′, y′

)
v′
∥∥≤ C1‖R(x, y)v‖ ≤ C1C‖v‖ ≤ C2

1C‖v′‖.
Hence, for y ∈Fij[x,L] satisfying (10.2), y′ = g

ij
t y ∈Fij[x′] satisfies

(10.4)
∥∥R
(
x′, y′

)
v′
∥∥< CC2

1‖v′‖.
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FIG. 3. — Proof of Lemma 10.6(a)

Therefore, since Fij[gij
t x,L + t] = g

ij
t Fij[x,L], we have that for 1 − θ/n fraction of

y′ ∈ Fij[x′,L + t], (10.4) holds. Therefore, v′ is (θ/n, ij)-bounded. Thus, Eij,bdd(x) is
gt-equivariant. This completes the proof of (a). Then (b) follows immediately from (a)
since Lemma 9.3 implies that Fij[ux,L] =Fij[x,L] for L large enough. �

Remark 10.7. — Formally, from its definition, the subspace Eij,bdd(x) depends on
the choice of θ . It is clear that as we decrease θ , the subspace Eij,bdd(x) decreases. In view
of Lemma 10.6, there exists θ0 > 0 and m ≥ 0 such that for all θ < θ0 and almost all
x ∈ X, the dimension of Eij,bdd(x) is m. We will always choose θ � θ0.

Synchronized exponents.

Definition 10.8. — Suppose θ > 0. We say that ij ∈�′′ and kr ∈�′′ are θ -synchronized
if there exists E ⊂ X with ν(E) > 0, and C <∞, such that for all x ∈ π−1(E), for all � > 0, for

at least (1− θ)-fraction of y ∈Fij[x, �], we have

ρ
(

y,Fkr[x]
)
< C.

Remark 10.9. — By the same argument as in the proof of Lemma 10.6(a), if ij

and kr are θ -synchronized then we can replace the set E in Definition 10.8 by
⋃

|s|<t gsE.
Therefore, we can take E in Definition 10.8 to have measure arbitrarily close to 1.

Remark 10.10. — Clearly if ij and kr are not θ -synchronized, then they are also not
θ ′-synchronized for any θ ′ < θ . Therefore there exists θ ′0 > 0 such that if any pairs ij and
kr are not θ -synchronized for some θ > 0 then they are also not θ ′0-synchronized. We will
always consider θ � θ ′0, and will sometimes use the term “synchronized” with no modi-
fier to mean θ -synchronized for θ � θ ′0. Then in view of Remark 10.9, synchronization
is an equivalence relation.

We now fix θ � min(θ0, θ
′
0).

If v ∈ E(x), we can write

(10.5) v =
∑
ij∈Iv

vij, where vij ∈ Eij(x), but vij /∈ Ei,j−1(x).
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In the sum, Iv is a finite set of pairs ij where i ∈�′ and 1 ≤ j ≤ ni. (Recall that �′ denotes
the Lyapunov spectrum of E.) Since for a fixed i the Eij(x) form a flag, without loss of
generality we may (and always will) assume that Iv contains at most one pair ij for each
i ∈�′.

For v ∈ E(x), and y ∈Fv[x], let

Hv(x, y)= sup
ij∈Iv

ρ
(

y,Fij[x]
)
.

Lemma 10.11. — There exists a set � ⊂ X with ν(�)= 1 such that the following holds:

Suppose x ∈� , C <∞, and there exists v ∈ E(x) so that for each L > 0, for at least (1−θ)-fraction

of y ∈Fv[x,L]
Hv(x, y) < C.

Then, if we write v =∑ij∈Iv
vij as in (10.5), then all {ij}ij∈Iv are synchronized, and also for all ij ∈ Iv,

vij ∈ Eij,bdd(x).

Proof. — Let � = ⋃t∈R gtE, where E is as in Definition 10.8. (In view of Re-
mark 10.9, we may assume that the same E works for all synchronized pairs.) Suppose
ij ∈ Iv and kr ∈ Iv. We have for at least (1− θ)-fraction of y ∈Fv[x,L],

ρ
(

y,Fij[x]
)
< C, ρ

(
y,Fkr[x]

)
< C.

Let yij ∈ Fij[x] be such that ρ(y,Fij[x])= ρ(y, yij). Similarly, let ykr ∈ Fkr[x] be such that
ρ(y,Fkr[x])= ρ(y, ykr). We have

(10.6) ρ(yij, ykr)≤ ρ(yij, y)+ ρ(y, ykr)≤ 2C.

Note that g̃
v,x
−L(Fv[x,L])= g

ij

−L′(Fij[x,L′]), where L′ is chosen so that gv
−Lx = g

ij

−L′x, where
the notation g̃ is as in (9.11). Hence, in view of (10.6) and (9.9), for any L′ > 0, for (1− θ)-
fraction of yij ∈ Fij[x,L′], ρ(yij,Fkr[x]) ≤ 2C. Then, for any t ∈ R, for any L′′ > 0, for
(1−θ)-fraction of yij ∈Fij[gtx,L′′], ρ(yij,Fkr[gtx])≤ C(t). Since x ∈� , we can choose t so
that gtx ∈ E where E is as in Definition 10.8. This implies that ij and kr are synchronized.

Recall that Iv contains at most one j for each i ∈�′. Since R(x, y) preserves each Ei ,
and the distinct Ei are orthogonal, for all y′′ ∈ G[x],

∥∥R
(
x, y′′

)
v
∥∥2 =

∑
ij∈Iv

∥∥R
(
x, y′′

)
vij

∥∥2
.

Therefore, for each ij ∈ Iv, and all y′′ ∈ G[x],
∥∥R
(
x, y′′

)
vij

∥∥≤ ∥∥R
(
x, y′′

)
v
∥∥.
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In particular,

‖R(x, yij)vij‖ ≤ ‖R(x, yij)v‖.
We have for (1− θ)-fraction of yij ∈Fij[x,L′], ρ(yij, y) < C, where y ∈Fv(x). We have, by
Lemma 9.4, ‖R(x, y)v‖ = ‖v‖, and hence, by (9.3), for (1− θ)-fraction of yij ∈Fij[x,L],

‖R(x, yij)v‖ ≤ C2‖v‖.
Hence, for (1− θ)-fraction of yij ∈Fij[x,L′],

‖R(x, yij)vij‖ ≤ C2‖v‖.
This implies that vij ∈ Eij,bdd(x). �

We write ij ∼ kr if ij and kr are synchronized. With our choice of θ > 0, synchro-
nization is an equivalence relation, see Remark 10.10. We write [ij] = {kr : kr ∼ ij}.
Let

E[ij],bdd(x)=
∑
kr∈[ij]

Ekr,bdd(x).

For v ∈ E(x), write v =∑ij∈Iv
vij , as in (10.5). Define

height(v)=
∑
ij∈Iv

(dim E)+ j

The height is defined so it would have the following properties:

• If v ∈ Eij(x) \Ei,j−1(x) and w ∈ Ei,j−1(x) then height(w) < height(v).
• If v =∑i∈Iv

vi , vi ∈ Ei , vi �= 0, and w =∑j∈J wj , wj ∈ Ej , wj �= 0, and also the
cardinality of J is smaller then the cardinality of Iv, then height(w) < height(v).

Let Pk(x) ⊂ E(x) denote the set of vectors of height at most k. This is a closed
subset of E(x).

Lemma 10.12. — For every δ > 0 and every η > 0 there exists a subset K ⊂ X of mea-

sure at least 1 − δ and L′′ > 0 such that for any x ∈ K and any unit vector v ∈ Pk(x) with

d(v,
⋃

ij E[ij],bdd) > η and d(v,Pk−1(x)) > η, there exists 0 < L′ < L′′ so that for at least θ -fraction

of y ∈Fv[x,L′],

d

(
R(x, y)v
‖R(x, y)v‖ ,Pk−1(y)

)
< η.
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Proof. — Suppose C > 1 (we will later choose C depending on η). We first claim that
we can choose K with ν(K) > 1 − δ and L′′ > 0 so that for every x ∈ g[−1,1]K and every
v ∈ Pk(x) such that d(v,

⋃
ij E[ij],bdd) > η there exists 0 < L′ < L′′ so that for θ -fraction of

y ∈Fv[x,L′],
(10.7) Hv(x, y)≥ C.

(Essentially, this follows from Lemma 10.11, but the argument given below is a bit
more elaborate since we want to choose L′′ uniformly over all v ∈ Pk(x) satisfying
d(v,

⋃
ij E[ij],bdd) > η.) Indeed, let EL ⊂ Pk(x) denote the set of unit vectors v ∈ Pk(x)

such that for all 0 < L′ < L, for at least (1 − θ)-fraction of y ∈ Fv[x,L′], Hv(x, y) ≤ C.
Then, the EL are closed sets which are decreasing as L increases, and by Lemma 10.11,

∞⋂
L=1

EL ⊂
(⋃

ij∈�̃
E[ij],bdd(x)

)
∩Pk(x).

Let F denote the subset of the unit sphere in Pk(x) which is the complement of the
η-neighborhood of

⋃
ij E[ij],bdd(x). Then the Ec

L are an open cover of F, and since F is
compact, there exists L = Lx such that F ⊂ Ec

L. Now for any δ > 0 we can choose L′′ so
that L′′ > Lx for all x in a set K of measure at least (1− δ).

Now suppose v ∈ F. Since F ⊂ Ec
L′′ , v /∈ EL′′ , hence there exists 0 < L′ < L′′ (possi-

bly depending on v) such that the fraction of y ∈Fv[x,L′] which satisfies Hv(x, y)≥ C is
greater than θ . Then, (10.7) holds.

Now suppose (10.7) holds (with a yet to be chosen C = C(η)). Write

v =
∑
ij∈Iv

vij

as in (10.5). Let

w = R(x, y)v, wij = R(x, y)vij.

Since y ∈ Fv[x], by Lemma 9.4, ‖w‖ = ‖v‖ = 1. Let ij ∈ Iv be such that the supremum
in the definition of Hv(x, y) is achieved for ij. If ‖wij‖ < η/2 we are done, since w′ =∑

kr �=ij wkr has smaller height than v, and d(w, w′
‖w′‖) < η. Hence we may assume that

1 ≥ ‖wij‖ ≥ η/2.
Since d(v,Pk−1(x))≥ η, we have

d
(
vij,Ei,j−1(x)

)≥ η ≥ η‖vij‖,
where the last inequality follows from the fact that ‖vij‖ ≤ 1. In particular, we have 1 ≥
‖vij‖ ≥ η.
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Let y′ = gty be such that y′ ∈Fvij
[x]. Note that

1 = ∥∥R
(
x, y′
)
vij

∥∥= ∥∥R
(

y, y′
)
wij

∥∥= ‖(gt)∗wij‖ and 1 ≥ ‖wij‖ ≥ η/2.

Then, in view of (9.3), |t| ≤ C0(η), and hence ‖R(y′, y)‖ ≤ C′
0(η).

Let C1 = C0(η) + h(η, 1
2η/C′

0(η)), where h(·, ·) is as in Lemma 10.4. We now
choose the constant C in (10.7) to be C1. If Hv(x, y) > C1 then, by the choice of ij,
ρ(y,Fij[x]) > C1. Since y′ = gty and |t| ≤ C0(η), we have

ρ
(

y′,Fij[x]
)
> C1 −C0(η)= h

(
η,

1
2
η/C′

0(η)

)
.

Then, by Lemma 10.4 applied to vij and y′ ∈Fvij
[x],

d
(
R
(
x, y′
)
vij,Ei,j−1

(
y′
))≤ 1

2

(
η/C′

0(η)
)‖vij‖ ≤ 1

2
η/C′

0(η).

Then, since wij = R(y′, y)R(x, y′)vij ,∥∥d
(
wij,Ei,j−1(y)

)∥∥≤ ∥∥R
(

y′, y
)∥∥d
(
R
(
x, y′
)
vij,Ei,j−1

(
y′
))

≤ ∥∥R
(

y′, y
)∥∥(η/C′

0(η)
)≤ η

2
.

Let w′
ij be the closest vector to wij in Ei,j−1(y), and let w′ = w′

ij +
∑

kr �=ij wij . Then
d(w, w′

‖w′‖) < η and w′ ∈Pk−1. �

Proof of Proposition 10.1. — Let n denote the maximal possible height of a vector. Let
δ′ = δ/n. Let ηn = η. Let Ln−1 = Ln−1(δ

′, ηn) and Kn−1 = Kn−1(δ
′, ηn) be chosen so that

Lemma 10.12 holds for k = n − 1, K = Kn−1, L′′ = Ln−1 and η = ηn. Let ηn−1 be chosen
so that exp(N(Ln−1 + 1))ηn−1 ≤ ηn, where N is as in Lemma 7.1. We repeat this process
until we choose L1, η0. Let L0 = L1 + 1. Let K = K0 ∩ · · · ∩Kn−1. Then ν(K) > 1− δ.

Let

E′
k =
{

y ∈Fv[x,L] : d

(
R(x, y)v
‖R(x, y)v‖ ,Pk(y)∪

⋃
ij∈�̃

E[ij],bdd(y)

)
< ηk

}
,

and let

Ek = g̃−L

(
E′

k

)
,

so Ek ⊂ B[z], where z = g̃−Lx. Since E′
n = Fv[x,L], we have En = B[z]. Let Q =

g̃−L(g[−1,1]K∩Fv[x,L]). Then, by assumption,

(10.8) |Q| ≥ (1− (θ/2)n+1
)|B[z]|.
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By Lemma 10.12, for every point uz ∈ (Ek ∩Q) \Ek−1 there exists a “ball” Bt[uz] (where
t = L− L′ and L′ is as in Lemma 10.12) such that

(10.9) |Ek−1 ∩Bt[uz]| ≥ θ |Bt[uz]|.
(When we are applying Lemma 10.12 we do not have v ∈ Pk but rather d(v/‖v‖,Pk) <

ηk ; however by the choice of the η’s and the L’s this does not matter.) The collection of
balls {Bt[uz]}uz∈(Ek∩Q)\Ek−1 as in (10.9) are a cover of (Ek ∩Q)\Ek−1. These balls satisfy the
condition of Lemma 3.10(b); hence we may choose a pairwise disjoint subcollection which
still covers (Ek ∩ Q) \ Ek−1. We get |Ek−1| ≥ θ |Ek ∩ Q|. Hence, by (10.8) and induction
over k, we have

|Ek| ≥ (θ/2)n−k|B[z]|.
Hence, |E0| ≥ (θ/2)n|B[z]|. Therefore |E′

0| ≥ (θ/2)n|Fv[x,L]|. Since P0 = ∅, the Propo-
sition follows from the definition of E′

0. �

10.2∗. Invariant measures on X × P(L). — In this subsection we prove Proposi-
tion 10.2.

Recall that any bundle is measurably trivial.

Lemma 10.13. — Suppose L(x) is an invariant subbundle or quotient bundle of H(x). (In fact

the arguments in this subsection apply to arbitrary vector bundles.) Let μ̃� be the measure on X× P(L)
defined by

(10.10) μ̃�(f )=
∫

X

∫
P(L)

1
|Fij[x, �]|

∫
Fij [x,�]

f
(
x,R(y, x)v

)
dydρ0(v)dν(x)

where ρ0 is the “round” measure on P(L). (In fact, ρ0 can be any measure on P(L) in the measure class

of Lebesgue measure, independent of x and fixed once and for all.) Let μ̂� be the measure on X × P(L)
defined by

(10.11) μ̂�(f )=
∫

X

∫
P(L)

1
|Fij[x, �]|

∫
Fij [x,�]

f
(

y,R(x, y)v
)
dydρ0(v)dν(x).

Then μ̂� is in the same measure class as μ̃�, and

(10.12) κ−2 ≤ dμ̂�

dμ̃�

≤ κ2,

where κ is as in Proposition 4.15.

Proof. — Let

F(x, y)=
∫
P(L)

f
(
x,R(y, x)v

)
dρ0(v).
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Then,

μ̃�(f )=
∫

X

1
|Fij[x, �]|

∫
Fij [x,�]

F(x, y)dydν(x)(10.13)

μ̂�(f )=
∫

X

1
|Fij[x, �]|

∫
Fij [x,�]

F(y, x)dydν(x)(10.14)

Let x′ = g
ij

−�x. Then, in view of Proposition 4.15, κ−1dν(x)≤ dν(x′)≤ κdν(x). Then,

1
κ
μ̃�(f )≤

∫
X

1
|B[x′]|

∫
B[x′]

F
(
g

ij

�x′, g
ij

�z
)
dzdν

(
x′
)≤ κμ̃�(f ),

and

1
κ
μ̂�(f )≤

∫
X

1
|B[x′]|

∫
B[x′]

F
(
g

ij

�z, g
ij

�x′
)
dzdν

(
x′
)≤ κμ̂�(f )

Let X′′ consist of one point from each B[x]. In view of Definition 6.2(iii), we now disinte-
grate dν(x′)= dβ(x′′)dz′ where x′′ ∈ X′′, z′ ∈ B[x′].

∫
X

1
|B[x′]|

∫
B[x′]

F
(
g

ij

�x′, g
ij

�z
)
dzdν

(
x′
)

=
∫

X′′

∫
B[x′′]×B[x′′]

F
(
g

ij

�z′, g
ij

�z
)
dz′dzdβ

(
x′′
)

=
∫

X′′

∫
B[x′′]×B[x′′]

F
(
g

ij

�z, g
ij

�z′
)
dz′dzdβ

(
x′′
)

=
∫

X

1
|B[x′]|

∫
B[x′]

F
(
g

ij

�z, g
ij

�x′
)
dzdν

(
x′
)
.

Now (10.12) follows from (10.13) and (10.14). �

Lemma 10.14. — Let μ̃∞ be any weak-star limit of the measures μ̃�. Then,

(a) We may disintegrate dμ̃∞(x,v)= dν(x)dλx(v), where for each x ∈ X, λx is a measure

on P(L).
(b) For x ∈ X̃ and y ∈Fij[x],

λy = R(x, y)∗λx,

(where to simplify notation, we write λx and λy instead of λπ(x) and λπ(y)).
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(c) Let w ∈ P(L) be a point. For η > 0 let

B(w, η)= {v ∈ P(L) : d(v,w)≤ η
}
.

Then, for any t < 0 there exists c1 = c1(t,w) > 0 and c2 = c2(t,w) > 0 such that for

x ∈ X,

λgt x

(
B(gtw, c1η)

)≥ c2λx

(
B(w, η)

)
.

Consequently, for t < 0, the support of λgt x contains the support of (gt)∗λx.

(d) For almost all x ∈ X there exist a measure ψx on P(L) such that

λx = h(x)ψx

for some h(x) ∈ SL(L), and also for almost all y ∈Fij[x], ψy =ψx (so that ψ is constant

on the leaves Fij ). The maps x →ψx and x → h(x) are both ν-measurable.

Proof. — If f (x,v) is independent of the second variable, then it is clear from the
definition of μ̃� that μ̃�(f ) =

∫
X fdν. This implies (a). To prove (b), note that R(y′, y) =

R(x, y)R(y′, x). Then,

λy = lim
k→∞

1
|Fij[ y, �k]|

∫
Fij [ y,�k]

(
R
(

y′, y
)
∗ρ0

)
dy′

= R(x, y)∗ lim
k→∞

1
|Fij[ y, �k]|

∫
Fij [ y,�k]

(
R
(

y′, x
)
∗ρ0

)
dy′

= R(x, y)∗ lim
k→∞

1
|Fij[x, �k]|

∫
Fij [x,�k]

(
R
(

y′, x
)
∗ρ0

)
dy′

= R(x, y)∗λx

where to pass from the second line to the third we used the fact that Fij[x, �] = Fij[ y, �]
for � large enough. This completes the proof of (b).

We now begin the proof of (c). Let w(x)= w. Working in the universal cover, we
define for y ∈ G[x], w(y)= R(x, y)w(x). We define

wη(x)=
{
v ∈ P

(
L(x)

) : d
(
v,w(x)

)≤ η
}
.

(Here we are thinking of the space as X×P(L) and using the same metric on all the P(L)
fibers.)

Let x′ = g
ij
t x, y′ = g

ij
t y. We have

R
(

y′, x′
)= R

(
x, x′
)
R(y, x)R

(
y′, y
)
.
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Since ‖R(x, x′)−1‖ ≤ c−1, where c depends on t, we have R(x, x′)−1wcη(x
′) ⊂ wη(x).

Then,

ρ0

{
v : R

(
y′, x′

)
v ∈ wcη

(
x′
)}

= ρ0

{
v : R(y, x)R

(
y′, y
)
v ∈ R

(
x, x′
)−1

wcη

(
x′
)}

≥ ρ0

{
v : R(y, x)R

(
y′, y
)
v ∈ wη(x)

}
= ρ0

{
R
(

y, y′
)−1

u : R(y, x)u ∈ wη(x)
}

= R
(

y, y′
)−1

∗ ρ0

{
u : R(y, x)u ∈ wη(x)

}
≥ c′ρ0

{
u : R(y, x)u ∈ wη(x)

}
.

Note that for t < 0, g
ij
t Fij[x, �] ⊂ Fij[gij

t x, �] and |gij
t Fij[x, �]| ≥ c(t)|Fij[gij

t x, �]|. Substitut-
ing into (10.10) completes the proof of (c).

To prove part (d), let M denote the space of measures on P(L). Recall that by
[Zi2, Theorem 3.2.6] the orbits of the special linear group SL(L) on M are locally
closed. Then, by [Ef, Theorem 2.9 (13), Theorem 2.6(5)] 1 there exists a Borel cross
section φ :M/SL(L)→M. Then, let ψx = φ(π(λx)) where π :M→M/SL(L) is the
quotient map. �

We also recall the following well known Lemma of Furstenberg (see e.g. [Zi2,
Lemma 3.2.1]):

Lemma 10.15. — Let L be a vector space, and suppose μ and ν are two probability measures

on P(L). Suppose gi ∈ SL(L) are such that gi →∞ and giμ→ ν. Then the support of ν is contained

in a union of two proper subspaces of L.

In particular, if the support of a measure ν on P(L) is not contained in a union of two proper

subspaces, then the stabilizer of ν in SL(L) is bounded.

Lemma 10.16. — Suppose L is either a subbundle or a quotient bundle of H. Suppose that

θ > 0, and suppose that for all δ > 0 there exists a set K ⊂ X with ν(K) > 1 − δ and a constant

C1 <∞, such that such that for all x ∈ K, all � > 0 and at least (1− θ)-fraction of y ∈Fij[x, �],
(10.15) ‖R(x, y)v‖ ≤ C1‖v‖ for all v ∈ L.

Then for all δ > 0 and for all � > 0 there exists a subset K′′(�)⊂ X with ν(K′′(�)) > 1 − c(δ)

where c(δ)→ 0 as δ→ 0, and there exists θ ′′ = θ ′′(θ, δ) with θ ′′ → 0 as θ → 0 and δ→ 0 such

that for all x ∈ K′′(�), for at least (1− θ ′′)-fraction of y ∈Fij[x, �],
(10.16) C−1

1 ‖v‖ ≤ ‖R(x, y)v‖ ≤ C1‖v‖ for all v ∈ L.

1 The “condition C” of [Ef] is satisfied since SL(L) is locally compact and M is Hausdorff.
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Proof. — Let f be the characteristic function of K × P(L). By (10.10), μ̃�(f ) ≥
(1 − δ). By Lemma 10.13 we have μ̂�(f )≥ (1 − κ2δ). Therefore, by (10.11) there exists
a subset K′(�)⊂ X with ν(K′(�))≥ 1− (κ2δ)1/2 such that such that for all x ∈ K′(�),

|Fij[x, �] ∩K| ≥ (1− (κ2δ
)1/2)|Fij[x, �]|.

For x0 ∈ X, let

Z�[x0] =
{
(x, y) ∈Fij[x0, �] ×Fij[x0, �] :
x ∈ K, y ∈ K, and (10.15) holds

}
.

Then, if x0 ∈ K′(�) and θ ′ = θ + (κ2δ)1/2 then, by Fubini’s theorem,

|Z�[x0]| ≥
(
1− θ ′

)|Fij[x0, �] ×Fij[x0, �]|.
Let

Z�[x0]t =
{
(x, y) ∈Fij[x0, �] ×Fij[x0, �] : (y, x) ∈ Z�[x0]

}
.

Then, for x0 ∈ K′(�),

|Z�[x0] ∩ Z�[x0]t| ≥
(
1− 2θ ′

)|Fij[x0, �] ×Fij[x0, �]|.
For x ∈Fij[x0, �], let

Y′
�(x)=

{
y ∈Fij[x, �] : (x, y) ∈ Z�[x] ∩ Z�[x]t

}
.

Therefore, by Fubini’s theorem, for all x0 ∈ K′(�) and θ ′′ = (2θ ′)1/2,

(10.17)
∣∣{x ∈Fij[x0, �] : |Y′

�(x)| ≥
(
1− θ ′′

)|Fij[x0, �]|
}∣∣≥ (1− θ ′′

)|Fij[x0, �]|.
(Note that Fij[x0, �] =Fij[x, �].) Let

K′′(�)= {x ∈ X : |Y′
�(x)| ≥

(
1− θ ′′

)|Fij[x, �]|
}
.

Therefore, by (10.17), for all x0 ∈ K′(�),

|Fij[x0, �] ∩K′′(�)| ≥ (1− θ ′′
)|Fij[x0, �]|.

Then, by the definition of μ̂�,

μ̂�

(
K′′(�)× P(L)

)≥ (1− θ ′′
)
ν
(
K′(�)

)≥ (1− 2θ ′′
)
,

and therefore, by Lemma 10.13,

ν
(
K′′(�)

)= μ̃�

(
K′′(�)× P(L)

)≥ (1− 2κ2θ ′′
)
.

Now, for x ∈ K′′(�), and y ∈ Y′
�(x), (10.16) holds. �
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Lemma 10.17. — Suppose L(x) = Eij,bdd(x). Then there exists a �-invariant function C :
X̃ →R

+ finite almost everywhere such that for all x ∈ X̃, all v ∈ L(x), and all y ∈Fij[x],
C(x)−1C(y)−1‖v‖ ≤ ‖R(x, y)v‖ ≤ C(x)C(y)‖v‖,

Proof. — Let μ̃� and μ̂� be as in Lemma 10.13. Take a sequence �k →∞ such that
μ̃�k

→ μ̃∞, and μ̂�k
→ μ̂∞. Then by Lemma 10.14(a), we have dμ̃∞(x,v)= dν(x)dλx(v)

where λx is a measure on P(L). Let E ⊂ X be such that for x ∈ E, λx is supported on at
most two subspaces. We will show that ν(E)= 0.

Suppose not; then ν(E) > 0, and for x ∈ E, λx is supported on F1(x)∪F2(x), where
F1(x) and F2(x) are subspaces of L(x). We always choose F1(x) and F2(x) to be of minimal
dimension, and if λx is supported on a single subspace F(x) (of minimal dimension), we
let F1(x) = F2(x) = F(x). Then, for x ∈ E, F1(x) ∪ F2(x) is uniquely determined by x.
After possibly replacing E by a smaller subset of positive measure, we may assume that
dim F1(x) and dim F2(x) are independent of x ∈ E.

Let

� = {x ∈ X : gtx ∈ E and g−sx ∈ E for some t > 0 and s > 0}.
Then, ν(�)= 1. If x ∈� , then, by Lemma 10.14(c),

(10.18) (gs)∗F1(g−sx)∪ (gs)∗F2(g−sx)⊂ suppλx ⊂ (g−t)∗F1(gtx)∪ (g−t)∗F2(gtx).

Since Fi(gtx) and Fi(g−sx) have the same dimension, the sets on the right and on the left
of (10.18) coincide. Therefore, E ⊃ � (and so E has full measure) and the set F1(x) ∪
F2(x) is gt-invariant. By Proposition 4.4 (see also the remark immediately following the
Proposition) the set F1(x)∪ F2(x) is also U+-invariant.

Fix δ > 0 (which will be chosen sufficiently small later). Suppose � > 0 is arbi-
trary. Since L = Eij,bdd , there exists a constant C1 independent of � and a compact subset
K ⊂ X with ν(K) > 1 − δ and for each x ∈ K a subset Y�(x) of Fij[x, �] with |Y�(x)| ≥
(1− θ)|Fij[x, �]|, such that for x ∈ K and y ∈ Y�(x)∩K we have

‖R(x, y)v‖ ≤ C1‖v‖ for all v ∈ L.

Therefore by Lemma 10.16, there exists 0 < θ ′′ < 1/2, K′′(�)⊂ X and for each x ∈ K′′(�)
a subset Y′

�(x) ⊂ Fij[x, �] with |Y′
�(x)| ≥ (1 − θ ′′)|Fij[x, �]| such that for x ∈ K′′(�) and

y ∈ Y′
�(x), (10.16) holds.
Let

Z(x, η)= {v ∈ P(L) : d
(
v,F1(x)∪ F2(x)

)≥ η
}
.

We may choose η > 0 small enough so that there exists K′ ⊂ X with ν(K′′(�) ∩ K′) > 0
such that for all x ∈ K′,

ρ0

(
Z(x,C1η)

)
> 1/2.
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Let

S(η)= {(x,v) : x ∈ X, v ∈ Z(x, η)
}

Let f denote the characteristic function of the set
{
(x,v) : x ∈ K′′(�)∩K′, v ∈ Z(x, η)

}⊂ S(η).

We now claim that for any �,

(10.19) μ̂�(f )≥ ν
(
K′′(�)∩K′)(1− θ ′′

)
(1/2).

Indeed, if we restrict in (10.11) to x ∈ K′′(�) ∩ K′, y ∈ Y′
�(x), and v ∈ Z(x,C1η), then

by (10.16), f (x,R(x, y)v) = 1. This implies (10.19). Thus, (provided δ > 0 and θ > 0 in
Definition 10.5 are sufficiently small), there exists c0 > 0 such that for all �, μ̂�(S(η)) ≥
c0 > 0. Therefore, by Lemma 10.13, μ̃�(S(η))≥ c0/κ

2.
There exists compact K0 ⊂ X with ν(K0) > 1 − c0/(2κ2) such that the map x →

F1(x)∩F2(x) is continuous on K0. Let K′
0 = {(x,v) : x ∈ K0}. Then S(η)∩K′

0 is a closed
set with μ̃�(S(η) ∩ K′

0) ≥ c0/(2κ2). Therefore, μ̃∞(S(η) ∩ K′
0) > c0/(2κ2) > 0, which is

a contradiction to the fact that λx is supported on F1(x)∪ F2(x).
Thus, for almost all x, λx is not supported on a union of two subspaces. Thus

the same holds for the measure ψx of Lemma 10.14(d). By combining (b) and (d) of
Lemma 10.14 we see that for almost all x and almost all y ∈Fij[x],

R(x, y)h(x)ψx = h(y)ψx,

hence h(y)−1R(x, y)h(x) stabilizes ψx. Hence by Lemma 10.15,

h(y)−1R̄(x, y)h(x) ∈ K(x)

where K(x) is a compact subset of SL(L), and R̄(x, y) is the image of R(x, y) under the
natural map GL(L)→ SL(L). Thus, R̄(x, y) ∈ h(y)K(x)h(x)−1, and thus

(10.20) ‖R̄(x, y)‖ ≤ C(x)C(y).

Since R̄(x, y)−1 = R̄(y, x), we get, by exchanging x and y,

(10.21) ‖R̄(x, y)−1‖ ≤ C(x)C(y).

Note that by Lemma 10.6, there exists v ∈ L(x) = Eij,bdd(x) ⊂ Eij(x) such that v /∈
Ei,j−1(x). Then, (9.5) and the fact that λij(x, y) = 0 for y ∈ Fij[x] shows that (10.20)
and (10.21) must hold for R(x, y) in place of R̄(x, y). This implies the statement of the
lemma. �



214 ALEX ESKIN, MARYAM MIRZAKHANI

Lemma 10.18. — Suppose that for all δ > 0 there exists a constant C > 0 and a compact

subset K ⊂ X with ν(K) > 1 − δ and for each � > 0 and x ∈ K a subset Y�(x) of Fij[x, �] with

|Y�(x)| ≥ (1− θ)|Fij[x, �]|, such that for x ∈ K and y ∈ Y�(x) we have

(10.22) λkr(x, y)≤ C.

Then, ij and kr are synchronized, and there exists a function C : X → R
+ finite ν-almost everywhere

such that for all x ∈ X, and all y ∈Fij[x],
(10.23) ρ

(
y,Fkr[x]

)≤ C(x)C(y).

Proof. — The proof is a simplified version of the proof of Lemma 10.17. Let L1 =
Eij/Ei,j−1, L2 = Ekr/Ek,r−1, and L = L1 × L2.

We have, for y ∈ G[x], and (v̄, w̄) ∈ L,

R(x, y)(v̄, w̄)= (eλij(x,y)v̄′, eλkr(x,y)w̄′),(10.24)

where ‖v̄′‖ = ‖v̄‖ and ‖w̄′‖ = ‖w̄‖.
Recall that λij(x, y)= 0 for all y ∈ Fij[x]. Therefore, (10.22) implies that for all x ∈ K, all
� > 0 and all y ∈ Y�(x),

‖R(x, y)(v̄, w̄)‖ ≤ C1‖(v̄, w̄)‖.
Therefore, by Lemma 10.16, there exists a subset K′′(�)⊂ X with ν(K′′(�)) > 1 − c(δ)

where c(δ)→ 0 as δ → 0, and for each x ∈ K′′(�) a subset Y′
� ⊂ Fij[x, �] with |Y′

�| >
(1− θ ′′)|Fij[x, �]| such that for all y ∈ Y′

�,

C−1
1 ‖(v̄, w̄)‖ ≤ ‖R(x, y)(v̄, w̄)‖ ≤ C1‖(v̄, w̄)‖.

This implies that for x ∈ K′′(�), y ∈ Y′
�(x),

(10.25) |λkr(x, y)| = |λij(x, y)− λkr(x, y)| ≤ C1.

Let μ̃� and μ̂� be as in Lemma 10.13. Take a sequence �m →∞ such that μ̃�m
→

μ̃∞, and μ̂�m
→ ν̂∞. Then by Lemma 10.14(a), we have dμ̃∞(x,v)= dν(x)dλx(v) where

λx is a measure on P(L). We will show that for almost all x ∈ X, λx is not supported on
L1 × {0} ∪ {0} × L2.

Suppose that for a set of positive measure λx is supported on (L1×{0})∪({0}×L2).
Then, in view of the ergodicity of gt and Lemma 10.14(c), λx is supported on (L1 ×{0})∪
({0} × L2) for almost all x ∈ X. Let

Z(x, η)= {(v̄, w̄) ∈ L(x), ‖(v̄, w̄)‖ = 1, d(v̄,L1)≥ η, d(w̄,L2)≥ η
}
,

and let

S(η)= {(x, (v̄, w̄)) : x ∈ X, (v̄, w̄) ∈ Z(x, η)
}
.

Then we have μ̃∞(S(η))= 0. Therefore, by Lemma 10.13, μ̂∞(S(η))= 0.
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By (10.24) and (10.25), for x ∈ K′′(�m) and y ∈ Y′
�m
(x),

(10.26) R(x, y)Z(x,C1η)⊂ Z(y, η).

Choose η > 0 so that there exists K′ = K′(�m) ⊂ X with ν(K′′(�m) ∩ K′) > 0 such that
for x ∈ K′, ρ0(Z(x,C1η)) > (1/2). Let f be the characteristic function of S(η). Then, if
we restrict in (10.11) to x ∈ K′′(�m) ∩ K′, y ∈ Y′

�m
(x), and v ∈ Z(x,C1η), then by (10.26),

f (x,R(x, y)v)= 1. This implies that for all m,

μ̂�m

(
S(η)

)≥ ν
(
K′′(�m)∩K′)(1− θ ′′

)
(1/2).

Hence μ̂∞(S(η)) > 0 which is a contradiction. Therefore, for almost all x, λx is
not supported on L1 × {0} ∪ {0} × L2. Thus the same holds for the measure ψx of
Lemma 10.14(d). By combining (b) and (d) of Lemma 10.14 we see that for almost all
x ∈ X and almost all y ∈Fij[x],

R(x, y)h(x)ψx = h(y)ψx,

hence h(y)−1R(x, y)h(x) stabilizes ψx. Note that in view of (10.24),

h(y)−1R(x, y)h(x)(v̄, w̄)= (eα(x,y)v̄′, eα
′(x,y)w̄′),

where α(x, y) ∈R, α′(x, y) ∈R, ‖v̄′‖ = ‖v̄‖ and ‖w̄′‖ = ‖w̄‖.
For i = 1,2 let Confx(Li) denote the subgroup of GL(Li) which preserves the inner prod-
uct 〈·, ·〉x up to a scaling factor. Let Confx(L) = Confx(L1) × Confx(L2). Then, by an
elementary variant of Lemma 10.15, since ψx is not supported on L1 × {0} ∪ {0} × L2,
we get

h(y)−1R(x, y)h(x) ∈ K(x)

where K(x) is a compact subset of Confx(L). Thus, R(x, y) ∈ h(y)K(x)h(x)−1, and thus

‖R(x, y)‖ ≤ C(x)C(y).

Note that by reversing x and y we get ‖R(x, y)−1‖ ≤ C(x)C(y). Therefore, by (10.24),

|λij(x, y)− λkr(x, y)| ≤ C(x)C(y).

This completes the proof of (10.23).
For any δ > 0 we can choose a compact K ⊂ X with ν(K) > 1 − δ and N <∞

such that C(x) < N for x ∈ K. Now, the fact that ij and kr are synchronized follows from
applying Lemma 9.5 to K. �

Proof of Proposition 10.2. — This follows immediately from Lemmas 10.18 and
10.17. �
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Proof of Proposition 10.3. — Choose ε < ε ′/10, where ε ′ is as in Proposition 8.5(b).
By the multiplicative ergodic theorem, there exists a set K′′

1 ⊂ X with ν(K′′
1) > 1− θ and

T > 0, such that for x ∈ K′′
1 and t > T,

(10.27) |λij(x, t)− λi t|< εt,

where λij(x, t) is as in (9.2). Then, by Fubini’s theorem there exists a set K′′
2 ⊂ K′′

1 with
ν(K′′

2) > 1− 3θ such that for x ∈ K′′
2, for (1− θ)-fraction of u ∈ B(x), ux ∈ K′′

1.
Let K′′ be as in Proposition 8.5(b) with δ = θ . We may assume that the conull set

� in Proposition 10.3 is such so that for x ∈� , g−tx ∈ K′′ ∩K′′
2 for arbitrarily large t > 0.

Suppose g−tx ∈ K′′ ∩K′′
2 and y ∈Fij[x]. We may write

y = g
ij

t′ug
ij

−t′x = gs′ug−tx.

By the definition of Fij[x, t′], and since g−tx ∈ K′′
2, we have g−tx ∈ K′′

1 and for at least
(1− θ)-fraction of y ∈Fij[x, t′], we have ug−tx ∈ K′′

1, and thus, in view of (10.27),

|s′ − λi t
′| ≤ εt and |t − λi t

′| ≤ εt.

Therefore for (1 − θ)-fraction of y ∈ Fij[x, t′] or equivalently for (1 − θ)-fraction of u ∈
B(g−tx),

(10.28) |s′ − t| ≤ 2εt.

Now suppose v ∈ H(x). Note that if ‖R(x, y)v‖ ≤ C‖v‖, and s is as in Proposition 8.5,
then s > s′ − O(1) (where the implied constant depends on C). Therefore, in view of
(10.28), for (1 − θ)-fraction of u ∈ B(g−tx), (8.13) holds. Thus, by Proposition 8.5(b), we
have v ∈ E(x). Thus, we can write

v =
∑
kr∈Iv

vkr

where the indexing set Iv contains at most one r for each k ∈�′. Without loss of generality,
� is such that for x ∈� , g−tx satisfies the conclusions of Proposition 4.15 infinitely often.
Note that for y ∈Fij[x],

‖R(x, y)v‖ ≥ ‖R(x, y)vkr‖ ≥ eλkr(x,y)‖vkr‖.
By assumption, for all � > 0 and for at least 1−θ fraction of y ∈Fij[x, �], ‖R(x, y)v‖ ≤ C.
Therefore, for all � > 0 and for at least (1 − θ) fraction of y ∈ Fij[x, �], (10.22) holds.
Then, by Lemma 10.18, for all kr ∈ Iv, kr and ij are synchronized, i.e. kr ∈ [ij]. Therefore,
for at least (1− 2θ)-fraction of y′ ∈Fkr[x, �],∥∥R

(
x, y′
)
vkr

∥∥≤ ∥∥R
(
x, y′
)
v
∥∥≤ C′.

Now, by Definition 10.5, vkr(x) ∈ Ekr,bdd(x). Therefore, v ∈ E[ij],bdd(x). �

It follows from the proof of Proposition 10.3 that (10.1) holds.
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11. Equivalence relations on W+

Let GSpc denote the space of generalized subspaces of W+. Let H̄++(x) denote
the set of M ∈H++(x) such that (I+M)Lie(U+)(x) is a subalgebra of Lie(G++)(x). We
have a map Ux : H̄++(x) × W+(x)→ GSpc taking the pair (M, v) to the generalized
subspace it parametrizes. Let U−1

x denote the inverse of this map (given a Lyapunov-
adapted transversal Z(x)).

For ij ∈ �̃, let

Eij[x] =
{
Q ∈ GSpc : j

(
U−1

x (Q)
) ∈ E[ij],bdd(x)

}
.

Motivation. — In view of Proposition 10.2 and Lemma 6.9(b), for any sufficiently
small ε > 0, the conditions that Q ∈ Eij[x] and hdX0

x (Q,U+[x])= O(ε) imply the follow-
ing: for “most” y ∈Fij[x],

hdX0
y

(
R(x, y)Q,U+[ y])= O(ε).

A partition of W+[x]. — Let B0 denote the measurable partition constructed in
Section 3 (see also Section 4.6). We denote the atom containing x by B0[x], and let
B0(x)= {v ∈ W+(x) : v + x ∈B0[x]}. In this section, the only properties of B0 we will
use is that it is subordinate to W+, and that the atoms B0[x] are relatively open in W+[x].

Equivalence relations. — Fix x0 ∈ X. For x, x′ ∈ W+[x0] we say that

x′ ∼ij x if x′ ∈B0[x] and U+[x′] ∈ Eij[x].
Proposition 11.1. — The relation ∼ij is a (measurable) equivalence relation.

The main part of the proof of Proposition 11.1 is the following:

Lemma 11.2. — There exists a subset � ⊂ X with ν(�)= 1 such that for any ij ∈ �̃, if

x0 ∈� , x1 ∈� , x1 ∈B0[x0] (so in particular dX0(x0, x1) < 1/100), and U+[x1] ∈ Eij[x0], then

Eij[x1] = Eij[x0].
Warning. — We will consider the condition x′ ∼ij x to be undefined unless x and x′

both belong to the set � of Lemma 11.2.

Motivation. — In view of Proposition 10.1, we can ensure, in the notation of Sec-
tion 2.3 that for some ij ∈ �̃, U+[q′2] is close to Eij[q2]; then in the limit we would have
U+[q̃′2] ∈ Eij[q̃2], and thus q̃′2 ∼ij q̃2.

Proof of Proposition 11.1, assuming Lemma 11.2. — We have 0 ∈ E[ij],bdd(x), therefore,

(11.1) U+[x] ∈ Eij[x].
Thus x ∼ij x.
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Suppose x′ ∼ij x. Then, x′ ∈B0[x], and so x ∈B0[x′]. By (11.1), U+[x] ∈ Eij[x], and
by Lemma 11.2, Eij[x′] = Eij[x]. Therefore, U+[x] ∈ Eij[x′], and thus x ∼ij x′.

Now suppose x′ ∼ij x and x′′ ∼ij x′. Then, x′′ ∈B0[x]. Also, U+[x′′] ∈ Eij[x′] = Eij[x],
therefore x′′ ∼ij x. �

Remark. — By Lemma 11.2, for x, x′ ∈ � , x′ ∼ij x if and only if x′ ∈ B0[x] and
Eij[x′] = Eij[x].

Outline of the proof of Lemma 11.2. — Intuitively, the condition U+[x1] ∈ Eij[x0] is the
same as “Fij[x1] and Fij[x0] stay close”, and “U+[x1] and U+[x0] stay close as we travel
along Fij[x0] or Fij[x1]”, which is clearly an equivalence relation. We give some more
detail below. Throughout the proof we will be using Lemma 9.2, without mentioning it
explicitly.

Fix ε � 1/100. Suppose x1 ∈ B0[x0], so in particular dX0(x0, x1) < 1/100, and
suppose

hdX0
x0

(
U+[x1],U+[x0]

)= ε.

Then, by Lemma 6.9(b),

j
(
U−1

x0

(
U+[x1]

))= O(ε).

We are given that U+[x1] ∈ Eij[x0], thus j(U−1
x0
(U+[x1])) ∈ E[ij],bdd(x0). Then, by Proposi-

tion 10.2, for most y0 ∈Fij[x0],∥∥R(x0, y0)j
(
U−1

x0

(
U+[x1]

))∥∥= O(ε).

We have

R(x0, y0)j
(
U−1

x0

(
U+[x1]

))= j
(
U−1

y0

(
U+[ y′1

]))
,

for some y′1 ∈ G[x1]. Then, by Lemma 6.9(b), for most y0 ∈Fij[x0],
hdX0

y0

(
U+[ y′1

]
,U+[ y0]

)= O(ε) for some y′1 ∈ G[x1].
It is not difficult to show that y′1 is near a point y1 ∈Fij[x1]. Thus, for most y0 ∈Fij[x0],
(11.2) hdX0

y0

(
U+[ y1],U+[ y0]

)= O(ε) for some y1 ∈Fij[x1].
Thus, most of the time Fij[x0] and Fij[x1] remain close, and also that for most y0 ∈Fij[x0],
U+[ y1] and U+[ y0] remain close, for some y1 ∈Fij[x1].

Now suppose Q1 ∈ Eij[x1], and

hdX0
x1

(
Q1,U+[x1]

)= O(ε).
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Then, j(U−1
x1
(Q1)) ∈ E[ij],bdd(x1), and thus, for most y1 ∈ Fij[x1], using Proposition 10.2

and Lemma 6.9(b) twice as above, we get that for most y1 ∈Fij[x1],

(11.3) hdX0
y1

(
R(x1, y1)Q1,U+[ y1]

)= O(ε).

In our notation, R(x1, y1)Q1 is the same generalized subspace (i.e. the same subset of W+)
as R(x0, y0)Q1 for y0 ∈ Fij[x0] close to y1. Then, from (11.2) and (11.3), for most y0 ∈
Fij[x0],

hdX0
y0

(
R(x0, y0)Q1,U+[ y0]

)= O(ε).

Thus, using Lemma 6.9(b) again, we get that for most y0 ∈Fij[x0],
∥∥R(x0, y0)j

(
U−1

x0
(Q1)

)∥∥= O(ε).

By Proposition 10.3, this implies that j(U−1
x0
(Q1)) ∈ E[ij],bdd(x0), and thus Q1 ∈ Eij[x0].

Thus, Eij[x1] ⊂ Eij[x0].
Conversely, if Q0 ∈ Eij[x0], then the same argument shows that Q0 ∈ Eij[x1]. There-

fore, Eij[x0] = Eij[x1]. �
The (tedious) formal verification of Lemma 11.2 is given in Section 11.1∗ below.

The equivalence classes Cij[x]. — For x ∈� we define the equivalence class

Cij[x] =
{
x′ ∈B0[x] : x′ ∼ij x

}
.

Let Cij denote the σ -algebra of ν-measurable sets which are unions of the equivalence
classes Cij[x]. We do not distinguish between σ -algebras which are equivalent mod sets of
ν-measure 0, so we can assume that Cij is countably generated (see [CK, §1.2]). We now
want to show that (away from a set of measure 0), the atoms of the σ -algebra Cij are the
sets Cij[x]. More precisely, we want to show that the partition Cij whose atoms are the sets
Cij[x] is a measurable partition in the sense of [CK, Definition 1.10].

To see this, note that each set Eij[x] is an algebraic subset of GSpc, and is thus
parametrized by a finite dimensional space Y. Let ψij : X → Y be the map taking x to the
parametrization of Eij[x]. We note that the functions ψij are measurable. Also, in view of
Lemma 11.2, we have

x ∼ij y if and only if y ∈B0[x] and ψij(y)=ψij(x).

By Lusin’s theorem, for each ij, there exists a Borel function ψ̃ij such that ν-almost every-
where, ψ̃ij =ψij . Now the measurability of Cij follows from [CK, Theorem 1.14].
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Lemma 11.3. — Suppose t ∈R, u ∈ U+(x).

(a) gtCij[x] ∩B0[gtx] ∩ gtB0[x] = Cij[gtx] ∩B0[gtx] ∩ gtB0[x].
(b) uCij[x] ∩B0[ux] ∩ uB0[x] = Cij[ux] ∩B0[ux] ∩ uB0[x].
Proof. — Note that the sets U+[x] and E[ij],bdd(x) are gt-equivariant. Therefore,

so are the Eij[x], which implies (a). Part (b) is also clear, since locally, by Lemma 8.2,
(u)∗Eij(x)= Eij(ux). �

The measures fij[x]. — We now define fij[x] to be the conditional measure of ν along
the Cij[x]. In other words, fij[x] is defined so that for any measurable φ : X →R,

E(φ | Cij)(x)=
∫

X
φdfij[x].

We view fij[x] as a measure on W+[x] which is supported on Cij[x].

The measures fij(x). — We can identify W+[x] with the vector space W+(x), where x

corresponds to the origin. Let fij(x) be the pullback to W+(x) of fij[x] under this identifi-
cation. We will also call the fij(x) conditional measures. (The term “leaf-wise” measures
is used in [EL] in a related context.) We abuse notation slightly and write formulas such
as

E(φ | Cij)(x)=
∫

X
φdfij(x).

The “distance” d∗(·, ·). — Suppose E1,E2 are open subsets of a normed vector
space V, with E1 ∩ E2 �= ∅. Suppose that for i = 1,2, μi is a finite measure on Ei , with
μi(E1 ∩ E2) > 0. Then, let d∗(μ1,μ2) denote the Kontorovich-Rubinstein distance be-
tween (the normalized versions of) μ̄1 and μ̄2, i.e.

d∗(μ1,μ2)= sup
f

∣∣∣∣ 1
μ1(E1 ∩ E2)

∫
E1∩E2

fdμ1 − 1
μ2(E1 ∩ E2)

∫
E1∩E2

fdμ2

∣∣∣∣,
where the sup is taken over all 1-Lipshitz functions f : E1 ∩ E2 →R with sup |f (x)| ≤ 1.

The only property of d∗(·, ·) we will use is that it induces the topology of weak-*
convergence on the domain of common definition of the measures, up to normalization.

The following proposition is the rigorous version of (2.5) in Section 2.3:

Proposition 11.4. — There exists 0 < α0 < 1 depending only on the Lyapunov spectrum, and

for every δ > 0 there exists a compact set K0 ⊂ X with ν(K0) > 1− δ such that the following holds:

Suppose ij ∈ �̃, 1 < C1 <∞, 0 < ε < C−1
1 /100, C <∞, t > 0, t′ > 0, and |t′ − t| < C.

Furthermore suppose q ∈ π−1(K0) and q′ ∈ W−[q] ∩ π−1(K0) are such that dX(q, q′) < 1/100.

Let q1 = g�q, q′1 = g�q
′. Also let q3 = g

ij

t′q1, q′3 = g
ij

t′q
′
1. Suppose q1, q′1, q3, q′3 all belong to π−1(K0).
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FIG. 4. — Proposition 11.4

Suppose u ∈ B(q1,1/100), u′ ∈ B(q′1,1/100). Let q2 = g
ij
t uq′1. We write q2 = gτuq1 for

some τ > 0, and let q′2 = gτu
′q′1 (see Figure 4). Also suppose uq1 ∈ π−1(K0), u′q′1 ∈ π−1(K0),

q2 ∈ π−1(K0), q′2 ∈ π−1(K0) and

C−1
1 ε ≤ hdX0

q2

(
U+[q2],U+[q′2])≤ C1ε and � > α0τ.

In addition, suppose there exist q̃2 ∈ π−1(K0) and q̃′2 ∈ π−1(K0) such that σ0(q̃
′
2) ∈ W+[σ0(q̃2)],

and also dX(q̃2, q2) < ξ and dX(q̃′2, q′2) < ξ . Then, provided ξ is small enough and t is large enough

(depending on K0),

(11.4) q̃′2 ∈ W+[q̃2].
Also, there exists ξ ′′′ > 0 (depending on ξ , K0 and C and t) with ξ ′′′ → 0 as ξ → 0 and t →∞
such that

(11.5) d∗
(
P+(q̃2, q̃′2

)
fij(q̃2), fij

(
q̃′2
))≤ ξ ′′′.

(In (11.5) we think of fij(q̃
′
2) as a measure on B0[q̃′2], P+(q̃2, q̃′2)fij(q̃2) as a measure on

P+(q̃2, q̃′2)B0[q̃2], and we use the AGY norm ‖ · ‖Y on W+(q̃′2) for the norm in the definition of

d∗(·, ·).)
Proposition 11.4 is proved in Section 11.2∗. We give an outline of the argument

below.

Outline of the proof of Proposition 11.4. — The initial intuition behind the proof of
Proposition 11.4 is that “one goes from q′3 to q′2 by nearly the same linear map as from
q3 to q2; since this map is bounded on the relevant subspaces, fij(q2) should be related to
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fij(q3) and fij(q
′
2) should be related to fij(q2); since fij(q3) and fij(q

′
3) are close, fij(q

′
2) should

be related to fij(q2).”
There are several problems with this argument. First, because of the need to

change transversals, there is no linear map from the space GSpc(q3) of generalized sub-
spaces near q3 to the space GSpc(q2) of generalized subspaces near q2. This difficulty is
easily handled by working instead with the linear maps R(q3, q2) : H(q3)→ H(q2) and
R(q′3, q′2) : H(q′3)→ H(q′2).

The second difficulty is connected to the first. We would like to say that the two
maps R(q3, q2) and R(q′3, q′2) are close, but the domains and ranges of the maps are
different. Thus we need “connecting” linear maps from H(q3) to H(q′3), and also from
H(q2) to H(q′2). The first map is easy to construct: since q3 and q′3 are in the same leaf
of W−, we can just use the linear map P−(q3, q′3) induced by the “W−-connection map”
P−(q3, q′3) defined in Section 4.2.

Instead of constructing directly a map from H(q2) to H(q′2) we construct, using the
choice of transversal Z(·), linear maps PZ(q2)(q2, q̃2) : H(q2)→ H(q̃2) and PZ(q′2)(q′2, q̃′2) :
H(q′2)→ H(q̃′2). Since q2 and q̃2 are close, and also since q′2 and q̃′2 are close, these maps
are in a suitable sense close to the identity. Then, since q̃2 and q̃′2 are on the same leaf
of W+, we have the map P+(q̃2, q̃′2) induced by the W+-connection map P+(q̃2, q̃′2) of
Section 4.2.

Thus, finally we have two maps from H(q3) to H(q̃′2):

A = P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2) ◦R(q3, q2)

and

A′ = PZ(q′2)
(
q′2, q̃′2

) ◦R
(
q′3, q′2

) ◦ P−(q3, q′3
)
.

Even though A and A′ are defined on H(q3), in what follows we only need to consider
their restrictions to E[ij],bdd(q3) ⊂ H(q3); we will denote the restrictions by B and B′ re-
spectively.

We would like to show that B and B′ are close. By linearity, it is enough to show
that the restrictions of B and B′ to each Eij,bdd(q3) ⊂ E[ij],bdd(q3) are close. Note that by
Proposition 4.12(a), P−(q3, q′3)Eij,bdd(q3) = Eij,bdd(q

′
3). Continuing this argument, we see

that the two subspaces BEij,bdd(q3) and B′Eij,bdd(q3) are close to Eij,bdd(q̃
′
2) (and thus are

close to each other). Also, from the construction and Proposition 10.2, we see that both B
and B′ are uniformly bounded linear maps. However, this is still not enough to conclude
that B and B′ are close. In fact we also check that B and B′ are close modulo V<i(q̃2).
(This part of the argument uses the assumptions on q, q′, q1, q′1, etc.) Then we apply
the elementary Lemma 11.5 below with E = Eij,bdd(q3), L = H(q̃′2), F = Eij,bdd(q̃

′
2), V =

V<i(q̃
′
2) to get

(11.6) ‖B−B′‖→ 0 as ξ → 0.
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The final part of the proof of Proposition 11.4 consists of deducing (11.5) from (11.6) and
the fact that B and B′ are uniformly bounded (Proposition 10.2).

Lemma 11.5. — Suppose L is a finite-dimensional normed vector space, F and V are subspaces

of L, with F∩V = {0}. Let S denote the unit sphere in L, and let hd(·, ·) denote the Hausdorff distance

induced by the norm on L. Suppose E is another finite-dimensional normed vector space, and B : E → L
and B′ : E → L are two linear maps each of norm at most C. Let πV denote the projection L → L/V.

Suppose ξ > 0 is such that

(i) ‖πV ◦B− πV ◦B′‖ ≤ ξ .

(ii) hd(B(E)∩ S,F∩ S)≤ ξ .

(iii) hd(B′(E)∩ S,F∩ S)≤ ξ .

Then, ‖B − B′‖ ≤ ξ ′, where ξ ′ depends on ξ , C and the angle between V and F. Furthermore,

ξ ′ → 0 as ξ → 0 (and the other parameters remain fixed).

In the course of the proof, we will prove the following lemma, which will be used
in Section 12:

Lemma 11.6. — For every δ > 0 there exists a compact set K0 ⊂ X with ν(K0) > 1 − δ

such that the following holds: Suppose x, x′, y, y′ ∈ π−1(K0), y ∈ W+[x], y′ ∈ W+[x′] and x′ ∈
W−[x]. Suppose further that dX0(x, y) ≤ 1/100, dX0(y, y′) ≤ 1/100, and that there exists s > 0
such that for all |τ | ≤ s, dX0(gτx, gτx

′)≤ 1/100 and dX0(gτ y, gτ y
′)≤ 1/100. Furthermore, suppose

0 < α0 < 1 and that 0 < t < α−1
0 s is such that dX0(gty, gty

′) < 1/100, gty ∈ K0 and gty
′ ∈ K0.

Then, for all ij ∈�′′,

(11.7)
∣∣τ̂ij(y, t)− τ̂ij

(
y′, t
)∣∣≤ C,

where C depends only on δ, α0 and the Lyapunov spectrum.

11.1∗. Proof of Lemma 11.2. — Let θ1 > 0 and δ > 0 be small constants to be cho-
sen later. Let K ⊂ X and C > 0 be such that ν(K) > 1 − δ, for x ∈ K the Lemma 6.9(b)
holds with c1(x) > C−1, and for all x ∈ K, all v ∈ E[ij],bdd(x) and all � > 0, for at least
(1− θ1) fraction of y ∈Fij[x, �],
(11.8) ‖R(x, y)v‖< C‖v‖.
By Lemma 9.5 there exists a subset K∗ ⊂ K with ν(K∗) ≥ (1 − 2κ2δ1/2) such that for
x ∈ K∗, (9.12) holds with θ ′ = δ1/2. Furthermore, we may ensure that for x ∈ K∗, K∗ ∩
Fij[x] is relatively open in Fij[x]. (Indeed, suppose z ∈ Fij[x] is near x ∈ K∗. Then, there
exists �0 such that for � > �0, Fij[x, �] = Fij[z, �] and thus (9.12) holds for z. For � < �0,
(9.12) holds for z sufficiently close to x by continuity.) Let

� = {x ∈ X : lim
T→∞

∣∣{t ∈ [0,T] : g−tx ∈ K∗}∣∣≥ (1− 2κ2δ1/2
)}
.
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FIG. 5. — Proof of Lemma 11.2

Then ν(�)= 1. From its definition, � is invariant under gt . Since K∗ ∩Fij[x] is relatively
open in Fij[x], � is saturated by the leaves of Fij . This implies that � is (locally) invariant
under U+. Now, let

KN =
{
x ∈� :
for all T > N,

∣∣{t ∈ [0,T] : g−tx ∈ K∗}∣∣≥ (1− 4κ2δ1/2
)
T
}
.

(We may assume that 4κ2δ1/2 � 1.) We have
⋃

N KN =� .
Suppose x0 ∈ KN, x1 ∈B0[x0] ∩KN, so dX0(x0, x1) < 1/100. For k = 0,1, let Qk ⊂

Eij[xk] be such that

hdX0
xk

(
Qk,U+[xk]

)≤ 1/100,

and the vector

vk = j
(
U−1

xk
(Q1−k)

)
satisfies ‖vk‖ ≤ 1/100.

We claim that vk ∈ H(xk). Indeed, we may write U−1
x1−k

(Q1−k)= (M1−k, v1−k). Also
we may write U−1

xk
(U+[x1−k])= (M′

k, v
′
k). Then, Q1−k is parametrized (from xk ) by a pair

(M′′
k ,wk) where wk ∈ W+(xk), and

M′′
k = (I+M1−k) ◦

(
I+M′

k

)− I

(This parametrization is not necessarily adapted to Z(xk).) Since M1−k and M′
k are both

in H++, M′′
k ∈H++(xk). Thus, vk = Sxk

(j(M′′
k ,wk)) ∈ H(xk).

For C1(N) sufficiently large, we can find C1(N) < t < 2C1(N) such that x′0 ≡
g

ij
−tx0 ∈ K∗, x′1 ≡ g

ij
−tx1 ∈ K∗, see Figure 5. By Lemma 9.2, x′1 ∈B0[x′0]. Let v′k = g

ij
−tvk ,
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FIG. 6. — Proof of Lemma 11.2. In (b), the subspaces U+[ y′0] and U+[ y′1] stay close since x′1 ∈ Eij(x
′
0), and also for k ∈ {0,1},

the subspaces R(x′k, y′k)Q′
k and U+[ y′k] stay close since Q′

k ∈ Eij,bdd(x
′
k)

Q′
k = g

ij
−tQk , see Figure 6. By choosing C1(N) sufficiently large (depending on N), we can

ensure that

hd
X0
x′k

(
U+[x′k],U+[x′1−k

])≤ C−3, hd
X0
x′k

(
Q′

k,U+[x′k])≤ C−3.

By Lemma 6.9, since x′k ∈ K,

(11.9)
∥∥j(U−1

x′k

(
U+[x′1−k

]))∥∥≤ C−2,
∥∥j(U−1

x′k

(
Q′

k

))∥∥≤ C−2.

Let � > 0 be arbitrary, and let �′ be such that g
ij
t Fij[x, �′] = Fij[x, �]. Then, for k = 0,1,

since x′k ∈ K∗, ∣∣{ y′k ∈Fij

[
x′k, �

′] : y′k ∈ K
}∣∣≥ (1− δ1/2

)∣∣Fij

[
x′, �′

]∣∣.
Since U+[x1] ∈ Eij[x0], we have U+[x′1] ∈ Eij[x′0], and thus j(U−1

x′0
(U+[x′1])) ∈ E[ij],bdd(x

′
0).

Since x′0 ∈ K, we have by (11.8), for at least (1− θ1)-fraction of y′0 ∈Fij[x′0, �′],
(11.10)

∥∥R
(
x′0, y′0

)
j
(
U−1

x′0

(
U+[x′1]))∥∥≤ C

∥∥j(U−1
x′0

(
U+[x′1]))∥∥≤ C−1,

where we have used (11.9) for the last estimate. Let θ ′′ = 2θ1 + 2δ1/2. Then, for at least
1 − θ ′′/2 fraction of y′0 ∈Fij[x′0, �′], y′0 ∈ K and (11.10) holds. Therefore, by Lemma 6.9,
for at least (1− θ ′′/2)-fraction of y′0 ∈Fij[x′0, �′], for a suitable y′1 ∈Fij[x′1, �′],
(11.11) hd

X0
y′0

(
U+[ y′0

]
,U+[ y′1

])≤ 1/100.

Also, since Qk ∈ Eij[xk], Q′
k ∈ Eij[x′k], and thus j(U−1

x′k
(Q′

k)) ∈ E[ij],bdd(x
′
k). Hence, by (11.8),

for at least (1− θ)-fraction of y′k ∈Fij[x′k, �′],
(11.12)

∥∥R
(
x′k, y′k

)
j
(
U−1

x′k

(
Q′

k

))∥∥≤ C
∥∥j(U−1

x′k

(
Q′

k

))∥∥≤ C−1,

where we used (11.9) for the last estimate. Then, for at least (1 − θ ′′/2)-fraction of y′k ∈
Fij[x′k, �′], y′k ∈ K and (11.12) holds. Therefore, by Lemma 6.9, for at least (1 − θ ′′/2)-
fraction of y′k ∈Fij[x′k, �′],

hd
X0
y′k

(
U+[ y′k

]
,R
(
x′k, y′k

)
Q′

k

)≤ 1/100.
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Therefore, by (11.11), for at least (1− θ ′′)-fraction of y′k ∈Fij[x′k, �′], for a suitable y′1−k ∈
Fij[x′1−k, �

′],
(11.13) hd

X0
y′k

(
U+[ y′k

]
,R
(
x′1−k, y′1−k

)
Q′

1−k

)≤ 1/50.

Let

w′
k = j

(
U−1

y′k

(
R
(
x′1−k, y′1−k

)
Q′

1−k

))= R
(
x′k, y′k

)
v′k.

Then, assuming y′0 ∈ K and (11.13) holds, by Lemma 6.9,

‖w′
k‖ ≤ C.

Let yk = g
ij
t y′k , and let

wk = R
(

y′k, yk

)
w′

k = R(xk, yk)vk.

Then, for at least (1− θ ′′)-fraction of yk ∈Fij[xk, �], ‖R(xk, yk)vk‖ ≤ C2(N). This implies,
by Proposition 10.3, that vk ∈ E[ij],bdd(xk). (By making θ1 > 0 and δ > 0 sufficiently small,
we can make sure that θ ′′ < θ where θ > 0 is as in Proposition 10.3.)

Thus, for all Qk ∈ Eij[xk] such that j(U−1
x1−k

(Qk)) ≤ 1/100, we have j(U−1
x1−k

(Qk)) ∈
E[ij],bdd(x1−k). Since both U−1

x1−k
and j are analytic, this implies that j(U−1

x1−k
(Qk)) ∈

E[ij],bdd(x1−k) for all Qk ∈ Eij[xk]. Thus, for k = 0,1, Eij[xk] ⊂ Eij[x1−k]. This implies that
Eij[x0] = Eij[x1]. �

11.2∗. Proof of Proposition 11.4. — Let O ⊂ X be an open set contained in the
fundamental domain, and let x → ux ∈ U+(x) be a function which is constant on each set
of the form U+[x] ∩O. Let Tu :O→ X be the map which takes x → uxx.

Lemma 11.7. — Suppose E ⊂O. Then ν(Tu(E))= ν(E).

Proof. — Without loss of generality, we may assume that Tu(O)∩O = ∅. For each
x ∈O, let Ũ[x] be a finite piece of U+[x] which contains both U[x]∩O and Tu(U[x]∩O).
We may assume that Ũ[x] is the same for all x ∈ U[x] ∩O. Let Ũ be the σ -algebra of
functions which are constant along each Ũ[x]. Then, for any measurable φ : X →R,∫

X
φdν =

∫
X
E(φ | Ũ)dν

Now suppose φ is supported on O. We have E(φ ◦ Tu | Ũ) = E(φ | Ũ) since the con-
ditional measures along U+ are Haar, and Tu restricted to O ∩ U+[x] is a translation.
Thus ∫

X
φ ◦Tudν =

∫
X
E(φ ◦Tu | U)dν =

∫
X
E(φ | Ũ)dν =

∫
X
φdν. �

We also recall the following standard fact:
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Lemma 11.8. — Suppose � : X → X preserves ν, and also for almost all x, Cij[�(x)] ∩
B0[�(x)] ∩�(B0[x])=�(Cij[x])∩B0[�(x)] ∩�(B0[x]). Then,

fij
(
�(x)

)∝�∗fij(x),

in the sense that the restriction of both measures to the set B0[�(x)] ∩ �(B0[x]) where both make

sense is the same up to normalization.

Proof. — See [EL, Lemma 4.2(iv)]. �

Lemma 11.9. — We have (on the set where both are defined):

fij(gtTug−sx)∝ (gtTug−s)∗fij(x).

Proof. — This follows immediately from Lemma 11.7 and 11.8. �

The maps φx. — We have the map φx : W+(x)→H++(x)×W+(x) given by

(11.14) φx(z)= U−1
x

(
U+[z]).

(Here U−1
x is defined using the transversal Z(x).)

Suppose Z(x) is an admissible transversal to U+(x). Since fij(x) is Haar along U+,
we can recover fij(x) from its restriction to Z(x). More precisely, the following holds:

Let π2 :H++(x)× W+(x)→ W+(x) be projection onto the second factor. Then,
for z ∈ Z(x), π2(φ(z))= z. Now, suppose Z′ is another transversal to U+(x). Then,

(fij |Z′)(x)= (π2 ◦ SZ′
x ◦ φ)∗(fij |Z(x)).

The measures fij(x). — Let

fij(x)= (j ◦ φx)∗fij(x).

Then, fij(x) is a measure on H(x).

Lemma 11.10. — For y ∈Fij[x], we have (on the set where both are defined),

fij(y)∝ R(x, y)∗fij(x).

Proof. — Suppose t > 0 is such that x′ = g
ij
−tx and y′ = g

ij
−ty satisfy y′ ∈ B[x′]. Working

in the universal cover, let Z[x] = {z : z − x ∈ Z(x)}. Let Z[x′] = g
ij
−tZ[x], and let Z[ y′] =

g
ij
−tZ[ y]. For z ∈ Z[x′] near x′, let uz be such that uzz ∈ Z[ y′]. We extend the function

z → uz to be locally constant along U+ in a neighborhood of Z[x′]. Then, let

� = g
ij
t ◦Tu ◦ g

ij
−t.
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Note that � takes Z[x] into Z[ y], and by Lemma 11.9,

(11.15) �∗fij(x)∝ fij(y).

By the definition of u∗ in Section 6, for z ∈ Z[x],(
R(x, y) ◦ j ◦ U−1

x

)
U+[z] = (j ◦ U−1

y

)
U+[�(z)].

Hence, by (11.14),

(11.16)
(
R(x, y) ◦ j ◦ φx

)
(z)= (j ◦ φy ◦�)(z),

where φy is relative to the transversal Z(y) and φx is relative to the transversal Z(x). (Here
we have used the fact that �(U+[z]) = U+[�(z)] which follows from the equivariance
of U+. Also, in (11.16), R(x, y) is as in Section 9.3.) Now the lemma follows from (11.15)
and (11.16). �

Let P+(x, y) and P−(x, y) be as in Section 4.2. The maps P+(x, y)∗ : Lie(G++)(x)→
Lie(G++)(y) (where we use the notation (6.11)) are an equivariant measurable flat
W+-connection on the bundle Lie(G++) satisfying (4.5). Then, by Proposition 4.12(a),

(11.17) P+(x, y)∗ Lie
(
U+)(x)= Lie

(
U+)(y).

The maps P+(x, y) and P−(x, y). — In view of (11.17), the maps P+(x, y) naturally
induce a linear map (which we denote by P̃+(x, y)) from H̃(x) to H̃(y), so that for (M, v) ∈
H++(x),

P̃+(x, y) ◦ j(M, v)= j
(
P+(x, y) ◦M ◦ P+(x, y)−1,P+(x, y)v

)
.

Let P+(x, y) = SZ(y)
y ◦ P̃+(x, y). Then the maps P+(x, y) : H(x)→ H(y) are an equivari-

ant measurable flat W+-connection on the bundle H satisfying (4.5). Then, by Proposi-
tion 4.12(a), we have

(11.18) P+(x, y)Eij,bdd(x)= Eij,bdd(y).

For y ∈ W−[x], we have a map P−(x, y) with analogous properties.

The maps PZ(x, y) and PZ(x, y). — We also need to define a map between H(x)

and H(y) even if x and y are not on the same leaf of W+ or W−. For every vi ∈ Vi(x)≡
Vi(H1)(x), and i ∈� (where � is the Lyapunov spectrum) we can write

vi = v′i + v′′i v′i ∈ Vi

(
H1
)
(y), v′′i ∈

⊕
j �=i

Vi

(
H1
)
(y).

Let P!(x, y) : H1(x) → H1(y) be the linear map whose restriction to Vi(H1)(x) sends
vi to v′i . By definition, P!(x, y) sends Vi(H1)(x) to Vi(H1)(y), but it is not clear that
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P!(x, y)∗ Lie(U+)(x)= Lie(U+)(y). To correct this, given a Lyapunov-adapted transver-
sal Z(x), note that (for y near x),

Lie(G++)(x)= P!(x, y)−1
∗ Lie

(
U+)(y)⊕ Z(x).

Then, given v ∈ Lie(U+)(x)⊂ Lie(G++)(x), we can decompose

(11.19) v = v′ + v′′, v′ ∈ P!(x, y)−1
∗ Lie

(
U+)(y), v′′ ∈ Z(x).

Define M(x; y) : Lie(U+)(x)→ Lie(G++)(x) by

(11.20) Mv =−v′′.
Then, since Z(x) is Lyapunov adapted, M(x; y) : Lie(U+)(x)→ Lie(G++)(x) is the linear
map such that

(11.21)
(
I+M(x; y)

)
Lie
(
U+)(x)= P!(x, y)−1

∗ Lie
(
U+)(y),

and M(x; y)Vi(Lie(U+))(x)⊂ Zi(x), where Zi(x)= Z(x) ∩ Vi(Lie(G++))(x) is as in Sec-
tion 6. Then, let PZ(x)(x, y) :H++(x)→H++(y) be the map taking f ∈H++(x) to

PZ(x)(x, y)f ≡ P!(x, y)∗ ◦ f ◦ (I+M(x; y)
)−1 ◦ P!(x, y)−1

∗ ∈H++(y).

Then, since M(x; y)Vi(Lie(U+))(x)⊂ Vi(Lie(G++))(x) we have for a.e. x, y,

PZ(x)(x, y)Vi(H++)(x)= Vi(H++)(y).

Then PZ(x) gives a map P̃Z(x)(x, y) :H++(x)×W+(x)→H++(y)×W+(y) given by

P̃Z(x)(x, y)(f , v)= (PZ(x)(x, y)f ,P!(x, y)v
)
.

Therefore (after possibly composing with a change in transversal map S) P̃Z(x)(x, y) in-
duces a map we will call PZ(x)(x, y) between H(x) and H(y). This map satisfies

(11.22) PZ(x)(x, y)Vi(H)(x)= Vi(H)(y),

and has the equivariance property

Pg−tZ(x)(g−tx, g−ty)= g−t ◦ PZ(x)(x, y) ◦ gt.

Lemma 11.11. — For y ∈ W+[x], and any choice of Z(x), we have

(11.23) PZ(x)(x, y)= P+(x, y).
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Proof. — Suppose y ∈ W+[x]. Then by Lemma 4.1, P!(x, y)= P+(x, y), thus

P!(x, y)−1
∗ Lie

(
U+)(y)= P+(x, y)−1

∗ Lie
(
U+)(x)= Lie

(
U+)(x)

where for the last equality we used Proposition 4.12(a). Hence, M(x; y) = 0 and (11.23)
follows. �

Lemma 11.12. — For any δ > 0 there exists a compact subset K ⊂ X0 with ν(K) >
1 − δ/2 such that the following holds: Suppose x and y ∈ π−1(K), and s > 0 are such that for all

|t|< s, dX0(gtx, gty) < 1/100. Then, there exists α > 0 depending only on the Lyapunov spectrum,

and C = C(δ) such that for all i,

dY

(
PGM(x, y)Vi

(
H1
)
(x),Vi

(
H1
)
(y)
)≤ C(δ)e−αs.

Proof. — There exists a compact subset K1 ⊂ X0 such that the functions x →
Vi(H1)(x) are uniformly continuous. (Here we are using the Gauss-Manin connection to
identify H1(x) with H1(y) for y near x.) Then, there exists σ > 0 such that if x ∈ π−1(K1),
y ∈ π−1(K1) and dX0(x, y) < σ then D(x, y) < 1 and D−(x, y) < 1. (See Section 4.5 for the
definition of D±(·, ·).) We also may assume that there exists a constant C0(δ) such that
C(x) < C0(δ) for all x ∈ K1, where C(·) is as in Lemma 4.7. Then there exists a compact
subset K ⊂ X with ν(K) > 1 − δ, and t0 > 0 such that for x ∈ K, for t > t0, for (1 − δ)-
fraction of t ∈ [0, s], gtx ∈ K1, g−tx ∈ K1 also for at least half the fraction of t ∈ [0, s], gtx

and g−tx belong to Kthick where Kthick is as in Lemma 3.5.
Suppose x ∈ π−1(K), and y ∈ π−1(K). Then, by Lemma 3.5, there exists α1 > 0

depending only on the Lyapunov spectrum such that there exists t ∈ [α1s, s] with gtx ∈ K1,
gty ∈ K1 and dX0(gtx, gty) < σ . Then, D−(gtx, gty) < 1. Then, by Lemma 4.7, applied to
the points gtx, gty, we get

dY

(
V≥i

(
H1
)
(x),V≥i

(
H1
)
(y)
)≤ C(δ)e−αt = C(δ)e−αα1s.

Similarly, there exists t ∈ [α1s, s] with g−tx ∈ K1 and g−ty ∈ K1. Then, we get

dY

(
V≤i

(
H1
)
(x),V≤i

(
H1
)
(y)
)≤ C(δ)e−αt = C(δ)e−αα1s.

The lemma follows. �

For every δ > 0 and every 0 < α < 1 there exist compact sets K0 ⊂ K! ⊂ X with
ν(K0) > 1− δ such that the following hold:

(K!1) The functions U+(x), Vi(H1)(x) and more generally, Vi(Hbig)(x) for all i,
are uniformly continuous on K!.

(K!2) The functions Z(x) are uniformly continuous on K!.
(K!3) The functions Eij,bdd(x) are uniformly continuous on K!.
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(K!4) The functions fij(x) and fij(x) are uniformly continuous on K! (in the weak-
* convergence topology).

(K!5) There exists t0 > 0 and ε ′ < 0.25αmini �=j |λi − λj| such that for t > t0, x ∈
K!, all i, and any v ∈ Vi(H1)(x),

e(λi−ε′)t‖v‖ ≤ ‖(gt)∗v‖ ≤ e(λi+ε′)t‖v‖
(K!6) The function C3(·) of Proposition 10.2 is uniformly bounded on K!.
(K!7) Eij,bdd(x) and V<i(x) are transverse for x ∈ K!.
(K!8) K! ⊂ K′′

thick where K′′
thick is as in Lemma 3.5(c). Also K! ⊂ K where K is as

in Lemma 11.12.
(K!9) There exists c0(δ) > 0 with c0(δ)→ 0 as δ → 0 such that for all x ∈ K!,

dX0(x, ∂B0[x]) > c0(δ) where B0[x] is as in Section 3.
(K!10) There exists a constant C4(δ) such that for all x ∈ K! and all v ∈ Hbig(x),

C4(δ)
−1‖v‖ ≤ ‖v‖Y ≤ C4(δ)‖v‖.

(K!11) There exists a constant C1 = C1(δ) <∞ such that for x ∈ K0 and all T >

C1(δ) and all ij we have∣∣{t ∈ [C1,T] : g
ij
−tx ∈ K!

}∣∣≥ 0.99(T−C1).

Lemma 11.13. — Suppose x, x′, y, y′ ∈ π−1(K0), y ∈ W+[x], y′ ∈ W+[x′] and x′ ∈
W−[x]. Suppose further that dX0(x, y) < 1/100, dX0(y, y′) < 1/100, and that there exists s > 0
such that for all |t| ≤ s, dX0(gtx, gtx

′) < 1/100 and dX0(gty, gty
′) < 1/100. Then,

(a) There exists α2 depending only on the Lyapunov spectrum, such that

(11.24)
∥∥P!
(

y, y′
)
PGM

(
y′, y
)− I

∥∥
Y
= O

(
e−α2s

)
.

(b) There exists α6 depending only on the Lyapunov spectrum such that

(11.25)
∥∥P+(x′, y′

) ◦ P−(x, x′
)− PGM

(
y, y′
) ◦ P+(x, y)

∥∥
Y
= O

(
e−α6s

)
.

Proof. — Note that part (a) follows immediately from Lemma 11.12, since we are
assuming that dX0(gty, gty

′)≤ 1/100 for all t with |t| ≤ s.
To prove (b) we abuse notation by identifying H1

+ at all four points x, y, x′, y′ using
the Gauss-Manin connection. We write Vi(x) for Vi(H1

+)(x). Since

P+(x′, y′
) ◦ P−(x, x′

) ◦ P+(x, y)−1Vi(y)= Vi

(
y′
)
,

and by Lemma 11.12,

dY

(
Vi(y),Vi

(
y′
))= O

(
e−α2s

)
,

it is enough to check that for v ∈ Vi(y),

(11.26)
∥∥(P+(x′, y′

) ◦ P−(x, x′
) ◦ P+(x, y)−1 − I

)
v + V<i(y)

∥∥
Y
= O

(
e−α6s‖v‖Y

)
.

But (11.26) follows from the following:
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• P+(x, y)−1 is the identity map on V≤i(y)/V<i(y)= V≤i(x)/V<i(x).
• P−(x, x′)V≤i(x)= V≤i(x

′) and by Lemma 11.12, ‖P−(x, x′)− I‖Y = O(e−α2s).
• P+(x′, y′) is the identity on V≤i(x

′)/V<i(x
′)= V≤i(y

′)/V<i(y
′).

• dY(V≤i(y),V≤i(y
′))= O(e−α2s).

This completes the proof of (11.26) and thus (11.25). �

Lemma 11.14.

(a) Suppose x, x̃, y, ỹ all belong to π−1(K!), dX0(x, y) < 1/100, ỹ ∈ W+[x̃], dX(x, x̃)≤ ξ

and dX(y, ỹ)≤ ξ . Then

‖P+(x̃, ỹ) ◦ PZ(x)(x, x̃)− PZ(y)(y, ỹ) ◦ PZ(x)(x, y)‖ ≤ ξ ′,

where ξ ′ → 0 as ξ → 0.

(b) Suppose x, x′, y, y′ ∈ π−1(K0), y ∈ W+[x], y′ ∈ W+[x′] and x′ ∈ W−[x]. Suppose

further that dX0(x, y) ≤ 1/100, dX0(y, y′) ≤ 1/100, and that there exists s > 0 such

that for all |t| ≤ s, dX0(gtx, gtx
′) ≤ 1/100 and dX0(gty, gty

′) ≤ 1/100. Furthermore,

suppose 0 < α0 < 1 and that 0 < τ < α−1
0 s is such that dX0(gτ y, gτ y

′) < 1/100 and

gτ y ∈ K!. Then,

∥∥P+(x′, y′
) ◦ P−(x, x′

)− Pg−τZ(gτ y)
(

y, y′
) ◦ P+(x, y)

∥∥= O
(
e−αs
)
,

where α depends only on the Lyapunov spectrum and α0.

Proof of (a). — Since y ∈ W+[x], by Lemma 11.11 we have PZ(x)(x, y) = P+(x, y).
Since PZ(x)(x, y) depends continuously on x ∈ K! and y ∈ K!, part (a) follows from a
compactness agreement.

Proof of (b). — We first claim that

(11.27)
∥∥Pg−τZ(gτ y)

(
y, y′
)
PGM

(
y′, y
)
∗ − I

∥∥
Y
= O

(
e−α

′s),
where α′ depends only on α0 and the Lyapunov spectrum.

By (K!1) there exists ε0 > 0 such that for x1 ∈ π−1(K!), y1 ∈ π−1(K!) with
dX0(x1, y1) < ε0, hdX0

x1
(U+[x1],U+[ y1]) < 0.01. By (K!10) there exists t > s/2 with

gty ∈ π−1(K!), gty
′ ∈ π−1(K!) and dX0(gty, gty

′) < 1/100. Therefore, by Lemma 3.5(c) and
Proposition 3.4 we have

hd
X0
x′
(
U+[ y],U+[ y′

])= O
(
e−α3s

)
,

where α3 depends only on the Lyapunov spectrum. Therefore, we get

dY

(
PGM

(
y, y′
)−1

∗ Lie
(
U+)(y),Lie

(
U+)( y′

))= O
(
e−α3s

)
.
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Then, by (11.24),

(11.28) dY

(
P!
(

y, y′
)−1

∗ Lie
(
U+)( y′

)
,Lie

(
U+)(y))= O

(
e−α4s

)
where α4 depends only on the Lyapunov spectrum.

Since gτ y ∈ π−1(K!), by (K!1) and (K!2),

dY

(
Z(gτ y)∩ Vi

(
Lie(G++)

)
(gτ y),Lie

(
U+)(gτ y)∩ Vi

(
Lie(G++)

)
(gτ y)

)
≥ c
(
K!
)
.

By (K!5) (i.e. the multiplicative ergodic theorem), the restriction of gτ to Vi(Lie(G++)) is
eλiτhτ , where ‖hτ‖ = O(eε

′τ ). Therefore,

(11.29) dY

(
g−τZ(gτ y)∩ Vi

(
Lie(G++)

)
(y),Lie

(
U+)(y)∩ Vi

(
Lie(G++)

)
(y)
)≥ ce−ε

′s

We may assume (since α > 0 in the choice of K! is arbitrary), that ε ′ < α4/2. Then, it
follows from (11.28), (11.29), (11.19) and (11.20) that

(11.30)
∥∥M
(

y; y′
)∥∥

Y
= O

(
e−α5s

)
where M(·; ·) is as in (11.21), and α5 depends only on α0 and the Lyapunov spectrum.
Now, (11.27) follows from (11.24) and (11.30).

Combining (11.27), and (11.25) we get∥∥P+(x′, y′
) ◦ P−(x, x′

)− Pg−τZ(gτ y)
(

y, y′
) ◦ P+(x, y)

∥∥
Y
= O

(
e−α6s

)
.

Now (b) of Lemma 11.14 follows immediately, see also (K!10). �

Lemma 11.15. — Suppose q1 ∈ K! and q′1 ∈ W−[q] ∩ K!, are such that dX0(q1, q′1) <
1/100. Suppose u ∈ B(q1,1/100), u′ ∈ B(q′1,1/100), with uq1 ∈ K!, u′q′1 ∈ K!. We write q2 =
gτuq1 for some τ > 0, and let q′2 = gτu

′q′1 (see Figure 4). Suppose dX0(q2, q′2) < 1/100, and also there

exists α0 > 0 depending only on the Lyapunov spectrum such that for |t|< α0τ , dX0(gtuq1, gtu
′q′1) <

1/100.

In addition, suppose there exist q̃2 ∈ X and q̃′2 ∈ X with σ0(q̃
′
2) ∈ W+[σ0(q̃2)] such that

dX(q̃2, q2) < ξ and dX(q̃′2, q′2) < ξ . Suppose further that q2, q′2, q̃2 and q̃′2 all belong to K!.

Then (assuming ε ′ in (K!5) is sufficiently small depending on α0 and the Lyapunov spectrum),

τ is sufficiently large and ξ is sufficiently small (both depending only on K!), we have

q̃′2 ∈ W+[q̃2].
Proof. — In this proof, α is a generic constant depending only on α0 and the Lya-

punov spectrum, with its value changing from line to line.
By Lemma 11.13(a),

∥∥P!
(
uq1, u′q′1

) ◦ PGM
(
uq1, u′q′1

)−1 − I
∥∥

Y
= O

(
e−ατ

)
.
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By Lemma 11.13(b),∥∥PGM
(
uq1, u′q′1

) ◦ P+(q1, uq1)− P+(q′1, u′q′1
) ◦ P−(q1, q′1

)∥∥
Y
= O

(
e−ατ

)
.

Thus,

(11.31)
∥∥P!
(
uq1, u′q′1

) ◦ P+(q1, uq1)− P+(q′1, u′q′1
) ◦ P−(q1, q′1

)∥∥
Y
= O

(
e−ατ

)
.

Write u′q′1 = (σ0(u
′q′1),F

′), uq1 = (σ0(uq1),F) where F and F′ are as is in Section 4.6.
By Proposition 4.12 (see also (4.12) and (4.13)),

F
′ = P+(q′1, u′q′1

) ◦ P−(q1, q′1
) ◦ P+(uq1, q1)F.

Therefore, by (11.31),

dY

(
F
′,P!
(
uq1, u′q′1

)
F
)= O

(
e−ατ

)
,

where the distance dY(·, ·) between flags is as in Section 4.6.
We now claim that

(11.32) dY

(
gτF

′, gτP!
(
uq1, u′q′1

)
F
)= O

(
e−ατ

)
.

Indeed to prove (11.32) it is enough to show that for each i,

(11.33) dY

(
gτF

′
i, gτP!

(
uq1, u′q′1

)
Fi

)= O
(
e−ατ

)
.

But F′
i ⊂ Vi(Hbig)(u

′q′1), Fi ⊂ Vi(Hbig)(uq1), and

P!
(
uq1, u′q′1

)
Vi(Hbig)(uq1)= Vi(Hbig)

(
u′q′1
)
.

Thus, we have

F
′
i ⊂ Vi(Hbig)

(
u′q′1
)
, P!

(
uq1, u′q′1

)
Fi ⊂ Vi(Hbig)

(
u′q′1
)

The geodesic flow gτ restricted to Vi(Hbig)(u
′q′1) is of the form eλiτhτ , where ‖hτ‖Y =

O(eε
′τ ). Thus, (11.33) and hence (11.32) follows. The equivariance property of P! then

implies that

(11.34) dY

(
gτF

′,P!
(
q2, q′2

)
gτF
)= O

(
e−ατ

)
.

We have since the Vi are continuous on K! and Lemma 4.1,∥∥PGM
(
q′2, q̃′2

) ◦ P!
(
q2, q′2

)− P+(q̃2, q̃′2
) ◦ PGM(q2, q̃2)

∥∥
Y
→ 0,

as ξ → 0. Combining this with (11.34), we get

(11.35) dY

(
PGM

(
q′2, q̃′2

)
gτF

′,P+(q̃2, q̃′2
) ◦ PGM(q2, q̃2)gτF

)→ 0,

as ξ → 0 and τ →∞.
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Note that q2 = (σ0(q2), gτF), q′2 = (σ0(q
′
2), gτF

′). Write q̃2 = (σ0(q̃2), F̃), q̃′2 =
(σ0(q̃

′
2), F̃

′). Then, since dX(q2, q̃2)→ 0, in view of (4.14),

dY

(
PGM(q2, q̃2)gτF, F̃

)≤ ξ ′

dY

(
PGM

(
q′2, q̃′2

)
gτF

′, F̃′)≤ ξ ′

where ξ ′ → 0 as ξ → 0. Hence, by (11.35),

dY

(
F̃
′,P+(q̃2, q̃′2

)
F̃
)→ 0 as ξ → 0 and τ →∞.

This implies that q̃′2 ∈ W+[q̃2] by (4.12). �

Proof of Lemma 11.6. — Note that, by the construction of PZ(·)(·, ·), for all i ∈�′,

(11.36) PZ(gt y)
(
gty, gty

′)Vi(H)(gty)= Vi(H)
(
gty

′).
However, even though for all ij ∈�′′, Eij(x)⊂ Vi(H)(x), we may have

PZ(gt y)
(
gty, gty

′)Eij(gty) �= Eij

(
gty

′).
Suppose v ∈ Eij(y), and that v is orthogonal to Ei,j−1(y)⊂ Eij(y). Let

v′ = P+(x′, y′
) ◦ P−(x, x′

) ◦ P+(y, x)v.

Then, by Proposition 4.12(a), v′ ∈ Eij(y
′). By (K!1), and the fact that

P+(x′, y′
) ◦ P−(x, x′

) ◦ P+(y, x)Ei,j−1(y)= Ei,j−1

(
y′
)
,

we have

(11.37) C−1
1 ‖v‖ ≤ ∥∥v′ +Ei,j−1

(
y′
)∥∥≤ C1‖v‖,

where C1 depends only on K0. By Lemma 11.14(b),∥∥Pg−tZ(gt y)
(

y, y′
)
v− v′

∥∥= O
(
e−α

′
1t‖v‖),

where α′
1 depends only on α0 and the Lyapunov spectrum. By (11.36),

Pg−tZ(gt y)
(

y, y′
)
v ∈ Vi(H)

(
y′
)
.

Then by the multiplicative ergodic theorem (see also (K!5)),

(11.38)
∥∥PZ(gt y)

(
gty, gty

′)(gtv)− gtv′
∥∥= O

(
e−(α

′
1−ε′)t‖gtv‖

)
.

Since v is arbitrary, this implies that for all ij ∈�′′,

(11.39) d
(
PZ(gt y)

(
gty, gty

′)Eij(gty),Eij

(
gty

′))= O
(
e−α1t

)
,

where α1 depends only on α0 and the Lyapunov spectrum.
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By (K!1) and (K!2),∥∥PZ(gt y)
(
gty, gty

′)∥∥≤ C′
1

where C′
1 depends only on K0. Therefore, by (11.38) and (11.39),

(11.40) C−1
2 ‖gtv+Ei,j−1(gty)‖ ≤

∥∥gtv′ +Ei,j−1

(
gty

′)∥∥≤ C2‖gtv′ +Ei,j−1(gty)‖,
where C2 depends only on K0, α0 and the Lyapunov spectrum.

Note that

τ̂ij(y, t)= ‖gtv+Ei,j−1(gty)‖
‖v‖ , τ̂ij

(
y′, t
)= ‖gtv′ +Ei,j−1(gty

′)‖
‖v′ +Ei,j−1(y′)‖ .

Now (11.7) follows from (11.37) and (11.40). �

Proposition 11.16. — Suppose α, ε, s, �, t, t′, q, q′, τ , q1, q′1, q3, q′3, u, u′, q2, q′2, q̃2,

q̃′2, C, C1, ξ are as in Proposition 11.4. Suppose also q̃′2 ∈ W+[q̃2]. Then (assuming ε ′ in (K!5) is

sufficiently small depending on α0 and the Lyapunov spectrum),

(a) There exists ξ ′ > 0 (depending on ξ , K0 and C and t) with ξ ′ → 0 as ξ → 0 and

t →∞ such that for v ∈ E[ij],bdd(q3),∥∥PZ(q′2)
(
q′2, q̃′2

) ◦R
(
q′3, q′2

) ◦ P−(q3, q′3
)
v(11.41)

− P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2) ◦R(q3, q2)v

∥∥≤ ξ ′‖v‖.
(b) There exists ξ ′′ > 0 (depending on ξ , K0, C and t) with ξ ′′ → 0 as ξ → 0 and t →∞

such that

d∗
(
P+(q̃2, q̃′2

)
fij(q̃2), fij

(
q̃′2
))≤ ξ ′′.

Here d∗(·, ·) is any metric which induces the weak-* convergence topology on the domain of

common definition of the measures, up to normalization.

Proof of (a). — Following the outline given after the statement of Proposition 11.4,
the proof will consist of verifying conditions (i), (ii) and (iii) of Lemma 11.5, with E =
Eij,bdd(q3), L = H(q̃′2), F = Eij,bdd(q̃

′
2), V = V<i(q̃

′
2), and B and B′ as the linear maps on the

first and second line of (11.41). (We note that B and B′ are bounded by Proposition 10.2.)
We start with (i).

Note that by (9.4), we have

(11.42) κ−1τ ≤ t ≤ κτ,

where κ depends only on the Lyapunov spectrum. Also, by assumption we have

� > α0τ,

where α0 depends only on the Lyapunov spectrum.
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Suppose w ∈ Eij,bdd(q1). We now apply Lemma 11.14(b), with x = q1, x′ = q′1, y =
uq1, y′ = u′q′1 and τ = τ to get∥∥P+(u′q′1, uq1

) ◦ P−(q1, q′1
)
w− Pg−τZ(q2)

(
uq1, u′q′1

) ◦ P+(q1, uq1)w
∥∥

= O
(
e−ατ‖w‖).

By Proposition 4.12(a), P−(q1, q′1)w ∈ Eij,bdd(q
′
1)⊂ E(q′1). Therefore, by Lemma 9.1, this

can be rewritten as∥∥(u′)∗ ◦ P−(q1, q′1
)
w− Pg−τZ(q2)

(
uq1, u′q′1

) ◦ (u)∗w∥∥= O
(
e−ατ‖w‖).

Hence,

(11.43)
(
u′
)
∗ ◦ P−(q1, q′1

)
w = Pg−τZ(q2)

(
uq1, u′q′1

) ◦ (u)∗w+w′

where w′ ∈ H(u′q′1) satisfies

(11.44) ‖w′‖ = O
(
e−ατ‖w‖)= Oε′

(
e−(λi+α−ε′)τ‖v‖),

where we wrote w = g
ij

−t′v for some v ∈ Eij(q3), and we have used (K!5), (11.42) and the
assumption |t− t′|< C for the last estimate. We now apply gτ = g

ij
t to both sides of (11.43)

and take the quotient mod V<i(q
′
2). We get

gτ ◦
(
u′
)
∗ ◦ P−(q1, q′1

)
w+V<i

(
q′2
)

(11.45)

= PZ(q2)
(
q2, q′2

) ◦ [gτ ◦ (u)∗w+ gτw′]+V<i

(
q′2
)
.

We may write

w′ =
∑

k

wk, wk ∈ Vk(H)
(
u′q′1
)
.

Then,

gτw′ +V<i

(
q′2
)=∑

k

gτw′
k +V<i

(
q′2
)=∑

k≥i

gτw′
k +V<i

(
q′2
)
,

since for k < i, gτw′
k ∈ V<i(q

′
2). By (K!5), for k ≥ i,

‖gτw′
k‖ = O

(
e(λk+ε′)τ‖w′

k‖
)= O

(
e(λi+ε′)τ‖w′

k‖
)= O

(
e−α5τ‖v‖),

using (11.44) (and choosing ε ′ sufficiently small depending on α0 and the Lyapunov spec-
trum). Therefore, substituting into (11.45), we get, for v ∈ Eij,bdd(q3),

R
(
q′3, q′2

) ◦ P−(q3, q′3
)
v+V<i

(
q′2
)

= PZ(q2)
(
q2, q′2

) ◦R(q3, q2)v+O
(
e−α5τ‖v‖)+V<i

(
q′2
)
.
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We now apply PZ(q′2)(q′2, q̃′2) to both sides to get (using (11.22))

PZ(q′2)
(
q′2, q̃′2

) ◦R
(
q′3, q′2

) ◦ P−(q3, q′3
)
v+V<i

(
q̃′2
)

(11.46)

= PZ(q′2)
(
q′2, q̃′2

) ◦ PZ(q2)
(
q2, q′2

) ◦R(q3, q2)v+O
(
e−α5τ‖v‖)+V<i

(
q̃′2
)
.

Since q2, q̃2, q′2, q̃′2 all belong to K!, we have by Lemma 11.14(a),

‖PZ(q′2)
(
q′2, q̃′2

) ◦ PZ(q2)
(
q2, q′2

)− P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2)‖ ≤ ξ3,

where ξ3 → 0 as ξ → 0. Therefore, substituting into (11.46), we get

PZ(q′2)
(
q′2, q̃′2

) ◦R
(
q′3, q′2

) ◦ P−(q3, q′3
)
v+V<i

(
q̃′2
)

= P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2) ◦R(q3, q2)v+O

(
e−α5τ‖v‖)+O(ξ3‖v‖)

+V<i

(
q̃′2
)
.

This completes the verification of (i) of Lemma 11.5.
We now verify (ii) of Lemma 11.5. For v ∈ Eij,bdd(q3), we have R(q3, q2)v ∈

Eij,bdd(q2), and then

P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2) ◦R(q3, q2)v

∈ P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2)Eij,bdd(q2).

By (K!2) and (K!3), since dX(q2, q̃2) < ξ ,

dY

(
PZ(q2)(q2, q̃2)Eij,bdd(q2),Eij,bdd(q̃2)

)
< ξ0,

where ξ0 → 0 as ξ → 0. Then, using (11.18),

dY

(
P+(q̃2, q̃′2

) ◦ PZ(q2)(q2, q̃2)Eij,bdd(q2),Eij,bdd

(
q̃′2
))
< ξ1,

where ξ1 → 0 as ξ → 0. This completes the verification of condition (ii) of Lemma 11.5.
Also, by (11.18) (applied to P−), we have P−(q3, q′3)v ∈ Eij,bdd(q

′
3). Then, R(q′3, q′2) ◦

P−(q3, q′3)v ∈ Eij,bdd(q
′
2), and

PZ(q′2)
(
q′2, q̃′2

) ◦R
(
q′3, q′2

) ◦ P−(q3, q′3
)
v ∈ PZ(q′2)

(
q′2, q̃′2

)
Eij,bdd

(
q′2
)
.

By (K!2) and (K!3),

dY

(
PZ(q′2)

(
q′2, q̃′2

)
Eij,bdd

(
q′2
)
,Eij,bdd

(
q̃′2
))
< ξ2,

where ξ2 → 0 as ξ → 0. This completes the verification of condition (iii) of Lemma 11.5.
Now (11.41) for arbitrary v ∈ Eij,bdd(q3) follows from Lemma 11.5. The gen-

eral case of (11.41) (i.e. for an arbitrary v ∈ E[kr],bdd(q3)) follows since E[kr],bdd(q3) =⊕
ij∈[kr] Eij,bdd(q3) and all the maps on the left-hand-side of (11.41) are linear.
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Proof of (b). — By (K!4),

d∗
(
P−(q3, q′3

)
∗fij(q3), fij

(
q′3
))≤ ξ1,

where ξ1 → 0 as and t → ∞. In view of in view of condition (K!6), the assumption
|t − t′| < C and Proposition 10.2, that R(q3, q2) is a linear map with norm bounded
depending only on K! and C. It then follows from (a) that R(q′3, q′2) is also a linear
map whose norm is bounded depending only on K! and C. Furthermore, by (K!9) and
Lemma 3.5 there exists a constant C2(δ) such that if

(11.47) C > t − t′ > C2(δ),

then if we write q2 = g
ij
t ug

ij

−t′q3, then g
ij
t ug

ij

−t′B0[q3] ∩ Cij[q3] ⊃B0[q2] ∩ Cij[q2]. Then, by
Lemma 11.10,

fij(q2)∝ R(q3, q2)∗fij(q3) and fij

(
q′2
)∝ R

(
q′3, q′2

)
∗fij

(
q′3
)
.

In view of (K!11), we can assume that (11.47) holds: otherwise we can replace q3 and q′3
by g

ij
−sq3 ∈ K! and g

ij
−sq

′
3 ∈ K! where C2(δ) < s < 2C2(δ). (Without loss of generality we

may assume that C > 2C2(δ).) Hence, we have

(11.48) d∗
((

R
(
q′3, q′2

) ◦ P−(q3, q′3
))

∗fij(q3), fij

(
q′2
))≤ ξ2,

where ξ2 → 0 as t →∞. Thus, by (K!1), (K!2), (K!3),

d∗
(
PZ(q′2)

(
q′2, q̃′2

)
fij

(
q′2
)
, fij

(
q̃′2
))≤ ξ3,

where ξ3 → 0 as ξ → 0 and t →∞. Hence,

(11.49) d∗
((

PZ(q′2)
(
q′2, q̃′2

) ◦R
(
q′3, q′2

) ◦ P−(q3, q′3
))

∗fij(q3), fij

(
q̃′2
))≤ ξ4,

where ξ4 → 0 as ξ → 0 and t →∞. Also, in view of (11.48), and since P+(q̃2, q̃′2) is a
linear map whose norm is bounded depending only on K!,

(11.50) d∗
((

P+(q̃2, q̃′2
) ◦ PZ(q2)(q2, q̃2) ◦R(q3, q2)

)
∗fij(q3),P+(q̃2, q̃′2

)
∗fij(q̃2))≤ ξ5,

where ξ5 → 0 as ξ → 0 and t →∞. Now part (b) follows from (11.49), (11.50), and
(11.41).

Proof of Proposition 11.4. — Note that (11.4) follows from Lemma 11.15. We assume
this from now on.

Without loss of generality, and to simplify the notation, we may assume that
Z(q̃′2) = P+(q̃2, q̃′2)Z(q̃2). (Otherwise, we can further compose with a reparametrization
map at q̃′2 which will not change the result.) We have

fij(q̃2)= (j ◦ φq̃2)∗fij(q̃2)
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and

fij

(
q̃′2
)= (j ◦ φq̃′2)∗fij

(
q̃′2
)

As in Section 6, let P+
∗ :H++(q̃2)×W+(q̃2)→H++(q̃′2)×W+(q̃′2) be given by

(11.51) P+
∗ (M, v)= (P+(q̃2, q̃′2

)−1 ◦M ◦ P+(q̃2, q̃′2
)
,P+(q̃2, q̃′2

)
v
)
.

Then,

(11.52) P+(q̃2, q̃′2
) ◦ j(M, v)= j

(
P+
∗ (M, v)

)
We write A ≈ξ,t B if d(A,B)→ 0 as ξ → 0 and t →∞. Then, we have, by Proposi-
tion 11.16,

(j ◦ φq̃′2)∗fij
(
q̃′2
)= fij

(
q̃′2
)≈ξ,t P+(q̃2, q̃′2

)
∗fij(q̃2)

= (P+(q̃2, q̃′2
) ◦ j ◦ φq̃2

)
∗fij(q̃2)

By (11.52),

(j ◦ φq̃′2)∗fij
(
q̃′2
)≈ξ,t

(
j ◦ P+

∗ ◦ φq̃2

)
∗fij(q̃2).

Therefore,

(φq̃′2)∗fij
(
q̃′2
)≈ξ,t

(
P+
∗ ◦ φq̃2

)
∗fij(q̃2).

Let π2 :H++(x)×W+(x)→ W+(x) be projection onto the second factor. Then, applying
π2 to both sides, we get

(11.53) (π2 ◦ φq̃′2)∗fij
(
q̃′2
)≈ξ,t

(
π2 ◦ P+

∗ ◦ φq̃2

)
∗fij(q̃2).

For z ∈ Z(q̃2), π2(φq̃2(z))= z, and thus in view of (11.51),

(11.54)
(
π2 ◦ P+

∗ ◦ φq̃2

)
(z)≈ξ,t P+(q̃2, q̃′2

)
z.

By assumption, we have Z(q̃′2) = P+(q̃2, q̃′2)Z(q̃2). Then, similarly, for z ∈ Z(q̃′2) =
P+(q̃2, q̃′2)Z(q̃2),

(11.55) (π2 ◦ φq̃′2)(z)= z.

Since fij(x) is Haar along U+, we can recover fij(q̃2) from its restrictions to Z(q̃2) and fij(q̃
′
2)

from its restriction to Z(q̃′2). It now follows from (11.53), (11.54) and (11.55) that

fij
(
q̃′2
)≈ξ,t P+(q̃2, q̃′2

)
∗fij(q̃2). �
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12. The inductive step

Proposition 12.1. — Suppose ν is a P-invariant measure on X0. Suppose U+(x) is a family

of subgroups of G++(x) compatible with ν in the sense of Definition 6.2. Let L−[x] and L+[x] be as

in Section 6.2, and suppose the equivalent conditions of Lemma 6.15 do not hold. Then, there exists a

family of subgroups U+
new(x) of G++(x) compatible with ν in the sense of Definition 6.2 such that for

almost all x, U+
new(x) strictly contains U+(x).

The rest of Section 12 will consist of the proof of Proposition 12.1. We assume
that L−(x), L+(x) and U+(x) are as in Proposition 12.1, and the equivalent conditions of
Lemma 6.15 do not hold. The argument has been outlined in Section 2.3, and we have
kept the same notation (in particular, see Figure 1).

Let fij(x) be the measures on W+(x) introduced in Section 11. We think of fij as a
function from X to a space of measures (which is metrizable). Let P+(x, y) be the map
introduced in Section 4.2. Proposition 12.1 will be derived from the following:

Proposition 12.2. — Suppose U+, L+, L− are as in Proposition 12.1, and the equivalent

conditions of Lemma 6.15 do not hold. Then there exists 0 < δ0 < 0.1, a subset K∗ ⊂ X with

ν(K∗) > 1 − δ0 such that all the functions fij , ij ∈ �̃ are uniformly continuous on K∗, and C > 1
(depending on K∗) such that for every 0 < ε < C−1/100 there exists a subset E ⊂ K∗ with ν(E) >
δ0, such that for every x ∈ π−1(E) there exists ij ∈ �̃ and y ∈ Cij[x] ∩ π−1(K∗) with

(12.1) C−1ε ≤ hdX0
x

(
U+[x],U+[ y])≤ Cε

and (on the domain where both are defined)

(12.2) fij(y)∝ P+(x, y)∗fij(x).

We now begin the proof of Proposition 12.2.

Choice of parameters #1. — Fix θ > 0 as in Proposition 10.1 and Proposition 10.2.
We then choose δ > 0 sufficiently small; the exact value of δ will we chosen at the end
of this section. All subsequent constants will depend on δ. (In particular, δ� θ ; we will
make this more precise below.) Let ε > 0 be arbitrary and η > 0 be arbitrary; however
we will always assume that ε and η are sufficiently small depending on δ.

We will show that Proposition 12.2 holds with δ0 = δ/10. Let K∗ ⊂ X be any
subset with ν(K∗) > 1 − δ0 on which all the functions fij are uniformly continuous. It is
enough to show that there exists C = C(δ) such that for any ε > 0 and for an arbitrary
compact set K00 ⊂ X with ν(K00) ≥ (1 − 2δ0), there exists x ∈ K00 ∩ K∗, ij ∈ �̃ and
y ∈ Cij[x] ∩K∗ satisfying (12.1) and (12.2). Thus, let K00 ⊂ X be an arbitrary compact set
with ν(K00) > 1− 2δ0.
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We can choose a compact set K0 ⊂ K00 ∩ K∗ with ν(K0) > 1 − 5δ0 = 1 − δ/2 so
that Proposition 11.4 holds. In addition, there exists ε ′0(δ) > 0 such that for all x ∈ K0,

(12.3) d+
(
x, ∂B0[x]

)
> ε ′0(δ).

(Here, d+(·, ·) is as in Section 3 and by ∂B0[x] we mean the boundary of B0[x] as a
subset of W+[x].)

Let κ > 1 be as in Proposition 7.4, and so that (9.4) holds. Without loss of general-
ity, assume δ < 0.01. We now choose a subset K ⊂ K0 ⊂ X with ν(K) > 1− δ such that
the following hold:

• There exists a number T0(δ) such that for any x ∈ K and any T > T0(δ),{
t ∈ [−T/2,T/2] : gtx ∈ K0

}≥ 0.9T.

(This can be done by the Birkhoff ergodic theorem.)
• Proposition 8.5(a) holds.
• Proposition 10.1 holds.
• There exists a constant C = C(δ) such that for x ∈ K, C3(x)

2 < C(δ) where C3

is as in Proposition 10.2.
• There is a constant C′′ = C′′(δ) such that for x ∈ K, C(x) < C′′(δ) where C(x)

is as in Lemma 6.10 or in Corollary 6.13. Also for x ∈ K, the function c1(x) of
Lemma 6.9 is bounded from below by C′′(δ)−1.

• Lemma 4.17 holds for K = K(δ) and C1 = C1(δ).
• There exists a constant C′ = C′(δ) such that for x ∈ K, C1(x) < C′, C2(x) < C′

and C(x) < C′ where C1(x), C2(x) and C(x) are as in Proposition 6.11. Also
K ⊂ K′ and also C′

1(δ) < C′, C′
2(δ) < C′, C′

4(δ) < C′ and C4(δ) < C′ where K′,
C′

1(δ), C′
2(δ) and C′

4(δ) are as in Lemma 6.12, and C4(δ) is as in Corollary 6.13.
• Lemma 6.14 holds for K.
• Proposition 11.4 and Lemma 11.6 hold for K (in place of K0).

Let

D̃00(q1)= D̃00(q1,K00, δ, ε, η)= {t > 0 : gtq1 ∈ K}.
For ij ∈ �̃, let

D̃ij(q1)= D̃ij(q1,K00, δ, ε, η)=
{
τ̂ij(q1, t) : gtq1 ∈ π−1(K), t > 0

}
.

Then by the ergodic theorem and (9.4), there exists a set KD = KD(K00, δ, ε, η) with
ν(KD) ≥ 1 − δ and �D = �D(K00, δ, ε, η) > 0 such that for q1 ∈ π−1(KD) and all ij ∈
{00} ∪ �̃, D̃ij(q1) has density at least 1− 2κδ for � > �D. Let

E2(q1, u)= E2(q1, u,K00, δ, ε, η)=
{
� : gτ̂(ε)(q1,u,�)uq1 ∈ π−1(K)

}
,
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E3(q1, u)= E3(q1, u,K00, δ, ε, η)

= {� ∈ E2(q1, u) : ∀ij ∈ �̃, τ̂ij

(
uq1, τ̂(ε)(q1, u, �)

) ∈ D̃ij(q1)
}
.

Note that τ̂ij(uq1, τ̂(ε)(q1, u, �)) ∈ D̃ij(q1) if and only if

τ̂ij

(
uq1, τ̂(ε)(q1, u, �)

)= τ̂ij(q1, s) and gsq1 ∈ π−1(K).

Claim 12.3. — There exists �3 = �3(K00, δ, ε, η) > 0, a set K3 = K3(K00, δ, ε, η) of

measure at least 1 − c3(δ) and for each q1 ∈ π−1(K3) a subset Q3 = Q3(q1,K00, �, δ, ε, η) ⊂
B(q1,1/100) of measure at least (1 − c′3(δ))|B(q1,1/100)| such that for all q1 ∈ π−1(K3) and

u ∈ Q3, uq1 ∈ π−1(K) and the density of E3(q1, u) (for � > �3) is at least 1 − c′′3(δ), and we have

c3(δ), c′3(δ) and c′′3(δ)→ 0 as δ→ 0.

Proof of claim. — We choose K2 = K∩KD, and

K3 = K2 ∩
{
x ∈ X :∣∣{u ∈ B(x,1/100) : ux ∈ K2

}∣∣> (1− δ)|B(x,1/100)|}.
Suppose q1 ∈ π−1(K3), and uq1 ∈ π−1(K2). Let

Ebad =
{
t : gtuq1 ∈ π−1

(
Kc
)}
.

Then, since uq1 ∈ π−1(KD), for � > �D, the density of Ebad is at most 2κδ. We have

E2(q1, u)c = {� : τ̂(ε)(q1, u, �) ∈ Ebad

}
.

Then, by Proposition 7.4, for � > κ�D, the density of E2(q1, u) is at least 1− 4κ2δ.
Let

D̂(q1, u)= D̂(q1, u,K00, δ, ε, η)=
{
t : ∀ij ∈ �̃, τ̂ij(uq1, t) ∈ D̃ij(q1)

}
.

Since q1 ∈ π−1(KD), for each j, for � > �D, the density of D̃ij(q1) is at least 1−2κδ. Then,
by (9.4), for � > κ�D, the density of D̂(q1, u) is at least (1− 4|�̃|κ2δ). Now

E3(q1, u)= E2(q1, u)∩ {� : τ̂(ε)(q1, u, �) ∈ D̂(q1, u)
}
.

Now the claim follows from Proposition 7.4. �

Claim 12.4. — There exists a set D4 = D4(K00, δ, ε, η) ⊂ R
+ and a number �4 =

�4(K00, δ, ε, η) > 0 so that D4 has density at least 1 − c4(δ) for � > �4, and for � ∈ D4

a subset K4(�) = K4(�,K00, δ, ε, η) ⊂ X with ν(K4(�)) > 1 − c′4(δ), such that for any

q1 ∈ π−1(K4(�)) there exists a subset Q4(q1, �) ⊂ Q3(q1, �) ⊂ B(q1,1/100) with density at

least 1− c′′4(δ), so that for all � ∈D4, for all q1 ∈ π−1(K4(�)) and all u ∈ Q4(q1, �),

(12.4) � ∈ E3(q1, u)⊂ E2(q1, u).

(We have c4(δ), c′4(δ) and c′′4(δ)→ 0 as δ→ 0.)
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Proof of claim. — This follows from Claim 12.3 by applying Fubini’s theorem to
XB ×R, where XB = {(x, u) : x ∈ X, u ∈ B(x,1/100)}. �

Suppose � ∈ D4. We now apply Proposition 5.3 with K′ = g−�K4(�). We denote
the resulting set K by K5(�) = K5(�,K00, δ, ε, η). In view of the choice of ε1, we have
ν(K5(�))≥ 1− c5(δ), where c5(δ)→ 0 as δ→ 0.

Let D5 =D4 and let K6(�)= g�K5(�).

Choice of parameters #2: choice of q, q′, q′1 (depending on δ, ε, q1, �). — Suppose � ∈D5

and q1 ∈ π−1(K6(�)). Let q = g−�q1. Then, q ∈ π−1(K5(�)). Let A(q, u, �, t) be as in
Section 6. (Note that following our conventions, we use the notation A(q1, u, �, t) for
q1 ∈ X, even though A(q1, u, �, t)was originally defined for q1 ∈ X0.) and for u ∈ Q4(q1, �)

let Mu be the subspace of Lemma 5.1 applied to the linear map A(q1, u, �, τ̂(ε)(q1, u, �)).
By Proposition 5.3 and the definition of K5(�), we can choose q′ ∈L−[q]∩π−1(g−�K4(�))

with ρ ′(δ)≤ dX0(q, q′)≤ 1/100 and so that (5.4) and (5.5) hold with ε1(δ)→ 0 as δ→ 0.
Let q′1 = g�q

′. Then q′1 ∈ π−1(K4(�)).

Standing assumption. — We assume � ∈D5, q1 ∈ K6(�) and q, q′, q′1 are as in Choice
of parameters #2.

Notation. — For u ∈ B(q1,1/100), u′ ∈ B(q′1,1/100), let

τ(u)= τ̂(ε)(q1, u, �), τ ′
(
u′
)= τ̂(ε)

(
q′1, u′, �

)
.

The maps ψ and ψ ′. — For u ∈ B(q1,1/100), and u′ ∈ B(q′1,1/100), let

ψ(u)= gτ(u)uq1, ψ ′(u′)= gτ ′(u′)u
′q′1.

Claim 12.5. — We have

(12.5) ψ
(
Q4(q1, �)

)⊂ π−1(K), and ψ ′(Q4

(
q′1, �

))⊂ π−1(K).

Proof of claim. — Suppose u ∈ Q4(q1, �). Since q1 ∈ K4 and � ∈D4, it follows from
(12.4) that � ∈ E2(q1, u), and then from the definition of E2(q1, u) is follows that gτ(u)uq1 ∈
π−1(K). Hence ψ(Q4(q1, �))⊂ π−1(K). Similarly, since q′1 ∈ π−1(K4), ψ ′(Q4(q

′
1, �))⊂

π−1(K), proving (12.5). �

The numbers tij and t′ij . — Suppose u ∈ Q4(q1, �), and suppose ij ∈ �̃. Let tij be de-
fined by the equation

(12.6) τ̂ij

(
uq1, τ̂(ε)(q1, u, �)

)= τ̂ij(q1, tij).



INVARIANT AND STATIONARY MEASURES 245

Then, since � ∈D4 and in view of (12.4), we have � ∈ E3(q1, u). In view of the definition
of E3, it follows that

(12.7) gtij q1 ∈ π−1(K).

Similarly, suppose u′ ∈ Q4(q
′
1, �) and ij ∈ �̃. Let t′ij be defined by the equation

(12.8) τ̂ij

(
u′q′1, τ̂(ε)

(
q′1, u′, �

))= τ̂ij

(
q′1, t′ij

)
.

Then, by the same argument,

(12.9) gt′ij q
′
1 ∈ π−1(K).

The map v(u) and the generalized subspace U(u). — For u ∈ B(q1,1/100), let

(12.10) v(u)= v
(
q, q′, u, �, t

)=A(q, u, �, t)
(
F(q)− F

(
q′
))

where t = τ̂(ε)(q1, u, �), F is as in Section 5 and A(·, ·, ·, ·) is as in Section 6.1. By Proposi-
tion 6.11, we may write v(u)= j(M′′, v′′), where (M′′, v′′) ∈H++(gτ(u)uq1)×W+(gτ(u)uq1).
Let U(u)≡ Ugτ (u)uq1(M

′′, v′′) denote the generalized affine subspace corresponding to v(u).
Thus, U(u) is the approximation to U+[gτ(u)q′1] near gτ(u)uq1 defined in Proposition 6.11.

Standing assumption. — We have C(δ)ε < 1/100 for any constant C(δ) arising in the
course of the proof. In particular, this applies to C2(δ) and C′

2(δ) in the next claim.

Claim 12.6. — There exists a subset Q5 = Q5(q1, �,K00, δ, ε, η) ⊂ Q4(q1, �) with

|Q5| ≥ (1 − c′′5(δ))|B(q1,1/100)| (with c′′5(δ)→ 0 as δ → 0), and a number �5 = �5(δ, ε)

such that for all u ∈ Q5 and � > �5,

(12.11) τ(u) <
1
2
α3�,

where α3 > 0 is as in Proposition 6.16 and Section 6.1. In addition,

(12.12) C1(δ)ε ≤ hdX0
gτ (u)uq1

(
U+[gτ(u)uq1],U+[gτ(u)q′1])≤ C2(δ)ε,

(12.13) hdX0
gτ (u)uq1

(
U+[gτ(u)q′1],U(u))≤ C7(δ)e

−α�,

where α depends only on the Lyapunov spectrum. Also,

(12.14) C′
1(δ)ε ≤ ‖v(u)‖ ≤ C′

2(δ)ε,

and if u′ ∈ U+[q′1] is such that

(12.15) dX0
(
gτ(u)uq1, gτ(u)u

′q′1
)
< 1/100,

then u′ ∈ B(q′1,1/100).



246 ALEX ESKIN, MARYAM MIRZAKHANI

Proof of claim. — Let Mu be the subspace of Lemma 5.1 applied to the linear map
A(q1, u, �, τ̂(ε)(q1, u, �)), where A(, , , ) is as in Section 6. Let Q(q1) be as in Proposi-
tion 6.16, so |Q(q1)| ≥ (1 − δ)|B(q1,1/100)|. Let Q′

5 ⊂ Q4 ∩ Q(q1) be such that for all
u ∈ Q′

5,

dY

(
F(q)− F

(
q′
)
,Mu

)≥ β(δ)

where F is as in Section 5. Then, (12.11) follows from Proposition 6.16 and the fact that
Q5 ⊂ Q1. Also, by (5.5),

|Q′
5| ≥ |Q4| −

(
δ+ ε1(δ)

)|B(q1,1/100)|
≥ (1− δ− ε1(δ)− c′′4(δ)

)|B(q1,1/100)|.
Then, let Q5 = {u ∈ Q′

5 : d(u, ∂B(q1,1/100)) > δ}, hence

|Q5| ≥
(
1− c′5(δ)− c′4(δ)− cnδ

)|B(q1,1/100)|,
where cn depends only on the dimension.

We have C(δ)−1ε ≤ ‖A(q1, u, �, t)‖ ≤ C(δ)ε by the definition of t = τ̂(ε)(q1, u, �).
We now apply Lemma 5.1 to the linear map A(q1, u, �, t). Then, for all u ∈ Q5,

c(δ)‖A(q1, u, �, t)‖ ≤ ∥∥A(q1, u, �, t)
(
F(q)− F

(
q′
))∥∥≤ ‖A(q1, u, �, t)‖.

Therefore,

C′(δ)−1ε ≤ ∥∥A(q1, u, �, t)
(
F(q)− F

(
q′
))∥∥≤ C′(δ)ε

This immediately implies (12.14), in view of the definition of v(u). We now apply Proposi-
tion 6.11 and Lemma 6.12(a). (We assume ε is sufficiently small so that (6.29) holds. Also
the condition (6.22) in Proposition 6.11 holds in view of Proposition 6.16.) Now (12.12)
follows from (6.25). Also (12.13) follows from (6.27).

Finally, suppose u ∈ Q5, and u′ ∈ U+(q′1) is such that (12.15) holds. Then, by
Lemma 6.14, we have dX0(uq1, u′q′1) = Oδ(e

−α�). Then, assuming � is sufficiently large
(depending on δ) and using Proposition 3.4, we have u′ ∈ B(q′1,1/100). �

Standing assumption. — We assume � > �5.

Claim 12.7. — Suppose u ∈ Q5(q1, �), u′ ∈ Q4(q
′
1, �) and (12.15) holds. Then, there exists

C0 = C0(δ) such that

(12.16)
∣∣τ̂(ε)(q1, u, �)− τ̂(ε)

(
q′1, u′, �

)∣∣≤ C0(δ).
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Proof of claim. — Let t = τ̂(ε)(q1, u, �), t′ = τ̂(ε)(q
′
1, u′, �).

By Proposition 6.11(ii) (with q′ and q reversed) and (5.4),

ε = ∥∥A(q′1, �, u′, t′
)∥∥≥ ∥∥A(q′1, �, u′, t′

)(
F
(
q′
)− F(q)

)∥∥
≥ c(δ)hd

X0
gt′ u′q′1

(
U+[gt′u

′q′1
]
,U+[gt′uq1]

)
In view of Corollary 6.13(b), (12.11) and the fact that gt′u

′q′1 ∈ π−1(K), this contradicts
(12.12), unless t′ < t +C(δ).

It remains give a lower bound on t′. Let M′ denote the subspace as in Lemma 5.1
for A(q′, u′, �, t′). Note that by Proposition 5.3 (with the function u →Mu the constant
function M′) we can choose q′′ ∈ W−[q] with dY(F(q′′)− F(q′),M′) > ρ(δ), and also so
the upper bounds in (5.3) and (5.4) hold with q′′ in place of q′. Then,

ε = ∥∥A(q′, �, u′, t′
)∥∥≤ c(δ)

∥∥A(q′, �, u′, t′
)(

F
(
q′′
)− F

(
q′
))∥∥.

Write q′′1 = g�q
′′. Then, by Proposition 6.11(ii), and Lemma 6.12(a),

(12.17) hd
X0
gt′ u′q′1

(
U+[gt′u

′q′1
]
,U+[gt′q

′′
1

])≥ c2(δ)ε.

By Corollary 6.13(a), (12.11) and (12.12), since gt′u
′q′1 ∈ π−1(K),

(12.18) hd
X0
gt′ u′q′1

(
U+[gt′u

′q′1
]
,U+[gt′uq1]

)≤ εC(δ)e−β(t−t′) +C4(δ)e
−α�,

where α and β depend only on the Lyapunov spectrum. Then, by (12.17), (12.18), and
the reverse triangle inequality,

(12.19) hdX0
gt′ uq1

(
U+[gt′uq1],U+[gt′q

′′
1

])≥ ε
(
c2(δ)−C(δ)e−β(t−t′))−C4(δ)e

−α�.

But,

ε = ‖A(q, �, u, t)‖ ≥ c3(δ)
∥∥A(q, �, u, t)

(
F
(
q′′
)− F(q)

)∥∥,
and thus, by Proposition 6.11(ii) and Lemma 6.12(a),

hdX0
gt uq1

(
U+[gtuq1],U+[gtq

′′
1

])≤ c(δ)ε

In view of Corollary 6.13(b) (and the fact that gtuq1 ∈ π−1(K)) this contradicts (12.19)
unless t′ > t −C1(δ). �

We note the following trivial lemma:

Lemma 12.8. — Suppose P and P′ are finite measure subsets of Rn with |P| = |P′|, and we

have

P =
N⋃

j=1

Pj, P′ =
N⋃

j=1

P′
j .
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Suppose there exists k ∈N so that any point in P is contained in at most k sets Pj , and also any point in P′

is contained in at most k sets P′
j . Also suppose Q ⊂ P and Q′ ⊂ P′ are subsets with |Q|> (1− δ)|P|,

|Q′|> (1− δ)|P′|.
Suppose there exists κ > 1 such that for all 1 ≤ j ≤ N such that Pj ∩ Q �= ∅, |Pj| ≤ κ|P′

j|.
Then there exists Q̂ ⊂ Q with |Q̂| ≥ (1 − 2κkδ)|P| such that if j is such that Q̂ ∩ Pj �= ∅, then

Q′ ∩ P′
j �= ∅.

Proof. — Let J = {j : Pj ∩Q �= ∅}, and let J′ = {j : Q′ ∩ P′
j �= ∅}, and let

Q̂ = {x ∈ Q : for all j with x ∈ Pj , we have j ∈ J′
}
.

Thus, if x ∈ Q \ Q̂, then there exists j ∈ J with x ∈ Q∩ Pj but j /∈ J′. Then,

|Q \ Q̂| ≤ k
∑
j∈J\J′

|Q∩ Pj| ≤ k
∑
j∈J\J′

|Pj| ≤ κk
∑
j /∈J′

|P′
j| ≤ κk

∣∣(Q′)c∣∣,

since if j /∈ J′ then P′
j ⊂ (Q′)c. Thus, |Q \ Q̂| ≤ κkδ|P|, and so |Q̂| ≥ (1− 2κkδ)|P|. �

The constant ε0. — Let ε0(δ) be a constant to be chosen later (we will choose ε0(δ)

following (12.33) of the form ε0(δ) = ε ′0(δ)/C(δ)), where ε ′0(δ) is as in (12.3). We will
always assume that ε < ε0(δ) < ε ′(δ)/10.

Claim 12.9. — There exists a subset Q6(q1, �) = Q6(q1, �,K00, δ, ε, η) ⊂ Q5(q1, �)

with |Q6(q1, �)| > (1 − c′6(δ))|B(q1,1/100)| and with c′6(δ)→ 0 as δ → 0 such that for all

u ∈ Q6(q1, �) there exists u′ ∈ Q4(q
′
1, �) such that

(12.20) dX0
(
gτ(u)uq1, gτ(u)u

′q′1
)
< C(δ)ε0(δ).

Proof of claim. — Note that the sets {Bτ(u)[uq1] : u ∈ Q5(q1, �)} are a cover
of Q5(q1, �)q1. Then, since these sets satisfy the condition of Lemma 3.10(b), we can
find a pairwise disjoint subcover, i.e. find uj ∈ Q5(q1, �), 1 ≤ j ≤ N, with Q5(q1, �)q1 =⋃N

j=1 Bτ(uj )[ujq1] and so that Bτ(uj )[ujq1] and Bτ(uk)[ukq1] are disjoint for j �= k. Let

Bj ≡ gτ(uj )Bτ(uj )[ujq1] = B0[gτ(uj )ujq1] ⊂ X̃0

In view of (12.3), Proposition 3.4, and the Besicovich covering lemma, there exists k,
depending only on the dimension and points xj,1, . . . , xj,m(j) ⊂ Bj such that

π−1(K)∩Bj ⊂
m(j)⋃
m=1

BX0
(
xj,m, ε0(δ)

)∩U+[gτ(uj )uq1],

and also so that for a fixed j, each point is contained in at most k balls BX0(xj,m, ε0(δ)).
Since ε0(δ) < ε ′0(δ)/10, in view of (12.3) and (12.21), the same is true without fixing j.
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For 1 ≤ j ≤ N and 1 ≤ m ≤ m(j), let

Pj,m =
{
u ∈ B(q1,1/100) : gτ(uj )uq1 ∈ BX0

(
xj,m, ε0(δ)

)}
,

and let

P′
j,m =

{
u′ ∈ B

(
q′1,1/100

) : gτ(uj )u
′q′1 ∈ BX0

(
xj,m, ε0(δ)

)}
.

By construction, each point is contained in at most k sets Pj,m, and at most k sets P′
j,m.

By (12.12) applied to uj ,

(12.21) hdX0
gτ (uj )

uj q1

(
U+[gτ(uj )ujq1],U+[gτ(uj )q

′
1

])≤ C2(δ)ε.

Suppose ε > 0 is sufficiently small (depending on δ) so that Lemma 6.14 holds
with C2(δ)ε in place of ε. Since for all x ∈ X0, B0[x] ⊂ BX0(x,1/200) we have
dX0(xj,m, gtujq1) < 1/200, and

(12.22) BX0
(
xj,m, ε0(δ)

)⊂ BX0(gtujq1,1/100).

By Lemma 6.14, for 1 ≤ j ≤ N, 1 ≤ m ≤ m(j), provided Bj ∩ Q5(q1, �) �= ∅, we
have κ−1|Pj,m| ≤ |P′

j,m| ≤ κ|Pj|, where κ depends only on the Lyapunov spectrum, and
we have normalized the measures | · | so that |U+[q1] ∩ B+(q1,1/100)| = |U+[q′1] ∩
B+(q′1,1/100)| = 1. Let m(0)= 1 and let

P0,1 = B(q1,1/100) \
N⋃

j=1

m(j)⋃
m=1

Pj,m, P′
0,1 = B

(
q′1,1/100

) \
N⋃

j=1

m(j)⋃
m=1

P′
j,m.

Then,

B(q1,1/100)=
N⋃

j=0

m(j)⋃
m=1

Pj,m, B
(
q′1,1/100

)=
N⋃

j=0

m(j)⋃
m=1

P′
j,m.

Then, applying Lemma 12.8 with P = B(q1,1/100), P′ = B(q′1,1/100), Q = Q5(q1, �),
Q′ = Q4(q

′
1, �), we get a set Q̂ ≡ Q6(q1, �) with |Q6(q1, �)| ≥ (1 − c′6(δ))|B(q1,1/100)|

where c′6(δ)→ 0 as δ→ 0, so that, in view of (12.22) and the definitions of Pj,m and P′
j,m,

for any u ∈ Q6(q1, �) there exists uj ∈ Q5(q1, �) with uq1 ∈ Bτ(uj )[ujq1] and u′ ∈ Q4(q
′
1, �)

with

(12.23) dX0
(
gτ(uj )uq1, gτ(uj )u

′q′1
)≤ ε0(δ).

It remains to replace τ(uj) by τ(u) in (12.23). This can be done as follows: Since uq1 ∈
Bτ(uj )[ujq1], we have, by (12.12) applied to uj and Lemma 6.18,

C2(δ)
−1ε ≤ hdgτ (uj )

uq1

(
U+[gτ(uj )uq1],U+[gτ(uj )q

′
1

])≤ C2(δ)ε
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Then, since gτ(u)uq1 ∈ π−1(K), by (12.12), (12.13), (12.11) and Corollary 6.13, we have

(12.24) |τ(u)− τ(uj)| ≤ C1(δ).

Then, provided ε is small enough depending on δ, (12.20) follows from (12.23), (12.24),
and Lemma 3.6. �

Claim 12.10. — There exists a constants c7(δ) > 0 and c′7(δ) with c7(δ) → 0 and

c′7(δ)→ 0 as δ → 0 and a subset K7(�) = K7(�,K00, δ, ε, η) with K7(�) ⊂ K6(�) and

ν(K7(�)) > 1− c7(δ) such that for q1 ∈ π−1(K7(�)),

|B(q1)∩Q6(q1, �)| ≥
(
1− c′7(δ)

)|B(q1)|.
Proof of claim. — Recall that in view of Proposition 3.7, B(q1) ⊂ B(q1,1/100).

Given δ > 0, there exists c′′7(δ) > 0 with c′′7(δ) → 0 as δ → 0 and a compact set
K′

7 ⊂ X with ν(K′
7) > 1 − c′′7(δ), such that for q1 ∈ π−1(K′

7), |B(q1) ∩ B(q1,1/100)| ≥
c′6(δ)

1/2|B(q1,1/100)|. Then, for q1 ∈ π−1(K′
7 ∩K6),

|B(q1)∩Q6(q1, �)
c| ≤ |Q6(q1, �)

c| ≤ c′6(δ)|B(q1,1/100)|
≤ c′6(δ)

1/2|B(q1)|.
Thus, the claim holds with c7(δ)= c6(δ)+ c′′7(δ) and c′7(δ)= c′6(δ)

1/2. �

Standing assumption. — We assume that q1 ∈ π−1(K7(�)).
The next few claims will help us choose u (once the other parameters have been

chosen). Let

Q7(q1, �)= B(q1)∩Q6(q1, �)

Claim 12.11. — There exists a subset Q∗
7(q1, �) = Q∗

7(q1, �,K00, δ, ε, η) ⊂ Q7(q1, �)

with |Q∗
7| ≥ (1− c∗7(δ))|B(q1)| such that for u ∈ Q∗

7 and any � > �7(δ) we have

|B�(uq1)∩Q7(q1, �)| ≥
(
1− c∗7(δ)

)|B�(uq1)|,
where c∗7(δ)→ 0 as δ→ 0.

Proof. — This follows immediately from Lemma 6.3. �

Claim 12.12. — There exist a number �8 = �8(K00, δ, ε, η) and a constant c8(δ) with

c8(δ)→ 0 as δ→ 0 and for every � > �8 a subset Q8(q1, �)= Q8(q1, �,K00, δ, ε, η)⊂ B(q1)

with |Q8(q1, �)| ≥ (1− c8(δ))|B(q1)| so that for u ∈ Q8(q1, �) we have

(12.25) d

(
v(u)
‖v(u)‖ ,E(gτ(u)uq1)

)
≤ C8(δ)e

−α′�,

where v(u) is defined in (12.10) and α′ depends only on the Lyapunov spectrum.
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Proof of claim. — Let L′ > L2(δ) be a constant to be chosen later, where L2(δ) is as in
Proposition 8.5(a). Also let �8 = �8(δ, ε,K00, η) be a constant to be chosen later. Suppose
� > �8, and suppose u ∈ Q∗

7(q1, �), so in particular gτ(u)uq1 ∈ π−1(K). Let t ∈ [L′,2L′] be
such that Proposition 8.5(a) holds for v = v(u) and x = gτ(u)uq1.

Let Bu ⊂ B(q1) denote Bτ̂(ε)(q1,u,�)−t(uq1)u, (where Bt(x) is defined in Section 6).
Suppose u1 ∈ Bu ∩Q7(q1, �), and write

gτ(u1)u1q1 = gsu2g−1
t gτ(u)uq1.

Then, u2 ∈ B(g−1
t gτ(u)uq1) and t ≤ 2L′.

We now claim that

(12.26) s ≤ 1
2
κ t +C0(δ)≤ κL′ +C0(δ)

where κ depends only on the Lyapunov spectrum. Let

Ut = U+[g−t gτ(u)uq1], U ′
t = U+[g−t gτ(u)q

′
1

]
.

By Corollary 6.13(b) applied at the point gτ(u)uq1 ∈ π−1(K),

hdX0
g−t gτ (u)uq1

(
Ut,U ′

t

)≥ C(δ)εe−βt − c0(δ)e
−α�,

where β depends only on the Lyapunov spectrum, and by Corollary 6.13(a) applied at
the point gτ(u1)u1q1 ∈ π−1(K),

hdX0
u2g−t gτ (u)uq1

(
Ut,U ′

t

)≤ c(δ)εe−2s + c0(δ)e
−α�

where β ′ also depends only on the Lyapunov spectrum. Also, by Lemma 6.18,

hdX0
g−t gτ (u)uq1

(
Ut,U ′

t

)≥ c1hdX0
u2g−t gτ (u)uq1

(
Ut,U ′

t

)− c0(δ)e
−α�

where c1 is an absolute constant. Therefore,

εC(δ)e−βt − c0(δ)e
−α� ≤ c1

(
c(δ)εe−2s + c0(δ)e

−α�).
This implies (12.26), assuming that � is sufficiently large depending on ε.

Since u ∈ Q6(q1, �), (12.12) and (12.13) hold. Therefore,

hdgτ (u1)u1q1

((
gsu2g−1

t

)
U(u),U+[gτ(u1)q

′
1

])= O
(
eκ

′L′e−α�
)
,

where κ ′ and α depend only on the Lyapunov spectrum. Thus, using (12.13) at the point
gτ(u1)u1q1 ∈ π−1(K),

hdgτ (u1)u1q1

((
gsu2g−1

t

)
U(u),U(u1)

)= O
(
eκ

′L′e−α�
)
.
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Therefore,

(12.27)
∥∥(gsu2g−1

t

)
∗v(u)− v(u1)

∥∥= O
(
eκ

′L′e−α�
)
.

In view of (12.14), ‖v(u1)‖ ≈ ε. Thus, ‖(gsu2g−1
t )∗v(u)‖ ≈ ε, and

∥∥∥∥ (gsu2g−1
t )∗v(u)

‖(gsu2g−1
t )∗v(u)‖ −

v(u1)

‖v(u1)‖
∥∥∥∥= Oε

(
eκ

′L′−α�).
But, by Proposition 8.5(a), for 1− δ fraction of u2 ∈ B(g−1

t gτ(u)uq1),

d

(
(gsu2g−t)∗v(u)
‖(gsu2g−t)∗v(u)‖ ,E(gτ(u1)u1q1)

)
≤ C(δ)e−αL′.

Note that

B
(
g−1

t gτ(u)uq1

)= gτ̂(ε)(q1,u,�)−tBu.

Therefore, for 1− δ fraction of u1 ∈ Bu,

(12.28) d

(
v(u1)

‖v(u1)‖ ,E(gτ(u1)u1q1)

)
≤ C(ε, δ)

[
eκ

′L′−α� + e−αL′]

We can now choose L′ > 0 to be α′� where α′ > 0 is a small constant depending only on
the Lyapunov spectrum, and �8 > 0 so that for � > �8 the right-hand-side of the above
equation is at most e−α′�.

The collection of balls {Bu}u∈Q∗
7(q1,�) are a cover of Q∗

7(q1, �). These balls satisfy
the condition of Lemma 3.10(b); hence we may choose a pairwise disjoint subcollection
which still covers Q∗

7(q1, �). Then, by summing (12.28), we see that (12.25) holds for u in
a subset Q8 ⊂ B[q1] of measure at least (1− c8(δ))|B[q1]| = (1− δ)(1− c∗7(δ))|B[q1]|. �

Claim 12.13. — There exists a subset Q∗
8(q1, �) = Q∗

8(q1, �,K00, δ, ε, η) ⊂ Q8(q1, �)

with |Q∗
8| ≥ (1− c∗8(δ))|B(q1)| such that for u ∈ Q∗

8 and any t > �8(δ) we have

|Bt(uq1)∩Q8(q1, �)| ≥
(
1− c∗8(δ)

)|Bt(uq1)|,
where c∗8(δ)→ 0 as δ→ 0.

Proof. — This follows immediately from Lemma 6.3. �

Choice of parameters #3: choice of δ. — Let θ ′ = (θ/2)n, where θ and n are as in Propo-
sition 10.1. We can choose δ > 0 so that

(12.29) c∗8(δ) < θ ′/2.
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Claim 12.14. — There exist sets Q9(q1, �) = Q9(q1, �,K00, δ, ε, η) ⊂ Q∗
8(q1, �) with

|Q9(q1, �)| ≥ (θ ′/2)(1 − θ ′/2)|B(q1)| and �9 = �9(K00, δ, ε, η), such that for � > �9 and

u ∈ Q9(q1, �),

(12.30) d

(
v(u)
‖v(u)‖ ,

⋃
ij∈�̃

E[ij],bdd(gτ(u)uq1)

)
< 4η.

Proof of claim. — Suppose u ∈ Q∗
8(q1, �). Then, by (12.25) and (12.14), we may write

v(u)= v′(u)+ v′′(u),

where v′(u) ∈ E(gτ(u)uq1) and ‖v′′(u)‖ ≤ C(δ, ε)e−α′�. Arguing in the same way as in the
proof of Claim 12.12, we see that for (1−O(δ))-fraction of y ∈Fv′(u)[gτ(u)uq1,L], we have
y ∈ g[−1,1]K. Then, by Proposition 10.1 applied with L = L0(δ, η) and v = v′(u), we get
that for a at least θ ′-fraction of y ∈Fv′ [gτ(u)uq1,L],

d

(
R(gτ(u)uq1, y)v′(u)
‖R(gτ(u)uq1, y)v′(u)‖ ,

⋃
ij∈�̃

E[ij],bdd(y)

)
< 2η.

Note that by Proposition 4.15(d), for y ∈ Fv′ [gτ(u)uq1,L], ‖R(gτ(u)uq1, y)‖ ≤ eκ
2L, where κ

is as in Proposition 4.15. Then, for at least θ ′-fraction of y ∈Fv′ [gτ(u)uq1,L],

(12.31) d

(
R(gτ(u)uq1, y)v(u)
‖R(gτ(u)uq1, y)v(u)‖ ,

⋃
ij∈�̃

E[ij],bdd(y)

)
< 3η+C(ε, δ)e2κ2Le−α

′�.

Let Bu = Bτ̂(ε)(q1,u,�)−L(uq1)u. In view of (12.27) and (12.14) there exists C = C(ε, δ) such
that

Fv′ [gτ(u)uq1,L] ∩ π−1(K)⊂ g[−C,C]ψ(Bu) and

ψ(Bu)∩ π−1(K)⊂ g[−C,C]Fv′ [gτ(u)uq1,L].
Then, by (12.31) and (12.29), for (θ ′/2)-fraction of u1 ∈ Bu, gτ(u1)u1q1 ∈ π−1(K) and

d

(
R(gτ(u)uq1, gτ(u1)u1q1)v(u)
‖R(gτ(u)uq1, gτ(u1)u1q1)v(u)‖ ,

⋃
ij∈�̃

E[ij],bdd(gτ(u1)u1q1)

)

< C1(ε, δ)
(
3η+ e2κ2Le−α

′�).
Then, by (12.27), for (θ ′/2)-fraction of u1 ∈ Bu,

d

(
v(u1)

‖v(u1)‖ ,
⋃
ij∈�̃

E[ij],bdd(gτ(u1)u1q1)

)
< C2(ε, δ)

[
3η+ e2κ2Le−α

′� + e−α
′�].
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Hence, we may choose �9 = �9(K00, ε, δ, η) so that for � > �9 the right-hand side of the
above equation is at most 4η. Thus, (12.30) holds for (θ ′/2)-fraction of u1 ∈ Bu.

The collection of balls {Bu}u∈Q∗
8(q1,�) are a cover of Q∗

8(q1, �). These balls satisfy
the condition of Lemma 3.10(b); hence we may choose a pairwise disjoint subcollection
which still covers Q∗

8(q1, �). Then, by summing over the disjoint subcollection, we see
that the claim holds on a set E of measure at least (θ ′/2)|Q∗

8| ≥ (θ ′/2)(1 − c∗8(δ)) ≥
(θ ′/2)(1− θ ′/2). �

Choice of parameters #4: choosing �, q1, q, q′, q′1. — Choose � > �9(K00, ε, δ, η). Now
choose q1 ∈ K7(�), and let q, q′, q′1 be as in Choice of Parameters #2.

Choice of parameters #5: choosing u, u′, q2, q′2, ij, q3,ij , q′3,ij (depending on q1, q′1, u, �). —

Choose u ∈ Q9(q1, �), u′ ∈ Q4(q
′
1, �) so that (12.12) and (12.13) hold. We have ψ(u) =

gτ(u)uq1 ∈ π−1(K) and ψ ′(u′) ∈ π−1(K). By (12.16),
∣∣τ̂(ε)(q1, u, �)− τ̂(ε)

(
q′1, u′, �

)∣∣≤ C0(δ),

therefore,

gτ(u)u
′q′1 ∈ π−1(g[−C,C]K),

where C = C(δ).
By the definition of K we can find C4(δ) and s ∈ [0,C4(δ)] such that

q2 ≡ gsgτ(u)uq1 ∈ π−1(K0), q′2 ≡ gsgτ(u)u
′q′1 ∈ π−1(K0).

In view of (12.12), (12.13), the fact that s ∈ [0,C4(δ)] and Corollary 6.13(a) we get

(12.32)
1

C(δ)
ε ≤ hdX0

q2

(
U+[q2],U+[q′2])≤ C(δ)ε.

By (12.20), the fact that s ∈ [0,C4(δ)] and Lemma 3.6 we get

(12.33) dX0
(
q2, q′2

)= d+
(
q2, q′2

)≤ C(δ)ε0(δ).

We now choose ε0(δ) so that C(δ)ε0(δ) < ε ′0(δ), where C(δ) is as in (12.33), and ε ′0(δ) is
as in (12.3).

Let ij ∈ �̃ be such that

(12.34) d

(
v(u)
‖v(u)‖ ,E[ij],bdd(gτ(u)uq1)

)
≤ 4η.

By Lemma 11.6,
∣∣τ̂ij

(
uq1, τ̂(ε)(q1, u, �)

)− τ̂ij

(
u′q′1, τ̂(ε)(q1, u, �)

)∣∣≤ C′
4(δ).
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Then, by (12.16) and (9.4),∣∣τ̂ij

(
uq1, τ̂(ε)(q1, u, �)

)− τ̂ij

(
u′q′1, τ̂(ε)

(
q′1, u′, �

))∣∣≤ C′′
4(δ).

Hence, by Proposition 4.15(e) (cf. Lemma 9.2), (12.6) and (12.8),

(12.35) |tij − t′ij| ≤ C5(δ).

Therefore, by (12.7) and (12.9), we have

gtij q1 ∈ π−1(K), and gtij q
′
1 ∈ π−1(g[−C5(δ),C5(δ)]K).

By the definition of K, we can find s′′ ∈ [0,C′′
5(δ)] such that

q3,ij ≡ gs′′+tij q1 ∈ π−1(K0), and q′3,ij ≡ gs′′+tij q
′
1 ∈ π−1(K0).

Let τ = s + τ̂(ε)(q1, u, �), τ ′ = s′′ + tij . Then,

q2 = gτuq1, q′2 = gτu
′q′1, q3,ij = gτ ′q1, q′3,ij = gτ ′q

′
1.

We may write q2 = g
ij
t uq1, q3,ij = g

ij

t′q1. Then, in view of (12.35) and (9.4),

|t − t′| ≤ C6(δ).

We note that by Proposition 6.16, � > α0τ , where α0 depends only on the Lyapunov
spectrum.

Taking the limit as η→ 0. — For fixed δ and ε, we now take a sequence of ηk → 0
(this forces �k →∞) and pass to limits along a subsequence. Let q̃2 ∈ K0 be the limit of
the q2, and q̃′2 ∈ K0 be the limit of the q′2. We may also assume that along the subsequence
ij ∈ �̃ is fixed, where ij is as in (12.34). By passing to the limit in (12.32), we get

(12.36)
1

C(δ)
ε ≤ hd

X0
q̃2

(
U+[q̃2],U+[q̃′2])≤ C(δ)ε.

We now apply Proposition 11.4 (with ξ → 0 as ηk → 0). By (11.4), q̃′2 ∈ W+[q̃2]. By
applying gs to (12.34) and then passing to the limit, we get U+[q̃′2] ∈ Eij(q̃2). Finally, it
follows from passing to the limit in (12.33) that d+(q̃2, q̃′2)≤ ε ′0(δ), and thus, since q̃2 ∈ K0

and q̃′2 ∈ K0, it follows from (12.3) that q̃′2 ∈B0[q̃2]. Hence,

q̃′2 ∈ Cij(q̃2).

Now, by (11.5), we have

fij(q̃2)∝ P+(q̃2, q̃′2
)
∗ fij
(
q̃′2
)
.

This concludes the proof of Proposition 12.2. We have q̃2 ∈ π−1(K0)⊂ π−1(K00 ∩ K∗),
and q̃′2 ∈ π−1(K0 ⊂ K∗). �
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Applying the argument for a sequence of ε’s tending to 0. — Take a sequence εn → 0. We
now apply Proposition 12.2 with ε = εn. After passing to a subsequence, we may assume
ij is constant. We get, for each n a set En ⊂ K∗ with ν(En) > δ0 and with the property that
for every x ∈ En there exists y ∈ Cij(x)∩K∗ such that (12.1) and (12.2) hold for ε = εn. Let

F =
∞⋂

k=1

∞⋃
n=k

En ⊂ K∗

(so F consists of the points which are in infinitely many En). Suppose x ∈ F. Then there ex-
ists a sequence yn → x such that yn ∈ Cij[x], yn /∈ U+[x], and so that fij(yn)∝ P+(x, yn)∗fij(x).
Then (on the set where both are defined)

fij(x)∝ (γn)∗fij(x),

where γn ∈ G++(x) is the affine map whose linear part is P+(x, yn) and whose translational
part is yn−x. (Here we have used the fact that yn ∈ Cij[x], and thus by the definition of con-
ditional measure, fij(yn)= (yn − x)∗fij(x), where (yn − x)∗ : W+(x)→ W+(x) is translation
by yn − x.)

Let f̃ij(x) denote the measure on G++(x) given by

f̃ij(x)(h)=
∫

W+[x]
h̄dfij(x),

where for a compactly supported real-valued continuous function h on G++(x), h̄ :
W+[x]→R is given by

h̄(gx)=
∫
Q++(x)

h(gq)dm(q),

where m is the Haar measure on Q++(x). (Thus, f̃ij(x) is the pullback of fij(x) from
W+[x] ∼= G++(x)/Q++(x) to G++(x).) Then,

(12.37) (γn)∗ f̃ij(x)∝ f̃ij(x)

on the set where both are defined.
For x ∈ X, let U+

new(x) denote the maximal connected subgroup of G++(x) such that
for u ∈ U+

new(x) (on the domain where both are defined),

(12.38) (u)∗ f̃ij(x)∝ f̃ij(x).

By (12.37) and Proposition D.3, for x ∈ F, U+
new(x) strictly contains U+(x).

Suppose x ∈ F, y ∈ F and y ∈ Cij[x]. Then, since f̃ij(y)= Tr(x, y)∗ f̃ij(x), we have that
(12.38) holds for u ∈ Tr(y, x)U+

new(y) (see Lemma 6.1). Therefore, by the maximality of
U+

new(x), for x ∈ F, y ∈ F∩ Cij[x],
(12.39) Tr(y, x)U+

new(y)= U+
new(x).
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Suppose x ∈ F, t < 0 and gtx ∈ F. Then, since the measurable partition Cij is gt-equivariant
(see Lemma 11.3) we have that (12.38) holds for u ∈ g−tU+(gtx). Therefore, by the maxi-
mality of U+

new(x), for x ∈ F, t < 0 with gtx ∈ F we have

(12.40) g−tU+
new(gtx)= U+

new(x),

and (12.38) and (12.39) still hold.
From (12.38), we get that for x ∈ F and u ∈ U+

new(x),

(12.41) (u)∗ f̃ij(x)= eβx(u) f̃ij(x),

where βx : U+
new(x)→ R is a homomorphism. Since ν(F) > δ0 > 0 and gt is ergodic, for

almost all x ∈ X there exist arbitrarily large t > 0 so that g−tx ∈ F. Then, we define U+
new(x)

to be gtU+
new(g−tx). (This is consistent in view of (12.40).) Then, (12.41) holds for a.e. x ∈ X.

It follows from (12.41) that for a.e. x ∈ X, u ∈ U+
new(x) and t > 0,

(12.42) βg−t x(g−tugt)= βx(u).

We can write

βx(u)= Lx(log u),

where Lx : Lie(U+)(x)→ R is a Lie algebra homomorphism (which is in particular a
linear map). Let K ⊂ X be a positive measure set for which there exists a constant C
with ‖Lx‖ ≤ C for all x ∈ K. Now for almost all x ∈ X and u ∈ U+

new(x) there exists a
sequence tj →∞ so that g−tj x ∈ K and g−tj ugtj → e, where e is the identity element of
U+

new. Then, (12.42) applied to the sequence tj implies that βx(u)= 0 almost everywhere
(cf. [BQ, Proposition 7.4(b)]). Therefore, for almost all x ∈ X, the conditional measure of
ν along the orbit U+

new[x] is the push-forward of the Haar measure on U+
new(x).

The partition whose atoms are U+
new[x] is given by the refinement of the measurable

partition Cij into orbits of an algebraic group. (For the atom Cij[x] this group is U+
new(y) for

almost any y ∈ Cij[x]; in view of (12.39) and Lemma 6.1, this group, viewed as a group of
affine maps of W+[x] is independent of the choice of y.) Therefore the partition whose
atoms are sets of the form U+

new[x] ∩B0[x] is a measurable partition.
In view of (12.39), and since for u near the identity, U+

new[x] ⊂ Cij[x] we have that
(6.2) holds for U+

new. Then, it also holds for any u in view of gt-equivariance. Finally, since
U+

new(x)⊃ U+(x) and U+(x)⊃ exp N(x), we have U+
new(x)⊃ N(x).

Similarly, recall that the measure ν on X is the pullback of the measure on X0 such
that the conditionals on the fibers of the covering map σ0 : X → X0 are the counting
measure.

By (4.12) there exists a subset �0 ⊂ X0 of full measure such that for any x0 ∈�0,
for any x ∈ σ−1(x0) we have an (almost-everywhere defined) identification σx between
W+[x] ⊂ X and W+[x0] ⊂ X0 and under this identification, the conditional measures
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coincide, i.e. (σx)∗νW+[x] = νW+[x0]. Suppose x0 ∈ �0 and x ∈ σ−1
0 (x0). After removing

from �0 a set of measure 0, we may assume that Definition 6.2(iii) holds for x and U+
new(x).

Therefore it also holds for x0 and σx ◦ U+
new(x) ◦ σ−1

x ⊂ G++(x0). Now for x0 ∈�0 define
U+

new(x0) to be the group generated by all the groups σx ◦ U+
new(x) ◦ σ−1

x where x varies
over σ−1

0 (x0). Then, Definition 6.2(iii) holds for x0 and U+
new(x0). In the same way, all of

the other parts of Definition 6.2 hold for x0 and U+
new(x0) since they hold for x and U+

new(x)

for any x ∈ σ−1
0 (x0).

This completes the proof of Proposition 12.1. �

13. Proof of Theorem 2.1

Let L−, L+, S+ be as in Section 6.2. Apply Proposition 12.1 to get an equivari-
ant system of subgroups U+

new(x) ⊂ G++(x) which is compatible with ν in the sense of
Definition 6.2.

We have that L−[x] is smooth at x for almost all x ∈ X, see [AEM, §3]. Let
TRU+(x)⊂ W+(x) denote the tangent subspace at x to the smooth manifold U+[x], and
let TRL−(x)⊂ W−(x) denote the tangent subspace to L−[x] at x. (This exists for almost
all x.)

If L+[x] �⊂ S+[x] we can apply Proposition 12.1 again and repeat the process.
When this process stops, the following hold:

(a) L+[x] ⊂ S+[x] ⊂ U+[x]. In particular,

TRL+(x)≡ π̂+
x ◦ (π̂−1

x

)
TRL−(x)⊂ TRU+(x).

(b) The conditional measures νU+[x] are induced from the Haar measure on U+[x].
These measures are gt-equivariant.

(c) The subspaces TRU+(x) ⊂ W+(x) is P = AN equivariant. (This follows from
the fact that the N direction is contained in U+(x), (6.2) and the fact that the N
direction is in the center of G++(x).) The subspaces TRL−(x) are gt-equivariant.

(d) The conditional measures νW−[x] are supported on L−[x].
Let H1

⊥ denote the subspace of H1(M,�,R) which is orthogonal to the SL(2,R) or-
bit, see (2.1). Let I denote the Lyapunov exponents (with multiplicity) of the cocycle in
TRU+(x) ∩ H1

⊥, J denote the Lyapunov exponents of the cocycle in TRL+(x) ∩ H1
⊥. By

(a), we have J ⊂ I.
Since TRU+(x)∩H1

⊥(x) is AN-invariant, by Theorem A.3 we have,

(13.1)
∑
i∈I

λi ≥ 0.
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We now compute the entropy of gt . We have, by Theorem B.9(i) (applied to the flow in
the reverse direction),

(13.2)
1
t
h(gt, ν)≥ 2+

∑
i∈I

(1+ λi)= 2+ |I| +
∑
i∈I

λi ≥ 2+ |I|

where the 2 comes from the direction of N, and for the last estimate we used (13.1). Also,
by Theorem B.9(ii),

1
t
h(g−t, ν)≤ 2+

∑
j∈J

(1− λj), where the 2 is the potential contribution of N̄(13.3)

≤ 2+
∑
i∈I

(1− λi) since (1− λi)≥ 0 for all i

≤ 2+ |I| by (13.1)

However, h(gt, ν)= h(g−t, ν). Therefore, all the inequalities in (13.2) and (13.3) are in fact
equalities. In particular, I = J, i.e.

(13.4) TRL+(x)= TRU+(x).

Since L+[x] ⊂ S+[x] and S+[x] is closed and star-shaped with respect to x, it follows that

(13.5) TRL+[x] ⊂ S+[x].
Since S+[x] ⊂ U+[x], we get, in view of (13.4) and (13.5) that

TRU+[x] ⊂ S+[x] ⊂ U+[x].
Thus U+[x] is an affine subspace of W+[x]. Then, in view of (13.4), and the fact that
L+[x] ⊂ U+[x], we get that L+[x] = U+[x]. Thus, L+[x] is an affine subspace, hence
L−(x)= L−(x).

We have

1
t
hν
(
g−t,W−)= 2+

∑
i∈I

(1− λi).

By applying Theorem B.9(iii) to the affine subspaces L−(x), this implies that the condi-
tional measures νL−(x) are Lebesgue, and that ν is N̄-invariant (where N̄ is as in Sec-
tion 1.1). Hence ν is SL(2,R)-invariant.

By the definition of L−, the conditional measures νW−[x] are supported on L−[x].
Thus, the conditional measures νW−[x] are (up to null sets) precisely the Lebesgue mea-
sures on L−[x].

Let U+[x] denote the smallest linear subspace of W+[x] which contains the support
of νW+[x]. Since ν is SL(2,R)-invariant, we can argue by symmetry that the conditional



260 ALEX ESKIN, MARYAM MIRZAKHANI

measures νW+[x] are precisely the Lebesgue measures on U+[x]. Since U+[x] accounts
for all the entropy of the flow, we must have U+[x] = U+[x]. Since U+[x] = L+[x], this
completes the proof of Theorem 2.1. �

14. Random walks

In all of Sections 14–16, we work with the finite cover X0 (which is a manifold),
and do not use the measurable cover X.

We choose a compactly supported absolutely continuous measure μ on SL(2,R).
We also assume that μ is spherically symmetric. Let ν be any ergodic μ-stationary prob-
ability measure on X0. By Furstenberg’s theorem [NZ, Theorem 1.4],

ν = 1
2π

∫ 2π

0
(rθ )∗ν0dθ

where rθ is as in Section 1.1 and ν0 is a measure invariant under P = AN ⊂ SL(2,R).
Then, by Theorem 2.1, ν0 is SL(2,R)-invariant. Therefore the stationary measure ν is
also in fact SL(2,R)-invariant.

We can think of x ∈ X0 as a point in H1(M,�,C). For a subspace U(x) ⊂
H1(M,�,R) let UC = C ⊗ U(x) denote its complexification, which is a subspace of
H1(M,�,C). In all cases we will consider, U(x) will either contain the space spanned by
Re x and Im x or will be symplectically orthogonal to that space.

Let area(x,1) ⊂ H1(M,�,C) denote the set of y ∈ H1(M,�,C) such that x + y

has area 1. We often abuse notation by referring to UC(x)∩ area(1, x) also as UC(x). We
also write UC[x] for the corresponding subset of X0.

The map p : H1(M,�,R)→ H1(M,R) naturally extends to a map (also denoted
by p) from H1(M,�,C)→ H1(M,C).

By Theorem 2.1, there is a SL(2,R)-equivariant family of subspaces U(x) ⊂
H1(M,�,R) containing Re x and Im x and such that the conditional measures of ν along
UC[x] are Lebesgue. Furthermore, for almost all x, the conditional measure of ν along
W+[x] is supported on W+[x] ∩UC[x], and the conditional measure of ν along W−[x] is
supported on W−[x] ∩UC[x].

Lemma 14.1. — There exists a volume form d Vol(x) on U(x) which is invariant under the

SL(2,R) action. This form is non-degenerate on compact subsets of X0.

Proof. — The subspaces p(U(x)) form an invariant subbundle p(U) of the Hodge
bundle. By Theorem A.6(a) (after passing to a finite cover) we may assume that p(U) is a
direct sum of irreducible subbundles. Then, by Theorem A.6(b), we have a decomposition

p(U)(x)= Usymp(x)⊕U0(x)
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where the symplectic form on Usymp is non-degenerate, the decomposition is orthogonal
with respect to the Hodge inner product, and U0 is isotropic. Then, by Theorems A.5
and A.4 the Hodge inner product on U0 is equivariant under the SL(2,R) action.

Then we can define the volume form on p(U) to be the product of the appropriate
power of the symplectic form on Usymp and the volume form induced by the Hodge inner
product on U0. The subbundle Usymp is clearly SL(2,R) equivariant. By [Fi1, Corol-
lary 5.4], applied to the section c1 ∧ · · · ∧ ck where {c1, . . . , ck} is a symplectic basis for
Usymp, it follows that the symplectic volume form on Usymp agrees with the volume form
induced by the Hodge inner product on Usymp (which is non-degenerate on compact sets).
This gives a volume form on p(U) with the desired properties.

Since the Kontsevich-Zorich cocycle acts trivially on ker p, the normalized
Lebesgue measure on ker p is well defined. Thus, the volume form on p(U) naturally
induces a volume form on U. �

Remark. — In fact it follows from the results of [AEM] that U0 is trivial.

Lemma 14.2. — There exists an SL(2,R)-equivariant subbundle p(U)⊥ ⊂ H1(M,R) such

that

p(U)(x)⊕ p(U)⊥(x)= H1(M,R).

Proof. — This follows from the proof of Theorem A.6. �

The subbundles Lk . — By Theorem A.6 we have

(14.1) p(U)⊥(x)=
⊕
k∈�̂

Lk(x),

where �̂ is an indexing set not containing 0, and for each k ∈ �̂, Lk is an SL(2,R)-
equivariant subbundle of the Hodge bundle. (In our notation, the action of the
Kontsevich-Zorich cocycle may permute some of the Lk .) Note that Lk(x) is symplec-
tically orthogonal to the SL(2,R) orbit of x. Without loss of generality, we may assume
that the decomposition (14.1) is maximal, in the sense that on any (measurable) finite
cover of X0 each Lk does not contain a non-trivial proper SL(2,R)-equivariant subbun-
dle. (If this was not true, we could without passing to a finite cover, write a version of
(14.1) with a larger k.) If U does not contain the kernel of p, then we let λ̂0 = 0, and let
�̃= �̂∪ {0}.

The Forni subbundle. — Let λ̃k denote the top Lyapunov exponent of the geodesic
flow gt restricted to Lk . Let

F(x)=
⊕

{k : λ̃k=0}
Lk(x).
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We call F(x) the Forni subspace of ν. The subspaces F(x) form a subbundle of the Hodge
bundle which we call the Forni subbundle. It is an SL(2,R)-invariant subbundle, on
which the Kontsevich-Zorich cocycle acts by Hodge isometries. In particular, all the Lya-
punov exponents of F(x) are 0. Let F⊥(x) denote the orthogonal complement to F(x) in
the Hodge norm. By Theorem A.9(b),

F⊥(x)=
⊕

{k : λ̂k �=0}
Lk(x).

The following is proved in [AEM]:

Theorem 14.3. — There exists a subset � of the stratum with ν(�) = 1 such that for all

x ∈� there exists a neighborhood U(x) such that for all y ∈ U(x)∩� we have p(y− x) ∈ F⊥
C
(x).

The backwards shift map. — Let B be the space of (one-sided) infinite sequences of
elements of SL(2,R). (We think of B as giving the “past” trajectory of the random walk.)
Let T : B → B be the shift map. (In our interpretation, T takes us one step into the past.)
We define the skew-product map T : B×X0 → B×X0 by

T(b, x)= (Tb, b−1
0 x
)
, where b = (b0, b1, . . . )

(Thus the shift map and the skew-product map are denoted by the same letter.) We define
the measure β on B to be μ × μ · · · . The skew product map T naturally acts on the
bundle H1(M,R), and thus on each Lk for k ∈ �̂.

For each k ∈ �̂, by the multiplicative ergodic theorem we have the Lyapunov flag
for this action (with respect to the invariant measure β ):

{0} = V (k)
≤0 ⊂ V (k)

≤1(b, x)⊂ · · ·V (k)
≤nk
(b, x)=Lk(x).

By the multiplicative ergodic theorem applied to the action of SL(2,R) on R
2, for

β-almost all b ∈ B,

σ0 = lim
n→∞

1
n

log‖b0 . . . bn‖

where σ0 > 0 is the Lyapunov exponent for the measure μ on SL(2,R). Then, the Lya-
punov exponents of the flow gt and the Lyapunov exponents of the skew-product map T
differ by a factor of σ0. Let λ̂k denote the top Lyapunov exponent of T restricted to Lk .

The two-sided shift space. — Let B̃ denote the two-sided shift space. We denote the
measure · · · ×μ×μ× · · · on B̃ also by β .
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Notation. — For a, b ∈ B let

(14.2) a ∨ b = (. . . , a2, a1, b0, b1, . . . ) ∈ B̃.

(Note that the indexing for a ∈ B starts at 1 not at 0.) If ω = a ∨ b ∈ B̃, we think of the
sequence

. . . ,ω−2,ω−1 = · · · a2, a1

as the “future” of the random walk trajectory. (In general, following [BQ], we use the
symbols b, b′ etc. to refer to the “past” and the symbols a, a′ etc. to refer to the “future”.)

The opposite Lyapunov flag. — Note that on the two-sided shift space B̃×X0, the map
T is invertible. Thus, for each a ∨ b ∈ B, we have the Lyapunov flag for T−1:

{0} = V (k)
≥nk

⊂ V (k)
≥nk−1(a, x)⊂ · · ·V (k)

≥0(a, x)=Lk(x).

(As reflected in the above notation, this flag depends only on the “future” i.e. “a” part of
a ∨ b.)

The top Lyapunov exponent λ̂k . — Recall that λ̂k ≥ 0 denotes the top Lyapunov expo-
nent in Lk . Then (since T steps into the past), for v ∈ V (k)

≤1(b, x),

(14.3) lim
n→∞

1
n

log
‖Tn(b, x)∗v‖

‖v‖ =−λ̂k.

In the above equation we used the notation Tn(b, x)∗ to denote the action of Tn(b, x) on
H1(M,R).

Also, for v ∈ V (k)
>1(a, x), for some α > 0,

lim
n→∞

1
n

log
‖T−n(a ∨ b, x)∗v‖

‖v‖ < λ̂k − α.

Here, α is the minimum over k of the difference between the top Lyapunov exponent in
Lk and the next Lyapunov exponent.

The following lemma is a consequence of the zero-one law Lemma C.10(i):

Lemma 14.4. — For every δ > 0 and every δ′ > 0 there exists Egood ⊂ X0 with ν(Egood) >

1− δ and σ = σ(δ, δ′) > 0, such that for any x ∈ Egood , any k and any vector w ∈ P(Lk(x)),

(14.4) β
({

a ∈ B : dY

(
w,V (k)

>1(a, x)
)
> σ

})
> 1− δ′
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(In (14.4), dY(·, ·) is the distance on the projective space P(H1(M,R)) derived from the
AGY norm.)

Proof. — It is enough to prove the lemma for a fixed k. For F ⊂ Grnk−1(Lk(x)) (the
Grassmannian of nk − 1 dimensional subspaces of Lk(x)) let

ν̂(k)x (F)= β
({

a ∈ B : V (k)
>1(a, x) ∈ F

})
,

and let ν̂(k) denote the measure on the bundle X0 ×Grnk−1(Lk) given by

d ν̂(k)(x,L)= dν(x)d ν̂(k)x (L).

Then, ν̂(k) is a stationary measure for the (forward) random walk. For w ∈ P(Lk(x)) let
I(w)= {L ∈ Grnk−1(Lk(x)) : w ∈ L}. Let

Z = {x ∈ X0 : ν̂(k)x

(
I(w)

)
> 0 for some w ∈ P

(
Lk(x)

)}
.

Suppose ν(Z) > 0. Then, for each x ∈ Z we can choose wx ∈ P(Lk(x)) such that
ν̂(k)x (I(wx)) > 0. Then,

(14.5) ν̂(k)
(⋃

x∈Z

{x} × I(wx)

)
> 0.

Therefore, (14.5) holds for some ergodic component of ν̂(k). However, this contradicts
Lemma C.10(i), since by the definition of Lk , the action of the cocycle on Lk is strongly
irreducible. Thus, ν(Z)= 0 and ν(Zc)= 1. By definition, for all x ∈ Zc and all w ∈Lk(x),

β
({

a ∈ B : w ∈ V (k)
>1(a, x)

})= 0.

Fix x ∈ Zc. Then, for every w ∈ P(Lk(x)) there exists σ0(x,w, δ
′) > 0 such that

β
({

a ∈ B : dY

(
V (k)
>1(a, x),w

)
> 2σ0

(
x,w, δ′

)})
> 1− δ′.

Let U(x,w) = {z ∈ P(Lk(x)) : dY(z,w) < σ0(x,w, δ
′)}. Then the {U(x,w)}w∈P(Lk(x))

form an open cover of the compact space P(Lk(x)), and therefore there exist w1, . . .wn

with P(Lk(x))=⋃n

i=1 U(x,wi). Let σ1(x, δ
′)= mini σ0(x,wi, δ

′). Then, for all x ∈ Zc and
all w ∈ P(Lk(x)),

β
({

a ∈ B : dY

(
V (k)
>1(a, x),w

)
> σ1

(
x, δ′
)})

> 1− δ′.

Let EN(δ
′) = {x ∈ Zc : σ1(x, δ

′) > 1
N}. Since

⋃∞
N=1 EN(δ

′) = Zc and ν(Zc) = 1, there
exists N = N(δ, δ′) such that ν(EN(δ

′)) > 1− δ. Let σ = 1/N and let Egood = EN. �
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Lyapunov subspaces and relative homology. — The following lemma is well known:

Lemma 14.5. — The Lyapunov spectrum of the Kontsevich-Zorich cocycle acting on relative

homology is the Lyapunov spectrum of the Kontsevich-Zorich cocycle acting on absolute homology, union

n zeroes, where n = dim ker p.

Let L̄k = p−1(Lk)⊂ H1(M,�,R). We have the Lyapunov flag

{0} = V̄ (k)
≤0 ⊂ V̄ (k)

≤1(b, x)⊂ · · · V̄ (k)
≤n̄k
(b, x)= L̄k(x),

corresponding to the action on the invariant subspace L̄k ⊂ H1(M,�,R). Also for each
a ∈ B, we have the opposite Lyapunov flag

{0} = V̄ (k)
≥n̄k

⊂ V̄ (k)
≥n̄k−1(a, x)⊂ · · · V̄ (k)

≥0(a, x)= L̄k(x).

Lemma 14.6. — Suppose λ̂k �= 0. Then for almost all (b, x),

p
(
V̄ (k)
≤1(b, x)

)= V (k)
≤1(b, x),

and p is an isomorphism between these two subspaces. Similarly, for almost all (a, x),

V̄ (k)
>1(a, x)= p−1

(
V (k)
>1(a, x)

)
.

Proof. — In view of Lemma 14.5 and the assumption that λ̂k �= 0, λ̂k is the top
Lyapunov exponent on both Lk and L̄k . Note that

(14.6) V̄ (k)
≤1 =

{
v̄ ∈ L̄k : lim sup

t→∞

1
t

log
‖Tnv̄‖
‖v̄‖ ≤−λ̂k

}
.

Also,

(14.7) V (k)
≤1 =

{
v ∈Lk : lim sup

t→∞

1
t

log
‖Tnv‖
‖v‖ ≤−λ̂k

}
.

It is clear from the definition of the Hodge norm on relative cohomology (A.1) that
‖p(v)‖ ≤ C‖v‖ for some absolute constant C. Therefore, it follows from (14.7) and
(14.6) that p(V̄ (k)

≤1) ⊂ V (k)
≤1. But by Lemma 14.5, dim(V̄ (k)

≤1) = dim(V (k)
≤1). Therefore,

p(V̄ (k)
≤1)= V (k)

≤1. �

Remark. — Even though we will not use this, a version of Lemma 14.6 holds for all
Lyapunov subspaces for non-zero exponents, and not just the subspace corresponding to
the top Lyapunov exponent λ̂k .
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The action on H1(M,�,C). — By the multiplicative ergodic theorem applied to the
action of SL(2,R) on R

2, for β-almost all b ∈ B there exists a one-dimensional subspace
W+(b)⊂R

2 such that v ∈ W+(b),

lim
n→∞

1
n

log‖b−1
n . . . b−1

0 v‖ =−σ0.

Let

W+(b, x)= (W+(b)⊗H1(M,�,R)
)∩ area(x,1).

Since we identify R
2 ⊗ H1(M,�,R) with H1(M,�,C), we may consider W+(b, x) as a

subspace of H1(M,�,C). This is the “stable” subspace for T. (Recall that T moves into
the past.)

For a “future trajectory” a ∈ B, we can similarly define a 1-dimensional subspace
W−(a)⊂R

2 such that

lim
n→∞

1
n

log‖an . . . a1v‖ =−σ0 for v ∈ W−(a).

Let A : SL(2,R) × X0 → Hom(H1(M,�,R),H1(M,�,R)) denote the Kontsevich-
Zorich cocycle. We then have the cocycle

Â : SL(2,R)×X0 → Hom
(
H1(M,�,C),H1(M,�,C)

)

given by

Â(g, x)(v⊗w)= gv⊗A(g, x)w

and we have made the identification H1(M,�,C) = R
2 ⊗ H1(M,�,R). This cocycle

can be thought of as the derivative cocycle for the action of SL(2,R). From the definition
we see that the Lyapunov exponents of Â are of the form ±σ0 + λi , where the λi are the
Lyapunov exponents of A.

15. Time changes and suspensions

There is a natural “forgetful” map f : B̃ → B. We extend functions on B × X0 to
B̃×X0 by making them constant along the fibers of f . The measure β×ν is a T-invariant
measure on B̃×X0.

The cocycles θj . — By Theorem A.6, the restriction of the Kontsevich-Zorich cocycle
to each Lj is semisimple. Then by Theorem C.5, the Lyapunov spectrum of T on each Lj
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is semisimple, and the restriction of T to the top Lyapunov subspace of each Lj consists
of a single conformal block. This means that there is a inner product 〈, 〉j,b,x defined on
W+(b) ⊗ V (j)

≤1(b, x) and a function θj : B × X0 → R such that for all u, v ∈ W+(b) ⊗
V (j)

≤1(b, x),

(15.1)
〈
Â
(
b−1

0 , x
)
u, Â
(
b−1

0 , x
)
v
〉
j,Tb,b−1

0 x
= e−θj(b,x)〈u, v〉j,b,x.

To handle relative homology, we need to also consider the case in which the action
of A(·, ·) on a subbundle is trivial. We thus define an inner product 〈, 〉0,b on R

2, and a
cocycle θ0 : B →R so that for u, v ∈ W+(b),

(15.2)
〈
b−1

0 u, b−1
0 v
〉
0,Tb

= e−θ0(b)〈u, v〉0,b.

For notational simplicity, we let θ0(b, x)= θ0(b).

Switch to positive cocycles. — The cocycle θj corresponds to the Â(·, ·)-Lyapunov ex-
ponent σ0 + λ̂j , where λ̂j is the top Lyapunov exponent of A(·, ·) in Lj . Since σ0 > 0 and
λ̂j ≥ 0,

σ0 + λ̂j =
∫

B×X0

θj(b, x)dβ(b)dν(x) > 0.

Thus, the cocycle θj has positive average on B×X0. However, we do not know that θj is
positive, i.e. that for all (b, x) ∈ B×X0, θj(b, x) > 0. This makes it awkward to use θj(b, x)

to define a time change. Following [BQ] we use a positive cocycle τj equivalent to θj .
By [BQ, Lemma 2.1], we can find a positive cocycle τj : B×X0 →R and a measur-

able function φj : B×X0 →R such that

(15.3) θj − φj ◦T+ φj = τj

and ∫
B×X0

τj(b, x)dβ(b)dν(x) <∞.

For v ∈ W+(b)⊗ V (j)

≤1(b, x) we define

(15.4) ‖v‖′j,b,x = eφj(b,x)‖v‖j,b,x,

where the norm 〈·, ·〉j is as in (15.1) and (15.2). Then

(15.5)
∥∥Â
(
b−1

0 , x
)
v
∥∥′

j,T(b,x)
= e−τj (b,x)‖v‖′j,b,x.
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Suspension. — Let BX = B × X0 × (0,1]. Recall that β denotes the measure on B
which is given by μ × μ · · · . Let βX denote the measure on BX given by β × ν × dt,
where dt is the Lebesgue measure on (0,1]. In BX we identify (b, x,0) with (T(b, x),1),
so that BX is a suspension of T. We can then define a suspension flow Tt : BX → BX in
the natural way. (Our suspensions are going downwards and not upwards, since we think
of T as going into the past.) Then Tt preserves the measure βX.

Let B̃X = B̃ × X0 × (0,1]. The suspension construction, the flow Tt , and the in-
variant measure βX extend naturally from BX to B̃X.

Let Tt(b, x, s)∗ denote the action of Tt(b, x, s) on H1(M,�,C) (i.e. the derivative
cocycle on the tangent space). Then, for t ∈ Z and v ∈ W+(b)⊗ V (j)

≤1(b, x) and 0 < s ≤ 1
we have, in view of (15.5),

(15.6) ‖Tt(b, x, s)∗v‖′j,Tt(b,x)
= e−τj (t,b,x)‖v‖′j,b,x,

where τj(t, b, x)=∑t−1
n=0 τj(Tn(b, x)). We can extend the norm ‖ · ‖′j from B×X0 to BX by

‖v‖′j,b,x,s = ‖v‖′j,b,xe−(1−s)τj (b,x).

Then (15.6) holds for all t ∈R provided we set for n ∈ Z and 0 ≤ s < 1,

τj(n+ s, b, x)= τj(n, b, x)+ sτj

(
Tn(b, x)

)
.

The time change. — Here we differ slightly from [BQ] since we would like to have
several different time changes of the flow Tt on the same space. Hence, instead of chang-
ing the roof function, we keep the roof function constant, but change the speed in which
one moves on the [0,1] fibers.

Let T
τj

t : BX → BX be the time change of Tt where on (b, x)× [0,1] one moves at
the speed 1/τj(b, x). More precisely, we set

(15.7) T
τj

t (b, x, s)= (b, x, s − t/τj(b, x)
)
, if 0 < s − t/τj(b, x)≤ 1,

and extend using the identification ((b, x),0)= (T(b, x),1).
Then Tτk

� is the operation of moving backwards in time far enough so that the
cocycle multiplies the direction of the top Lyapunov exponent in Lk by e−�. In fact, by
(15.6) and (15.7), we have, for v ∈ W+(b)⊗ V (k)

≤1(b, x),

(15.8) ‖Tτk

� (b, x, s)∗v‖′j,Tτk
� (b,x,s)

= e−�‖v‖′j,b,x,s.

The map Tτk and the two-sided shift space. — On the space B̃X, Tτk is invertible, and
we denote the inverse of Tτk

� by Tτk

−�. We write

(15.9) Tτk

−�(a ∨ b, x, s)∗
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for the linear map on the tangent space H1(M,�,C) induced by Tτk

−�(a∨ b, x, s). In view
of (15.4) and (15.8), we have for v ∈ W+(b)⊗ V (k)

≤1(b, x),

(15.10) ‖Tτk

−�(a ∨ b, x, s)∗v‖ = exp
(
�+ φk(b, x, s)− φk

(
Tτk

−�(a ∨ b, x, s)
))‖v‖.

Here we have omitted the subscripts on the norm ‖ · ‖k,b,x and also extended the function
φk(b, x, s) so that for all (b, x, s) ∈ BX and all v ∈ W+(b)⊗ V (k)

≤1(b, x),

‖v‖k,b,x = eφk(b,x,s)‖v‖′k,b,x,s.

Invariant measures for the time changed flows. — Let βτj ,X denote the measure on BX

given by

dβτj ,X(b, x, t)= cjτj(b, x)dβ(b)dν(x)dt,

where the cj ∈ R is chosen so that βτj ,X(BX)= 1. Then the measures βτj ,X are invariant
under the flows T

τj

t . We note the following trivial:

Lemma 15.1. — The measures βτj ,X are all absolutely continuous with respect to βX. For every

δ > 0 there exists a compact subset K=K(δ)⊂ BX and L = L(δ) <∞ such that for all j,

βτj ,X(K) > 1− δ,

and also for (b, x, t) ∈K,

dβτj ,X

dβX
(b, x, t)≤ L,

dβX

dβτj ,X
(b, x, t)≤ L.

16. The martingale convergence argument

Standing assumptions. — Let

W+[b, x] = { y : y− x ∈ W+(b, x).
}

Then, W+[b, x] is the stable subspace for T. From the definition, for almost all b, (locally)
the sets {W+[b, x] : x ∈ X} form a measurable partition of X0. Let

U+(b, x)= W+(b, x)∩UC(x), U+[b, x] = W+[b, x] ∩UC[x].
We make the corresponding definitions for W−(b, x), W−[b, x], U+[b, x] and U−[b, x].

It follows from Theorem 2.1 applied to the flow rθ gtr−θ , using the fact that
UC[rθx] = UC[x], that for a.e. x, the conditional measures of ν along W±[b, x] are sup-
ported on U±[b, x], and also that the conditional measures of ν along U±[b, x] are
Lebesgue.
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Lemma 16.1. — There exists a subset � ⊂ BX with βX(�) = 1 such that for all

(b, x) ∈� ,

� ∩W+[b, x] ∩ ball of radius 1 ⊂� ∩U+[b, x].
Proof. — See [MaT] or [EL, 6.23]. �

The parameter δ. — Let δ > 0 be a parameter which will eventually be chosen suffi-
ciently small. We use the notation ci(δ) and c′i(δ) for functions which tend to 0 as δ→ 0.
In this section we use the notation A ≈ B to mean that the ratio A/B is bounded between
two positive constants depending on δ.

We first choose a compact subset K0 ⊂� ∩� with βX(K0) > 1 − δ > 0.999, the
conull set � is as in Lemma 16.1, and the conull set � is as in Theorem 14.3. By the
multiplicative ergodic theorem and (14.3), we may also assume that there exists �1(δ) > 0
such that for all (b, x, s) ∈ K0 all k and all v ∈ V (k)

≤1(b, x) and all � > �1(δ),

(16.1) ‖T�(b, x, s)∗v‖ ≤ e−(λk/2)�‖v‖.
(Here, as in (14.3) the notation T�(b, x, s)∗ denotes the action on H1(M,�,R).) By the
norm ‖ · ‖ in this section, we mean the AGY norm (see Section A.1).

Lemma 16.2. — For every δ > 0 there exists K ⊂ BX and C = C(δ) <∞, β = β(δ) > 0
and C′ = C′(δ) <∞ such that

(K1) For all L > C′(δ), and all (b, x, s) ∈ K,

1
L

∫ L

0
χK0

(
Tt(b, x, s)

)
dt ≥ 0.99.

(K2) βX(K) > 1− c1(δ). Also, for all j, βτj ,X(K) > 1− c1(δ).

(K3) For all j and all (b, x, t) ∈ K, |φj(b, x, t)|< C, where φj is as in (15.3).
(K4) For all j, all (b, x, t) ∈ K all k �= 0 and all v ∈ V̄(k)

≤1(b, x),

(16.2) ‖p(v)‖ ≥ β(δ)‖v‖.
(K5) There exists C0 = C0(δ) such that for all (b, x, s) ∈ K all j and all v ∈ W+(b)⊗

V (j)

≤1(b, x), we have C−1
0 ‖v‖ ≤ ‖v‖j,b,x ≤ C0‖v‖.

Proof. — By the Birkhoff ergodic theorem, there exists K′′ ⊂ BX such that
βX(K′′) > 1 − δ/5 and (K1) holds for K′′ instead of K. We can choose K′ ⊂ BX and
C = C(δ) <∞ such that βX(K′) > 1 − δ/5 and (K3) holds for K′ instead of K. Let
K = K(δ/5) and L = L(δ/5) be as in Lemma 15.1 with δ/5 instead of δ. Then choose
Kj ⊂ � with βτj ,X(Kj) > 1 − δ/(5dL), where d is the number of Lyapunov exponents.
In view of Lemma 14.6 there exists K′′′ ⊂ X0 with βX(K′′′) > 1 − δ/5 so that (16.2)
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holds. Similarly, there exists a set K′′′′ with K′′′′ > 1 − δ/5 where (K5) holds. Then, let
K =K′′′′ ∩K′′′ ∩K′′ ∩K′ ∩K∩⋂j Kj . The properties (K1), (K2), (K3) and (K4) are easily
verified. �

Warning. — In the rest of this section, we will often identify K and K0 with their
pullbacks f −1(K)⊂ B̃X and f −1(K0)⊂ B̃X where f : B̃X → BX is the forgetful map.

The martingale convergence theorem. — Let Bτj ,X denote the σ -algebra of βτj ,X measur-
able functions on BX. As in [BQ], let

Q
τj ,X
� = (Tτj

�

)−1(Bτj ,X
)
.

(Thus if a function F is measurable with respect to Q
τj ,X
� , then F depends only on what

happened at least � time units in the past, where � is measured using the time change τj .)
Let

Q
τj ,X
∞ =

⋂
�>0

Q
τj ,X
� .

The Q
τj ,X
� are a decreasing family of σ -algebras, and then, by the Martingale Conver-

gence Theorem, for βτj ,X-almost all (b, x, s) ∈ BX,

(16.3) lim
�→∞

Ej

(
1K | Q

τj ,X
�

)
(b, x, s)= Ej

(
1K | Q

τj ,X
∞
)
(b, x, s)

where Ej denotes expectation with respect to the measure βτj ,X.

The set S′. — In view of (16.3) and the condition (K2) we can choose S′ = S′(δ)⊂
BX to be such that for all � > �0, all j, and all (b, x, s) ∈ S′,

(16.4) Ej

(
1K | Q

τj ,X
�

)
(b, x, s) > 1− c2(δ).

By using Lemma 15.1 as in the proof of Lemma 16.2 we may assume that (by possibly
making �0 larger) we have for all j,

(16.5) βτj ,X
(
S′)> 1− c2(δ).

The set Egood . — By Lemma 14.4 we may choose a subset Egood ⊂ B̃X (which is actu-
ally of the form B̃ × E′

good for some subset E′
good ⊂ X× [0,1]), with βX(Egood) > 1− c3(δ),

and a number σ(δ) > 0 such that for any (b, x, s) ∈ Egood , any j and any unit vector
w ∈Lj(b, x),

(16.6) β
({

a ∈ B : dY

(
w,V (j)

>1(a, x)
)
> σ(δ)

})
> 1− c′3(δ).
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We may assume that Egood ⊂ K. By the Osceledets multiplicative ergodic theorem and
Lemma 14.6, we may also assume that there exists α > 0 (depending only on the Lya-
punov spectrum), and �0 = �0(δ) such that for (b, x, s) ∈ Egood , � > �0, at least 1 − c′′3(δ)
measure of a ∈ B, and all v̄ ∈ V̄ (j)

>1(a, x),

(16.7) ‖T
τj

−�(a ∨ b, x, s)∗v̄‖ ≤ e(1−α)�‖v̄‖.

The sets �ρ . — In view of (16.5) and the Birkhoff ergodic theorem, for every ρ > 0
there exists a set �ρ =�ρ(δ)⊂ B̃X such that

(�1) βX(�ρ) > 1− ρ.
(�2) There exists �′0 = �′0(ρ) such that for all � > �′0, and all (b, x, s) ∈�ρ ,

∣∣{t ∈ [−�, �] : Tt(b, x, s) ∈ S′ ∩ Egood

}∣∣≥ (1− c5(δ)
)
2�.

Lemma 16.3. — Suppose the measure ν is not affine. Then there exists ρ > 0 so that for every

δ′ > 0 there exist (b, x, s) ∈�ρ , (b, y, s) ∈�ρ with ‖y− x‖< δ′ such that p(y− x) ∈ p(U)⊥
C
(x),

(16.8) d
(

y− x,UC(x)
)
>

1
10
‖y− x‖

and

(16.9) d
(

y− x,W+(b, x)
)
>

1
3
‖y− x‖

(so y− x is in general position with respect to W+(b, x)).

Remark. — In view of Theorem 14.3, it follows that for (b, x, s), (b, y, s) satisfying
the conditions of Lemma 16.3, p(y− x) is orthogonal to the complexification FC(x) of the
Forni subspace F(x).

Proof. — By Fubini’s theorem, there exists a subset �′
ρ ⊂ X with ν(�′

ρ)≥ 1− ρ1/2

such that for x ∈�′
ρ ,

(16.10) (β × dt)
({
(b, s) : (b, x, s) ∈�ρ

})≥ (1− ρ1/2
)
.

Let K be an arbitrary compact subset of X0 with ν(K) > 1/2, and let K̃ denote its lift
to X̃0. Let π : X̃0 → X0 denote the natural map. We have

(16.11) ν
(
�′

ρ

)≥ (1− 2ρ1/2
)
ν(K).

In view of Lemma 14.1 we can find finitely many sets Jα ⊂ Kα ⊂ X̃0 and constants
N > 0 and δ0 > 0 such that the following hold:
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(i) For all α, Kα is diffeomorphic to an open ball, and the restriction of π to Kα

is injective.
(ii) The sets Jα are disjoint, and up to a null set π(K̃)=⊔α π( Jα).

(iii) Any point belongs to at most N of the sets π(Kα).
(iv) Recall that for x ∈ X̃0, UC[x] denotes the (infinite) affine space whose tangent

space is UC(x). We have, for ν-almost all x ∈ Jα ,

(16.12) Vol
(
UC[x] ∩Kα

)≥ δ0,

where Vol(·) is as in Lemma 14.1.

Let

(16.13) �′′
ρ =

{
x ∈ Jα : νUC(x)

(
�′

ρ ∩Kα

)≥ (1− ρ1/4
)
νUC(x)(Kα)

}
.

In the above equation, νUC(x) is the conditional measure of ν along UC[x] (which is in fact
a multiple of the measure Vol of Lemma 14.1). By (16.11), properties (ii), (iii) and Fubini’s
theorem, ν(�′′

ρ)≥ (1− 2Nρ1/4)ν(K). In particular,
⋃

ρ>0�
′′
ρ is conull in K.

Note that by the definition of �′′
ρ , if x ∈�′′

ρ ∩ Jα then UC[x] ∩ Jα ⊂�′′
ρ . It follows

that we may write, for some indexing set Iα(ρ),

�′′
ρ ∩ Jα =

⊔
x∈Iα(ρ)

UC[x] ∩ Jα.

Suppose that for all α and all ρ > 0, Iα(ρ) is countable. Then, for a positive measure
set of x ∈ X̃0, x has an open neighborhood in UC[x] whose ν-measure is positive. Then
by ergodicity of the geodesic flow, this holds for ν-almost all x ∈ X̃0 and without loss of
generality, for all x ∈ Iα(ρ).

The restriction of ν to UC[x] is a multiple of the measure Vol of Lemma 14.1,
therefore there exists a constant ψ(x) �= 0 such that for E ⊂ UC[x], ν(E)= ψ(x)Vol(E).
Since both ν and Vol are invariant under the SL(2,R) action, ψ(x) is invariant, and thus
by ergodicity ψ is constant almost everywhere.

Let I′α =
⋃

ρ>0 Iα(ρ). For x, y ∈ I′α write x ∼ y if UC[x] ∩ Jα = UC[ y] ∩ Jα , and let
I′′α ⊂ I′α be the subset where we keep only one member of each ∼-equivalence class. Note
that by properties (i) and (iv), for distinct x, y ∈ I′′α , UC[x]∩Kα and UC[ y]∩Kα are disjoint
up to a set of measure 0. Then (16.12) implies that for each α,

ν(Kα)≥
∑
x∈I′′α

ν
(
UC[x] ∩Kα

)=∑
x∈I′′α

ψ Vol
(
UC[x] ∩Kα

)≥ψδ0|I′′α|,

where | · | denotes the cardinality of a set. Since ν is a finite measure, we get that each
I′′α is finite. Since for a fixed K, there are only finitely many sets Kα , this implies that the
support of restriction of ν to K is contained in a finite union of “affine pieces” each of
the form UC[xj] ∩ Kα for some xj ∈K, and the measure ν restricted to each affine piece
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coincides with ψ Vol. It follows from the ergodicity of gt that the affine pieces fit together
to form an (immersed) submanifold. Thus, ν is affine.

Thus, we may assume that there exist α and ρ > 0 such that Iα(ρ) is not countable.
Then we can find x1 ∈ Iα(ρ) and yn ∈ Iα(ρ) such that

lim
n→∞ hd

(
UC[x1] ∩Kα,UC[ yn] ∩Kα

)= 0,

where hd denotes Hausdorff distance between sets (using the distance dX0 defined in Sec-
tion 3). Let fn : p(U)C[ yn] → p(U)C[x1] denote the function taking z ∈ p(U)C[ yn] to the
unique point in p(U)C[x1] ∩ p(U)⊥

C
[z]. Then, for large n, the map fn is almost measure

preserving, in the sense that for V ⊂ p(U)C(yn),

(0.5)|V| ≤ |fn(V)| ≤ 2|V|,
where | · | denotes Lebesgue measure. Then, in view of the definition (16.13) of �′′

ρ , for
sufficiently large n, there exist x ∈ UC[x1] ∩�′

ρ and y ∈ UC[ yn] ∩�′
ρ such that p(y− x) ∈

p(U)⊥
C
(x), and ‖y − x‖ < δ′. Then, by the definition (16.10) of �′

ρ , we can choose (b, s)

so that (b, x, s) ∈�ρ , (b, y, s) ∈�ρ , and (16.8) and (16.9) holds. �

Standing assumption. — We fix ρ = ρ(δ) so that Lemma 16.3 holds.
The main part of the proof is the following:

Proposition 16.4. — There exists C(δ) > 1 such that the following holds: Suppose for every

δ′ > 0 there exist (b, x, s), (b, y, s) ∈ �ρ with ‖x − y‖ ≤ δ′, p(x − y) ∈ p(U)⊥
C
(x), and so that

(16.8) and (16.9) hold. Then for every ε > 0 there exist (b′′, x′′, s′′) ∈ K0, (b′′, y′′, s′′) ∈ K0, such

that y′′ − x′′ ∈ U⊥
C
(x′′),

ε

C(δ)
≤ ‖y′′ − x′′‖ ≤ C(δ)ε,

d
(

y′′ − x′′,UC

(
x′′
))≥ 1

C(δ)
‖y′′ − x′′‖,(16.14)

d
(

y′′ − x′′,W+(b′′, x′′
))
< δ′′,(16.15)

where δ′′ depends only on δ′, and δ′′ → 0 as δ′ → 0.

Proof. — Let �̃⊂ �̂ denote the subset {k : λ̂k �= 0}. We may decompose

(16.16) p(U)⊥(x)=
⊕
k∈�̃

Lk(x)
⊕

F(x)

as in Section 14. For j ∈ �̃, let πj denote the projection to Lj , using the decomposition
(16.16). Note that by Theorem 14.3, the projection of p(y− x) to F(x) is always 0.
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FIG. 7. — Proof of Proposition 16.4. In the figure, going “up” corresponds to the “future”. The map Tm for m > 0 takes
one m steps into the “past”

For m ∈R
+, write (see Figure 7)
(
b′, x′, s′

)= Tm(b, x, s),
(
b′, y′, s′

)= Tm(b, y, s),

and let

wj(m)= πj

(
x′ − y′

)
.

(We will always have m small enough so that the above equation makes sense.) Let �j(m)

be such that

e�j(m)‖wj(m)‖ = ε.

We also need to handle the relative homology part (where the action of the Kontsevich-
Zorich cocycle is trivial). Set �0(m) to be the number such that

e�0(m)‖x′ − y′‖ = ε.

Choose 0 < σ ′ � λmin where 0 < λmin = minj∈�̃ λ̂j . We will be choosing m so that

(16.17)
σ ′

2
| log‖y− x‖| ≤ m ≤ σ ′| log‖y− x‖|.

In view of (16.9) and Theorem A.1, (after some uniformly bounded time), ‖wj(m)‖ is an
increasing function of m (since the factor of e−t from the geodesic flow beats the contribu-
tion of the Kontsevich-Zorich cocycle). Therefore, �j(m) is a decreasing function of m.

For a bi-infinite sequence b ∈ B̃ and x ∈ X0, let

Gj(b, x, s)= {m ∈R+ : T
τj

−�j (m)
Tm(b, x, s) ∈ S′}.

Let Gall(b, x, s)=⋂j Gj(b, x, s)∩ {m : Tm(b, x, s) ∈ Egood}.
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Lemma 16.5. — For (b, x, s) ∈�ρ and N sufficiently large,

|Gall(b, x, s)∩ [0,N]|
N

≥ 1− c6(δ).

Proof. — We can write T
τj

−�j (m)
Tm = T−gj (m). By definition,

m ∈ Gj(b, x, s) if and only if T−gj (m)(b, x, s) ∈ S′.

Since �j(m) is a decreasing function of m, so is gj , and in fact, for all m2 > m1

gj(m1)− gj(m2) > m2 − m1.

This implies that

(16.18) g−1
j (m1)− g−1

j (m2) < m1 − m2.

Let F = {t ∈ [0, gj(N)] : T−t(b, x) /∈ S′}. By condition (�2), for N large enough, |F| ≤
(1− c5(δ))gj(N). Note that Gc

j ∩ [0,N] = g−1
j (F). Then, by (16.18),

|Gc
j ∩ [0,N]| = |g−1

j (F)| ≤ |F| ≤ c5(δ)gj(N)≤ c6(δ)N,

where as in our convention c6(δ)→ 0 as δ→ 0. �

We now continue the proof of Proposition 16.4. We may assume that δ′ is small
enough so that the right-hand-side of (16.17) is smaller then the N of Lemma 16.5. Sup-
pose (b, x, s) ∈�ρ , (b, y, s) ∈�ρ . By Lemma 16.5, we can fix m ∈ Gall(x) such that (16.17)
holds. Write �j = �j(m). Let

(
b′, x′, s′

)= Tm(b, x, s),
(
b′, y′, s′

)= Tm(b, y, s).

For j ∈ �̃, let

(bj, xj, sj)= T
τj

−�j (m)

(
b′, x′, s′

)
, (b̄j, yj, s̄j)= T

τj

−�j (m)

(
b′, y′, s′

)
.

Since m ∈ Gall(b, x, s), we have (bj, xj, sj) ∈ S′, (b̄j, yj, s̄j) ∈ S′. Then, by (16.4), for all j,

Ej

(
1K | Q

τj ,X
�j

)
(bj, xj, sj) >

(
1− c2(δ)

)
,

Ej

(
1K | Q

τj ,X
�j

)
(b̄j, yj, s̄j) >

(
1− c2(δ)

)
.

Since T
τj

�j
(bj, xj, sj)= (b′, x′, s′), by [BQ, (7.5)] we have

Ej

(
1K | Q

τj ,X
�j

)
(bj, xj, sj)=

∫
B

1K

(
T
τj

−�j

(
a ∨ b′, x′, s′

))
dβ(a),
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where the notation a ∨ b′ is as in (14.2). Thus, for all j ∈ �̃,

(16.19) β
({

a : T
τj

−�j

(
a ∨ b′, x′, s′

) ∈ K
})
> 1− c2(δ).

Similarly, for all j ∈ �̃,

β
({

a : T
τj

−�j

(
a ∨ b′, y′, s′

) ∈ K
})
> 1− c2(δ).

Let w = x′ − y′, and let wj = πj(w). We can write

(16.20) w = w̄0 +
∑
j∈�̂

w̄j

where w̄0 ∈ ker p, and for j > 0, w̄j are chosen so that πj(w̄j)=wj , and also ‖w̄j‖ ≈ ‖wj‖.
For any a ∈ B, we may write

wj = ξj(a)+ vj(a),

where ξj(a) ∈ W+(b′)⊗ V (j)

≤1(b
′, x′), and

vj(a) ∈ W+(b)⊗ V (j)

>1

(
a, x′
)+W−(a)⊗Lj

(
b′, x′

)
.

This decomposition is motivated as follows: if we consider the Lyapunov decomposition

C⊗Lj(x)=
⊕

k

Vk(a ∨ b, x)

then ξj(a) belongs to the subspace V≤1(a ∨ b, x) corresponding to the top Lyapunov ex-
ponent σ0 + λ̂j for the action of T−t , and vj ∈ ⊕k≥2Vk(a ∨ b, x) will grow with a smaller
Lyapunov exponent under T−t . Then vj(a) will also grow with a smaller Lyapunov expo-
nent then ξj(a) under T

τj

−�.
Since m ∈ Gall(b, x, s), we have (b′, x′, s′) ∈ Egood . Then, by (16.6), for at least 1 −

c′3(δ) fraction of a ∈ B,

(16.21) ‖vj(a)‖ ≈ ‖ξj(a)‖ ≈ ‖wj‖ ≈ εe−�j ,

where the notation A ≈ B means that A/B is bounded between two constants depending
only on δ. Since (b′, x′, s′) ∈ Egood ⊂ K, by condition (K3) we have |φj(b

′, x′, s′)| ≤ C(δ).
Also by (16.19), for at least 1− c2(δ) fraction of a ∈ B, we have T

τj

−�j
(a ∨ b′, x′, s′) ∈ K, so

again by condition (K3) we have∣∣φj

(
T
τj

−�j

(
a ∨ b′, x′, s′

))∣∣≤ C(δ).

Thus, by (16.21), (15.10) and (16.7), we have, for all j ∈ �̃, and at least 1− c4(δ) fraction
of a ∈ B,

(16.22)
∥∥T

τj

−�j

(
a∨ b′, x′, s′

)
∗ξj(a)

∥∥≈ ε, and
∥∥T

τj

−�j

(
a∨ b′, x′, s′

)
∗vj(a)

∥∥= O
(
e−α�j

)
,
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where α > 0 depends only on the Lyapunov spectrum. (The notation in (16.22) is defined
in (15.9).) Hence, for at least 1− c4(δ) fraction of a ∈ B,∥∥T

τj

−�j

(
a ∨ b′, x′, s′

)
∗wj

∥∥≈ ε.

Since λj ≥ 0 (and by Theorem 14.3, if λj = 0 then j = 0, and w̄0 ∈ ker p where the action
of the Kontsevich-Zorich cocycle is trivial), we have for at least 1− c4(δ) fraction of a ∈ B,

(16.23)
∥∥T

τj

−�j

(
a ∨ b′, x′, s′

)
∗w̄j

∥∥≈ ε.

Let

tj(a)= sup
{
t > 0 : ∥∥T−t

(
a ∨ b′, x′, s′

)
∗w̄j

∥∥≤ ε
}
,

and let j(a) denote a j ∈ �̃ such that tj(a) is as small as possible as j varies over �̃. Then,
if j = j(a), then by (16.23),

(16.24)
∥∥T−tj (a)

(
a ∨ b′, x′, s′

)
∗w̄j

∥∥≈ ∥∥T
τj

−�j

(
a ∨ b′, x′, s′

)
∗w̄j

∥∥≈ ε.

Also, for at least 1− c4(δ)-fraction of a ∈ B, if j = j(a) and k �= j, then by (16.23),

(16.25)
∥∥T

τj

−�j

(
a ∨ b′, x′, s′

)
∗w̄k

∥∥≤ C1(δ)ε,

where C1(δ) depends only on δ. Therefore, by (16.20), (16.24), and (16.25), for at least
1− c4(δ)-fraction of a ∈ B, if j = j(a),

(16.26)
∥∥T

τj

−�j

(
a ∨ b′, x′, s′

)
∗
(

y′ − x′
)∥∥≈ ε.

We now choose δ > 0 so that c4(δ)+ 2c2(δ) < 1/2, and using (16.19) we choose a ∈ B so
that (16.26) holds, and also

T
τj

−�j

(
a ∨ b′, x′, s′

) ∈ K, T
τj

−�j

(
a ∨ b′, y′, s′

) ∈ K.

We may write

T
τj

−�j

(
a ∨ b′, x′, s′

)= T−t

(
a ∨ b, x′, s′

)
,

T
τj

−�j

(
a ∨ b′, y′, s′

)= T−t′
(
a ∨ b, y′, s′

)
Then, |t′ − t| ≤ C(δ). Therefore by condition (K1), there exists t′′ with |t′′ − t| ≤ C(δ)
such that (

b′′, x′′, s′′
)= T−t′′

(
a ∨ b′, x′, s′

) ∈ K0,(
b′′, y′′, s′′

)= T−t′′
(
a ∨ b′, y′, s′

) ∈ K0.

Since ‖w‖ ≈ εe−�j , and �j → ∞ as δ′ → 0, we have ‖w‖ = ‖x′ − y′‖ → 0 as
δ′ → 0. Since T−t′′ does not expand the W− components, the W− component of x′′ − y′′ is
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bounded by the W− component of x′ − y′. Thus, the size of the W− component of x′′ − y′′

tends to 0 as δ′ → 0. Thus (16.15) holds.
It remains to prove (16.14). If

(16.27)
∥∥p
(

y′′ − x′′
)∥∥≥ 1

C(δ)

∥∥y′′ − x′′
∥∥

then (16.14) holds since p(y′′ − x′′) ∈ p(U)⊥(x′′). This automatically holds for the case
where |�| = 1 (and thus, in particular, there are no marked points). If not, we may write

y′′ − x′′ =w′′
+ + w̄′′

0

where ‖w′′
+‖ ≤ c(δ)‖w̄′′

0‖ and w̄′′
0 ∈ ker p. We will need to rule out the case where w̄′′

0 is
very close to U+(x′′)∩ ker p. We will show that this contradicts the assumption (16.8).

Let w′
+, w̄′

0 be such that

w′′
+ = T−t′′

(
a ∨ b, x′, s′

)
∗w

′
+, w̄′′

0 = T−t′′
(
a ∨ b, x′, s′

)
∗w̄

′
0.

Then y′ − x′ =w′
+ + w̄′

0 and in view of (16.1) and (16.21),

‖w′
+‖ ≤ e−λmint′′/2‖w̄′

0‖ ≈ e−λmint′′/2‖y′ − x′‖.
Applying T−m(b, x′, s′) to both sides we get

y− x =w+ + w̄0,

where w̄0 ∈ ker p, and

‖w+‖ ≤ e2m‖w′
+‖ ≤ e2m− λmint′′

2 ‖x − y‖.
By (16.17), 2m− λmint′′

2 ≤−λmint′′
4 . Thus, ‖w+‖ ≤ (1/100)‖y− x‖. Therefore, by (16.8), we

have

d
(
w̄0, ker p∩UC(x)

)
>

1
20
‖w0‖.

Since the action of the cocycle on ker p is trivial (and we have shown that in our situation
the component in ker p dominates throughout the process), this implies

d
(
w̄′′

0, ker p∩UC

(
x′′
))
>

1
20
‖w′′

0‖ ≥
1

40
‖y′′ − x′′‖.

This, together with the assumption that (16.27) does not hold, implies (16.14). �

Proof of Theorem 1.4. — It was already proved in Theorem 2.1 that ν is SL(2,R)-
invariant. Now suppose ν is not affine. We can apply Lemma 16.3, and then iter-
ate Proposition 16.4 with δ′ → 0 and fixed ε and δ. Taking a limit along a subse-
quence we get points (b∞, x∞, s∞) ∈ K0 and (b∞, y∞, s∞) ∈ K0 such that ‖x∞ − y∞‖ ≈ ε,
y∞ ∈ W+(b∞, x∞) and y∞ ∈ (U⊥)+(b∞, x∞). This contradicts Lemma 16.1 since K0 ⊂� .
Hence ν is affine. �
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Appendix A: Forni’s results on the SL(2,R) action

In this appendix, we summarize the results we use from the fundamental work of Forni
[Fo]. The recent preprint [FoMZ] contains an excellent presentation of these ideas and
also some additional results which we will use as well.

A.1 The Hodge norm and the geodesic flow

Let Mg denote the moduli space of genus g curves. Fix a point S in H(α); then S is a
pair (M,ω) where M ∈Mg and ω is a holomorphic 1-form on M. Let ‖ · ‖H,t denote the
Hodge norm (see e.g. [ABEM]) at the surface Mt = π(gtS). Here π :H(α)→Mg is the
natural map taking (M,ω) to M. We recall that the Hodge norm is a norm on H1(M,R).

The following fundamental result is due to Forni [Fo, §2]:

Theorem A.1. — For any λ ∈ H1(M,R) and any t ≥ 0,

‖λ‖H,t ≤ et‖λ‖H,0.

If in addition λ is orthogonal to ω, and for some compact subset K of Mg , the geodesic segment [S, gtS]
spends at least half the time in π−1(K), then we have

‖λ‖H,t ≤ e(1−α)t‖λ‖H,0,

where α > 0 depends only on K.

The Hodge norm on relative cohomology. — Let � denote the set of zeroes of ω. Let
p : H1(M,�,R)→ H1(M,R) denote the natural map. We define a norm ‖ · ‖′ on the
relative cohomology group H1(M,�,R) as follows:

(A.1) ‖λ‖′ = ‖p(λ)‖H +
∑

(z,w)∈�×�

∣∣∣∣
∫
γz,w

(λ− h)

∣∣∣∣,
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where ‖ · ‖H denotes the Hodge norm on H1(M,R), h is the harmonic representative
of the cohomology class p(λ) and γz,w is any path connecting the zeroes z and w. Since
p(λ) and h represent the same class in H1(M,R), Equation (A.1) does not depend on the
choice of γz,w.

Let ‖·‖′t denote the norm (A.1) on the surface Mt . Then, up to a fixed multiplicative
constant, the analogue of Theorem A.1 holds, for ‖ · ‖′t , as long as S ≡ (M,ω) and gtS
belong to a fixed compact set. This assertion is essentially Lemma 4.4 from [AthF]. For a
self-contained proof in this notation see [EMR, §8].

The Avila-Gouëzel-Yoccoz (AGY) norm. — The Hodge norm on relative cohomology
behaves badly in the thin part of Teichmüller space. Therefore, we will use instead the
Avila-Gouëzel-Yoccoz norm ‖ · ‖Y defined in [AGY], some properties of which were
further developed in [AG]. The norms ‖ · ‖Y and ‖ · ‖′ are equivalent on compact subsets
of the strata H1(α), and therefore the decay estimates on ‖·‖′ in the style of Theorem A.1
also apply to the Avila-Gouëzel-Yoccoz norm. Furthermore, we have the following:

Theorem A.2. — Suppose S = (M,ω) ∈H(α). Let ‖ · ‖t denote the Avila-Gouëzel-Yoccoz

(AGY) norm on the surface gtS. Then,

(a) For all λ ∈ H1(M,�,R) and all t > 0,

‖λ‖t ≤ et‖λ‖0.

(b) Suppose for some compact subset K of Mg , the geodesic segment [S, gtS] spends at least

half the time in π−1(K). Suppose λ ∈ H1(M,�,R) with p(λ) orthogonal to ω. Then

we have

‖λ‖t ≤ Ce(1−α)t‖λ‖0,

where α > 0 depends only on K.

A.2 The Kontsevich-Zorich cocycle

We recall that X0 denotes a finite cover of a stratum which is a manifold (see Section 3).
In the sequel, a subbundle L of the Hodge bundle is called isometric if the action of the
Kontsevich-Zorich cocycle restricted to L is by isometries in the Hodge metric. We say
that a subbundle is isotropic if the symplectic form vanishes identically on the sections,
and symplectic if the symplectic form is non-degenerate on the sections. A subbundle is
irreducible if it cannot be decomposed as a direct sum, and strongly irreducible if it cannot be
decomposed as a direct sum on any (measurable) finite cover of X0.

Theorem A.3. — Let ν be a P-invariant measure on X0, and suppose L is a P-invariant

ν-measurable subbundle of the Hodge bundle. Let λ1, . . . , λn be the Lyapunov exponents of the restriction
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of the Kontsevich-Zorich cocycle to L. Then,

n∑
i=1

λi ≥ 0.

Proof. — Let the symplectic complement L† of L be defined by

(A.2) L†(x)= {v : v ∧ u = 0 for all u ∈ L(x)
}
.

Then, L† is a P-invariant subbundle, and we have the short exact sequence

0 → L∩ L† → L → L/
(
L∩ L†

)→ 0.

The bundle L/(L∩ L†) admits an invariant non-degenerate symplectic form, and there-
fore, the sum of the Lyapunov exponents on L/(L ∩ L†) is ≥ 0. Therefore, it is enough
to show that the sum of the Lyapunov exponents on the isotropic subspace L ∩ L† is 0.
Thus, without loss of generality, we may assume that L is isotropic.

Let {c1, . . . , cn} be a Hodge-orthonormal basis for the bundle L at the point
S = (M,ω), where M is a Riemann surface and ω is a holomorphic 1-form on M. For
g ∈ SL(2,R), let VS(g) denote the Hodge norm of the polyvector c1 ∧ · · · ∧ cn at the
point gS, where the vectors ci are transported following a path from the identity to g

using the Gauss-Manin connection. (The result does not depend on the path since the
Gauss-Manin connection is flat, and X0 has no orbifold points). Since VS(kg)= VS(g) for
k ∈ SO(2), we can think of VS as a function on the upper half plane H. From the defini-
tion of VS and the multiplicative ergodic theorem, we see that for ν-almost all S ∈ X0,

(A.3) lim
t→∞

log VS(gt)

t
=

n∑
i=1

λi,

where the λi are as in the statement of Theorem A.3.
Let �hyp denote the hyperbolic Laplacian operator (along the Teichmüller disk).

By [FoMZ, Lemma 2.8] (see also [Fo, Lemma 5.2 and Lemma 5.2′]) there exists a non-
negative function � : X0 →R such that for all S ∈ X0 and all g ∈ SL(2,R),

(�hyp log VS)(g)=�(gS).

We now claim that the Kontsevich-Forni type formula

(A.4)
n∑

i=1

λi =
∫

X0

�(S)dν(S)

holds, which clearly implies the theorem. The formula (A.4) is proved in [FoMZ] (and
for the case of the entire stratum in [Fo]) under the assumption that the measure ν
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is invariant under SL(2,R). However, in the proofs, only averages over “large cir-
cles” in H = SO(2)\SL(2,R) are used. Below we show that a slightly modified ver-
sion of the proof works under the a-priori weaker assumption that ν is invariant under
P = AN ⊂ SL(2,R). This is not at all surprising, since large circles in H are approxi-
mately horocircles (i.e. orbits of N).

We now begin the proof of (A.4), following the proof of [FoMZ, Theorem 1].
Since (A.3) holds for ν-almost all S and ν is N-invariant, (A.3) also holds for almost

all S0 ∈ X0 and almost all S ∈�NS0, where

�N =
{(

1 s

0 1

)
: |s| ≤ 1

}
⊂ N.

We identify SO(2)\SL(2,R)S0 with H so that SO(2)gS0 corresponds to g−1 · i. Then
�NS0 corresponds to the horizontal line segment connecting −1+ i to 1+ i. Let ε = e−4t .
Then, gt�NS0 corresponds to the line segment connecting −1+ iε to 1+ iε.

Let f (z)= log VS0(SO(2)z). Note that ∇hypf is bounded (where ∇hyp is the gradient
with respect to the hyperbolic metric on H). Then, (A.3) implies that for almost all x ∈
[−1,1],

n∑
i=1

λi = lim
T→∞

f (x + ie−2T)− f (x + i)

T
= lim

T→∞
1
T

∫ T

0

∂

∂ t

[
f
(
x + ie−2t

)]
dt

Integrating the above formula from x =−1 to x = 1, we get (using the bounded conver-
gence theorem),

n∑
i=1

λi = lim
T→∞

1
T

∫ T

0

(∫ 1

−1

∂

∂ t

[
f
(
x + ie−2t

)]
dx

)
dt

Let Rt denote the rectangle with corners at −1 + ie−2t , 1 + ie−2t , 1 + i and −1 + i, see
Figure 8. We now claim that

(A.5)
∫ 1

−1

∂

∂ t

[
f
(
x + ie−2t

)]
dx = e−4t

∫
∂Rt

∂ f

∂n
+O

(
te−4t

)
,

where ∂ f

∂n
denotes the (outgoing) normal derivative of f with respect to the hyperbolic

metric. Indeed, the integral over the bottom edge of the rectangle Rt on the left hand
side of (A.5) coincides with the right hand side of (A.5) (the factor of e−4t appears because
the hyperbolic length element is dx/y2 = e−4tdx.) The partial derivative ∂ f

∂n
is uniformly

bounded, and the hyperbolic lengths of the other three sides of ∂Rt are O(t). Therefore
(A.5) follows.

Now, by Green’s formula (in the hyperbolic metric),∫
∂Rt

∂ f

∂n
=
∫

Rt

�hypf =
∫

Rt

�.
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FIG. 8. — Proof of Theorem A.3

We get, for almost all S0,

n∑
i=1

λi = lim
T→∞

1
T

∫ T

0

(
e−4t

∫
Rt

�

)
dt ≥ 0.

This completes the proof of the Theorem. It is also easy to conclude (by integrating
over S0) that (A.4) holds. �

Theorem A.4. — Let ν be an ergodic SL(2,R)-invariant measure, and suppose L is an

SL(2,R)-invariant ν-measurable subbundle of the Hodge bundle. Suppose all the Lyapunov exponents

of the restriction of the Kontsevich-Zorich cocycle to L vanish. Then, the action of the Kontsevich-Zorich

cocycle on L is isometric with respect to the Hodge inner product, and the orthogonal complement L⊥ of L
with respect to the Hodge inner product is also an SL(2,R)-invariant subbundle.

Proof. — The first assertion is the content of [FoMZ, Theorem 3]. The second
assertion then follows from [FoMZ, Lemma 4.3]. �

Theorem A.5. — Let ν be an ergodic SL(2,R)-invariant measure, and suppose L is an

SL(2,R)-invariant ν-measurable subbundle of the Hodge bundle. Suppose L is isotropic. Then all the

Lyapunov exponents of the restriction of the Kontsevich-Zorich cocycle to L vanish (and thus Theorem A.4

applies to L).

Proof. — For a point x ∈ X0 and an isotropic k-dimensional subspace Ik , let �k(x, Ik)

be as in [FoMZ, (2.46)] (or [Fo, Lemma 5.2’]). We have from [FoMZ, Lemma 2.8] that

�k(x, Ik)≤�j(x, Ij) if i < j and Ik ⊂ Ij.

Let λ1 ≥ · · · ≥ λn be the Lyapunov exponents of the restriction of the Kontsevich-Zorich
cocycle to L. Let V≤j(x) denote the direct sum of all the Lyapunov subspaces correspond-
ing to exponents λi ≥ λj . By definition, Vn(x)= L(x). Suppose j = n or λj �= λj+1. Then,
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by [FoMZ, Corollary 3.1] the following formula holds:

λ1 + · · · + λj =
∫

X0

�j

(
x,V≤j(x)

)
dν(x)

(This formula is proved in [Fo] for the case where ν is Lebesgue measure and L is the
entire Hodge bundle.)

We will first show that all the λj have the same sign. Suppose not, then we must
have λn < 0 but not all λj < 0. Let k be maximal such that λk �= λn. Then

λ1 + · · · + λk =
∫

X0

�k

(
x,Vk(x)

)
dν(x)

and

λ1 + · · · + λn =
∫

X0

�n

(
x,L(x)

)
dν(x)

But �k(x,Vk(x))≤�n(x,L(x)) since Vk(x)⊂ L(x). Thus,

(A.6) λk+1 + · · · + λn ≥ 0.

But by the choice of k, all the terms in (A.6) are equal to each other. This implies that
λn ≥ 0, contradicting our assumption that λn < 0. Thus all the λj , 1 ≤ j ≤ n have the same
sign. Since ν is assumed to be SL(2,R)-invariant, and any diagonalizable g ∈ SL(2,R)
is conjugate to its inverse, we see that e.g. the λj cannot all be positive. Hence, all the
Lyapunov exponents λj are 0. �

Algebraic hulls. — The algebraic hull of a cocycle is defined in [Zi2]. We quickly
recap the definition: Let G be a group acting on a space X, preserving an ergodic mea-
sure ν. Suppose H is an R-algebraic group, and let A : G × X → H be a measurable
cocycle. We say that the R-algebraic subgroup H′ of H is the algebraic hull of A if H′

is the smallest R-algebraic subgroup of H such that there exists a ν-measurable map
C : X → H such that

C(gx)−1A(g, x)C(x) ∈ H′ for almost all g ∈ G and ν-almost all x ∈ X.

It is shown in [Zi2] (see also [MZ, Theorem 3.8]) that the algebraic hull exists and is
unique up to conjugation.

Theorem A.6. — Let ν be an ergodic SL(2,R)-invariant measure. Then,

(a) The ν-algebraic hull H′ of the Kontsevich-Zorich cocycle is semisimple.

(b) Every ν-measurable SL(2,R)-invariant irreducible subbundle of the Hodge bundle is either

symplectic or isotropic.
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Remark. — The fact that the algebraic hull is semisimple for SL(2,R)-invariant
measures is key to our approach.

Proof. — Suppose L is an invariant subbundle. It is enough to show that there exists
an invariant complement to L. Let the symplectic complement L† of L be defined as in
(A.2). Then, L† is also an SL(2,R)-invariant subbundle, and K = L ∩ L† is isotropic. By
Theorem A.5, K is isometric, and K⊥ is also SL(2,R)-invariant. Then,

L = K⊕ (L∩K⊥), L† = K⊕ (L† ∩K⊥),
and

H1(M,R)= K⊕ (L∩K⊥)⊕ (L† ∩K⊥)

Thus, L† ∩ K⊥ is an SL(2,R)-invariant complement to L. This proves (a). To prove (b),
let L be any irreducible SL(2,R)-invariant ν-measurable irreducible subbundle of the
Hodge bundle, and let K = L ∩ L†. Since K ⊂ L and L is irreducible, we have either
K = 0 (so L is symplectic), or K = L and so L is isotropic. The same could be done on
any finite cover. �

The Forni subspace.

Definition A.7 (Forni subspace). — Let

(A.7) F(x)=
⋂

g∈SL(2,R)

g−1
(
Ann BR

gx

)
,

where for ω ∈ X0 the quadratic form BR

ω(·, ·) is as defined in [FoMZ, (2.33)].

Remark. — It is clear from the definition, that as long as its dimension remains
constant, F(x) varies real-analytically with x.

Theorem A.8. — Suppose ν is an ergodic SL(2,R)-invariant measure. Then the subspaces

F(x) where x varies over the support of ν form the maximal ν-measurable SL(2,R)-invariant isometric

subbundle of the Hodge bundle.

Proof. — Let F(x) be as defined in (A.7). Then, F is an SL(2,R)-invariant sub-
bundle of the Hodge bundle, and the restriction of BR

x to F(x) is identically 0. Then, by
[FoMZ, Lemma 1.9], F is isometric.

Now suppose M is any other ν-measurable isometric SL(2,R)-invariant subbun-
dle of the Hodge bundle. Then by [FoMZ, Theorem 2], M(x) ⊂ Ann BR

x . Since M is
SL(2,R)-invariant, we have M ⊂ F. Thus F is maximal. �
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Theorem A.9. — Let ν be an ergodic SL(2,R)-invariant measure on any finite cover of X0.

(a) For ν-almost all x ∈ X0, the Forni subspace F(x) is symplectic, and its symplectic comple-

ment F†(x) coincides with its Hodge complement F⊥(x).
(b) Any ν-measurable SL(2,R)-invariant subbundle of F⊥ is symplectic, and the restriction

of the Kontsevich-Zorich cocycle to any invariant subbundle of F⊥ has at least one non-zero

Lyapunov exponent.

Proof. — Suppose the subspace F⊥ is not symplectic. Let L = F⊥ ∩ (F⊥)†. Then L is
isotropic, and therefore by Theorems A.5 and A.4, L is an SL(2,R)-invariant isometric
subspace. Hence L ⊂ F by Theorem A.8. As L ⊂ F⊥ we get L = 0. Therefore F⊥ is
symplectic.

Let M be an irreducible subbundle of F⊥. Then, in view of Theorem A.4 and the
maximality of F, M must have at least one non-zero Lyapunov exponent. In particular,
in view of Theorem A.5, M cannot be isotropic, so it must be symplectic in view of
Theorem A.6(b). This proves the statement (b).

Since F⊥ is symplectic, (F⊥)† is SL(2,R)-invariant and complementary to F⊥.
Note that F is also SL(2,R)-invariant and complementary to F⊥. In order to conclude
that (F⊥)† = F, it is enough to show that there is a unique SL(2,R)-invariant complement
to F⊥.

Note that another complement to F⊥ would be the graph of an equivariant linear
map A : F → F⊥. If A is nonzero, then an invariant complement of its kernel in F exists
by Theorem A.6, and it even contains an irreducible subbundle M2. Then A induces an
equivariant isomorphism between M2 and its image, an irreducible subbundle M1 of F⊥.
Now, to get a contradiction, it is enough to show that for any irreducible subbundles
M1 ⊂ F⊥ and M2 ⊂ F, the algebraic hulls H′(Mi) of the restriction of the Kontsevich-
Zorich cocycle to Mi are not isomorphic to each other. But the later statement is clear,
since H′(M2) is compact and H′(M1) is not (since it has at least one non-zero Lyapunov
exponent by (b)). Thus, (F⊥)† = F. Since we already showed that F⊥ is symplectic, this
implies that so is F, which completes the proof of (a). �

Appendix B: Entropy and the Teichmüller geodesic flow

The contents of this section are well-known, see e.g. [LY], [MaT] and also [BG]. How-
ever, for technical reasons, the statements we need do not formally follow from the results
of any of the above papers. Our setting is intermediate between the homogeneous dy-
namics setting of [MaT] and the general C2-diffeomorphism on a compact manifold
setup of [LY], but it is closer to the former than the latter. What follows is a lightly edited
but almost verbatim reproduction of [MaT, §9], adapted to the setting of Teichmüller
space. It is included here primarily for the convenience of the reader. The (minor) dif-
ferences between our presentation and that of [MaT] are related to the lack of uniform
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hyperbolicity outside of compact subsets of the space, and some notational changes due
to the fact that our space is not homogeneous.

Notation. — We recall some notation from Section 2.2. Let X0 denote the finite
cover of H1(α) defined in Section 3 (which has no orbifold points). Let gt denote the
Teichmüller geodesic flow. In this section, ν is an ergodic gt-invariant probability measure
on X0. Let V(x) denote a subset of H1(M,�,R2). Then we denote

V[x] = { y ∈ X0 : y− x ∈ V(x)
}
.

This makes sense in a neighborhood of x.
Let dX0(·, ·) denote the AGY distance on X0, defined in Section 3. Fix a point

p ∈ X0 (so p is not an orbifold point), and such that every neighborhood of p in X0 has
positive ν-measure. Fix relatively compact neighborhoods C′(p) and Q(p) of 0 in W+(p)
and R respectively. Let

C =
⋃

t∈Q(p)

gtC′[p].

For each c ∈ C choose a relatively compact neighborhood B′(c) of 0 in W−(c) with diam-
eter in the AGY distance at most 1/200 so that the B′(c) vary continuously with c. For
c ∈ C, let

B′[c] = {c + v : v ∈ B′(c)
}
, D =

⊔
c∈C

B′[c].

We assume that C′(p), Q(p) and the B′(c) are sufficiently small so that D is open and
contractible.

Lemma B.1 (Cf. [MaT, Lemma 9.1]). — There exists s > 0, C1 ⊂ C and for each c ∈ C1

there exists a subset E[c] ⊂ W−[c] such that

(1) E[c] ⊂ B′[c].
(2) E[c] is open in W−[c], and the subset E ≡⋃c∈C1

E[c] satisfies ν(E) > 0.

(3) Let T = gs denote the time s map of the geodesic flow. Then whenever

TnE[c] ∩ E �= 0, c ∈ C1, n > 0,

we have TnE[c] ⊂ E.

Proof. — Fix a compact subset K1 ⊂ X0, with ν(Kc
1) < 0.01. Then by the Birkhoff

ergodic theorem, for every δ > 0 there exists R > 0 and a subset E1 with ν(E1) > 1 − δ

such that for all x ∈ E1 and all N > R,∣∣{n ∈ [1,N] : gnx ∈ K1

}∣∣≥ (1/2)N.
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By choosing δ > 0 small enough, we may assume that ν(D∩ E1) > 0. Let

C1 =
{
c ∈ C : c + v ∈ D∩ E1 for some v ∈ B′(c)

}
.

Then there exists a compact K ⊃ K1 such that for all c ∈ C1 and all x ∈ B′[c],
∣∣{n ∈ [1,N] : gnx ∈ K

}∣∣≥ (1/2)N.

By Lemma 3.5 there exists α > 0 such that for all c ∈ C1 and all x ∈ B′[c],

dX0(gnx, gnc)≤
{

dX0(x, c) if n ≤ R
dX0(x, c)e−α(n−R) if n > R

Therefore we may choose s > 0 such that if we let T = gs denote the time s map of the
geodesic flow, then for all c ∈ C1 and all x ∈ B′[c],

dX0(Tx,Tc)≤ 1
10

dX0(x, c).

There exists a > 0 so that for all c ∈ C1, B′[c] contains the intersection with W−[c] of a
ball in the AGY metric of radius a and centered at c. Let

a0 = a

10

Let B′
0[c] ⊂ W−[c] denote the ball in the AGY metric of radius a0 and centered at c. Let

E(0)[c] = B′
0[c], and for j > 0 let

E(j)[c] = E(j−1)[c]
∪ {TnB′

0

[
c′
] : c′ ∈ C1, n > 0 and TnB′

0

[
c′
]∩ E(j−1)[c] �= 0

}
.

Let

E[c] =
⋃
j≥0

E(j)[c], and E =
⋃
c∈C1

E[c].

It easily follows from the above definition that E[c] has the properties (2) and (3). To show
(1), it is enough to show that for each j,

(B.1) dX0(x, c) < a/2, for all x ∈ E(j)[c].
This is done by induction on j. The case j = 0 holds since a0 = a/10 < a/2. Suppose (B.1)
holds for j − 1, and suppose x ∈ E(j)[c] \E(j−1)[c]. Then there exist c0 = c, c1, . . . , cj = x in
C1 and non-negative integers n0 = 0, . . . , nj such that for all 1 ≤ k ≤ j,

(B.2) Tnk
(
B′

0[ck]
)∩Tnk−1

(
B′

0[ck−1]
) �= ∅.
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Let 1 ≤ k ≤ j be such that nk is minimal. Recall that B′[ y] ∩ B′[z] = ∅ if y �= z, y ∈ C1,
z ∈ C1. Therefore, in view of the inductive assumption, nk ≥ 1. Applying T−nk to (B.2) we
get

(k−1⋃
i=1

Tni−nk B′
0[ci]
)
∩ B′

0[ck] �= ∅, and
( j⋃

i=k+1

Tni−nk B′
0[ci]
)
∩ B′

0[ck] �= ∅.

Therefore, in view of (B.2), and the definition of the sets E(j)[c],
( k⋃

i=1

Tni−nk B′
0[ci]
)
⊂ E(k−1)[ck], and

( j⋃
i=k

Tni−nk B′
0[ci]
)
⊂ E(j−k)[ck]

By the induction hypothesis, diam(E(k−1)[ck]) < a/2, and diam(E(j−k)[ck]) < a/2. There-
fore,

diam
( j⋃

i=1

Tni−nk B′
0[ci]
)
≤ a.

Then, applying Tnk we get,

diam
( j⋃

i=1

Tni B′
0[ci]
)
≤ a

10

Since diam(B′
0[c])≤ a/10, we get

diam
( j⋃

i=0

Tni B′
0[ci]
)
≤ diam

(
B′

0[c0]
)+ diam

( j⋃
i=1

Tni B′
0[ci]
)

≤ a

10
+ a

10
<

a

2
.

But the set on the left-hand-side of the above equation contains both c = c0 and x = cj .
Therefore dX0(c, x) < a/2, proving (B.1). Thus (1) holds. �

Lemma B.2 (Mañé). — Let E be a measurable subset of X0, with ν(E) > 0. If ν is a

compactly supported measure on E and q : E → (0,1) is such that log q is ν-integrable, then there

exists a countable partition P of E with entropy H(P) <∞ such that, if P(x) denotes the atom of P
containing x, then diamP(x) < q(x).

Proof. — See [M1] or [M2, Lemma 13.3]. �

Let V(x) be a system of real-algebraic subsets of W−(x).
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Definition B.3. — The system V(x) is admissible if it is T-equivariant and also for almost all

x ∈ X0, x is a smooth point of V[x].

Definition B.4. — We say that a measurable partition ξ of the measure space (X0, ν) is

subordinate to an admissible system of real-algebraic subsets V(x)⊂ W−(x) if for almost all (with

respect to ν) x ∈ X0, we have

(a) ξ [x] ⊂ V[x] where ξ [x] denotes, as usual, the element of ξ containing x.

(b) ξ [x] is relatively compact in V[x].
(c) ξ [x] contains a neighborhood of x in V[x].

Let η and η′ be measurable partitions of (X0, ν). We write η ≤ η′ if η[x] ⊃ η′[x] for
almost all (with respect to ν) x ∈ X0. We define a partition Tη by (Tη)[x] = T(η[T−1(x)]).

Proposition B.5. — Assume that ν is T-ergodic (where T is as in Lemma B.1(3)). Then there

exists a measurable partition η of the measure space (X0, ν) with the following properties:

(i) η is subordinate to W−.

(ii) η is T-invariant, i.e. η ≤ Tη.

(iii) The mean conditional entropy H(Tη | η) is equal to the entropy h(T, ν) of the automor-

phism x → Tx of the measure space (X0, ν).

Proof. — Let E[c] and E be as in Lemma B.1. Denote by π : E → C1 the natural
projection (π(x)= c if x ∈ E[c]). We set η[x] = E(π(x)) for every x ∈ E.

We claim that it is enough to find a countable measurable partition ξ of (X0, ν)

such that H(ξ) <∞ and η[x] = ξ−[x] for almost all x ∈ E where ξ− =∨∞
n=0 T−nξ is the

product of the partitions T−nξ , 0 ≤ n <∞.
Indeed, suppose the claim holds. Then it is clear that η is T-invariant. The set of

x ∈ X0 for which properties (a) and (b) (resp. (c)) in the definition of a subordinate partition
are satisfied is T−1-invariant (resp. T-invariant) and contains E. But ν(E) > 0 and ν is
T-ergodic. Therefore, η is subordinate to W−. To check the property (iii) it is enough to
show that the partition ξs =∨∞

k=−∞ Tkξ is the partition into points, see [R, §9], or [KH,
§4.3]. By [Fo] or [ABEM, Theorem 8.12] ξs(x) = {x} if T−nx ∈ E for infinitely many n.
(Recall that by the construction of E, any such geodesic will spend at least half the time
in the compact set K.) But ν(E) > 0 and ν is T-ergodic. Hence ξs[x] = {x} for almost all
x, which completes the proof of the claim.

Let us construct the desired partition ξ . For x ∈ E, let n(x) be the smallest positive
integer n such that Tnx ∈ E. We have the classical Kac formula [Ka]

(B.3)
∫

E
n(x)dν(x)= 1.
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Define a probability measure ν ′ on C1 by

(B.4) ν ′(F)= ν(π−1(F))
ν(E)

, F ⊂ C1.

Property (3) of the family {E[c] : c ∈ C1} implies that n(x) is constant on every E[c],
c ∈ C1. Therefore, in view of (B.3) and (B.4),∫

C1

n(c)dν ′(c) <∞.

By Lemma 3.6, there exists κ > 1 such that for all x, y ∈ X0,

dX0(Tx,Ty)≤ κdX0(x, y).

Since the function n(c) is ν ′-integrable, one can find a positive function q(c) < κ−2n(c),
c ∈ C1 such that log q is ν ′-integrable, and the ν ′-essential infimum ess infc∈C1 q(c) is 0.

After replacing, if necessary, C′(p), Q(p) and the B′(c) for c ∈ C by smaller subsets
we can find ε > 0 such that the minimum distance between lifts of E is at most ε/10 and
also

(a) dX0(x, y) < 2d(π(x),π(y)) whenever x, y ∈ E and dX0(x, y) < ε, and
(b) if x, y ∈ C1 then dX0(x, y) < ε.

Since the function log q(c) is ν ′-integrable, there exists a countable measurable parti-
tion P of C1 such that H(P) <∞ and diamP(x) < ε

2q(x) for almost all x ∈ C1 (see
Lemma B.2). After possibly replacing P by a countable refinement, we may assume that
the function x → n(x) is constant on the atoms of P . Now we define a countable measur-
able partition ξ of X0 by

ξ(x)=
{
π−1(P(π(x))) if x ∈ E
X0 \ E if x /∈ E.

Since H(P) <∞ we get using (B.4) that H(ξ) <∞. It remains to show that ξ−[x] = η[x]
for almost all x ∈ E. It follows from the property (3) of the family {E[c]} that η[z] ⊂ ξ−[z].
Let x and y be elements in E with ξ−[x] = ξ−[ y]. Since η[z] ⊂ ξ [z], we can assume that
x, y ∈ C1. Then dX0(x, y) < ε. Set x1 = x, y1 = y and define by induction

xk+1 = Tn(xk)xk, yk+1 = Tn(yk)yk.

Then, the sequence {xk}k∈N (resp. { yk}k∈N) is the part of the T-orbit of x (resp. T-orbit of y)
which lies in E.

Let x̃1, ỹ1 be the lifts of x1 = x and y1 = y to Teichmüller space, and let x̃k , ỹk be
defined inductively by

x̃k+1 = Tn(xk)x̃k, ỹk+1 = Tn(yk)ỹk.
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Then x̃k and ỹk are lifts of xk and yk respectively. We now claim that for all k ≥ 0,

(B.5) dX0(x̃k, ỹk) < εq
(
π(xk)

)
.

If k = 1, the inequality (B.5) is true because diamP(x) < ε

2q(π(x)) and P(x) = P(y).
Assume that (B.5) is proved for k. Then

dX0(x̃k+1, ỹk+1)= dX0
(
Tn(xk)x̃k,Tn(xk)ỹk

)≤ κn(xk)dX0(x̃k, ỹk)

≤ κn(xk)εq
(
π(xk)

)≤ ε.

Then since xk+1 and yk+1 belong to the same element of the partition ξ (because ξ−[x] =
ξ−[ y]) and diam(P(xk+1)) ≤ ε

2qπ(xk+1), we get from condition (b) in the definition of
ε > 0 that (B.5) is true for k + 1.

Since the measure ν is T-ergodic and ess inf q(c) = 0 we may assume that
lim infk→∞ q(π(xk))= 0 (since this holds for almost all x ∈ E). Then (B.5) implies that

lim inf
k→∞

dX0(x̃k, ỹk)= 0.

By the definition of x̃k , ỹk , there exists a sequence mk →+∞ such that x̃k = Tmk x̃, ỹk =
Tmk ỹ. Thus,

dX0
(
Tmk x̃,Tmk ỹ

)= 0.

But, by construction x̃ and ỹ are on the same leaf of W0+. This contradicts the non-
contraction property of the Hodge distance [ABEM, Theorem 8.2], unless x̃ = ỹ. Thus
we must have x = y. �

Lemma B.6 (See [LS, Proposition 2.2]). — Let T be an automorphism of a measure space

(X0, ν), ν(X0) <∞, and let f be a positive finite measurable function defined on X0 such that

log−
f ◦T

f
∈ L1(X, ν), where log−(a)= min(log a,0).

Then ∫
X0

log
f ◦T

f
dν = 0.

Suppose V−(x) ⊂ W−(x) is an admissible T-equivariant family of real-algebraic
subsets. Let (TRV−)(x) ⊂ W−(x) denote the tangent space to smooth manifold V−[x]
at x. (Recall that since V− is admissible, for almost every x, V−[x] is smooth at x.)

Definition B.7 (Margulis property). — Suppose V−(x) ⊂ W−(x) is an admissible T-equi-

variant family of real-algebraic subsets. Let τ = τ(x) be a measure on each V−[x]. We say that τ has

the Margulis Property if for almost all x, τ(x) is in the Lebesgue measure class on V−[x], and also

T∗τ(x) agrees with τ(Tx) up to normalization. (In other words the Radon-Nykodym derivative dT∗τ(x)
dτ(Tx)

is locally constant along V−[x].)



294 ALEX ESKIN, MARYAM MIRZAKHANI

Proposition B.8. — Let T = gs as in Lemma B.1(iii). Let V−(x) ⊂ W−(x) be a

T-equivariant family of real-algebraic subsets. Suppose there exists a T-invariant measurable partition η

of (X0, ν) subordinate to V−. Then the following hold:

(a) We have

H(Tη | η)≤ s�
(
V−),

where H(Tη | η) is the mean conditional entropy, and

�
(
V−)= ∑

i∈I(V)

(1− λi),

where I(V) are the Lyapunov subspaces in TRV (counted with multiplicity), and λi are the

corresponding Lyapunov exponents of the Kontsevich-Zorich cocycle.

(b) Suppose that for almost all x there exists a measure τ = τ(x) on each V−[x] with the

Margulis property. Then

(b1) If the conditional measures of ν along V−[x] agree with τ(x) (up to normalization),

then

H(Tη | η)= s�
(
V−)

(b2) If H(Tη | η)= s�(V−) then the conditional measures of ν along V−[x] agree with

τ(x) (up to normalization).

Proof. — Since η ≤ Tη for almost all x ∈ X0 we have a partition ηx of η[x] such
that ηx[ y] = (Tη)[ y] for almost all y ∈ η[x]. Let τ(x) be a measure on V−(x) in the
Lebesgue measure class. (To simplify notation, we will sometimes denote τ(x) simply
by τ .) (Here we pick some normalization of the Lebesgue measure on the connected
components of the intersections of the leaves of V− with a fixed fundamental domain.)
Since η[x] ⊂ V−[x], τ induces a measure on η[x] which we will denote also by τ . Let
J(x) denote the Jacobian of the restriction of the map T to V−[x] at x (with respect to
the Lebesgue measure class measures τ on V−[x] and V−[Tx]). Then, by the Osceledets
multiplicative ergodic theorem, for almost all x ∈ X0,

−s�
(
V−)= lim

N→∞
1
N

log
d(T−Nτ)(x)

dτ(x)
=− lim

N→∞
1
N

N−1∑
n=0

log J
(
T−nx

)
.

Integrating both sides over X0, we get

(B.6) −
∫

X0

log J(x)dν(x)= s�
(
V−).

Put L(x) = τ(η[x]) and τx = τ/L(x), x ∈ X0. Note that on η[x] we have a conditional
probability measure νx induced by ν. Put p(x)= τx(ηx[x]) and r(x)= νx(ηx[x]).
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Let

(B.7) η′ = η ∨Tη ∨ · · · ∨Tkη.

Then, η′ is also T-invariant, and H(Tη′ | η′)= H(Tη | η). Thus, we can replace η by η′.
Suppose ε > 0 is given. Then, we can choose k large enough in (B.7) so that (after

replacing η by η′), on a set of measure at least (1− ε), we have

(B.8) (1− ε)≤ p(x)L(x)
J(T−1x)L(T−1x)

≤ (1+ ε)

From its definition, p(x)≤ 1. Also

(B.9) −
∫

X0

log r(x)dν(x)= H(Tη | η).

Let Yi(x), 1 ≤ i <∞ denote the elements of the countable partition ηx of η[x].
Then we have

(B.10)
∫
η(x)

log p(y)dνx(y)−
∫
η(x)

log r(y)dνx(y)=
∞∑

i=1

log
τx(Yi(x))

νx(Yi(x))
νx

(
Yi(x)

)
.

We have that

(B.11)
∞∑

i=1

τx

(
Yi(x)

)≤ 1,

and

(B.12)
∞∑

i=1

νx

(
Yi(x)

)= 1.

(In (B.11), we can have strict inequality because apriori it is possible that the measure τx

of η[x] \⋃∞
i=1 Yi(x) is positive.) From (B.10), (B.11) and (B.12), using the convexity of log

we get that ∫
η(x)

log p(y)dνx(y)≤
∫
η(x)

log r(y)dνx(y),

and the equality holds if and only if p(y)= r(y) i.e. τx(ηx[ y])= νx(ηx[ y]) for all y ∈ η[x].
Now using integration over the quotient space (X0, ν)/η of the measure space (X0, ν)

by η, we get from (B.9) that

(B.13) H(Tη | η)≤−
∫

X0

log p(x)dν(x),

and the equality holds if and only if τx((Tη)[x])= νx((Tη)[x]) for almost all x ∈ X0.
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In view of (B.8) and the fact that p(x)≤ 1,

−
∫

X0

log p(x)dν(x)≤ 2ε −
∫

X0

log J(x)dv(x)

+
∫

X0

log−
(
L
(
T−1x

)
/L(x)

)
dν(x).

The last term vanishes by Lemma B.6. Since ε > 0 is arbitrary, we have, by (B.13) and
(B.6) that (a) holds.

Now suppose that τ is as in (b). Then since ηx[x] = T(η[T−1x]) one easily sees that
p(x)= J(T−1x)L(T−1x)/L(x). Therefore, by (B.6) and Lemma B.6,

−
∫

X0

log p(x)dν(x)= s�
(
V−).

If the conditional measures of ν along V− coincide with τ , then p(x)= r(x) and therefore
equality in (B.13) holds. This proves (b1). Conversely, assume that H(Tη | η)= s�(V−).
Then H(Tkη | η) = ks�(V−) for every k > 0. Using the same argument as above and
replacing T by Tk , we get that τx((Tkη)[x])= νx((Tkη)[x]) for any k > 0 and almost all
x ∈ X0. On the other hand since η is subordinate to V− and T is contracting on V−,
we have that

∨∞
k=1 Tkη is the partition into points. Hence the conditional measures of ν

along V agree with τ . This proves (b2). �

Theorem B.9. — Let T = gs denote the time s map of the geodesic flow. Assume that T acts

ergodically on (X0, ν). Let V−(x) be an admissible T-equivariant system of real-algebraic subsets of

W−(x), and let �(V−) be as in Proposition B.8.

(i) Suppose V− has a system of measures τ with the Margulis property, and suppose that for al-

most all x, the conditional measures of ν along V−[x] agree with τ(x) up to normalization.

Then, h(T, ν)≥ s�(V−).
(ii) Assume that there exists a subset � ⊂ X0 with ν-measure 1 such that � ∩ W−[x] ⊂

V−[x] for every x ∈� . Then h(T, ν)≤ s�(V−).
(iii) Assume that there exists a subset � ⊂ X0 with ν-measure 1 such that � ∩ W−[x] ⊂

V−[x] for every x ∈� . Also assume that V− has a system of measures τ with the Margulis

property, and that h(T, ν)= s�(V−). Then, for almost all x, the conditional measures of

ν along V−[x] agree with τ(x) up to normalization.

Proof. — According to Proposition B.5, there exists a measurable T-invariant par-
tition η of (X0, ν), subordinate to W−, such that H(Tη | η) = h(T, ν). By Lemma 3.2,
we may assume that the affine exponential map W−(x)→ W−[x] is one-to-one and onto,
and thus W−[x] has an affine structure. Set η′(x)= V−[x] ∩ η[x].

Suppose the assumptions of (i) hold. Then,

(B.14) h(T, ν)≥ H
(
Tη′ | η′).



INVARIANT AND STATIONARY MEASURES 297

By Proposition B.8(b1), H(Tη′ | η′) = s�(V−). This, together with (B.14) implies the
conclusion of (i).

Now suppose the assumptions of (ii) or (iii) hold. Then η and η′ coincide on � , i.e.
η[x] ∩� = η′[x] ∩� . Hence H(Tη | η)= H(Tη′ | η′). By Proposition B.5(iii), h(T, ν)=
H(Tη | η). Using Proposition B.8(a) we obtain (ii), and using Proposition B.8(b2) we ob-
tain (iii). �

Appendix C: Semisimplicity of the Lyapunov spectrum

In this section we work with a bit more generality than we need. Let X be a space on
which SL(2,R) acts. Let μ be a compactly supported probability measure on SL(2,R)
and let ν be an ergodic μ-stationary probability measure on X. Let L be a finite dimen-
sional real vector space, and suppose A : SL(2,R)× X → SL(L) is a cocycle, such that
for any g ∈ SL(2,R), the map x → log+ ‖A(g, x)‖ is in L1(X, ν). Let H′ be the algebraic
hull of the cocycle A (see Section A.2 for the definition). We may assume that a basis at
every point is chosen so that for all g ∈ SL(2,R) and all x ∈ X, A(g, x) ∈ H′.

Definition C.1. — We say that a measurable map W : X → L is an invariant system of
subspaces for A(·, ·) if for μ-a.e. g ∈ SL(2,R) and ν-a.e. x ∈ X, A(g, x)W(x)= W(gx).

Definition C.2 (Strongly irreducible). — We say that A is strongly irreducible if on any

measurable finite cover of X there is no nontrivial proper invariant system of subspaces for A(·, ·).
Remark. — If a cocycle is strongly irreducible, then its algebraic hull is a simple Lie

group.

Let B be the space of (one-sided) infinite sequences of elements of SL(2,R). We
define the measure β on B to be μ×μ · · · . Let T̂ : B×X → B×X be the forward shift,
with β × ν as the invariant measure. We denote elements of B by the letter a (following
the convention that these refer to “future” trajectories). If we write a = (a1, a2, . . . ) then

T̂(a, x)= (Ta, a1x)

(and we use the letter T to denote the shift T(a1, a2, . . . )= (a2, a3, . . . )). By the Osceledets
multiplicative ergodic theorem, for β × ν almost every (a, x) ∈ B×X there exists a Lya-
punov flag

(C.1) {0} = V≥k(a, x)⊂ V≥k−1(a, x)⊂ · · · ⊂ V≥0(a, x)= L.

Definition C.3. — The map T̂ : B×X → B×X has semisimple Lyapunov spectrum
if (after passing to a measurable finite cover), the algebraic hull of the cocycle Z× (B×X)→ SL(L)
given by

(n, a, x)→ A(an . . . a1, x)
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is block-conformal, see Section 4.3. In other words, T̂ has semisimple Lyapunov spectrum if all the

off-diagonal blocks labelled ∗ in (4.4) are 0.

In Appendix C our aim is to prove the following general fact:

Theorem C.4. — Suppose A is strongly irreducible and ν is μ-invariant. Then T̂ has semisim-

ple Lyapunov spectrum. Furthermore, the restriction of T̂ to the top Lyapunov subspace V≥1/V>1 consists

of a single conformal block, i.e. for β × ν almost every (a, x) there exists an inner product 〈·, ·〉a,x on

V≥1(a, x)/V>1(a, x) and a function λ : B×X →R such that for all u, v ∈ V≥1(a, x)/V>1(a, x),

(C.2) 〈a1u, a1v〉(Ta,ax) = λ(a1, x)〈u, v〉a,x.

If the algebraic hull H′ is all of SL(L), then all the Lyapunov subspaces consist of a single conformal

block, i.e. for all 1 ≤ i ≤ k − 1 one can define an inner product 〈·, ·〉a,x on V≥i(a, x)/V>i(a, x) so that

(C.2) holds for some function λ= λi .

The backwards shift. — We will actually use the analogue of Theorem C.4 for the
backwards shift. Let T : B×X → B×X be the (backward) shift as in Section 14, with βX

as defined in [BQ, Lemma 3.1] as the invariant measure. By the Osceledets multiplicative
ergodic theorem, for βX almost every (b, x) ∈ B×X there exists a Lyapunov flag

(C.3) {0} = V≤0(b, x)⊂ V≤1(b, x)⊂ V≤2(b, x)⊂ V≤k(b, x)= L.

We need the following:

Theorem C.5. — Suppose A is strongly irreducible and ν is μ-invariant. Then T has semisim-

ple Lyapunov spectrum. Furthermore, the restriction of T to the top Lyapunov subspace V≤1 consists of a

single conformal block, i.e. for βX almost every (b, x) there exists an inner product 〈·, ·〉b,x on V≤1(b, x)

and a function λ : B×X →R such that for all u, v ∈ V≤1(b, x),

(C.4)
〈
b−1

0 u, b−1
0 v
〉
(Tb,b−1

0 x)
= λ(b0, x)〈u, v〉b,x.

If the algebraic hull H′ is all of SL(L), then all the Lyapunov subspaces consist of a single conformal

block, i.e. for all 1 ≤ i ≤ k − 1 one can define an inner product 〈·, ·〉b,x on V≤i(b, x)/V<i(b, x) so that

(C.4) holds for some function λ= λi .

The two-sided shift. — As in Section 14, let B̃ be the space of bi-infinite sequences
of elements of SL(2,R), and we consider the two-sided random walk as a shift map on
B̃ × X. We abuse notation by using the same letter T both for the backwards shift and
the bi-infinite shift. We denote a point in B̃ by a ∨ b where a denotes the “future” of the
trajectory and b denotes the “past”. Let β̃X denote the T-invariant measure on B̃ × X
which projects to the measure β × ν on the future trajectories, and to the measure βX

on the past trajectories. Then, at β̃X almost all points (a ∨ b, x) we have both the flags



INVARIANT AND STATIONARY MEASURES 299

(C.1) and (C.3). The two flags are generically in general position (see e.g. [GM, Lemma
1.5]) and thus we can intersect the flags to define the (shift-invariant) Lyapunov subspaces
Vi(a ∨ b, x) so that

V≤i(b, x)=
i⊕

j=1

Vj(a ∨ b, x), V≥i(a, x)=
m⊕

j=i

Vj(a ∨ b, x).

Then

(C.5) V≤i(b, x)/V<i(b, x)∼= Vi(a ∨ b, x)∼= V≥i(a, x)/V>i(a, x).

We will prove the following:

Theorem C.6. — Suppose A is strongly irreducible and ν is μ-invariant. Then T has semisim-

ple Lyapunov spectrum. Furthermore, the restriction of T to the top Lyapunov subspace V≤1 consists of

a single conformal block, i.e. for β̃X almost every (a ∨ b, x) there exists an inner product 〈·, ·〉a∨b,x on

V1(a ∨ b, x) and a function λ : B̃×X →R such that for all u, v ∈ V1(a ∨ b, x),

(C.6) 〈a1u, a1v〉(T(a∨b),a1x) = λ(a ∨ b, x)〈u, v〉a∨b,x.

If the algebraic hull H′ is all of SL(L), then all the Lyapunov subspaces consist of a single conformal

block, i.e. for all 1 ≤ i ≤ k − 1 one can define an inner product 〈·, ·〉a∨b,x on Vi(b, x) so that (C.6)
holds for some function λ= λi .

Remark 1. — The proof of Theorems C.4–C.6 we give is essentially taken from
[GM], and is originally from [GR1] and [GR2].

For most of the proof, we assume only that ν is μ-stationary (and not necessarily
μ-invariant). The exceptions are Lemma C.10 and Claim C.14.

We follow [GM] and present the proof of Theorems C.4–C.6 for the easier to read
case where the algebraic hull H′ of the cocycle A is all of SL(L). The general case of
semisimple H′ is treated in [EMat].

Remark 2. — It is possible to define semisimplicity of the Lyapunov spectrum in the
context of the action of gt =

(
et 0
0 e−t

) ⊂ SL(2,R) (instead of the random walk). Then the
analogue of Theorems C.4–C.6 remains true; the proof would use an argument similar
to the proof of Proposition 4.12. Since we will not use this statement we will omit the
details.

C.3 An ergodic lemma

We recall the following well-known lemma:
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Lemma C.7. — Let T :�→� be a transformation preserving a probability measure β . Let

F :�→R be an L1 function. Suppose that for β-a.e. x ∈�,

lim inf
n∑

i=1

F
(
Tix
)=+∞.

Then
∫
�

Fdβ > 0.

Proof. — This lemma is due to Atkinson [At] and Kesten [Ke]. See also [GM,
Lemma 5.3], and the references quoted there. �

We will need the following variant:

Lemma C.8. — Let T : �→ � be a transformation preserving an ergodic probability mea-

sure β . Let F :�→R be an L1 function. Suppose there exists K′ ⊂� with β(K′) > 0 such that for

β-a.e. x ∈�,

(C.7) lim inf
{ n∑

i=1

F
(
Tix
) : Tnx ∈ K′

}
=+∞.

Then
∫
�

Fdβ > 0.

Proof. — After passing to the natural extension, we may assume that T is invertible.
We can choose a subset K ⊂ K′ with β(K) > 0, and C > 0 such that for all x ∈ K, we
have

|F(x)|< C.

Since K ⊂ K′, (C.7) holds with K′ replaced by K.
Let A−1 = {x : x /∈ K}, A0 = {x : x ∈ K,Tx ∈ K}, and for n ≥ 0,

An+1 =
{
x : x ∈ K, Tx /∈ K, . . . , Tnx /∈ K, Tn+1x ∈ K

}
.

Also let A =
∞⊔

n=−1
An. Note that by the ergodicity of T, for almost every x ∈�,

∣∣{i : i ≥ 0,Ti(x) ∈ K
}∣∣=∞ (∗).

Define G :�→R defined on A (which has full measure) by

• G(x)= 0 if x ∈ A−1.
• G(x)= F(x) if x ∈ A0.
• G(x)= F(x)+ F(Tx)+ · · · + F(Tnx) if x ∈ An+1.

We now claim the following hold:
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(1) For almost every x ∈� we have

(C.8) lim
n→∞G(x)+G(Tx)+ · · · +G

(
Tnx
)=∞.

(2)
∫
�
|G|dβ ≤ ∫

�
|F|dβ <∞.

(3)
∫
�

G(x)dβ(x)= ∫
�

F(x)dβ(x).

Proof of (1). — Note that almost every x ∈� satisfies (C.7) (with K′ replaced by K).
Also, we have,

G(x)+G(Tx)+ · · · +G
(
Tnx
)=

m−1∑
i=m0

F
(
Tix
)
,

where m0 = inf{k : Tkx ∈ K}, and m = inf{k : k ≥ n,Tkx ∈ K}. Thus,

n∑
j=0

G
(
Tj x
)=

m∑
i=1

F
(
Tix
)−

m0−1∑
i=0

F
(
Tix
)− F

(
Tmx
)
.

Since m0 is independent of n, Tmx ∈ K and for every x ∈ K, we have |F(x)|< C, Equation
(C.7) implies (C.8). �

Proof of (3) assuming (2). — By the definition of G we can use the dominated con-
vergence theorem, and get that

∫
�

Gdβ =
∫

K
Fdβ +

∞∑
i=1

∫
Ai

F
(
Tix
)
dβ(x)

where Ai =⋃j≥i Ai . Then

TiAi = TiK− (K∪ · · ·Ti−1K
)
.

Also K ∪⋃∞
i=1 TiAi has full measure in �, and for i �= j, TiAi ∩TjAj and K ∩TiAi have

measure zero. Note that Ai = T−i(TiAi). Since β is T invariant, we have∫
Ai

F
(
Tix
)
dβ(x)=

∫
TiAi

F(x)dβ(x),

and hence ∫
�

Gdβ =
∫

K
Fdβ +

∞∑
i=1

∫
TiAi

F(x)dβ(x)=
∫
�

Fdβ.
�

Proof of (2). — This follows by applying (3) to |F| instead of F, and then using the
triangle inequality. �
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Proof of Lemma C.8. — Now by (1), and (2), the function G satisfies the assumptions
of Lemma C.7. Hence we have

∫
�

Fdβ = ∫
�

Gdβ > 0. �

C.4 A zero-one law

Lemma C.9. — Suppose h is a bounded non-negative μ-subharmonic function, i.e. for ν-almost

all x ∈ X,

(C.9) h(x)≤
∫

G
h(gx)dμ(g).

Then h is constant ν-almost everywhere.

Proof. — By the random ergodic theorem [Fu, Theorem 3.1], for ν-almost all
x ∈ X,

lim
N→∞

1
N

N−1∑
n=0

∫
G

h(gx)dμn(g)=
∫

X
hdν

Therefore, by (C.9), for ν-almost all x ∈ X,

(C.10) h(x)≤
∫

X
hdν.

Let s0 ≥ 0 denote the essential supremum of h, i.e.

s0 = inf
{
s ∈R : ν({h > s})= 0

}
.

Suppose ε > 0 is arbitrary. We can pick x ∈ X such that (C.10) holds and h(x) > s0 − ε.
Then,

s0 − ε ≤ h(x)≤
∫

X
hdν ≤ s0.

Since ε > 0 is arbitrary,
∫

X hdν = s0. Thus h(x)= s0 for ν-almost all x. �

Let ν be an ergodic stationary measure on X. Fix 1 ≤ s < dim(L), and let Grs

denote the Grassmannian of s-dimensional subspaces in L. Let X̂ = X × Grs. We then
have an action of SL(2,R) on X̂, by

g · (x,W)= (gx,A(g, x)W
)
.

Let ν̂ be a μ-stationary measure on X̂ which projects to ν under the natural map X̂ → X.
We may write

d ν̂(x,U)= dν(x)dηx(U),

where ηx is a measure on Grs.
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Let m = dim(L). For a subspace W of L, let

I(W)= {U ∈ Grs : dim(U∩W) > max
(
0,m− dim(U)− dim(W)

)}
Then U ∈ I(W) if and only if U and W intersect more than general position subspaces of
dimension dim(U) and dim(W).

Lemma C.10 (Cf. [GM, Lemma 4.2], [GR1, Theorem 2.6]).

(i) Suppose the cocycle is strongly irreducible on L. Then for almost all x ∈ X, and any

1-dimensional subspace Wx ⊂ L, ηx(I(Wx))= 0.

(ii) Suppose the algebraic hull H′ of the cocycle is SL(L). Then for almost all x ∈ X, for any

nontrivial proper subspace Wx ⊂ L, ηx(I(Wx))= 0.

Proof of Lemma C.10. — We give the proof under the extra assumption that ν is
μ-invariant (and not just μ-stationary). The general case is proved in [EMat].

Suppose there exists a subset E ⊂ X with ν(E) > 0 and for all x ∈ E, a nontrivial
subspace Wx ⊂ L such that ηx(I(Wx)) > 0. Let #W = (W1, . . . ,Wk) denote a finite col-
lection of subspaces of L. If the assumptions of (i) hold, we are requiring the Wi to be
one-dimensional; if the assumptions of (ii) hold, the Wi are allowed to be any dimension.
Write

I( #W)= I(W1)∩ · · · ∩ I(Wk).

For x ∈ E, let Sx denote the set of I( #Wx) such that for any #W′
x so that I( #W′

x) is a proper
subset of I( #Wx), we have νx(I( #W′

x))= 0. For x ∈ E, Sx is non-trivial since the subsets I( #W)

are algebraic and thus there cannot be an infinite descending chain of them. For #W ∈ Sx,
let

fI( #W)(x)= ηx

(
I( #W)

)
.

Since ν̂ is μ-stationary and ν is assumed to be μ-invariant, we have

(C.11) fI( #W)(x)=
∫

G
fI(A(g,x) #W)(gx)dμ(g)

Let S(x)= {I( #W) ∈ Sx : fI( #W)(x) > 0}. Then, for I( #W1) ∈ S(x), I( #W2) ∈ S(x),

ηx

(
I( #W1)∩ I( #W2)

)= 0.

Thus ∑
I( #W)∈S(x)

fI( #W)(x)≤ 1.
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Therefore S(x) is at most countable. Let

(C.12) f (x)= max
I( #W)∈S(x)

fI( #W)(x).

Applying (C.11) to some I( #W) for which the max is achieved, we get

f (x)≤
∫

G
f (gx)dμ(g)

i.e. f is a subharmonic function on X. By Lemma C.9, f is constant almost everywhere.
Now substituting again into (C.11) we get that the cocycle A permutes the finite set of
I( #W) where the maximum (C.12) is achieved. Therefore the same is true for the algebraic
hull H′. If the assumptions of (ii) hold, this is a contradiction since H′ acts transitively on
subspaces of L. If the assumptions of (i) hold then, for #W = (W1, . . . ,Wk), since the Wi

are 1-dimensional, we have

I( #W)≡ I(W1)∩ . . . I(Wk)

= {subspaces M ⊂ L such that W1 + · · · +Wk ⊂ M}.
Since H′ must permute some finite set of I( #W) it must thus permute a finite set of sub-
spaces of L which contradicts the strong irreducibility assumption. �

C.5 Proof of Theorem C.6

Recall that we are assuming that the algebraic hull of the cocycle is SL(L) for some vector
space L. Let m = dim L.

Definition C.11 ((ε, δ)-regular). — Suppose ε > 0 and δ > 0 are fixed. A measure η on

Grk(L) is (ε, δ)-regular if for any subspace U of L,

η
(
Nbhdε

(
I(U)

))
< δ.

Lemma C.12. — Suppose gn ∈ GL(L) is a sequence of linear transformations, and ηn is a

sequence of uniformly (ε, δ)-regular measures on Grk(L) for some k. Suppose δ� 1. Write

gn = K(n)D(n)K′(n),

where K(n) and K′(n) are orthogonal relative to the standard basis {e1, . . . em}, and D(n) =
diag(d1(n), . . . , dm(n)} with d1(n)≥ · · · ≥ dm(n).

(a) Suppose

(C.13)
dk(n)

dk+1(n)
→∞
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Then, for any subsequential limit λ of gnηn there exists a subspace W ∈ Grk(L) such that

(C.14) K(n) span{e1, . . . , ek}→ W,

and λ({W})≥ 1− δ.

(b) Suppose gnηn → λ where λ is some measure on Grk(L). Suppose also that there exists a

subspace W ∈ Grk(L) such that λ({W}) > 5δ. Then, as n →∞, (C.13) holds. As a

consequence, by part (a), (C.14) holds and λ({W})≥ 1− δ.

Proof of (a). — This statement is standard. Suppose gnηn → λ. Without loss of gen-
erality, K′(n) is the identity (or else we replace ηn by K′(n)ηn). By our assumptions, for
j1 < · · ·< jk ,

‖gn(ej1 ∧ · · · ∧ ejk)‖
‖gn(e1 ∧ · · · ∧ ek)‖ → 0 unless ji = i for 1 ≤ i ≤ k.

Therefore, if U /∈ I(span{ek+1, . . . , em}),
d
(
gnU,K(n) span{e1, . . . , ek}

)→ 0,

where d(·, ·) denotes some distance in Grk(L). After passing to a further subsequence, we
may assume that for some W ∈ Grk(L), (C.14) holds. It follows from the (ε, δ)-regularity
of ηn that λ(W) ≥ 1 − δ. Since δ < 1/2, W is uniquely determined by λ, and therefore
(C.14) holds without passing to a further subsequence (but only assuming gnηn → λ).

Proof of (b). — This is similar to [GM, Lemma 3.9]. Suppose dk(n)/dk+1(n) does
not go to ∞. Then, there is a subsequence of the gn (which we again denote by gn)
that K(n)→ K∗ and that for every j, either dj(n)/dj+1(n) converges as n → ∞ or
dj(n)/dj+1(n)→∞ as n →∞. Also without loss of generality we may assume that K′(n)
is the identity (or else we replace ηn by K′(n)ηn).

Let 1 ≤ s ≤ k < r ≤ m be such that s is as small as possible, r is as large as possible,
and dj(n)/dj+1(n) is bounded for s ≤ j ≤ r − 1. Then, for j1 < · · ·< jk ,

‖gn(ej1 ∧ · · · ∧ ejk)‖
‖gn(e1 ∧ · · · ∧ ek)‖ → 0 unless ji = i for 1 ≤ i ≤ s − 1(C.15)

and s ≤ ji ≤ r for s ≤ i ≤ k.

Let

V− = span{e1, . . . , es−1}, V+ = span{e1, . . . , er}.
Let D∗ = diag(d∗(1), . . . , d∗(m)) be any diagonal matrix such that for s ≤ j ≤ r − 1,

d∗(j)/d∗(j + 1)= lim
n→∞ dj(n)/dj+1(n).
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Then, in view of (C.15), for U such that U /∈ I(V⊥
+) ∪ I(V⊥

−), if along some subsequence
gnU → U′, we have

K∗V− ⊂ U′ ⊂ K∗V+.

Therefore, we must have V− ⊂ K−1
∗ W ⊂ V+. Furthermore, for U /∈ I(V⊥

+)∪ I(V⊥
−),

if gnU → W then U ∈ I
(
D−1

∗ K−1
∗ W∩V⊥

− +V⊥
+
)
.

But, since ηn is (ε, δ)-regular,

ηn

(
Nbhdε

(
I
(
V⊥

+
)∪ I

(
V⊥

−
)∪ I

(
D−1

∗ K−1
∗ W∩V⊥

− +V⊥
+
)))

< 3δ.

Therefore λ({W}) < 3δ which is a contradiction. Thus dk(n)/dk+1(n) → ∞. Now by
part (a) (C.14) holds, and λ({W})≥ 1− δ. �

Let F =F(L) denote the space of full flags on L. Let X̂ = X×F . The cocycle A
satisfies the cocycle relation

A(g1g2, x)= A(g1, g2x)A(g2, x).

The group SL(2,R) acts on the space X̂ by

(C.16) g · (x, f )= (gx,A(g, x)f
)
.

Let ν̂ be an ergodic μ-stationary measure on X̂ which projects to ν under the
natural map X̂ → X. (Note there is always at least one such: one chooses ν̂ to be an
extreme point among the measures which project to ν. If ν̂ = ν̂1 + ν̂2 where the ν̂i are
μ-stationary measures then ν = π∗(ν̂)= π∗(ν̂1)+ π∗(ν̂2). Since ν is μ-ergodic, this im-
plies that π∗(ν̂1)= π∗(ν̂2)= ν, hence the ν̂i also project to ν. Since ν̂ is an extreme point
among such measures, we must have ν̂1 = ν̂2 = ν̂. Thus ν̂ is μ-ergodic.)

Lemma C.13 (Furstenberg). — For 1 ≤ s ≤ dim L, let σ̄s : SL(2,R)× X̂ → R be given

by

σ̄s(g, x, f )= log
‖A(g, x)ξs(f )‖

‖ξs(f )‖
where ξs(f ) is the s-dimensional component of the flag f . (The norms in the above equation are on∧s

(V), and here and in the following we make sense of such expressions by picking the same basis for

the ξs(f ) in the numerator and denominator.) Then, we have

λ1 + · · · + λs =
∫

SL(2,R)

∫
X̂
σ̄s(g, x, f )d ν̂(x, f )dμ(g),

where λi is the i’th Lyapunov exponent of the cocycle A.
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Proof. — See the proof of [GM, Lemma 5.2]. �

We may disintegrate

d ν̂(x, f )= dν(x)dηx(f ).

Note that Lemma C.10 applies to the projections of the measures ηx to the various Grass-
mannians which are components of F .

For a ∈ B̃, let the measures νa, ν̂a be as defined in [BQ, Lemma 3.2], i.e.

νa = lim
n→∞(an . . . a1)

−1
∗ ν

ν̂a = lim
n→∞(an . . . a1)

−1
∗ ν̂.

The limits exist by the martingale convergence theorem. We disintegrate

d ν̂a(x, f )= dνa(x)dηa,x(f ).

For 1 ≤ k ≤ m, let ηk
x = (ξk)∗ηx and ηk

a,x = (ξk)∗ηa,x, where ξk : F(L)→ Grk(L) is the
natural projection. Then, ηk

x and ηk
a,x are measures on Grk(L).

Claim C.14. — On a set of β × ν full measure,

lim
n→∞(an . . . a1)

−1
∗ ηan...a1x = ηa,x.

Equivalently, using (C.16),

lim
n→∞A

(
(an . . . a1)

−1, an . . . a1x
)
ηan...a1x = ηa,x.

Proof of claim. — In this claim, we use the invariance of ν. Let C ⊂ X and D ⊂ F
be measurable, and let χC denote the characteristic functions of C. Recall that d ν̂(x, z)=
dν(x)dηx(z) is μ-stationary, so that

∫
C
ηx(D)dν(x)= ν̂(C×D)= (μ ∗ ν̂)(C×D)

=
∫
χC(gy)A(g, y)ηy(D)dν(y)dμ(g)

=
∫
χC(x)A

(
g, g−1x

)
ηg−1x(D)dν(x)dμ(g)

=
∫

C

(∫
G

A
(
g, g−1x

)
ηg−1x(D)dμ(g)

)
dν(x)
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Since C and D are arbitrary, we see that

ηx =
∫

G
A
(
g, g−1x

)
ηg−1xdμ(g)

Therefore (replacing x by an−1 . . . a1x and g by a−1
n ), we have

ηan−1...a1x =
∫

G
A
(
a−1

n , an . . . a1x
)
ηan...a1xdμ(an).

Multiplying both sides on the left by A((an−1 . . . a1)
−1, an−1 . . . a1x) and using the cocycle

identity

A
(
(an . . . a1)

−1, an . . . a1x
)

= A
(
(an−1 . . . a1)

−1, an−1 . . . a1x
)
A
(
a−1

n , an . . . a1x
)
,

we get

A
(
(an−1 . . . a1)

−1, an−1 . . . a1x
)
ηan−1...a1x(C.17)

=
∫

G
A
(
(an . . . a1)

−1, an . . . a1x
)
ηan...a1xdμ(an).

In view of (C.17), the expression

A
(
(an . . . a1)

−1, an . . . a1x
)
ηan...a1x

is a (measure-valued) martingale. Therefore, the claim follows from the martingale con-
vergence theorem. �

If the Lyapunov spectrum is simple, we expect the measures ηa,x to be supported
at one point. In the general case, let

λ1 ≥ λ2 ≥ · · · ≥ λm

denote the Lyapunov exponents, and let

I = {1 ≤ r ≤ m− 1 : λr = λr+1}.

Then, by the multiplicative ergodic theorem, Lemmas C.10 and C.12(a), for r /∈ I, we
have ηm−r

a,x is supported at one point. (This point is the part of the flag (C.1) corresponding
to the Lyapunov exponents λr+1, . . . , λm.)
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Claim C.15. — For any r ∈ I and β × ν-almost all (a, x), for any subspace W(a, x) ∈
Grm−r(L), we have ηm−r

a,x ({W(a, x)})= 0.

Proof of claim. — Suppose there exists δ > 0 so that for some r ∈ I for a set (a, x)

of positive measure, there exists W(a, x) ∈ Grm−r(L) with ηr
a,x({W(a, x)}) > δ. Then this

happens for a subset of full measure by ergodicity.
Note that by the cocycle relation,

A
(
g−1, gx

)= A(g, x)−1.

Therefore,

A
(
(an . . . a1)

−1, an . . . a1x
)= A(an . . . a1, x)−1.

Hence, on a set of β × ν-full measure,

lim
n→∞A(an . . . a1, x)−1ηan...a1x = ηa,x.

In view of Lemma C.10 (cf. the proof of Lemma 14.4), there exists ε > 0 and a
compact Kδ ⊂ X with ν(Kδ) > 1 − δ such that the family of measures {ηx}x∈Kδ

is uni-
formly (ε, δ/5)-regular. Let

Nδ(a, x)= {n ∈N : an . . . a1x ∈Kδ}.
Write

(C.18) A(an . . . a1, x)−1 = Kn(a, x)Dn(a, x)K′
n(a, x)

where Kn and K′
n are orthogonal, and Dn is diagonal with non-increasing entries. We also

write

(C.19) A(an . . . a1, x)= K̄n(a, x)D̄n(a, x)K̄′
n(a, x),

where K̄n and K̄′
n are orthogonal, and D̄n is diagonal with non-increasing entries. Let

d1(n, a, x) ≥ · · · ≥ dm(n, a, x) be the entries of Dn(a, x), and let d̄1(n, a, x) ≥ d̄2(n, a, x) ≥
d̄m(n, a, x) be the entries of D̄n(a, x). Then,

d̄j(n, a, x)= d−1
m+1−j(n, a, x),

K̄′
n(a, x)=w0Kn(a, x)−1w−1

0 , K̄n(a, x)=w0K′
n(a, x)−1w0,

(C.20)

where w0 = w−1
0 is the permutation matrix mapping ej to em+1−j . Then, by

Lemma C.12(b), for β × ν almost all (a, x), ηm−r
a,x ({W(a, x)})≥ 1− δ (and thus W(a, x) is

unique) and as n →∞ along Nδ(a, x) we have:

dm−r(n, a, x)/dm+1−r(n, a, x)→∞,
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and

(C.21) Kn(a, x) span{e1, . . . , em−r}→ W(a, x),

where the ei are the standard basis for L. Then, by (C.20),

(C.22) d̄r(n, a, x)/d̄r+1(n, a, x)→∞,

and

K̄′
n(a, x)−1 span{er+1, . . . , em}→w0W(a, x)

Therefore for any ε1 > 0 there exists a subset Hε1 ⊂ B × X of β × ν-measure at least
1− ε1 such that the convergence in (C.22) and (C.21) is uniform over (a, x) ∈ Hε1 . Hence
there exists M > 0 such that for any (a, x) ∈ Hε1 , and any n ∈Nδ(a, x) with n > M,

(C.23) K̄′
n(a, x)−1 span{er+1, . . . , em} ∈ Nbhdε1

(
w0W(a, x)

)
.

By Lemma C.10 (cf. the proof of Lemma 14.4) there exists a subset H′′
ε1
⊂ X with

ν(H′′
ε1
) > 1 − c2(ε1) with c2(ε1) → 0 as ε1 → 0 such that for all x ∈ H′′

ε1
, and any

U ∈ Grm−r(L),

ηr
x

(
Nbhd2ε1

(
I(U)

))
< c3(ε1),

where c3(ε1)→ 0 as ε1 → 0. Let

(C.24) H′
ε1
= {(a, x, f ) : (a, x) ∈ Hε1, x ∈ H′′

ε1
and d

(
ξr(f ), I

(
w0W(a, x)

))
> 2ε1

}
.

Then, (β × ν̂)(H′
ε1
) > 1 − ε1 − c2(ε1) − c3(ε1), hence (β × ν̂)(H′

ε1
) → 1 as ε1 → 0.

Furthermore, by (C.23) and the definition of H′
ε1

, for (a, x, f ) ∈ H′
ε1

and n ∈ Nδ(a, x) with
n > M, we have

d
(
ξr(f ), I

(
K̄′

n(a, x)−1 span{er+1, . . . , em}
))
> ε1.

Therefore, in view of (C.19) there exists C = C(ε1), such that for any (a, x, f ) ∈ H′
ε1

, any
n ∈ Nδ(a, x) with n > M,

(C.25) C >
‖A(an . . . a1, x)ξr(f )‖

‖ξr(f )‖
r∏

i=1

d̄i(n, a, x)−1 >
1
C

(cf. [GM, Lemma 5.1]). Note that for all (a, x, f ) ∈ B × X̂, all n ∈ N and j = r − 1 or
j = r + 1 we have

(C.26)
‖A(an . . . a1, x)ξj(f )‖

‖ξr(f )‖ ≤ ‖A(an . . . a1, x)‖∧j (L) ≤
j∏

i=1

d̄i(n, a, x).
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Then, in view of (C.25) and (C.26), for all (a, x, f ) ∈ H′
ε1

, as n →∞ in Nδ(a, x),

log
‖(A(an . . . a1, x))ξr(f )‖2

‖ξr(f )‖2

‖ξr−1(f )‖
‖(A(an . . . a1, x))ξr−1(f )‖(C.27)

× ‖ξr+1(f )‖
‖(A(an . . . a1, x))ξr+1(f )‖ ≥ log

d̄r(n, a, x)

d̄r+1(n, a, x)
→∞

Since (β × ν̂)(H′
ε1
)→ 1 as ε1 → 0, (C.27) holds as n →∞ along Nδ(a, x) for β × ν̂

almost all (a, x, f ) ∈ B× X̂.
For 1 ≤ s ≤ m, let σs : B × X̂ → R be defined by σs(a, x, f )= σ̄s(a1, x, f ), where σ̄

is as in Lemma C.13. Then, the left hand side of (C.27) is exactly

n−1∑
j=0

(2σr − σr−1 − σr+1)
(
T̂j(a, x, f )

)
.

Also, we have n ∈Nδ(a, x) if and only if T̂n(a, x) ∈Kδ . Then, by Lemma C.8,∫
B×X̂

(2σr − σr−1 − σr+1)(q)d(β × ν̂)(q) > 0.

By Furstenberg’s formula Lemma C.13, the left hand side of the above equation is λr −
λr+1. Thus λr > λr+1, contradicting our assumption that r ∈ I. This completes the proof
of the claim. �

Proof of Theorem C.6. — Pick an orthonormal basis at each point of X, and let
C(a ∨ b, x) : L → L be a map which makes the subspaces Vi(a ∨ b, x) orthonormal. Let
Ã denote the cocycle obtained by

Ã(n, a ∨ b, x)= C
(
Tn(a ∨ b, x)

)−1
A(an . . . a1, x)C(a ∨ b, x).

Then Ã is cohomologous to A. Let

η̂(a ∨ b, x)= C(a ∨ b, x)∗ηx, η̃a∨b,x = C(a ∨ b, x)∗ηa,x.

We have, on a set of β̃X full measure,

η̃a∨b,x = lim
n→∞ Ã(n, a ∨ b, x)−1

∗ η̂
(
Tn(a ∨ b, x)

)
.

In view of Lemma C.10 there exists ε > 0 and a compact Kδ ⊂ B̃ × X with β̃X(Kδ) >

1− δ such that the family of measures {η̂(a∨ b, x)}(a∨b,x)∈Kδ
is uniformly (ε, δ/5)-regular.

Write

Ã(n, a ∨ b, x)−1 = Kn(a ∨ b, x)Dn(a ∨ b, x)K′
n(a ∨ b, x)
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where Kn and K′
n are orthogonal, and Dn is diagonal with non-increasing entries. Let

d1(n, a ∨ b, x)≥ · · · ≥ dm(n, a, x) be the entries of Dn(a ∨ b, x).
By Claim C.15, for r ∈ I and almost all (a ∨ b, x) η̃m−r

a∨b,x has no atoms. It follows
that for every δ > 0 there exists K1 =K1(δ)⊂ B̃ × X and ε1 = ε1(δ) > 0, such that for
(a∨ b, x) ∈K1, ηm−ra ∨ b, x gives measure at most δ to the ε1-neighborhood of any point.
Then, by Lemma C.12(a), there exists C1 = C1(δ) such that if (a ∨ b, x) ∈ K1(δ) and
Tn(a ∨ b, x) ∈Kδ then for r ∈ I

(C.28) dm−r(n, a ∨ b, x)/dm+1−r(n, a ∨ b, x)≤ C1.

Note that the matrix of Ã(n, a ∨ b, x) is block diagonal. We can write each block as a
scaling factor times a determinant one matrix which we denote by Ãi(n, a ∨ b, x). (Thus
Ãi(n, a ∨ b, x) is, up to a scaling factor, a conjugate of the restriction of A(n, a ∨ b, x) to
Vi(a ∨ b, x).) Since the subspaces defining the blocks are by construction orthogonal, the
KAK decomposition of Ã(n, a ∨ b, x)−1 is compatible with the KAK decompositions of
each Ãi(n, a∨ b, x)−1. Then, (C.28) for all r ∈ I implies that for all (a∨ b, x) ∈K1(δ) such
that Tn(a ∨ b, x) ∈Kδ we have

‖Ãi(n, a ∨ b, x)‖ ≤ C′
1(δ) for all i.

It follows that for all n ∈ Z

β̃X
({
(a ∨ b, x) ∈ B×X : ‖Ãi(n, a ∨ b, x)‖> C′

1(δ)
})≤ 2δ.

Since δ > 0 is arbitrary, this means (by definition) that the cocycle Ãi is bounded in the
sense of Schmidt, see [Sch]. It is proved in [Sch] that any bounded cocycle is conjugate
to a cocycle taking values in an orthogonal group. Therefore the same holds for the
determinant one part of the cocycle A|Vi

. �

Proof of Theorems C.4 and C.5. — To prove Theorem C.4, for the case where the
algebraic hull is all of SL(L), it is enough to show that for almost all (a, x), the inner
product 〈·, 〉a∨b,x does not depend on b. The proof is similar to the proof of (4.16).

For any ε > 0 exists a compact set K ⊂ B̃×X of measure 1− ε such that the map
(a ∨ b, x)→ 〈·, ·〉a∨b,x is uniformly continuous on K. Then there exists �⊂ B̃ × X such
that β̃X(�)= 1 and Tn(a ∨ b, x) ∈ K for set of n of asymptotic density at least 1/2.

For (a ∨ b, x) ∈ B̃×X and v,w ∈ V≥i(a, x)/V>i(a, x), let

[v,w]i,(a∨b,x) = 〈v,w〉i,(a∨b,x)

〈v, v〉1/2
i,(a∨b,x)〈w,w〉1/2

i,(a∨b,x)

Now suppose (a ∨ b, x) ∈�, and (a ∨ b′, x) ∈�. Consider the points Tn(a ∨ b, x)

and Tn(a ∨ b′, x), as n →∞. Then d(Tn(a ∨ b, x),Tn(a ∨ b′, x))→ 0. Let

vn = A(an . . . a1)v, wn = A(an . . . a1)w.
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Then, by Theorem C.6, we have

(C.29) [vn,wn]i,Tn(a∨b,x) = [v,w]i,x, [vn,wn]i,Tn(a∨b′,x) = [v,w]i,(a∨b′,x).

Now take a sequence nk →∞ with Tn(a ∨ b, x) ∈ K, Tn(a ∨ b′, x) ∈ K (such a
sequence exists by the definition of �). Then,

[vnk
,wnk

]i,Tnk (a∨b,x) − [vnk
,wnk

]i,Tn(a∨b′,x) → 0.

Now from (C.29), we get

[v,w]i,(a∨b,x) = [v,w]i,(a∨b′,x).

Therefore, for all v,w ∈ V≥i(a, x)/V>i(a, x)

〈v,w〉i,(a∨b,x) = c
(
a, b, b′, x

)〈v,w〉i,(a∨b′,x),

where c(a, b, b′, x) ∈R
+. We can (measurably) choose, for almost all (a, x) some b0 ∈ B so

that (a ∨ b0, x) ∈�, and then replace 〈·, ·〉i,(a∨b,x) by

〈v,w〉′i,(a,x) = 〈v,w〉i,a∨b0,x.

Then 〈·, ·〉′i,(a,x) satisfies all the conditions of Theorem C.4. This concludes the proof of
Theorem C.4 for the case where the algebraic hull is all of SL(L).

The proof of Theorem C.5 is identical. �

Appendix D: Dense subgroups of nilpotent groups

The aim of this appendix is to prove Proposition D.3 which is used in Section 12.
Let N be a nilpotent Lie group. For a subgroup � ⊂ N, let �̄ denote the topological

closure of �, and let �̄0 denote the connected component of �̄ containing the identity e

of N. Let B(x, ε) denote the ball of radius ε centered at x in some left-invariant metric
on N.

Lemma D.1. — Suppose N is a Lie group, and S ⊂ N is a subset. For ε > 0, let �ε denote

the subgroup generated by S ∩ B(e, ε). Then there exists ε1 > 0 and a connected closed Lie subgroup

N1 of N such that for ε < ε1, �ε = N1.

Proof. — By Cartan’s theorem (see e.g. [Kn, §0.4]), any closed subgroup of a Lie
group is a closed Lie subgroup. Let ε > 0 be arbitrary. Since we have �̄0

ε′ ⊂ �̄0
ε for ε ′ < ε,

there exists ε0 > 0 such that for ε ≤ ε0, the dimension of the Lie algebra of �̄0
ε (and thus

�̄0
ε itself) is independent of ε. Thus there exists a connected closed subgroup N1 ⊂ N such

that for ε ≤ ε0, �̄0
ε = N1. In particular,

(D.1) �̄ε ⊃ N1.
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From the definition it is immediate that �̄ε0 is a closed subgroup of N. Thus, by
Cartan’s theorem, �̄ε0 and N1 = �̄0

ε0
are closed submanifolds of N. Therefore, there exists

ε1 < ε0 such that

B(e, ε1)∩ �̄ε0 = B(e, ε1)∩ �̄0
ε0
= B(e, ε1)∩N1.

Then, for ε < ε1 < ε0,

�ε ∩ B(e, ε1)⊂ �̄ε0 ∩ B(e, ε1)⊂ N1.

Therefore, �ε ⊂ N1, and hence �̄ε ⊂ N1. In view of (D.1), the lemma follows. �

Lemma D.2. — Suppose N is a simply connected nilpotent Lie group, and let S ⊂ N be

an (infinite) subset. For each ε > 0 let �ε ⊂ N denote the subgroup of N generated by the elements

γ ∈ S∩ B(e, ε). Suppose that for all ε > 0, �ε is dense in N.

Then, for every ε > 0 there exist 0 < θ < ε (depending on ε and S) such that for every γ ∈ �ε

with d(γ, e) < θ there exists n ∈N and for 1 ≤ i ≤ n elements γi ∈ S with

(D.2) γ = γn . . . γ1

and for each 1 ≤ j ≤ n,

(D.3) d(γj . . . γ1, e) < ε.

Proof. — We will proceed by induction on dim N. Let N′ = [N,N]
For k ∈ N, let Sk

ε be the product of at most k elements in (S ∪ S−1) ∩ B(e, ε). Let
Tk
ε = [Sk

ε,Sk
ε]. This decreases with ε, so a variant of Lemma D.1 shows that, for small

enough ε, the closure of the group generated by Tk
ε is a closed connected group Nk (and

Nk is independent of ε for ε small enough). Since Nk increases with k, it is constant for
large k. Fix k so that Nk = Nk+2. We will show that Nk = N′.

First, we show that Nk is normal. For a, b ∈ Sk
ε and s ∈ Sε , we have s[a, b]s−1 =

[sas−1, sbs−1] ∈ Tk+2
ε . So, sTk

εs
−1 ⊂ Tk+2

ε . Taking the closure of the generated groups, we
get sNks

−1 ⊂ Nk+2 = Nk . Hence, Nk is normalized by Sε . Since Sε generates a dense
subset of N, Nk is normal.

We have [ab, c] = a[b, c]a−1[a, c]. This shows that, if [a, c] and [b, c] both belong
to Nk , then [ab, c] also belongs to Nk , by normality. For x, y ∈ Sk

ε , we have [x, y] ∈ Nk .
Taking products, and since Sk

ε generates a dense subgroup of N, we get [z, y] ∈ Nk for all
z ∈ N. Doing the same argument with the other variable, we finally have [z, z′] ∈ Nk for
all z, z′ ∈ N, and therefore Nk = N′ as desired.

Let S′ = Tk
ε/4k ⊂ N′. For δ > 0 let �′

δ denote the subgroup of N′ generated by
S′ ∩ B(e, δ). Since (for sufficiently small δ) [B(e, δ),B(e, δ)] ⊂ B(e, δ), we have, for δ <
ε/4k,

�′
δ ⊃
{
the subgroup generated by Tk

δ/4k

}= N′.
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Therefore, S′ ⊂ N′ satisfies the conditions of the Lemma. Let ε ′ > 0 be such that

(D.4) B
(
e, ε ′
)k ⊂ B(e, ε/100).

Since dim N′ < dim N, by the inductive assumption there exist 0 < θ ′ < ε ′ such that for
any γ ′ ∈ �′

θ ′ with d(γ ′, e) < θ ′, there exist γ ′
i ∈ S′ such that (D.2) holds, and (D.3) holds

with ε ′ in place of ε.
Suppose ε > η > 0. By construction, N/N′ is abelian. Note that N is connected

and simply connected. Then, since �̄η = N, there exists a finite set

S0 ≡ {λ1, . . . , λk} ⊂ �η ∩ S

with d(λi, e) < η for 1 ≤ i ≤ k so that λ1N′, . . . , λkN′ form a basis over R for the vector
space N/N′. Let � denote the subgroup generated by the λi , and let F′ ⊂ N/N′ denote
the parallelogram centered at the origin whose sides are parallel to the vectors λiN′. Then
F′ is a fundamental domain for the action of � on N/N′, and

diam F′ = O(η).

Let N0 be a local complement to N′ in N near the identity e. We can choose N0 to be a
smooth manifold transversal to N′ (N0 need not be a subgroup). Let π : N → N/N′ be
the natural map, and let π−1 : N/N′ → N0 be the inverse. Let F = π−1(F′). We can now
choose η sufficiently small so that F ⊂ B(e, ρ), where θ ′ > ρ > η > 0 is such that

B(e, ρ)5 ∩N′ = [B(e, ρ)B(e, ρ)B(e, ρ)B(e, ρ)B(e, ρ)]∩N′

⊂ B
(
e, θ ′
)∩N′.

We now choose θ > 0 so that B(e, θ)⊂ FO where O ⊂ N′ ∩B(e, ρ) is some neigh-
borhood of the origin. We now claim that for any x ∈ FO and any s ∈ B(e, θ), there exist
λ′ ∈ S0 ∪ S−1

0 and γ ′ ∈ �′
θ ′ such that γ ′λ′sx ∈ FO. Indeed, since B(e, θ)N′ ⊂ FN′, for any

x ∈ FN′,

B(x, θ)N′ ⊂
⋃

λ∈S0∪S−1
0

λB(x, θ)N′.

Thus, we can find λ′ ∈ S0 ∪ S−1
0 such that λ′sx ∈ FN′. Since �′

θ ′ is dense in N′, there exists
γ ′ ∈ �′

θ ′ such that γ ′λ′sx ∈ FO, completing the proof of the claim.
Now suppose γ ∈ �θ and γ ∈ B(e, θ)⊂ FO. Then, we have

γ = sn . . . s1, where si ∈ S∩ B(e, θ).

Note that s1 ∈ FO. We now define elements λ′j ∈ S0 ∪ S−1
0 and γ ′

j ∈ �′
θ ′ inductively as

follows. At every stage of the induction, we will have xj ≡ γ ′
j λ

′
j sj . . . γ

′
1λ

′
1s1 ∈ FO. Suppose
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γ ′
1, . . . , γ

′
j−1 and λ′1, . . . λ

′
j−1 have already been chosen. Now choose λ′j ∈ S0 ∪ S−1

0 and
γ ′

j ∈ �′
θ ′ so that xj = γ ′

j λ
′
j sjxj−1 ∈ FO. Such λ′j and γ ′

j exist by the claim.
Note that

γ ′
j = xjx

−1
j−1s−1

j

(
λ′j
)−1

∈ (FO)(FO)−1B(e, θ)−1
(
S0 ∪ S−1

0

)⊂ B(e, ρ)5 ⊂ B
(
e, θ ′
)
.

Since xn = λ′nγ
′
n sn . . . λ

′
1γ

′
1s1 ∈ FN′, we have λ′nsn . . . λ

′
1s1 ∈ FN′. Also γ = sn . . . s1 ∈

B(x, θ) ⊂ FN′. Since FN′ is a fundamental domain for the action of � on N/N′,
λ′n . . . λ

′
1 ∈ N′. Thus,

(D.5) γ = γ ′γ ′
nλ

′
nsn . . . γ

′
1λ

′
1s1,

where γ ′ ∈ N′. We have

γ ′ = γ x−1
n ∈ B(e, θ)(FO)−1 ⊂ B

(
e, θ ′
)
.

For notational convenience, denote γ ′ by γ ′
n+1. By the inductive assumption, for 1 ≤ i ≤

n+ 1, we can express γ ′
i = s′i1 . . . s

′
ini

such that s′ij ∈ S′ ∩ B(e, θ ′) and so that for all i, j,

d
(
s′ij . . . s

′
i1, e
)≤ ε ′.

We now substitute this into (D.5). Finally, we express each s′ij as a commutator of a product
of at most k elements of S∩B(e, ε/4k). Then, in view of (D.4), the resulting word satisfies
(D.3). �

Proposition D.3. — Suppose N is a simply connected nilpotent Lie group, O a neighborhood

of the identity in N, and μ a measure on N supported on O. Suppose S ⊂ N is a subset containing

elements arbitrarily close to (and distinct from) e, and suppose for each γ ∈ S,

(D.6) γ∗μ∝ μ

on O ∩ γ −1O where both sides make sense. Then, there exists a nontrivial connected subgroup H of

N and a neighborhood O′ of the identity in H such that for all h ∈ O′, h∗μ ∝ μ on O ∩ h−1O.

Furthermore, if U is a connected subgroup of N and S contains arbitrarily small elements not contained

in U, then H is not contained in U.

Proof. — Let N1 and ε1 be as in Lemma D.1. By our assumptions on S, N1 is non-
trivial (and also N1 is not contained in U). Now suppose ε > 0 is such that B(e, ε)⊂O,
and let θ > 0 be as in Lemma D.2, with N replaced by N1. Without loss of generality,
we may assume that θ < ε1. Let �θ be the subgroup of N1 generated by S ∩ B(e, θ).
Since θ < ε1, �θ is dense in N1. Now suppose γ̄ ∈ N1, and d(γ̄ , e) < θ . Then, there
exists γk ∈ �θ such that γk → γ , and d(γk, e) < θ . We can write each γk = γk,n . . . γk,1 as
in Lemma D.2. Then, by applying (D.6) repeatedly, we get that (γk)∗μ∝ μ. Then, taking
the limit as k →∞ we see that (γ̄ )∗μ ∝ μ. Thus, μ is invariant (up to normalization)
under a neighborhood of the origin in N1. �
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