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ABSTRACT

Let (X,μ) be a standard probability space. An automorphism T of (X,μ) has the weak Pinsker property if for
every ε > 0 it has a splitting into a direct product of a Bernoulli shift and an automorphism of entropy less than ε. This
property was introduced by Thouvenot, who asked whether it holds for all ergodic automorphisms.

This paper proves that it does. The proof actually gives a more general result. Firstly, it gives a relative version: any
factor map from one ergodic automorphism to another can be enlarged by arbitrarily little entropy to become relatively
Bernoulli. Secondly, using some facts about relative orbit equivalence, the analogous result holds for all free and ergodic
measure-preserving actions of a countable amenable group.

The key to this work is a new result about measure concentration. Suppose now that μ is a probability measure
on a finite product space An, and endow this space with its Hamming metric. We prove that μ may be represented as
a mixture of other measures in which (i) most of the weight in the mixture is on measures that exhibit a strong kind of
concentration, and (ii) the number of summands is bounded in terms of the difference between the Shannon entropy of μ
and the combined Shannon entropies of its marginals.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Background on kernels, entropy, and mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3. Total correlation and dual total correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Background on metrics and measure transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5. Preliminaries on measure concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6. A relative of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7. Completed proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8. Proof of Theorem C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9. A reformulation: extremality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10. Background on relative entropy in ergodic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
11. Relative finite determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
12. Relative extremality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
13. From extremality to finite determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
14. A quantitative step towards Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
15. Completed proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
16. Some known consequences and open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

1. Introduction

The weak Pinsker property. — In this paper, a measure-preserving system or
automorphism consists of (i) a standard probability space (X,μ) and (ii) a measurable
and μ-preserving transformation T : X −→ X with a measurable inverse. We write BX

for the σ -algebra of X when it is needed.
One of the most fundamental invariants of an automorphism is its entropy. Kol-

mogorov and Sinai first brought the notion of entropy to bear on questions of ergodic the-
ory in [45, 46, 92]. They showed that Shannon’s entropy rate for stationary, finite-state
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stochastic processes is monotone under factor maps of processes, and deduced several
new non-isomorphism results, most famously among Bernoulli shifts.

In [93], Sinai proved a result about entropy and ergodic theory of a different na-
ture. He showed that any ergodic automorphism (X,μ,T) of positive entropy h admits
factor maps onto any Bernoulli shift of entropy at most h. This marked a turn in entropy
theory towards synthetic results, which deduce the existence of an isomorphism or factor
map from some modest assumption about invariants, such as Sinai’s inequality between
entropies. These synthetic results are generally much more delicate. They produce maps
between systems using complicated combinatorics and analysis, and the maps that result
are rarely canonical.

The most famous result of this kind is Ornstein’s theorem [67, 68], which shows
that two Bernoulli shifts of equal (finite or infinite) entropy are isomorphic. Together with
Kolmogorov and Sinai’s original entropy calculations, this completes the classification of
Bernoulli shifts up to isomorphism.

The real heart of Ornstein’s work goes far beyond Bernoulli shifts: it provides nec-
essary and sufficient conditions for an arbitrary stationary process to be isomorphic to
a Bernoulli shift. A careful introduction to this sophisticated theory can be found in the
contemporary monographs [90] and [73]. An intuitive discussion without many proofs
can be found in [69], and the historical account in [41] puts Ornstein’s work in a broader
context. Finally, the survey [107] collects statements and references for much of the more
recent work in this area.

Since Ornstein’s original work, several other necessary and sufficient conditions
for Bernoullicity have also been explored, with far-reaching consequences for the clas-
sification of automorphisms. On the one hand, many well-known systems turn out to
be isomorphic to Bernoulli shifts: see, for instance, [107, Section 6] and the references
given there. On the other hand, many examples can be constructed that are distinct from
Bernoulli shifts, in spite of having related properties such as being K-automorphisms [37,
70, 75].

In particular, the subsequent non-isomorphism results included counterexam-
ples [71, 72] to an early, ambitious conjecture of Pinsker [79]. Let us say that a system
(X,μ,T) splits into two of its factors (Y, ν,S) and (Y′, ν ′,S′) if there is an isomorphism

(X,μ,T) −→ (Y × Y′, ν × ν ′,S × S′).

Such an isomorphism is called a splitting. Pinsker’s conjecture asserted that every er-
godic automorphism splits into a factor of entropy zero and a K-automorphism. Even af-
ter Ornstein found his counterexamples, the class of systems with this structure attracted
considerable interest. Of particular importance is the subclass of systems that split into a
zero-entropy factor and a Bernoulli factor.

In general, if

π : (X,μ,T) −→ (Y, ν,S)
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is a factor map of automorphisms, then (X,μ,T) is relatively Bernoulli over π if
there are a Bernoulli system B and a factor map ϕ : (X,μ,T) −→ B such that the com-
bined map x �→ (π(x), ϕ(x)) is a splitting. Since we restrict attention to standard prob-
ability spaces, it is equivalent to require that (i) π and ϕ are independent maps on the
probability space (X,μ) and (ii) π and ϕ together generate BX modulo the μ-negligible
sets.

The study of systems that split into zero-entropy and Bernoulli factors led Thou-
venot to develop a ‘relative’ version of Ornstein’s conditions for Bernoullicity [104, 105].
Then, in [106], he proposed a replacement for the structure in Pinsker’s conjecture. Ac-
cording to Thouvenot, an automorphism has the weak Pinsker property if for every
ε > 0 it has a splitting into a Bernoulli shift and a system of entropy less than ε. In the
Introduction to [106], Thouvenot wrote,

‘The meaning of this definition is that the “structure” of these systems lies
in factors of arbitrarily small entropy and that their randomness is essentially
driven by a Bernoulli process.’

Although Pinsker’s conjecture and the weak Pinsker property are very close, it is
worth being aware of the following important difference. If an ergodic automorphism has
a splitting as in Pinsker’s conjecture, then the zero-entropy factor is essentially unique:
it must generate the Pinsker σ -algebra of the original automorphism. However, there
is nothing canonical about the splittings promised by the weak Pinsker property. This
is illustrated very clearly by a result of Kalikow [35]. For a well-known example of a
non-Bernoulli K-automorphism, he exhibits two splittings, each into a Bernoulli and a
non-Bernoulli factor, such that the σ -algebras generated by the two non-Bernoulli factors
have trivial intersection.

In this paper we prove that all ergodic automorphisms have the weak Pinsker prop-
erty. Our proof actually gives a generalization of this fact, formulated relative to another
fixed factor of the automorphism.

Theorem A. — Let π : (X,μ,T) −→ (Y, ν,S) be a factor map of ergodic automorphisms.

For every ε > 0, this map admits a factorization

(X,μ,T)
π

π1

(Y, ν,S)

(˜Y, ν̃,˜S)

π2

in which (X,μ,T) is relatively Bernoulli over π1 and (˜Y, ν̃,˜S) has relative entropy less than ε over

π2.
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In fact, our method naturally yields an even more general result: the extension
of Theorem A to free and ergodic measure-preserving actions of arbitrary countable
amenable groups. This is Theorem 15.1 below. In our approach this requires essentially
no more work than Theorem A, because even for Theorem A we appeal to some relative
orbit equivalence theory which applies equally easily to any free amenable group action.

By a result of Fieldsteel [21], Theorem A also implies the weak Pinsker property
for flows; we discuss this further in Subsection 16.3.

Measure concentration. — Within ergodic theory, the proof of Theorem A requires
a careful use of Thouvenot’s relative Ornstein theory. Some of the elements we need
have apparently not been published before, but they are quite natural extensions of well-
known results. We state and prove these results carefully where we use them below, but
they should not be thought of as really new.

The main innovations of this paper are results in discrete probability, and do not
mention ergodic theory at all. They concern the important phenomenon of measure con-
centration. This phenomenon is already implicitly used in Ornstein’s original work. Its
role in ergodic theory is made clearer by results of Marton and Shields [61], who call
it the ‘blowing up property’. (Also, see Section 12 for some older references in Ornstein
theory about the related notion of ‘extremality’.) Measure concentration has other im-
portant applications across probability theory [97, 99, 114], geometry [27, Chapter 3 1

2 ],
and Banach space theory [66].

Let A be a finite alphabet. We study the Cartesian product spaces An for large n,
endowed with the normalized Hamming metrics dn (see Subsection 4.1). On the set of
all probability measures Prob(An), let dn be the transportation metric arising from dn (see
Subsection 4.2). We focus on a specific form of measure concentration expressed by a
transportation inequality. Given μ ∈ Prob(An) and also parameters κ > 0 and r > 0, we
say μ satisfies the inequality T(κ, r) if the following holds for any other ν ∈ Prob(An):

dn(ν,μ) ≤ 1
κ

D(ν ‖μ) + r,

where D denotes Kullback–Leibler divergence. Such inequalities are introduced more
carefully and generally in Section 5.

Inequalities of roughly this kind go back to works of Marton about product mea-
sures, starting with [57]. See also [100] for related results in Euclidean spaces. To see
how T(κ, r) implies concentration in the older sense of Lévy, consider a measurable sub-
set U ⊆ An with μ(U) ≥ 1/2, and apply T(κ, r) to the measure ν := μ( · |U). The result
is the bound

dn(μ( · |U), μ) ≤ 1
κ

D(μ( · |U)‖μ) + r ≤ log 2
κ

+ r.
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If κ is large and r is small, then it follows that dn(μ( · |U), μ) is small. This means that
there is a coupling λ of μ( · |U) and μ for which the integral

∫

dn(a,a′) λ(da,da′)

is small. By Markov’s inequality, this λ must mostly be supported on pairs of strings (a,a′)
that are close in dn. Since the first marginal of λ is supported on U, and the second is the
whole of μ, this is possible only if some small Hamming-neighbourhood of U has almost
full measure according to μ.

Marton’s original paper contains a more complete discussion of the relation be-
tween transportation inequalities and more traditional notions of measure concentration
on metric spaces. Their basic connection to Ornstein theory is discussed in [61].

Our first new result about concentration asserts that an arbitrary probability mea-
sure μ on An can be represented as a mixture of other measures, most of which do satisfy
a good transportation inequality, and with the number of summands controlled in terms
of a quantity that indicates how much μ differs from being a product measure.

Theorem B. — For any ε, r > 0 there exists c > 0 such that the following holds. Let μ ∈
Prob(An), let μ{i} ∈ Prob(A) be its marginals for i = 1,2, . . . , n, and set

(1) E :=
n

∑

i=1

H(μ{i}) − H(μ).

Then μ may be written as a mixture

(2) μ = p1μ1 + · · · + pmμm

so that

(a) m ≤ cecE,

(b) p1 < ε, and

(c) the measure μj satisfies T(rn/1200, r) for every j = 2,3, . . . ,m.

The constant 1200 appearing here is presumably far from optimal, but I have not
tried to improve it.

Beware that the inequality T(κ, r) gets stronger as κ increases or r decreases, and so
knowing T(rn/1200, r) for one particular value of r > 0 does not imply it for any other
value of r, larger or smaller.

The constant c provided by Theorem B depends on ε and r, but not on the al-
phabet A. In fact, if we allow c to depend on A, then Theorem B is easily subsumed by
simpler results. To see this we must consider two cases. On the one hand, Marton’s con-
centration result for product measures (see Proposition 5.2 below) gives a small constant
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α depending on r such that, if E < αn, then μ itself is close in dn to the product of its
marginals. Using this, one can find a subset U ⊆ An with μ(U) close to 1 and such that
μ( · |U) is highly concentrated: see Proposition 5.9 below for a precise statement. So in
case E < αn, we can obtain Theorem B with the small error term plus only one highly
concentrated term. On the other hand, if E ≥ αn, then the partition of An into singletons

has only

|A|n = elog |A|n ≤ e
log |A|

α
E

parts. This bound has the form of (a) above if we allow c to be log |A|/α, and point masses
are certainly highly concentrated. In view of these two arguments, Theorem B is useful
only when |A| is large in terms of ε, r and E. That turns out to be the crucial case for our
application to ergodic theory.

Once Theorem B is proved, we also prove the following variant.

Theorem C. — For any ε, r > 0 there exist c > 0 and κ > 0 such that, for any alphabet A,

the following holds for all sufficiently large n. Let μ ∈ Prob(An), and let E be as in (1). Then there is

a partition

An = U1 ∪ · · · ∪ Um

such that

(a) m ≤ cecE,

(b) μ(U1) < ε, and

(c) μ(Uj) > 0 and the conditioned measure μ( · |Uj) satisfies T(κn, r) for every j =
2,3, . . . ,m.

Qualitatively, this is stronger than Theorem B: one recovers the qualitative result
of Theorem B by letting pj = μ(Uj) and μj = μ( · |Uj) for each j. As in Theorem B, the
proof gives a value for κ which is a small constant multiple of r, but this time we have
not recorded the precise constant in the statement. Also, the statement of Theorem C
requires that n be sufficiently large in terms of ε, r and A, but I do not know whether the
dependence on A is really needed.

Theorem C is proved using Theorem B in Section 8. The key idea is a random
partitioning procedure which can be used to turn the mixture from Theorem B into a
suitable partition.

Theorem C is the key to our proof of Theorem A. In that proof, Theorem C is
applied repeatedly for smaller and smaller values of r (and with different choices of A
and n each time), and the resulting partitions are then combined into a construction of
the new factor π1 of Theorem A. In fact, for this application it suffices to know a special
case of Theorem C which has a shorter proof, because in the ergodic theoretic setting
some relevant extra hypotheses can be obtained from the Shannon–McMillan theorem.
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However, we choose to prove and then cite the full strength of Theorem C. We do so
both for the sake of greater generality and because it reduces the complexity of the proof
of Theorem A.

In Theorems B and C, the starting hypothesis is a bound on the difference of
entropies in (1). The use of this particular quantity underlies the application to proving
Theorem A, because we are able to control this quantity in the ergodic theoretic setting.
This control is a simple consequence of the fact that, in a stationary stochastic process, the
normalized Shannon entropies of long finite strings converge to the limiting entropy rate
of the process. The resulting link from Theorem C to Theorem A is explained in Step
2 of the construction in Subsection 14.1, and specifically by Lemma 14.4. That specific
explanation can largely be appreciated before reading the rest of the paper, although the
rest of Subsection 14.1 requires more preparation.

The proof of Theorem B is not constructive. It gives no reason to expect that the
summands in the resulting mixture are unique, even approximately. The same applies to
the partition produced by Theorem C. This issue may reflect the fact that the splittings
promised by the weak Pinsker property are not at all canonical. However, I do not know
of concrete examples of measures μ on An for which one can prove that several decom-
positions as in Theorem B are possible, none of them in any way ‘better’ than the others.
It would be worthwhile to understand this issue more completely.

For our application of these decomposition results to ergodic theory it suffices to
let ε = r. However, the statements and proofs of these results are clearer if the roles of
these two tolerances are kept separate.

Structure and randomness. — Theorems B and C bear a resemblance to some key
structural results in extremal and additive combinatorics. They may be regarded as
‘rough classifications’ of measures on An, in the sense proposed by Gowers in [25]. Al-
though Gowers’ principal examples come from those branches of combinatorics, he sug-
gests that rough classifications should be useful across large parts of mathematics: see his
Subsection 3.8. Theorems B and C are examples in a new setting.

Let us discuss this further for Theorem B. Theorem B expresses an arbitrary mea-
sure on An as a mixture of other measures, not too many in number, and most of them
highly concentrated. We may fit this description into the following terms:

– A kind of ‘structure’ which has controlled ‘complexity’. A suitable indication of
this ‘complexity’ is the number of summands in the mixture (2).

– A kind of ‘randomness’ relative to that structure. In this case measure concen-
tration plays the part of randomness: most of the weight in (2) is on measures
μi that exhibit strong concentration. It is natural to regard concentration as a
manifestation of ‘randomness’ because product measures — the ‘most random’
of all — are very highly concentrated.

To a first approximation, we can identify these notions of ‘structure’ and ‘random-
ness’ with the terms that Thouvenot used to describe the meaning of the weak Pinsker
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property in the sentence from [106] cited above. Put very roughly, the small number
of summands in (2) turns into the smallness of the relative entropy h(̃ν,˜S |π2) in The-
orem A. (This description ignores several extra constructions and arguments that are
needed before the proof of Theorem A is complete, but they are not of the same order of
magnitude as Theorem B itself.)

A few years after Gowers’ paper, Tao’s ICM address [102] emphasized that a di-
chotomy between ‘structure’ and ‘randomness’ can be found in all the different proofs of
Szemerédi’s theorem (one of the highlights of additive combinatorics). Tao describes how
this dichotomy reappears in related work in ergodic theory and harmonic analysis. The
flavour of ergodic theory in Tao’s paper is different from ours: he refers to the theory that
originates in Furstenberg’s multiple recurrence theorem [22], which makes no mention
of Kolmogorov–Sinai entropy. However, the carrier of ergodic theoretic ‘structure’ is the
same in both settings: a special factor (distal in Furstenberg’s work, low-entropy in ours)
relative to which the original automorphism exhibits some kind of ‘randomness’ (relative
weak mixing, respectively relative Bernoullicity). Thus, independently and after an inter-
val of thirty years, Tao’s identification of this useful dichotomy aligns with Thouvenot’s
description of the weak Pinsker property cited above.

The parallel with parts of extremal and additive combinatorics resurfaces inside
the proof of Theorem B. In the most substantial step of that proof, the representation of
μ as a mixture is obtained by a ‘decrement’ argument in a certain quantity that describes
how far μ is from being a product measure. (The ‘decrement’ argument does not quite
produce the mixture in (2)—some secondary processing is still required.) This proof is
inspired by the ‘energy increment’ proof Szemerédi’s regularity lemma and various sim-
ilar proofs in additive combinatorics. Indeed, one of the main innovations of the present
paper is finding the right quantity in which to seek a suitable decrement. It turns out to
be the ‘dual total correlation’, a classical measure of multi-variate mutual information
(see Section 3). We revisit the comparison with Szemerédi’s regularity lemma at the end
of Subsection 6.1.

Outline of the rest of the paper. — Part I (Sections 2–9) begins with background on
Shannon entropy and related quantities, metric probability spaces, and measure concen-
tration. Then the bulk of this part is given to the proofs of Theorems B and C. The final
section in this part, Section 9, introduces ‘extremality’, a different notion of concentra-
tion which is more convenient for applications to ergodic theory. However, none of Part I
itself involves any ergodic theory, and this part may be relevant to other applications
in metric geometry or probability. Section 9 is logically independent from the proofs of
Theorems B and C.

Part II (Sections 10–13) gives a partial account of Thouvenot’s relative Ornstein
theory, tailored to the specific needs of the proof of Theorem A. This part makes no men-
tion of Theorems B or C. Its only reliance on Part I is for some of the general machinery
in Section 9.
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Finally, Part III (Sections 14–16) completes the proof of Theorem A and its gener-
alization to countable amenable groups, and collects some consequences and remaining
open questions. In this part we draw together the threads from Parts I and II. In particu-
lar, the relevance of Theorem C to proving Theorem A is explained in Section 14.

Part I
MEASURES ON FINITE CARTESIAN PRODUCTS

2. Background on kernels, entropy, and mutual information

We write Prob(X) for the set of all probability measures on a standard measurable
space X. We mostly use this notation when X is a finite set. In that case, given μ ∈
Prob(X) and x ∈ X, we often write μ(x) instead of μ({x}).

2.1. Kernels, joint distributions, and fuzzy partitions. — Let 
 and X be two measurable
spaces with X standard. A kernel from 
 to X is a measurable function ω �→ μω from 


to the set Prob(X), where the latter is given its usual measurable structure (generated, for
instance, by the vague topology resulting from any choice of compact metric on X which
generates BX). We often denote such a kernel by μ•. Kernels arise as regular conditional
distributions in probability theory; we meet many such cases below.

Suppose in addition that P is a probability measure on 
. Then P and μ• together
define a probability measure on 
 × X with its product σ -algebra, given formally by the
integral

∫




δω × μω P(dω).

See, for instance, [17, Theorem 10.2.1] for the rigorous construction. We denote this new
measure by P � μ•. Following some information theorists, we refer to it as the hookup
of P and μ•. It is a coupling of P with the averaged measure

(3) μ =
∫




μω P(dω).

Such an average of the measures in a kernel is called a mixture. Often we start with the
measure μ and then consider ways to express it as a mixture. If 
 and μ are non-trivial
then there are many ways to do this. Once an expression as in (3) has been chosen, we may
also consider a pair of random variables (ζ, ξ) whose joint distribution is P � μ•. Then
ξ by itself has distribution μ. Loosely motivated by terminology in [20, Section II.5], we
call such a pair of random variables a randomization of the mixture.
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Now consider a standard probability space (X,μ) and a measurable function ρ :
X −→ [0,∞) satisfying

0 <

∫

ρ dμ < ∞.

Then we define

μ|ρ := ρ
∫

ρ dμ
· μ.

Similarly, if U ⊆ X has positive measure, then we often write

μ|U := μ( · |U).

A fuzzy partition on X is a finite tuple (ρ1, . . . , ρk) of measurable functions from
X to [0,1] satisfying

(4) ρ1 + ρ2 + · · · + ρk = 1.

This is more conventionally called a ‘partition of unity’, but in the present setting I feel
‘fuzzy partition’ is less easily confused with partitions that consist of sets. If P1, . . . , Pk

are a partition of X into measurable subsets, then they give rise to the fuzzy partition
(1P1, . . . ,1Pk

), which has the special property of consisting of indicator functions.
A fuzzy partition (ρ1, . . . , ρk) gives rise to a decomposition of μ into other mea-

sures:

μ = ρ1 · μ + · · · + ρk · μ.

We may also write this as a mixture

(5) p1 · μ1 + · · · + pk · μk

by letting pi := ∫

ρi dμ and μj := μ|ρj
, where terms for which pi = 0 are interpreted as

zero.
The stochastic vector p := (p1, p2, . . . , pk) may be regarded as a probability dis-

tribution on {1,2, . . . , k}, and the family (μj)
k
j=1 may be regarded as a kernel from

{1,2, . . . , k} to X. We may therefore construct the hookup p � μ•. This hookup has a
simple formula in terms of the fuzzy partition:

(p � μ•)({j} × A) =
∫

A
ρj dμ for 1 ≤ j ≤ k and measurable A ⊆ X.

One can also reverse the roles of X and {1,2, . . . , k} here, and regard p � μ• as the
hookup of μ to the kernel

x �→ (ρ1(x), . . . , ρk(x))

from X to Prob({1,2, . . . , k}): the fact that this is a kernel is precisely (4).
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2.2. Entropy and mutual information. — If ξ and ζ are finite-valued random vari-
ables on a probability space (
,F ,P), then H(ξ), H(ξ | ζ ) denote Shannon entropy
and conditional Shannon entropy, respectively. We also use the notation H(μ) for the
Shannon entropy of a probability distribution μ on a finite set. We assume familiarity
with the basic properties of entropy, particularly the chain rule. A standard exposition
is [11, Chapter 2].

More generally, one can define the conditional entropy H(ξ |G ) whenever ξ is a
finite-valued random variable and G is a σ -subalgebra of F . To write it in terms of
unconditional entropy, let ω �→ μω be a conditional distribution for ξ given G . Then we
have

(6) H(ξ |G ) =
∫

H(μω)P(dω).

See, for instance, [5, Section 12].
If F ∈ F has P(F) > 0, then we sometimes use the notation

(7) H(ξ |F) := HP( · |F)(ξ) and H(ξ | ζ ;F) := HP( · |F)(ξ | ζ ).

For a fixed alphabet A, Shannon’s entropy function H is concave on Prob(A). The
next inequality gives a useful way to reverse this concavity, up to an additional error term.

Lemma 2.1. — Consider a finite mixture

μ = p1μ1 + · · · + pkμk

of probability measures on a finite set A. Then

H(μ) ≤
k

∑

j=1

pjH(μj) + H(p1, . . . , pk).

Proof. — Let (ζ, ξ) be a randomization of the mixture, so this random pair takes
values in {1,2, . . . , k} × A. Then ζ and ξ have marginal distributions (p1, . . . , pk) and μ,
respectively. Now monotonicity of H and the chain rule give

H(μ) = H(ξ) ≤ H(ζ, ξ) = H(ξ | ζ ) + H(ζ )

=
k

∑

j=1

pjH(μj) + H(p1, . . . , pk).
�

In addition to entropy and conditional entropy, we make essential use of two other
related quantities: mutual information, and Kullback–Leibler (‘KL’) divergence. These
are also standard in information theory, but appear less often in ergodic theory. For finite-
valued random variables they are introduced alongside entropy in [11, Chapter 2].
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If ξ and ζ are finite-valued, then their mutual information is

I(ξ ; ζ ) := H(ξ) − H(ξ | ζ ).

An exercise in the chain rule gives the alternative formula

I(ξ ; ζ ) = H(ξ) + H(ζ ) − H(ξ, ζ ).

From this it follows that I(ξ ; ζ ) is symmetric in ξ and ζ . We define a conditional mutual
information such as I(ξ ; ζ |F) or I(ξ ; ζ |α) by conditioning all the entropies in the for-
mulae above on the set F or random variable α. Mutual information and its conditional
version satisfy their own chain rule, similar to that for entropy: see, for instance, [11,
Theorem 2.5.2].

KL divergence is a way of comparing two probability measures, say μ and ν, on
the same measurable space X. The KL divergence of ν with respect to μ is +∞ unless ν

is absolutely continuous with respect to μ. In that case it is given by

(8) D(ν ‖μ) :=
∫

dν

dμ
log

dν

dμ
dμ =

∫

log
dν

dμ
dν.

This may still be +∞, since dν

dμ
log dν

dμ
need not lie in L1(μ). Since the function t �→ t log t

is strictly convex, Jensen’s inequality gives that D(ν ‖μ) ≥ 0, with equality if and only if
dν/dμ = 1, hence if and only if ν = μ.

KL divergence appears in various elementary but valuable formulae for condi-
tional entropy and mutual information. Let the random variables ζ and ξ take values
in the finite sets A and B. Let μ ∈ Prob(A), ν ∈ Prob(B), and λ ∈ Prob(A × B) be the
distribution of ζ , of ξ , and of the pair (ζ, ξ) respectively. Then a standard calculation
gives

(9) I(ξ ; ζ ) = D(λ‖μ × ν).

The next calculation is also routine, but we include a proof for completeness.

Lemma 2.2. — Let (
,F ,P) be a probability space and let X be a finite set. Let ξ :

 −→ X be measurable and let μ be its distribution. Let G ⊆ H be σ -subalgebras of F , and let

μ• and ν• be conditional distributions of ξ given G and H , respectively. Then

H(ξ |G ) − H(ξ |H ) =
∫

D(νω ‖μω) P(dω).

In particular, applying this with G trivial, we have

H(ξ) − H(ξ |H ) =
∫

D(νω ‖μ) P(dω).



MEASURE CONCENTRATION AND THE WEAK PINSKER PROPERTY 13

Proof. — Since X is finite, the definition of KL divergence gives
∫

D(νω ‖μω) P(dω) =
∫

∑

x∈X

νω(x) log
νω(x)

μω(x)
P(dω)

=
∫

∑

x∈X

νω(x) logνω(x) P(dω) −
∫

∑

x∈X

νω(x) logμω(x) P(dω).

For each x ∈ X we have

νω(x) = P({ξ = x} |H )(ω) and μω(x) = P({ξ = x} |G )(ω) P-a.s.

Therefore, by the tower property of conditional expectation, for each fixed x ∈ X the
function μω(x) is a conditional expectation of νω(x) onto G . Using this in the second
integral above, that formula becomes

∫

∑

x∈X

νω(x) logνω(x) P(dω) −
∫

∑

x∈X

μω(x) logμω(x) P(dω).

This equals [−H(ξ |H ) + H(ξ |G )], by (6). �

Now consider a fuzzy partition (ρ1, . . . , ρk) on a finite set X and the associated
mixture (5). Let (ζ, ξ) be a randomization of this mixture. We define

(10) Iμ(ρ1, . . . , ρk) := I(ξ ; ζ ).

This notion of mutual information for a measure and a fuzzy partition plays a central
role later in Part I. Using Lemma 2.2 it may be evaluated as follows.

Corollary 2.3. — With μ and (ρ1, . . . , ρk) as above, we have

Iμ(ρ1, . . . , ρk) =
k

∑

j=1

pj · D(μ|ρj
‖μ), where pj :=

∫

ρj dμ.

Proof. — Let (ζ, ξ) be the randomization above, and apply the second formula of
Lemma 2.2 with H the σ -algebra generated by ζ . The result follows because μ|ρj

is the
conditional distribution of ξ given the event {ζ = j}, and because

Iμ(ρ1, . . . , ρk) = I(ξ ; ζ ) = H(ξ) − H(ξ | ζ ).

�

It is also useful to have a version of the chain rule for mutual information in terms
of fuzzy partitions. To explain this, let us consider two fuzzy partitions (ρi)

k
i=1 and (ρ ′

j )
�
j=1

on a finite set X, and assume there is a partition

{1,2, . . . , �} = J1 ∪ J2 ∪ · · · ∪ Jk
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into nonempty subsets such that

(11) ρi =
∑

j∈Ji

ρ ′
j for i = 1,2, . . . , k.

This is a natural generalization of the notion of refinement for partitions consisting of
sets. However, beware that for a general pair of fuzzy partitions there may be several
ways to partition {1,2, . . . , �} into k subsets so that (11) holds.

From (11), it follows that the tuple of ratios

(12)
(ρ ′

j

ρi

)

j∈Ji

define a new fuzzy partition for each 1 ≤ i ≤ k. To be precise, these ratios are defined
only on the set {ρi > 0}. Outside that set, each ρ ′

j for j ∈ Ji is also zero, by (11). We extend
the new fuzzy partition (12) arbitrarily to the set {ρi = 0}.

Let (ζ, ξ) be a randomization of the mixture obtained from μ and (ρ ′
j )

�
j=1. This

means that (ζ, ξ) are a random pair in {1,2, . . . , �} × X, and their joint distribution is
given by a hookup of the kind constructed at the end of the previous subsection. Define
a third random variable ζ taking values in {1,2, . . . , k} by setting

ζ = i when ζ ∈ Ji.

The pair (ζ , ξ) may be regarded as a ‘coarsening’ of (ζ, ξ) in the first entry. From the
relation (11) it follows that the pair (ζ , ξ) are a randomization of the mixture obtained
from μ and (ρi)

k
i=1. Similarly, if we condition on the event {ζ = i}, then (ζ, ξ) become a

randomization of the mixture obtained from μ|ρi
and the new fuzzy partition (12). Since

the set {ρi = 0} is negligible according to μ|ρi
, our choice of extension of (12) to this set is

unimportant.
Now we can simply write out the chain rule

I(ξ ; ζ ) = I(ξ ; ζ ) + I(ξ ; ζ | ζ )

(see [11, Theorem 2.5.2]) in terms of all these fuzzy partitions. The result is

(13) Iμ(ρ ′
1, . . . , ρ

′
�) = Iμ(ρ1, . . . , ρk) +

k
∑

i=1

(

∫

ρi dμ
)

· Iμ|ρi

((ρ ′
j

ρi

)

j∈Ji

)

.

An immediate corollary is worth noting in itself: whenever there is a partition J1, . . . , Jk

of {1,2, . . . , �} for which (11) holds, we must have

(14) Iμ(ρ ′
1, . . . , ρ

′
�) ≥ Iμ(ρ1, . . . , ρk).
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Remark. — KL divergence is defined for pairs of measures on general measurable
spaces. As a result, we may use (9) to extend the definition of mutual information to gen-
eral pairs of random variables, not necessarily discrete. The basic properties of mutual
information still hold, with proofs that require only small adjustments. Mutual infor-
mation is already defined and studied this way in the original reference [50]. See [80,
Section 2.1] for a comparison with other definitions at this level of generality.

The main theorems of the present paper do not need this extra generality, but KL
divergence is central to the background ideas in Section 5 below, where the more general
setting is appropriate.

2.3. A classical variational principle. — Let (X,μ) be a probability space and let f ∈
L∞(μ). Let 〈·〉 denote integration with respect to μ, and let

Mμ(f ) := 〈ef 〉 and Cμ(f ) := log Mμ(f ).

Regarding f as a random variable, the functions of t ∈ R given by Mμ(tf ) and Cμ(tf ) are
its moment generating function and cumulant generating function, respectively.

Definition 2.4. — For any μ and f as above, the associated Gibbs measure is the proba-

bility measure

μ|ef = ef

〈ef 〉 · μ.

Note that the normalizing constant in this definition is equal to Mμ(f ).
The importance of Gibbs measures derives from the following classical variational

principle. It is essentially Gibbs’ own principle from his work on the foundations of statis-
tical physics, phrased in modern, abstract terms. Rigorous mathematical treatments go
back at least to Kullback’s work [48] in information theory and Sanov’s [88] on large
deviations. We include the short proof for completeness, since we need the result at one
point in Subsection 5.3 below. Closely related results appear in [11, Theorem 12.1.1 and
Problem 12.2].

Lemma 2.5. — For μ and f as above, the function of ν ∈ Prob(X) given by the expression

D(ν ‖μ) −
∫

f dν

achieves its unique minimum at ν = μ|ef , where it is equal to −Cμ(f ).

Proof. — If ν is not absolutely continuous with respect to μ, then D(ν ‖μ) = +∞,
and therefore ν is not a candidate for minimizing the expression in question. So suppose
that ν is absolutely continuous with respect to μ.
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Since μ and μ|ef are mutually absolutely continuous, ν is also absolutely continu-
ous with respect to μ|ef . Let ρ be the Radon–Nikodym derivative dν/dμ|ef . Then

dν

dμ
= ρ · ef

〈ef 〉 ,

where 〈·〉 denotes integration with respect to μ, as before. Substituting this into the defi-
nition of D(ν ‖μ), we obtain

D(ν ‖μ) =
∫

log
(

ρ
ef

〈ef 〉
)

dν

=
∫

logρ dν +
∫

f dν − log〈ef 〉

= D(ν ‖μ|ef ) +
∫

f dν − Cμ(f ).

Re-arranging, this becomes

D(ν ‖μ) −
∫

f dν = D(ν ‖μ|ef ) − Cμ(f ).

The term D(ν ‖μ|ef ) is non-negative, and zero if and only if ν = μ|ef . �

3. Total correlation and dual total correlation

Let ξ = (ξ1, . . . , ξn) be a tuple of finite-valued random variables on a probability
space (
,F ,P). If n = 2 then the mutual information I(ξ1 ; ξ2) provides a canonical
way to quantify the dependence between them. But this has no single generalization to
the cases n > 2. Rather, a range of options are available, suitable for different purposes.
Early studies of these options, and the many relations between them, include [64], [115]
and [31]. An idea of the breadth of these options can be obtained from [12] and the
references given there.

Two different quantities of this kind play crucial roles in this paper.

3.1. Total correlation. — A simple and natural choice for ‘multi-variate mutual in-
formation’ is the difference

n
∑

i=1

H(ξi) − H(ξ).

This is always non-negative by the subadditivity of Shannon entropy. It goes back at least
to Watanabe’s paper [115], so following him we call it the total correlation. It agrees
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with mutual information if n = 2. It depends only on the joint distribution μ of the tuple
ξ , so we may denote it by either TC(ξ) or TC(μ). This leaves the role of the n separate
coordinates to the reader’s understanding.

If A is a finite set and μ is a probability measure on An, then TC(μ) is precisely
the quantity E that appears in Theorems B and C. It is the key feature of such a finite-
dimensional distribution that we are able to control when we apply Theorem C during
the proof of Theorem A. This control is exerted in Subsection 14.1.

The total correlation of μ appears in various classical estimates of probability the-
ory and statistics. For instance, it is central to Csiszár’s approach to conditional limit
theorems for product measures [14], where it is the quantity that must be bounded to
prove convergence in information. In these applications it is often written in the alterna-
tive form

(15) TC(μ) = D(μ‖μ{1} × · · · × μ{n}),

where μ{i} is the ith marginal of μ on A. This equation for TC(μ) generalizes (9). The
generalization is easily proved by induction on n, applying (9) at each step.

Since total correlation is given by a difference of entropy values, it is neither convex
nor concave as a function of μ. However, we do have the following useful approximate
concavity.

Lemma 3.1. — Consider a finite mixture

μ = p1μ1 + p2μ2 + · · · + pkμk

of probability measures on An. Then

(16)
k

∑

j=1

pjTC(μj) ≤ TC(μ) + H(p1, . . . , pk).

Proof. — Let ξi : An −→ A be the ith coordinate projection for 1 ≤ i ≤ n. On the
one hand, the concavity of H gives

k
∑

j=1

pjHμj
(ξi) ≤ Hμ(ξi) for each i = 1,2, . . . , n.

On the other hand, Lemma 2.1 gives

k
∑

j=1

pjH(μj) ≥ H(μ) − H(p1, . . . , pk).

The desired result is a linear combination of these inequalities. �
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Corollary 3.2. — If μ is a probability measure on An, U ⊆ An, and μ(U) > 0, then

TC(μ|U) ≤ 1
μ(U)

(TC(μ) + log 2).

Proof. — Simply apply Lemma 3.1 to the decomposition

μ = μ(U) · μ|U + μ(An \ U) · μ|An\U,

then drop the term involving μ|An\U and recall that any two-set partition has entropy at
most log 2. �

A simple example shows that one cannot hope for any useful inequality that re-
verses (16).

Example 3.3. — For p ∈ [0,1], let νp be the p-biased distribution on {0,1}. Now let

μ := 1
2
(ν×n

p + ν×n
q )

for some distinct p and q. Then μ{i} = ν(p+q)/2 for each 1 ≤ i ≤ n, and so

TC(μ) = nH
(p + q

2
,1 − p + q

2

)

− H
(ν×n

p + ν×n
q

2

)

.

By Lemma 2.1, we have

(17) H
(ν×n

p + ν×n
q

2

)

≤ log 2 + H(p,1 − p)n + H(q,1 − q)n

2
.

Therefore

TC(μ) ≥
[

H
(p + q

2
,1 − p + q

2

)

− H(p,1 − p) + H(q,1 − q)

2

]

n − log 2.

This grows linearly with n, since p and q are distinct and H is strictly concave. But μ is an
average of just two product measures, each of which has total correlation zero.

3.2. Dual total correlation. — In this subsection we start to use the notation

[n] := {1,2, . . . , n}.
It reappears often later in the paper.

Our second multi-variate generalization of mutual information is the quantity

(18) H(ξ) −
n

∑

i=1

H(ξi | ξ[n]\i),
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where

ξ[n]\i := (ξ1, . . . , ξi−1, ξi+1, . . . , ξn).

When n = 2, this again agrees with the mutual information I(ξ1 ; ξ2). This generalization
seems to originate in Han’s paper [31], where it is called the dual total correlation.
Like total correlation, it depends only on the joint distribution μ of ξ . We denote it by
either DTC(ξ) or DTC(μ).

By applying the chain rule to the first term in (18) we obtain

DTC(ξ) =
n

∑

i=1

H(ξi | ξ1, . . . , ξi−1) −
n

∑

i=1

H(ξi | ξ[n]\i)

=
n

∑

i=1

[

H(ξi | ξ1, . . . , ξi−1) − H(ξi | ξ[n]\i)
]

.

All these terms are non-negative, since Shannon entropy cannot increase under extra
conditioning, so DTC ≥ 0.

The ergodic theoretic setting produces measures with control on their TC. The
relevance of DTC to our paper is less obvious. However, we find below that DTC(μ)

is more easily related than TC(μ) to concentration properties of μ. As a result, we first
prove an analog of Theorem B with DTC(μ) in place of TC(μ): Theorem 7.1 below. We
then convert this into Theorem B itself by showing that a bound on TC(μ) implies a re-
lated bound on DTC(μ′), where μ′ is a projection of μ onto a slightly lower-dimensional
product of copies of A: see Lemma 3.7 below. The first of these two stages is the more
subtle. It is based on a ‘decrement’ argument for dual total correlation, in which we show
that if μ fails to be concentrated then it may be written as a mixture of two other mea-
sures whose dual total correlations are strictly smaller on average. This special property
of DTC is the key to the whole proof, and it seems to have no analog for TC. This is why
we need the two separate stages described above.

Now suppose that ζ is another finite-valued random variable on the same proba-
bility space as the tuple ξ . Then the conditional dual total correlation of the tuple
ξ given ζ is obtained by conditioning all the Shannon entropies that appear in (18):

DTC(ξ | ζ ) := H(ξ | ζ ) −
n

∑

i=1

H(ξi | ξ[n]\i, ζ ).

Lemma 3.4. — In the setting above, we have

(19) DTC(ξ) − DTC(ξ | ζ ) = I(ξ ; ζ ) −
n

∑

i=1

I(ξi ; ζ | ξ[n]\i).
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Proof. — This follows from these standard identities:

H(ξ) − H(ξ | ζ ) = I(ξ ; ζ )

and

H(ξi | ξ[n]\i) − H(ξi | ξ[n]\i, ζ ) = I(ξi ; ζ | ξ[n]\i). �

We sometimes refer to the right-hand side of (19) as the DTC decrement associ-
ated to ξ and ζ . This quantity can actually take either sign, but it is positive in the cases
that we need later.

Remark. — For each i, another appeal to the chain rule gives

H(ξ) = H(ξ[n]\i) + H(ξi | ξ[n]\i).

Using this to substitute for H(ξi | ξ[n]\i) in DTC(ξ) and simplifying, we obtain

DTC(ξ) =
n

∑

i=1

H(ξ[n]\i) − (n − 1)H(ξ).

In this form, the non-negativity of DTC(ξ) is a special case of some classic inequalities
proved by Han in [32] (see also [11, Section 17.6]).

Han’s inequalities were part of an abstract study of non-negativity among various
multivariate generalizations of mutual information. Shearer proved an even more general
inequality at about the same time with a view towards combinatorial applications, which
then appeared in [9]. For any subset S = {i1, . . . , i�} ⊆ [n], let us write ξS = (ξi1, . . . , ξi�).
If S is a family of subsets of [n] with the property that every element of [n] lies in at least
k members of S , then Shearer’s inequality asserts that

(20)
∑

S∈S

H(ξS) ≥ kH(ξ).

A simple proof is given in the survey [81], together with several applications to combina-
torics.

When S consists of all subsets of [n] of size n − 1, the inequality (20) is just the
non-negativity of DTC. However, in principle one could use any family S and integer k

as above to define a kind of mutual information among the random variables ξ1, . . . , ξn:
simply use the gap between the two sides in (20).

I do not see any advantage to these other quantities over DTC for the purposes
of this paper. But in settings where the joint distribution of (ξ1, . . . , ξn) has some known
special structure, it could be worth exploring how that structure is detected by the right
choice of such a generalized mutual information, and what consequences it has for other
questions about those random variables.
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Remark. — The sum of conditional entropies that we subtract in (18) has its own
place in the information theory literature. Verdú and Weissman [110] call it the ‘era-
sure entropy’ of (ξ1, . . . , ξn), and use it to define the limiting erasure entropy rate of a
stationary ergodic source. They derive operational interpretations in connection with (i)
Gibbs sampling from a Markov random field and (ii) recovery of a signal passed through
a binary erasure channel in the limit of small erasure probability. Their paper also makes
use of the sum of conditional mutual informations that appears in the second right-hand
term in (19), which they call ‘erasure mutual information’. For this quantity they give an
operational interpretation in terms of the decrease in channel capacity due to sporadic
erasures of the channel outputs.

Concerning erasure entropy, see also Proposition 16.15 below.

3.3. The relationship between total correlation and dual total correlation. — Although
TC(μ) and DTC(μ) both quantify some kind of correlation among the coordinates un-
der μ, they can behave quite differently.

Example 3.5. — Let νp be the p-biased distribution on {0,1}, let p �= q, and let
μ = (ν×n

p + ν×n
q )/2, as in Example 3.3. In that example TC(μ) is at least c(p, q)n − log 2,

where

c(p, q) = H
(p + q

2
,1 − p + q

2

)

− H(p,1 − p) + H(q,1 − q)

2
> 0.

On the other hand, once n is large, the two measures ν
×(n−1)
p and ν×(n−1)

q are
very nearly disjoint. More precisely, there is a partition (U,Uc) of {0,1}n−1 such that
ν×(n−1)

q (U) and ν
×(n−1)
p (Uc) are both exponentially small in n. (Finding the best such par-

tition is an application of the classical Neyman–Pearson lemma in hypothesis testing [11,
Theorem 11.7.1].) It follows that μ{ξ[n−1] ∈ U} and μ{ξ[n−1] ∈ Uc} are both exponentially
close to 1/2. Using Bayes’ theorem and this partition, we obtain that the conditional dis-
tribution of ξi given the event {ξ[n]\i = z} is very close to νp if z ∈ U, and very close to νq

if z ∈ Uc. In both of these approximations the total variation of the error is exponentially
small in n. Therefore, re-using the estimate (17),

DTC(μ) = Hμ(ξ) −
n

∑

i=1

Hμ(ξi | ξ[n]\i)

≤ log 2 + H(p,1 − p)n + H(q,1 − q)n

2

− n · μ{ξ[n−1] ∈ U} · H(p,1 − p)

− n · μ{ξ[n−1] ∈ Uc} · H(q,1 − q) + O(ne−c′n)

≤ log 2 + O(ne−c′n)
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for some c′ > 0.
Thus, in this example, TC(μ) is larger than DTC(μ) by roughly a multiplicative

factor of n.

Example 3.6. — Let A := Z/qZ for some q, and let μ be the uniform distribution
on the subgroup

U := {(a1, . . . , an) ∈ An : a1 + · · · + an = 0}.
Let ξ = (ξ1, . . . , ξn) be the n-tuple of A-valued coordinate projections. Then

H(μ) = Hμ(ξ) = (n − 1) log q

and

Hμ(ξi) = log q for each i,

so

TC(μ) = log q.

On the other hand, given an element of U, any n − 1 of its coordinates determine the last
coordinate, and so

H(ξi | ξ[n]\i) = 0 for each i.

Therefore

DTC(μ) = (n − 1) log q.

In this example, DTC(μ) is larger than TC(μ) almost by a factor of n. In fact,
this example also achieves the largest possible DTC with an alphabet of size q, since one
always has

DTC(μ) = Hμ(ξ) −
n

∑

i=1

Hμ(ξi | ξ[n]\i)

= Hμ(ξ[n−1]) + Hμ(ξn | ξ[n−1]) −
n

∑

i=1

Hμ(ξi | ξ[n]\i)

= Hμ(ξ[n−1]) −
n−1
∑

i=1

Hμ(ξi | ξ[n]\i)

≤ Hμ(ξ[n−1])

≤ (n − 1) log q.
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As described in the previous subsection, our route to Theorem B goes through the
analogous theorem with DTC in place of TC: Theorem 7.1 below. After proving Theo-
rem 7.1, we need some estimate relating DTC and TC in order to deduce Theorem B.
Example 3.6 shows that this estimate cannot simply bound DTC by a multiple of TC,
since the factor of n which appears in that example is too large to lead to the correct
dependence in Theorem B, part (a).

The key here is that a much better bound on DTC by TC is available if we allow
ourselves to discard a few coordinates in An.

Lemma 3.7 (Discarding coordinates to control DTC using TC). — For any μ ∈ Prob(An)

and r > 0 there exists S ⊆ [n] with |S| ≥ (1 − r)n and such that

DTC(μS) ≤ r−1TC(μ).

Let ξ = (ξ1, . . . , ξn) have joint distribution μ. Beware that, on the left-hand side
of the inequality above, DTC(μS) refers to the dual total correlation among the smaller
family of random variabes (ξi)i∈S. In the proof below, we use DTC and TC for measures
on product spaces of several different dimensions.

Proof. — Let us write α := r−1TC(μ)/n for brevity.
By the definition of DTC and the subadditivity of H, we have

(21) DTC(μ) ≤
n

∑

i=1

[

H(ξi) − H(ξi | ξ[n]\i)
]

.

If the measure μ happens to satisfy H(ξi | ξ[n]\i) ≥ H(ξi) − α for every i, then (21) imme-
diately gives DTC(μ) ≤ αn.

So suppose there is an i1 ∈ [n] for which H(ξi1 | ξ[n]\i1) < H(ξi1) − α. Then that
failure and the chain rule give

TC(μ[n]\i1) =
(

∑

i∈[n]\i1

H(ξi)
)

− H(ξ[n]\i1)

=
(

∑

i∈[n]\i1

H(ξi)
)

− [

H(ξ) − H(ξi1 | ξ[n]\i1)
]

=
(

n
∑

i=1

H(ξi)
)

− H(ξ) − [

H(ξi1) − H(ξi1 | ξ[n]\i1)
]

< TC(μ) − α

for the projection μ[n]\i1 of μ to A[n]\i1 .
We can now repeat the argument above. If every i ∈ [n] \ i1 satisfies

H(ξi | ξ[n]\{i1,i}) ≥ H(ξi) − α,
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then the (n − 1)-dimensional analog of (21) gives DTC(μ[n]\i1) ≤ α(n − 1) ≤ αn, and we
select S := [n] \ i1. Otherwise, there is an i2 ∈ [n] \ i1 such that

H(ξi2) − H(ξi2 | ξ[n]\{i1,i2}) > α,

and then removing i2 leads to

TC(μ[n]\{i1,i2}) < TC(μ[n]\i1) − α < TC(μ) − 2α.

Since total correlations are non-negative, we cannot repeat this argument more
than k times, where k is the largest integer for which

TC(μ) − kα > 0.

From the definition of α, this amounts to k < rn. Thus, after removing at most this many
elements from [n], we are left with a subset S of [n] having both the required properties. �

Lemma 3.7 is nicely illustrated by Example 3.6. In that example, the projection
of μ to any n − 1 coordinates is a product measure, so the DTC of any such projection
collapses to zero.

In Subsection 7.2 we use Lemma 3.7 (together with Lemma 5.10 below) to finish
the deduction of Theorem B from Theorem 7.1.

4. Background on metrics and measure transportation

4.1. Normalized Hamming metrics. — For any finite set A and n ∈ N, the normal-
ized Hamming metric on An is defined by

(22) dn(a,a′) := |{i ∈ [n] : ai �= a′
i}|

n
,

where a = (a1, . . . , an), a′ = (a′
1, . . . , a′

n) ∈ An. All the metric spaces that appear in Parts
II and III have the form (An, dn) or some slight modification of it. We never use Hamming
metrics that are not normalized.

More generally, if (K, d) is any metric space, then Kn may be endowed with the
normalized Hamming average of copies of d , defined by

(23) dn(x,x′) := 1
n

n
∑

i=1

d(xi, x′
i) ∀x,x′ ∈ Kn.

We refer to this generalization occasionally in the sequel, but our main results concern
the special case (22).



MEASURE CONCENTRATION AND THE WEAK PINSKER PROPERTY 25

Remark. — In the alternative formula (15) for total correlation, the right-hand side
makes sense for a measure μ on Kn for any measurable space K. This suggests an exten-
sion of Theorem B to measures μ on (Kn, dn), where (K, d) is a compact metric space
and dn is as in (23). In fact, this generalization is easily obtained from Theorem B itself
by partitioning K into finitely many subsets of diameter at most δ, using this partition to
quantize the measure μ, and then letting δ −→ 0.

On the other hand, various steps in the proof of Theorem B are simpler in the dis-
crete case, particularly once we switch to arguing about DTC instead of TC. We therefore
leave this generalization of Theorem B aside.

4.2. Transportation metrics. — Let (K, d) be a compact metric space. Let Prob(K)

be the space of Borel probability measures on K, and endow it with the transportation
metric

d(μ, ν) := inf
{

∫

d(x, y) λ(dx,dy) : λ a coupling of μ and ν
}

.

Let Lip1(K) be the space of all 1-Lipschitz functions K −→ R. The transportation metric
is indeed a metric on Prob(K), and it generates the vague topology. See, for instance, [17,
Section 11.8].

The transportation metric has a long history, and is variously associated with the
names Monge, Kantorovich, Rubinstein, Wasserstein and others. Within ergodic theory,
the special case when (K, d) is a Hamming metric space (An, dn) is the finitary version of
Ornstein’s ‘d-bar’ metric, which Ornstein introduced independently in the course of his
study of isomorphisms between Bernoulli shifts. Here I have adopted a notation based on
that connection to ergodic theory. For a Hamming metric space (An, dn), the associated
transportation metric on Prob(An) is dn.

The transportation metric is closely related to many branches of geometry and to
the field of optimal transportation: see, for instance, [27, Section 3 1

2 .10], [23], and [54]
for more on these connections. Within ergodic theory, it has also been explored beyond
Ornstein’s original uses for it, particularly by Vershik and his co-workers [111–113].

The heart of the theory is the following dual characterization of this metric.

Theorem 4.1 Monge–Kantorovich–Rubinstein duality. — Any μ,ν ∈ Prob(K) satisfy

d(μ, ν) = sup
f ∈Lip1(K)

[

∫

f dν −
∫

f dμ
]

.

The precise statement of this result seems to originate in the papers [38–40];
see [17, Theorem 11.8.2] for a standard modern treatment.

One immediate consequence of Theorem 4.1 is that d(ν,μ) is always bounded
by 1

2‖ν − μ‖ times the diameter of (K, d). The following corollary improves this slightly,
giving a useful estimate for certain purposes later.



26 T. AUSTIN

Corollary 4.2. — Let μ,ν ∈ Prob(K), and let B1, . . . , Bm be a partition of K into Borel

subsets. Then

d(ν,μ) ≤
m

∑

i=1

μ(Bi) · diam(Bi) + 1
2

(
m

∑

i=1

|ν(Bi) − μ(Bi)|
)

· diam(K).

Proof. — Let f ∈ Lip1(K). For each i = 1,2, . . . ,m we have
∫

Bi

f dν −
∫

Bi

f dμ ≤ ν(Bi) · sup(f |Bi) − μ(Bi) · inf(f |Bi)

= μ(Bi) · (sup(f |Bi) − inf(f |Bi))

+ (ν(Bi) − μ(Bi)) · sup(f |Bi)

≤ μ(Bi) · diam(Bi) + |ν(Bi) − μ(Bi)| · ‖f ‖,
where ‖ · ‖ is the supremum norm. Summing over i, this gives

∫

f dν −
∫

f dμ ≤
m

∑

i=1

μ(Bi) · diam(Bi) +
m

∑

i=1

|ν(Bi) − μ(Bi)| · ‖f ‖.

Since ν(K) = μ(K) = 1, the left-hand side here is unchanged if we add any constant
value to f . We may therefore shift f by a constant so that ‖f ‖ ≤ 1

2diam(K). We complete
the proof by substituting this bound on ‖f ‖ above and then taking the supremum over
all f . �

To recover the bound by 1
2‖ν − μ‖diam(K) from this corollary, observe that if we

take B1, B2, . . . , Bm to be a partition into sets of very small diameter, then we can make
the first right-hand term in Corollary 4.2 as small as we please, and the second term is
still always bounded by 1

2‖ν − μ‖diam(K).
Here is another important estimate for our later purposes. It gives an upper bound

on the transportation distance from a measure on a product space to a product of two
other measures. It is well known, but we include a proof for commpleteness.

Lemma 4.3. — Let (K, dK) and (L, dL) be compact metric spaces, let 0 < α < 1, and let d

be the following metric on K × L:

(24) d((x, y), (x′, y′)) := αdK(x, x′) + (1 − α)dL(y, y′).

Let μ ∈ Prob(K), ν ∈ Prob(L) and λ ∈ Prob(K × L). Finally, let λK be the marginal of λ on K,

and let x �→ λL,x be a conditional distribution for the L-coordinate given the K-coordinate under λ.

Then

d(λ,μ × ν) ≤ αdK(λK,μ) + (1 − α)

∫

K
dL(λL,x, ν)λK(dx).
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Proof. — This can be proved directly from the definition or using Theorem 4.1.
The latter approach is slightly shorter.

Let f : K × L −→ R be 1-Lipschitz for the metric d . Define the function f :
K −→ R by

f (x) :=
∫

L
f (x, y) ν(dy).

From (24) it follows that the function f (x, ·) is (1−α)-Lipschitz on the metric space
(L, dL) for each fixed x ∈ K. Therefore

∫

L
[ f (x, y) − f (x)]λL,x(dy) =

∫

L
f (x, y) λL,x(dy) −

∫

L
f (x, y) ν(dy)

≤ (1 − α)dL(λL,x, ν).

Also, the function f satisfies

| f (x) − f (x′)| ≤
∫

L
| f (x, y) − f (x′, y)|ν(dy) ≤ αdK(x, x′) ∀x, x′ ∈ K,

so f is α-Lipschitz on (K, dK). Using the estimates above and Fubini’s theorem, we now
obtain

∫

K×L
f dλ −

∫

K×L
f d(μ × ν)

=
∫

K×L
f dλ −

∫

K
f dλK +

∫

K
f dλK −

∫

K
f dμ

=
∫

K

[

∫

L
[ f (x, y) − f (x)]λL,x(dy)

]

λK(dx) +
∫

K
f dλK −

∫

K
f dμ

≤ (1 − α)

∫

K
dL(λL,x, ν)λK(dx) + αdK(λK,μ).

Taking the supremum over f , Theorem 4.1 completes the proof. �

4.3. A first connection to total correlation. — The simple lemma below is needed only
for one example later in the paper, but it also begins to connect this section with the
previous ones.

Lemma 4.4. — Let ν ∈ Prob(A), let μ ∈ Prob(An), and let δ := dn(μ, ν×n). Then

TC(μ) ≤ 2
(

H(δ,1 − δ) + δ log |A|)n.
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Proof. — Regard the coordinates in An × An as a pair of copies of each of the
coordinates in An. For each i = 1,2, . . . , n, let ξi : An × An −→ A (respectively, ζi ) be
the projection to the first (respectively, second) copy of the ith coordinate in An. Let λ ∈
Prob(An × An) be a coupling of μ and ν×n such that

∫

dn dλ = 1
n

n
∑

i=1

λ{ξi �= ζi} = δ.

Let δi := λ{ξi �= ζi} for each i. The tuple ξ has distribution μ under λ, and the tuple ζ

has distribution ν×n.
Now the chain rule, monotonicity under conditioning, and several applications of

Fano’s inequality [11, Section 2.10] give

Hλ(ξi) ≤ Hλ(ζi) + H(δi,1 − δi) + δi log |A|
for each i, and also

Hλ(ζ ) ≤ Hλ(ξ)+
n

∑

i=1

Hλ(ζi | ξi) ≤ Hλ(ξ)+
n

∑

i=1

(

H(δi,1−δi)+δi log |A|).

Therefore

TC(μ) = TC(ξ) =
n

∑

i=1

Hλ(ξi) − Hλ(ξ)

≤ TC(ζ ) + 2
n

∑

i=1

(

H(δi,1 − δi) + δi log |A|).

Since TC(ζ ) = 0 and H is concave, this is at most

2
(

H(δ,1 − δ) + δ log |A|)n. �

5. Preliminaries on measure concentration

Many of the first important applications of measure concentration were to the lo-
cal theory of Banach spaces. Classic accounts with an emphasis on these applications can
be found in [65, 66]: in particular, [66, Chapter 6] is an early introduction to the general
metric-space framework and gives several examples of it. Independently, a concentration
inequality due to Margulis found an early application to information theory in [2]. More
recently, Gromov has described a very broad class of concentration phenomena for gen-
eral metric spaces in [28, Chapter 3 1

2 ]. Within probability theory, measure concentration
is now a large subject in its own right, with many aspects and many applications. Ledoux’



MEASURE CONCENTRATION AND THE WEAK PINSKER PROPERTY 29

monograph [53] is dedicated to these. Some of the most central results for product mea-
sures can be found in Talagrand’s classic work [98], which contributed some very refined
estimates in that setting. Concentration now appears as a branch of probability theory in
a few advanced textbooks: Vershynin’s [114] is a recent example.

Although we need only a few of the important ideas here, they must be altered
slightly from their usual presentation, in ways that are explained more carefully below.
I therefore give complete proofs for all but the most classical results in this section.

In this paper, our principal notion of measure concentration takes the form of
certain transportation inequalities that we call ‘T-inequalities’: see Definition 5.1 below.
These tie together the metric and measure theoretic ideas of the preceding sections. Sub-
sections 5.1 and 5.2 discuss some history and basic examples. Then Subsection 5.3 intro-
duces an equivalent formulation of T-inequalities in terms of bounds on the exponential
moments of 1-Lipschitz functions. This equivalent formulation gives an easy way to es-
tablish some basic stability properties of T-inequalities.

Although Theorems B and C are focused on T-inequalities, at a key point in the
proof of Theorem B we must switch to concentration inequalities of a different kind.
We call them L-inequalities because of their relation to logarithmic Sobolev inequalities.
They are formulated in Definition 5.11, and the rest of Subsection 5.4 explains how they
are related to T-inequalities.

The rest of this section concerns triples (K, d,μ) consisting of a compact metric
space (K, d) and a measure μ ∈ Prob(K). We refer to such a triple as a metric prob-
ability space. We shall not consider ‘metric measure spaces’ that are not compact or
have mass other than 1; indeed, the main theorems later in the paper all concern metrics
on finite sets.

5.1. Transportation inequalities. — Here is the definition from the Introduction,
placed in a more general setting:

Definition 5.1. — Let κ, r > 0. The metric probability space (K, d,μ) satisfies the T-
inequality with parameters κ and r, or T(κ, r), if any other ν ∈ Prob(K) satisfies

d(ν,μ) ≤ 1
κ

D(ν ‖μ) + r.

In this definition, ‘T’ stands for ‘transportation’, but beware that other authors
use ‘T’ for a variety of different inequalities involving transportation metrics. Indeed,
Definition 5.1 may be seen as a linearization of a more standard family of transportation
inequalities: those of the form

(25) d(ν,μ) ≤
√

1
κ

D(ν ‖μ).
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Here we refer to (25) as a square-root transportation inequality. The square root
is a natural and important feature in many settings where such inequalities have been
proved, such as product measures and Hamming metrics (discussed further below).

The papers [58] and [6] include good accounts of how square-root transportation
inequalities relate to other notions of concentration. Those accounts are easily adapted
to the T-inequalities of Definition 5.1. A survey of recent developments on a wide variety
of transportation inequalities can be found in [26].

If (K, d,μ) satisfies (25), then it also satisfies a whole family of T-inequalities as in
Definition 5.1. This is because the inequality of arithmetic and geometric means gives

(26)

√

1
κ

D(ν ‖μ) ≤ 1
4κr

D(ν ‖μ) + r

for any r > 0. However, in our Theorems B and C it is important that we fix r > 0 in
advance and then seek an inequality of the form T(κn, r) for some κ . This fixed value
of r may be viewed as a ‘distance cutoff ’: the T-inequality we obtain is informative only
about distances greater than or equal to r. Example 5.3 in the next subsection shows that
this limitation is necessary.

If (K, d,μ) has diameter at most 1 then it clearly satisfies T(κ,1) for every κ > 0.
Such a space also satisfies T-inequalities with arbitrarily small values of r. To see this, first
observe from the diameter bound that

d(ν,μ) ≤ 1
2
‖ν − μ‖ for any ν,μ ∈ Prob(K).

Next, Pinsker’s classical inequality [80, p. 15] (with the optimal constant established later
in [13], [49] and [42, Theorem 6.11]) provides

(27) ‖μ − ν‖ ≤ √

2D(ν ‖μ).

Combining these inequalities with (26), we obtain that (K, d,μ) satisfies T(8r, r) for every
r > 0.

If an inequality T(κ, r) improves on this trivial estimate, then its strength lies in the
trade-off between r and κ . Product spaces with Hamming metrics and product measures
provide classical examples of stronger T-inequalities. Let (K, d) be a metric space, and
suppose for simplicity that its diameter is at most 1. Let dn be the metric on Kn given
by (23). Starting with the simple estimate T(8r, r) for any probability measure on (K, d),
one shows by induction on n that any product measure on (Kn, dn) satisfies a T-inequality
with constants that improve as n increases. The inductive argument amounts to combin-
ing Lemma 4.3 with the chain rule for KL divergence. This elegant approach to measure
concentration for product spaces is the main contribution of Marton [57] (with improve-
ments and generalizations in [58]). The result is as follows.
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Proposition 5.2 (See [57, Lemma 1] and [58, eqn (1.4)]). — If (K, d) has diameter at most

1, if dn is given by (23), and if μ is a product measure on Kn, then

(28) dn(ν,μ) ≤
√

1
2n

D(ν ‖μ) ∀ν ∈ Prob(Kn).

In particular, combining with (26), the space (Kn, dn,μ) satisfies T(8rn, r) for all r > 0.

Marton’s paper [58] also describes how these inequalities may be seen as sharper
and cleaner versions of estimates that Ornstein already uses in his work on isomorphisms
between Bernoulli shifts.

In view of the equality (15), Proposition 5.2 implies a kind of reversal of Lemma 4.4.
We use Proposition 5.2 directly at one point in the proof of Theorem C below. It

is also a strong motivation for the specific form of the T-inequalities obtained in Theo-
rems B and C.

Square-root transportation inequalities have been proved for various other proba-
bility measures on metric spaces, such as Gaussian measures in Euclidean spaces [100].
Marton and others have also extended her work to various classes of weakly dependent
stochastic processes: see, for instance, [16, 59, 60, 87].

5.2. Two families of examples. — The next examples show that in Theorem B we
must fix the distance cutoff r in advance.

Example 5.3. — Fix a sequence of values 1 > δ1 > δ2 > . . . such that

(29) δn −→ 0 but
√

nδn −→ ∞.

For each n, let Cn ⊆ {0,1}n be a code of maximal cardinality such that its minimum dis-
tance is at least δn in the normalized Hamming metric. See, for instance, [116, Chapter 4]
for these notions from coding theory. By the Gilbert–Varshamov bound [116, Section 4.2]
and simple estimates on Hamming-ball volumes, we have

(30) |Cn| ≥ 2(1−o(1))n.

Letting μn be the uniform distribution on Cn, it follows that

(31) TC(μn) ≤ n log 2 − log |Cn| = o(1).

Now let ν be any measure which is absolutely continuous with respect to μn. Then
ν is supported on Cn. Fix κ > 0. Assume that ν satisfies the square-root transportation
inequality with constant κn: that is, the analog of (25) holds with ν as the reference mea-
sure instead of μ and with κn in place of κ . If n is sufficiently large, then we can deduce
from this that ν must put most of its mass on a single point. To do this, consider any
subset U ⊆ Cn such that ν(U) ≤ 1/2, and set a := ν(U). Any coupling of ν|U and ν must
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transport mass at least a from U to Uc. Since any two elements of Cn are at least distance
δn apart, this implies

(32) dn(ν, ν|U) ≥ aδn.

On the other hand, since ν(U) ≥ a, a simple calculation gives

D(ν|U ‖ν) = log
1

ν(U)
≤ log

1
a
.

Therefore our assumed square-root transportation inequality gives

dn(ν, ν|U) ≤
√

log(1/a)

κ
· 1√

n
.

By the second part of (29), this is compatible with (32) only if a is o(1) as n −→ ∞. It
follows that no choice of partition (U,Uc) can separate ν into two substantial pieces once
n is large, and hence that ν must be mostly supported on a single point.

Now suppose we have a mixture which represents μn and with most of the weight
on terms that satisfy a good square-root transportation inequality. Then the argument
above shows that those terms must be close to delta masses. This is possible only if
the number of terms is roughly |Cn|. By (30) and (31), this number is much larger than
exp(O(TC(μn))).

This example shows that one cannot hope to prove Theorem B with a square-root
transportation inequality in place of T(κn, r). Simply by choosing δn to decay sufficiently
slowly, many similar possibilities can also be ruled out: for instance, replacing the square
root with an even smaller power cannot repair the problem.

Of course, this example does not contradict Theorem B itself. For any fixed r > 0,
the lower bound in (32) is less than r once n is large enough, and for those n the terms in
the mixture provided by Theorem B need not consist of delta masses. Indeed, I suspect
that the classical ‘random’ construction of good codes Cn (see again [116, Chapter 4])
yields measures μn that already satisfy some inequality of the form T(κn, r), provided n

is large enough in terms of r. It could be interesting to try to prove this.

In view of Proposition 5.2, it is worth emphasizing that many measures other than
product measures also exhibit concentration. The next examples are very simple, but
already hint at the diversity of such measures.

Example 5.4. — Let n = 2� be even, let A be a finite set, and let B := A × A. Then
we have an obvious bijection

F : B� −→ An : ((a1,1, a1,2), (a2,1, a2,2), . . . , (a�,1, a�,2)
)

�→ (a1,1, a1,2, a2,1, a2,2, . . . , a�,1, a�,2).
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Let ν ∈ Prob(B) and let μ := F∗ν×�.
If d� and dn denote the normalized Hamming metrics on B� and An respectively,

then F is 1-Lipschitz from d� to dn. This is because each coordinate in B� gives two output
coordinates under F, but the normalization constant in dn is twice that in d�. It follows that
μ inherits any T-inequality that is satisfied by ν×�, for instance by using Proposition 5.6
below. Since Proposition 5.2 gives that ν×� satisfies T(8r�, r), which we may write as
T(4rn, r), the same is true of μ.

However, if ν is not a product measure on A × A, then μ is not truly a product
measure on the product space An. In fact, μ can be far away from any true product mea-
sure on An. In simple cases we can deduce this from Lemma 4.4. For instance, suppose
that ν is the uniform distribution on the diagonal {(a, a) : a ∈ A}. Then

H(μ) = H(ν×�) = � log |A| = n

2
log |A|.

But on each coordinate in An, μ projects to the uniform distribution. Therefore
n

∑

i=1

H(μ{i}) = n log |A|.

Putting these calculations together, we obtain

TC(μ) = n log |A|/2.

In view of Lemma 4.4, this implies a uniform lower bound on dn(μ,μ×n
0 ) for any μ0 ∈

Prob(A).
The last example also satisfies Hμ(ξi | ξ[n]\i) = 0 for every i, since each coordinate

in A × A determines the other under the diagonal distribution ν. Therefore we also have

DTC(μ) = H(μ) − 0 = n log |A|/2.

Other choices of ν lead to even more striking properties. Let us sketch some of
these without giving complete details. Assume |A| is very large, and let C ⊆ A × A have
size |A|2/2 and be ε-uniform for some very small ε, in the sense of quasirandomness for
bipartite graphs (see, for instance, [7, Section IV.5]). For any fixed ε > 0, if |A| is large
enough, then a random choice of C is ε-uniform with high probability. Let ν be the
uniform distribution on C, and let μ := F∗ν×�.

An easy calculation gives that TC(μ) is at most (n/2) log 2. In fact this is roughly
an equality, up to a multiple of n which is small depending on the uniformity of C, and
DTC(μ) is also roughly (n/2) log 2 up to a similar error.

We need the following consequence of uniformity: if M is any large constant, and
if C is sufficiently uniform in terms of M, then there is a small constant c > 0 depending
only on M such that

(33) (μ1 × μ2)((A × A) \ C) ≥ c
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whenever H(μ1) and H(μ2) are both at least log |A|−M. To see this, let γ be the uniform
distribution on A, and recall that with this choice we have D(μi ‖γ ) = log |A| − H(μi).
Therefore the assumed lower bound on H(μi) implies the upper bound

D(μi ‖γ ) =
∑

a∈A

γ (a)
μi(a)

γ (a)
log

μi(a)

γ (a)
≤ M for i = 1,2.

Using the strict convexity of the function t �→ t log t, one obtains from this bound a posi-
tive constant c1 ≥ 1, depending only on M, such that the set

Di := {a : γ (a)/c1 ≤ μi(a) ≤ c1γ (a)}
satisfies μi(Di) ≥ 1/c1 for each i = 1,2. In view of the definition of Di , this set must also
satisfy

(34) γ (Di) = |Di|
|A| ≥ 1

c1
μi(Di) ≥ 1

c2
1

.

Because of these sets, we have

(35) (μ1 × μ2)((A × A) \ C) ≥ (μ1 × μ2)((D1 × D2) \ C) ≥ |(D1 × D2) \ C|
c2
1|A|2 .

If C is sufficiently uniform in terms of c1, then it and its complement must both intersect
the product set D1 × D2 in roughly half its elements. The uniformity can be applied here
because (34) includes a fixed lower bound on the ratios |Di|/|A|. It then follows that the
fraction at the end of (35) is at least

|D1 × D2|
4c2

1|A|2 ≥ 1
4c4

1

,

by another appeal to (34). This proves (33) with c := 1/4c4
1.

Having arranged (33), we now consider the function on An defined by

f (a) := 1
n

∣

∣

{

i ∈ {1,2, . . . , �} : (a2i−1, a2i) �∈ C
}∣

∣.

It is 1-Lipschitz for the metric dn. Using (33), Markov’s inequality, and some simple double
counting, one finds another small but absolute constant c′ such that the following holds:
for any true product measure μ1 × · · · × μn on An, if

H(μ1 × · · · × μn) = H(μ1) + · · · + H(μn) ≥ n log |A| − nM/100,

then also
∫

f d(μ1 × · · · × μn) ≥ c′.
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Therefore, by Theorem 4.1 applied with the 1-Lipschitz function f , we have

(36) dn(μ1 × · · · × μn,μ
′) ≥ c′

for any measure μ′ which is supported on F(C�) = {f = 0}.
On the other hand, μ := F∗ν×� is supported on F(C�). If we write it as a mixture

of any other measures, they must all be supported on F(C�) too. So now suppose we have
such a mixture

μ = p1μ1 + · · · + pmμm

with m = exp(O(TC(μ))) = exp(O(n)). Since

H(μ) = � log |C| = n log |A| − (n/2) log 2,

and since any measure on An has entropy at most n log |A|, Lemma 2.1 implies that most
of the mass in the mixture is on terms μj for which H(μj) > n log |A| − O(n), where
‘O(n)’ is independent of |A|. In particular, if we previously chose M large enough, then
this lower bound on entropy is greater than n log |A|−nM/100. Combining this with (36),
we deduce that most of the mass in this mixture is on measures μj that are at least distance
c′ from any product measure.

This gives an example μ that is highly concentrated, but cannot be written as a
mixture of measures that are close in dn to product measures and where the number of
terms is exp(O(TC(μ)). This shows that the ‘good’ summands in Theorem B cannot be
limited to measures that are close in dn to products—other examples of highly concen-
trated measures are sometimes necessary.

The ideas in Example 5.4 can be generalized in many ways. For instance, many
other subsets and measures can be constructed by imposing more complicated pairwise
constraints on the coordinates in An, or by imposing constraints on triples or even larger
sets of coordinates. I expect that many such constructions exhibit measure concentration,
although certainly many others do not.

However, all the cases in which I know how to prove measure concentration share
a certain structure: like the measures F∗ν×� in Example 5.4, they are O(1)-Lipschitz
images of product measures on other product spaces. In that example, we use the map
F to ‘hide’ the product structure of ν×�, with the effect that F∗ν×� is far away from any
product measure on An. But one might feel that this still has the essence of a product
measure, and it suggests the following general question.

Question 5.5. — Is it true that for any r, κ, ε > 0 there exists an L > 0 for which the following

holds for all n ∈ N?
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If (An, dn,μ) satisfies T(κn, r), then there exist an integer � ∈ [n/L,Ln], a finite set B, a

distribution ν on B, and an L-Lipschitz map F : B� −→ An such that

dn(μ,F∗ν×�) < ε.

The methods of the present paper do not seem to shed any light on this question.
An answer in either direction would be very interesting. If the answer is Yes, then we
have found a rather strong characterization of concentrated measures on (An, dn). If it is
No, then finding a counterexample seems to require finding a new property of product
measures which (i) survives under pushforward by Lipschitz maps but (ii) is not implied
by concentration alone.

If Question 5.5 has a positive answer, then it could be regarded as an analog of a
result about stationary processes: the equivalence between measure concentration of the
finite-dimensional distributions and being a factor of a Bernoulli shift (see [91, Subsection
IV.3.c]). However, Question 5.5 assumes much less structure than that result. This, in
turn, could have consequences for the ergodic theory of non-amenable acting groups, for
which factors of Bernoulli systems are far from being understood.

5.3. Exponential moment bounds and some consequences. — Using Monge–Kantorovich–
Rubinstein duality, a T-inequality is equivalent to an exponential moment bound for
1-Lipschitz functions. This fact is essentially due to Bobkov and Götze [6], although
they work with square-root transportation inequalities. The statement and proof in our
linearized setting are easily obtained by modifying their argument.

Proposition 5.6 (Bobkov–Götze equivalence). — For a metric probability space (K, d,μ), the

following are equivalent:

(a) The space (K, d,μ) satisfies T(κ, r);

(b) Any 1-Lipschitz function f satisfies

Mμ(κ f ) ≤ eκ〈f 〉+κr.

Proof. — Theorem 4.1 implies that condition (a) is equivalent to

κ

∫

f dν − κ

∫

f dμ ≤ D(ν ‖μ) + κr

for all ν ∈ Prob(K) and 1-Lipschitz f . Re-arranging, this is equivalent to

(37) −κ

∫

f dμ ≤ κr +
(

D(ν ‖μ) − κ

∫

f dν
)

for all such ν and f .
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For a given f , Lemma 2.5 asserts that the difference

D(ν ‖μ) − κ

∫

f dν

is minimized by the Gibbs measure ν = μ|eκ f , and for this choice of ν that difference is
equal to −Cμ(κ f ). Therefore (37) is equivalent to the inequality

Cμ(κ f ) ≤ κ

∫

f dμ + κr.

Exponentiating, we arrive at condition (b). �

Bobkov and Götze’s original result [6, Theorem 1.3] asserts that the square-root
transportation inequality (25) is equivalent to the inequality

Mμ(tf ) ≤ et〈f 〉+t2/4κ

for all 1-Lipschitz f : K −→ R and all t ∈ R. This inequality is also easily linearized to
arrive at part (b) of Proposition 5.6.

A first application of Bobkov and Götze’s equivalence is a second proof of Proposi-
tion 5.2. Let (Kn, dn,μ) be as in that proposition. By the equivalence, it suffices to prove
that any 1-Lipschitz function f : Kn −→ R and t ∈ R satisfy

(38)
∫

etf dμ ≤ et〈f 〉+t2/8n.

Because μ is a product measure, this can be proved by the method of bounded martingale
differences, using the filtration (Fi)

n
i=1 of Kn where Fi consists of the Borel sets that

depend on only the first i coordinates. One can also phrase this proof as an induction
on n, using a conditional version of (38) with n = 1 at each step. The result when n = 1 is a
classical lemma of Hoeffding [33], and its extension to the setting of 1-Lipschitz functions
on product spaces is due to McDiarmid: see [63, Lemma 5.8] and the arguments that
follow it. By a special case of the equivalence in Proposition 5.6, that lemma of Hoeffding
is equivalent to Pinsker’s inequality (27) with the optimal constant.

This use of the inequality (38) fits into a more general formalism of bounding the
‘Laplace functional’ of a metric probability space: see [53, Section 1.6].

The rest of this subsection gives three stability results for T-inequalities under
different kinds of perturbation to a measure. These lemmas can all be proved directly
from Definition 5.1, but the proofs become simpler and quicker using condition (b) from
Proposition 5.6.

Lemma 5.7. — Suppose that (K, d,μ) satisfies T(κ, r), and let ν ∈ Prob(K) be absolutely

continuous with respect to μ and satisfy

dν

dμ
≤ M μ-a.s.
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for some M ∈ [1,∞). Then (K, d, ν) satisfies

T
(

κ,2
log M

κ
+ 2r

)

.

Proof. — We verify the relevant version of condition (b) from Proposition 5.6. Let
〈·〉μ and 〈·〉ν denote integration with respect to μ and ν, respectively. Let f ∈ Lip1(K).
Then

∫

eκ f dν =
∫

eκ f dν

dμ
dμ ≤ M

∫

eκ f dμ = eκ(log M/κ)

∫

eκ f dμ.

By assumption, this is at most exp(κ〈f 〉μ + κr + κ(log M/κ)). On the other hand, we
have

D(ν ‖μ) =
∫

log
dν

dμ
dν ≤ log M,

and so the original definition of T(κ, r) gives

〈f 〉μ ≤ 〈f 〉ν + d(ν,μ) ≤ 〈f 〉ν + 1
κ

log M + r.

Combining these inequalities completes the proof. �

Lemma 5.8. — Suppose that (K, d,μ) satisfies T(κ, r), let ν ∈ Prob(K), and assume there

exists a coupling λ of μ and ν which is supported on the set

{(x, y) ∈ K × K : d(x, y) ≤ δ}.
Then ν satisfies T(κ, r + 2δ).

Proof. — We verify the relevant version of condition (b) from Proposition 5.6. Let
〈·〉μ and 〈·〉ν denote integration with respect to μ and ν, respectively. Then

∫

eκ f dν =
∫

K×K
eκ f (y) λ(dx,dy).

Since d(x, y) ≤ δ for λ-almost every (x, y), and f is 1-Lipschitz, the last integral is bounded
above by

∫

K×K
eκ f (x)+κδ λ(dx,dy) = eκδ

∫

eκ f dμ.

By assumption, this is at most exp(κ〈f 〉μ + κr + κδ). Finally, a repeat of the same rea-
soning about λ and f gives 〈f 〉μ ≤ 〈f 〉ν + δ. Combining these inequalities completes the
proof. �
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Proposition 5.9. — Suppose that (K, d,μ) satisfies T(κ, r), let ν ∈ Prob(K), and assume

that d(ν,μ) ≤ δ2 for some δ ∈ [0,1/8). Then there exists a Borel set U ⊆ K satisfying ν(U) ≥
1 − 4δ and such that ν|U satisfies

T
(

κ,
8δ + 2 log 4

κ
+ 4r + 4δ

)

.

Proof. — Let λ be a coupling of μ and ν such that
∫

d dλ ≤ δ2, and let

W := {(x, y) : d(x, y) ≤ δ}.
Then Markov’s inequality gives λ(W) ≥ 1 − δ. Let λ1 := λ|W, and let μ1 and ν1 be the
first and second marginals of λ1, respectively.

For these new measures, we have

dλ1

dλ
= 1

λ(W)
· 1W ≤ (1 − δ)−1 ≤ 1 + 2δ,

and hence also dμ1/dμ ≤ 1 + 2δ. Therefore, by Lemma 5.7, the measure μ1 still satisfies
T(κ, r1), where

r1 := 2
log(1 + 2δ)

κ
+ 2r ≤ 4δ/κ + 2r.

Then, since λ1 is supported on W, Lemma 5.8 promises that ν1 still satisfies
T(κ, r2), where r2 = r1 + 2δ.

Let ρ := dν1/dν, and let f := 1 + 2δ − ρ. Since ρ ≤ 1 + 2δ, f is non-negative. On
the other hand,

∫

f dν = 1 + 2δ − 1 = 2δ.

Therefore another appeal to Markov’s inequality gives that the set

U := {ρ ≥ 1/2 + 2δ} = {f ≤ 1/2}
satisfies ν(U) ≥ 1 − 4δ.

Finally, observe that

ν|U = 1
ν(U)

· 1U · ν ≤ 1
1 − 4δ

· (2ρ) · ν = 2
1 − 4δ

· ν1 ≤ 4ν1.

By a second appeal to Lemma 5.7, this implies that ν|U satisfies T(κ, r3), where

r3 = 2r2 + 2
log 4
κ

= 2(r1 + 2δ) + 2
log 4
κ

≤ 8δ + 2 log 4
κ

+ 4r + 4δ.

�
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Remarks.

1. Different estimates can be obtained by choosing different thresholds for ρ when
defining the set U in the proof above. The choice we have made here is simple,
but not canonical. This version suits our later purposes quite well, because in
those cases κ is very large while r is only fairly small, so the expression with κ

in the denominator is also very small.
2. The qualitative conclusion of Proposition 5.9 cannot be substantially improved:

in particular, we cannot conclude that ν itself satisfies T(κ, r) for some con-
trolled value of r. To see this, suppose that K has diameter 1, and that ν equals
(1 − δ2)μ + δ2μ′, where μ satisfies T(κ, δ) for some huge κ , but μ′ is an-
other measure whose support is at distance 1 from the support of μ. Then
d(ν,μ) = δ2, but that small multiple of μ′ which appears in ν is hard to trans-
port to the rest of ν. This prevents ν from satisfying T(κ ′, r′) with r′ � 1 and
κ ′ � 1/δ2, no matter how large κ is.

We finish this subsection with another stability property. This one applies to mea-
sures on Hamming spaces. It shows that T-inequalities survive when we lift those mea-
sures to spaces of slightly higher dimension.

Lemma 5.10 (Stability under lifting). — Let μ be a probability measure on a Hamming metric

space (An, dn). Let S be a nonempty subset of [n], let μS be the projection of μ to AS, and define

a ∈ [0,1) by |S| = (1 − a)n. If μS satisfies T(κ, r), then μ itself satisfies

T
( κ

1 − a
, (1 − a)r + a

)

.

Proof. — Let dS be the normalized Hamming metric on AS. Suppose that ν ∈
Prob(An) has D(ν ‖μ) < ∞, and let νS be the projection of ν to AS. Then D(νS ‖μS) ≤
D(ν ‖μ), because dνS/dμS is the conditional μ-expectation of dν/dμ onto the σ -algebra
generated by the coordinates in S, and so we may apply the conditional Jensen inequality
in the definition (8). Therefore our assumption on μS gives

dS(νS,μS) ≤ 1
κ

D(ν ‖μ) + r.

Let λS be a coupling of νS and μS satisfying
∫

dS dλS = dS(νS,μS), and let λ be any lift of
λS to a coupling of ν and μ. Then

∫

dn dλ = |S|
n

∫

dS dλS + n − |S|
n

∫

d[n]\S(x[n]\S,y[n]\S) λ(dx,dy)

≤ (1 − a)
(1
κ

D(νS ‖μS) + r
)

+ a

≤ (1 − a)
(1
κ

D(ν ‖μ) + r
)

+ a. �
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5.4. A related functional inequality.

Definition 5.11. — Fix (K, d) as before, and let α > 0 and 0 ≤ κ0 ≤ κ ≤ ∞. Then

μ ∈ Prob(K) satisfies the L-inequality with parameters κ0, κ and α, or L([κ0, κ], α),

if

(39) D(μ|etf ‖μ) ≤ αt2

for any 1-Lipschitz function f on K and any real value t ∈ [κ0, κ].
This definition is closely related to another important branch of measure concen-

tration theory: logarithmic Sobolev inequalities. Put roughly, given a metric probability
space (K, d,μ) and a suitable class of functions on K, a logarithmic Sobolev inequality
asserts that

(40) D(μ|ef ‖μ) ≤ α

∫

|∇f |2 dμ|ef

for all f in that class, where |∇f |(x) is some notion of the ‘local gradient’ of f at the
point x ∈ K. If (K, d) is a Riemannian manifold, then |∇f | is often the norm of the
true gradient function ∇f on K. For various other metric spaces (K, d), including many
discrete spaces, alternative notions are available.

Logarithmic Sobolev inequalities form a large area of study in functional analy-
sis in their own right. A good introduction to these inequalities and their relationship
to measure concentration can be found at the beginning of [6], which also gives many
further references. Several more recent developments are covered in [26, Section 8].

Product spaces exhibit certain logarithmic Sobolev inequalities that improve with
dimension, and these offer a third alternative route to Proposition 5.2: see [52, Section 4].
This approach, more than Marton’s original one, played an important role in the discov-
ery of the proof of Theorem B. This is discussed further in Subsection 6.3.

In general, if f is Lipschitz, then any sensible choice for |∇f | should be bounded
by the Lipschitz constant of f . Thus, although we do not introduce any quantity that
plays the role of |∇f | in this paper, we can regard (39) as a stunted logarithmic Sobolev
inequality. This is the reason for choosing the letter L.

L-inequalities imply T-inequalities. This link is one of the key tools in our proof of
Theorem B below. To explain it, we begin with the following elementary estimate, which
is also needed again later by itself.

Lemma 5.12. — Let (X,μ) be a probability space, let a < b be real numbers, and let f :
X −→ R be a measurable function satisfying a ≤ f ≤ b almost surely. Then

D(μ|ef ‖μ) ≤ (b − a)2.
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Proof. — Both sides of the desired inequality are unchanged if we add a constant
to f , so we may assume that a = 0. Let 〈·〉 denote integration with respect to μ. Since we
are now assuming that f ≥ 0 almost surely, we must have 〈ef 〉 ≥ 1, and therefore

∫

f ef dμ =
∫

f (ef − 〈ef 〉)dμ + 〈 f 〉〈ef 〉

≤
∫

f (ef − 1)dμ + 〈 f 〉〈ef 〉.

Since ef − 1 ≤ f ef (for instance, by the convexity of exp), the above implies that
∫

f ef dμ ≤
∫

f 2ef dμ + 〈 f 〉〈ef 〉 ≤ b2〈ef 〉 + 〈 f 〉〈ef 〉.

Dividing by 〈ef 〉 and re-arranging, this inequality completes the proof. �

Lemma 5.12 and its proof are well known, but I do not know their origins, and
have included them for completeness. The proof actually gives the stronger inequality

D(μ|ef ‖μ) ≤
∫

( f − min f )2 dμ|ef .

This version may be regarded as a logarithmic Sobolev inequality of the kind in (40). For
the present paper we need only the simpler statement in Lemma 5.12.

Now we show how to turn an L-inequality into a T-inequality. Intuitively, we find
that an L-inequality is a ‘differential version’ of a T-inequality. This is made precise by the
following proof, which follows the classic Herbst argument from the study of logarithmic
Sobolev inequalities, with some slight adjustments to the present setting. See [3, 51] for
early expositions of Herbst’s original (unpublished) argument.

Proposition 5.13. — If (K, d) has diameter at most 1 and 0 < r < κ < ∞, then

L([r, κ], r/κ) implies T(κ,2r).

Proof. — Let f be 1-Lipschitz, and define ϕ : [0, κ] −→ R by

ϕ(t) :=
{〈 f 〉 if t = 0,

1
t
Cμ(tf ) if 0 < t ≤ κ.

A simple argument shows that ϕ is continuous at 0, and a little calculus gives

ϕ′(t) = 1
t2

(

t

∫

f dμ|etf − Cμ(tf )
)

= 1
t2

D(μ|etf ‖μ) for t > 0,
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where the second equality comes from Lemma 2.5. Since (K, d) has diameter at most
1 and f is 1-Lipschitz, Lemma 5.12 gives ϕ′(t) ≤ 1 for any t. On the other hand,
L([r, κ], r/κ) gives ϕ′(t) ≤ r/κ whenever r ≤ t ≤ κ . Combining these bounds, we obtain

Cμ(κ f ) = κϕ(κ) = κϕ(0) + κ

∫ κ

0
ϕ′(t)dt

= κϕ(0) + κ

∫ r

0
ϕ′(t)dt + κ

∫ κ

r

ϕ′(t)dt

≤ κϕ(0) + 2κr = κ〈 f 〉 + 2κr.

This completes the proof via part (b) of Proposition 5.6. �

5.5. The role of the inequalities in the rest of this paper. — T-inequalities already ap-
pear in the formulation of Theorem B. However, the proof of that theorem involves L-
inequalities as well. Put very roughly, in part of the proof of that theorem, we assume that
a given measure μ does not already satisfy T(rn/1200, r), deduce from Proposition 5.13
that a related L-inequality also fails, and then use the function f and parameter t from
that failure to write μ as a mixture of two ‘better’ measures. This part of the proof of The-
orem B is the subject of the next section. I do not know an approach that works directly
with the violation of the T-inequality, and avoids the L-inequality.

6. A relative of Theorem B

The proof of Theorem B follows two other decomposition results, which come
progressively closer to the conclusion we really want. The biggest part of the proof goes
towards the first of those auxiliary decompositions.

In the rest of this section, we always use 〈·〉 to denote expectation with respect to a
measure μ on An. Here is the first auxiliary decomposition:

Theorem 6.1. — Let ε, r > 0. For any μ ∈ Prob(An) there exists a fuzzy partition

(ρ1, . . . , ρk) such that

(a) Iμ(ρ1, . . . , ρk) ≤ 2 · DTC(μ) (recall (10) for the notation on the left here),

(b) 〈ρ1〉 < ε, and

(c) 〈ρj〉 > 0 and the measure μ|ρj
satisfies T(rn/200, r) for every j = 2,3, . . . , k.

This differs from Theorem B in two respects. Firstly, it gives control only over
the mutual information Iμ(ρ1, . . . , ρk), not the actual number of terms k. Secondly, that
control is in terms of DTC(μ), not TC(μ) as in the statement of Theorem B. The use
of DTC here is crucial. Constructing the fuzzy partition in Theorem 6.1 requires careful
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estimates on the behaviour of DTC, and no suitable estimates seem to be available for
TC.

In the next section we improve Theorem 6.1 to Theorem 7.1, which does control
the number of functions in the fuzzy partition, but still using DTC(μ). Finally, we com-
plete the proof of Theorem B using Lemma 3.7, which finds a slightly lower-dimensional
projection of μ whose DTC is controlled in terms of TC(μ). I do not know a more direct
way to use TC(μ) for the proof of Theorem B.

6.1. The DTC-decrement argument. — The key idea for the proof of Theorem 6.1 is
this: if μ itself does not satisfy T(rn/200, r), then we can turn that failure of concentration
into a representation of μ as a mixture whose terms have substantially smaller DTC on
average. In this mixture, if much of the mass is on pieces that still fail T(rn/200, r), then
those can be decomposed again. This process cannot continue indefinitely, because the
average DTC of the terms in these mixtures must remain non-negative. Thus, after a
finite number of steps, we reach a mixture whose terms mostly do satisfy T(rn/200, r).
Moreover, our specific estimate on the decrement in average DTC at each step turns into
a bound on the mutual information of this mixture: up to a constant, it is at most the
total reduction we achieved in the average DTC, which in turn is at most the initial value
DTC(μ).

In Subsection 6.3, we try to give an intuitive reason for expecting that such an
argument can be carried out using DTC. I do not know of any reason to hope for a similar
argument using TC. The reader may wish to consult Subsection 6.3 before finishing the
rest of this section.

Here is the proposition that provides this decrement in average DTC:

Proposition 6.2. — If μ ∈ Prob(An) does not satisfy T(rn/200, r), then there is a fuzzy

partition (ρ1, ρ2) such that

Iμ(ρ1, ρ2) ≥ r2n−1e−n

and

(41) 〈ρ1〉 · DTC(μ|ρ1) + 〈ρ2〉 · DTC(μ|ρ2) ≤ DTC(μ) − 1
2

Iμ(ρ1, ρ2).

It is worth noting an immediate corollary: if a measure μ has DTC(μ) <

r2n−1e−n/2, then μ must already satisfy T(rn/200, r), simply because the left-hand side
of (41) cannot be negative. This corollary can be seen as a robust version of concentra-
tion for product measures. However, since the value r2n−1e−n/2 is so small as n grows, I
doubt that this version has any advantages over more standard results. For instance, the
combination of Propositions 5.2 and 5.9 shows that if TC(μ) is o(n) then we can trim off
a small piece of μ and be left with strong measure concentration. By another of Han’s
inequalities from [32], TC(μ) is always at most (n − 1) · DTC(μ), so we obtain the same
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conclusion if DTC(μ) is o(1). Some recent stronger results are cited in Subsection 7.3
below. Qualitatively, this is the best one can do: the mixture of two product measures in
Example 3.5 has DTC roughly log 2 and does not exhibit any non-trivial concentration.
The particular inequality DTC(μ) < r2n−1e−n/2 does not play any role in the rest of this
paper.

Most of this section is spent proving Proposition 6.2. Before doing so, let us explain
how it implies Theorem 6.1. This implication starts with the following corollary.

Corollary 6.3. — Let μ ∈ Prob(An), and let (ρi)
k
i=1 be a fuzzy partition. Let S be the set of

all i ∈ [k] for which μ|ρi
does not satisfy T(rn/200, r). Then there is another fuzzy partition (ρ ′

j )
�
j=1

with the following properties:

(a) (growth in mutual information)

Iμ(ρ ′
1, . . . , ρ

′
�) ≥ Iμ(ρ1, . . . , ρk) + r2n−1e−n

∑

i∈S

〈ρi〉;

(b) (proportional decrease in average DTC)

�
∑

j=1

〈ρ ′
j 〉 · DTC(μ|ρ′

j
)

≤
k

∑

i=1

〈ρi〉 · DTC(μ|ρi
) − 1

2

[

Iμ(ρ ′
1, . . . , ρ

′
�) − Iμ(ρ1, . . . , ρk)

]

.

Proof. — For each i ∈ S, let (ρi,1, ρi,2) be the fuzzy partition obtained by applying
Proposition 6.2 to the measure μ|ρi

. Now let (ρ ′
j )

�
j=1 be an enumeration of the following

functions:

all ρi for i ∈ [k] \ S and all ρi · ρi,1 and ρi · ρi,2 for i ∈ S.

These functions satisfy
∑

i∈[k]\S

ρi +
∑

i∈S

ρi · ρi,1 +
∑

i∈S

ρi · ρi,2 =
∑

i∈[k]\S

ρi +
∑

i∈S

ρi = 1,

so (ρ ′
j )

�
j=1 is a new fuzzy partition.
Let us show that this new fuzzy partition has properties (a) and (b). Both of these

follow from the version of the chain rule for mutual information and fuzzy partitions
presented in equation (13). In the present setting, that rule gives

(42) Iμ(ρ ′
1, . . . , ρ

′
�) − Iμ(ρ1, . . . , ρk) =

∑

i∈S

〈ρi〉 · Iμ|ρi
(ρi,1, ρi,2).
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By the first conclusion of Proposition 6.2, this is at least

r2n−1e−n
∑

i∈S

〈ρi〉.

This proves property (a).
On the other hand, the second conclusion of Proposition 6.2 gives

(

∫

ρi,1 dμ|ρi

)

· DTC(μ|ρiρi,1) +
(

∫

ρi,2 dμ|ρi

)

· DTC(μ|ρiρi,2)

≤ DTC(μ|ρi
) − 1

2
Iμ|ρi

(ρi,1, ρi,2).

We multiply this inequality by 〈ρi〉, observe that

〈ρi〉 ·
(

∫

ρi,a dμ|ρi

)

= 〈ρiρi,a〉 for a ∈ {1,2},

and add the results over i ∈ S. This gives

�
∑

j=1

〈ρ ′
j 〉 · DTC(μ|ρ′

j
)

=
∑

i∈[k]\S

〈ρi〉 · DTC(μ|ρi
)

+
∑

i∈S

(

〈ρiρi,1〉 · DTC(μ|ρiρi,1) + 〈ρiρi,2〉 · DTC(μ|ρiρi,2)
)

≤
∑

i∈[k]\S

〈ρi〉 · DTC(μ|ρi
) +

∑

i∈S

〈ρi〉 · DTC(μ|ρi
)

− 1
2

∑

i∈S

〈ρi〉 · Iμ|ρi
(ρi,1, ρi,2).

Substituting from (42), the right-hand side here is equal to

k
∑

i=1

〈ρi〉 · DTC(μ|ρi
) − 1

2

[

Iμ(ρ ′
1, . . . , ρ

′
�) − Iμ(ρ1, . . . , ρk)

]

.

This proves property (b). �

Proof of Theorem 6.1 from Corollary 6.3. — We produce a finite sequence of fuzzy
partitions (ρt,j)

kt

j=1 for t = 0,1,2, . . . , t0 by the following recursion.
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To start the recursion, let k0 = 1 and let ρ0,1 be the constant function 1. If μ already
satisfies T(rn/200, r), then we let t0 = 0 and stop the recursion here.

Now suppose that μ does not satisfy T(rn/200, r) and that we have already con-
structed the fuzzy partition (ρt,j)

kt

j=1 for some t ≥ 0. Let S be the set of all j ∈ [kt] for which
μ|ρt,j

does not satisfy T(rn/200, r). If

(43)
∑

j∈S

〈ρt,j〉 < ε,

then set t0 := t and stop the recursion. Otherwise, let (ρt+1,j)
kt+1
j=1 be a new fuzzy partition

produced from (ρt,j)
kt

j=1 by Corollary 6.3.
If this recursion does not stop at stage t, then the negation of (43) must hold at that

stage. Combining this fact with both conclusions of Corollary 6.3, it follows that

kt+1
∑

j=1

〈ρt+1,j〉 · DTC(μ|ρt+1,j
) ≤

kt
∑

j=1

〈ρt,j〉 · DTC(μ|ρt,j
) − 1

2
εr2n−1e−n.

Since the average DTC on the left cannot be negative, and the average DTC decreases
here by at least the fixed amount εr2n−1e−n/2, the recursion must stop at some finite stage.

For each t = 0,1, . . . , t0 − 1, conclusion (b) of Corollary 6.3 gives that

Iμ(ρt+1,1, . . . , ρt+1,kt+1) − Iμ(ρt,1, . . . , ρt,kt
)

≤ 2
[

kt
∑

j=1

〈ρt,j〉 · DTC(μ|ρt,j
) −

kt+1
∑

j=1

〈ρt+1,j〉 · DTC(μ|ρt+1,j
)
]

.

Summing these inequalities over those values of t, we obtain

(44) Iμ(ρt0,1, . . . , ρt0,kt0
) ≤ 2 · DTC(μ)− 2

kt0
∑

j=1

〈ρt0,j〉 · DTC(μ|ρt0,j
) ≤ 2 · DTC(μ).

To finish, define (ρ1, . . . , ρk) by letting ρ1 be the sum of all those functions ρt0,j

with 1 ≤ j ≤ kt0 for which μ|ρt0,j
does not satisfy T(rn/200, r), and letting ρ2, . . . , ρk be

an enumeration of the remaining entries in (ρt0,1, . . . , ρt0,kt0
). This new fuzzy partition

(ρ1, . . . , ρk) satisfies all three of the required conclusions. Conclusion (a) follows from (44)
and an application of inequality (14). Conclusions (b) and (c) are written into the condi-
tions for stopping the recursion. �

Remark. — The above proof gives a bound on the number of entries k in the result-
ing fuzzy partition, but the bound is too poor to be useful beyond guaranteeing that the
recursion terminates. This is because the quantity r2n−1e−n appearing in Proposition 6.2
is so small.
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Remark. — The recursion above terminates at the first stage t0 when most terms in
the mixture exhibit sufficient concentration. Then conclusion (a) is proved using the fact
that the average DTC must remain non-negative. However, there is no guarantee that
most of the resulting measures μ|ρj

have DTC close to zero. It may be that we have ob-
tained all the measure concentration we want, but many of the values DTC(μ|ρj

) are still
large. Indeed, if μ is one of the measures constructed using an ε-uniform set in Exam-
ple 5.4, then μ already satisfies a better T-inequality than those obtained in Theorem 6.1,
and it cannot be decomposed into nontrivial summands using Proposition 6.2. However,
as discussed in that example, its TC and DTC are both of order n, and it cannot be
decomposed efficiently into approximate product measures.

Remark. — ‘Increment’ and ‘decrement’ arguments have other famous applica-
tions, particularly in extremal combinatorics. Perhaps the best known is the proof of Sze-
merédi’s regularity lemma [95, 96], which uses an argument that is now often called
the ‘energy increment’. See [7, Section IV.5] for a modern textbook treatment of Sze-
merédi’s lemma, and see [101] and [103, Chapters 10 and 11] for a broader discussion
of increment arguments in additive combinatorics.

However, having made this connection, we should also stress the following differ-
ence. In Szemerédi’s regularity lemma, the vertex set of a large finite graph is partitioned
into a controlled number of cells so that most pairs among those cells have a property
called ‘quasirandomness’. This pairwise requirement on the cells leads to the extremely
large tower-type bounds that necessarily appear in Szemerédi’s lemma: see [24]. By con-
trast, Theorem 6.1 produces summands that mostly have a desired property—the T-
inequality—individually, but are not required to interact with each other in any particu-
lar way. This makes for less dramatic bounds: in particular, for the simple relationship in
part (a) of that theorem.

Another precedent for our ‘decrement’ argument is the work of Linial, Samorod-
nitsky and Wigderson [56] giving a strongly polynomial time algorithm for permanent
estimation. Their algorithm relies on obtaining a substantial decrement in the permanent
of a nonnegative matrix under a procedure called matrix scaling.

6.2. Proof of the DTC decrement. — The rest of this section is spent proving Proposi-
tion 6.2.

Given μ and a fuzzy partition (ρ1, ρ2), let (ζ, ξ) be a randomization of the result-
ing mixture

μ = 〈ρ1〉 · μ|ρ1 + 〈ρ2〉 · μ|ρ2 .

Thus, (ζ, ξ) takes values in {1,2} × X. For this pair of random variables, the left-hand
side of (19) is

DTC(μ) − 〈ρ1〉 · DTC(μ|ρ1) − 〈ρ2〉 · DTC(μ|ρ2).
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The proof of Proposition 6.2 rests on a careful analysis of the right-hand side of (19) for
this pair (ζ, ξ), which reads

(45) I(ξ ; ζ ) −
n

∑

i=1

I(ξi ; ζ | ξ[n]\i).

We next re-write this expression in terms of μ, ρ1 and ρ2.
By Corollary 2.3, the first term in (45) is equal to

(46) 〈ρ1〉 · D(μ|ρ1 ‖μ) + 〈ρ2〉 · D(μ|ρ2 ‖μ).

The remaining terms in (45) can be expressed similarly. To this end, for each i, let
(θi,z : z ∈ A[n]\i) be a conditional distribution for ξ given ξ[n]\i according to μ. Thus, the
only remaining randomness under θi,z is in the coordinate ξi. This conditional distribu-
tion represents μ as the following mixture:

(47) μ =
∫

θi,z μ[n]\i(dz).

For each i and z ∈ A[n]\i , let 〈·〉i,z denote integration with respect to θi,z. If we condition
on the event {ξ[n]\i = z}, then the pair (ζ, ξ) becomes a randomization of the mixture

θi,z = 〈ρ1〉i,z · (θi,z)|ρ1 + 〈ρ2〉i,z · (θi,z)|ρ2 .

This is because the conditional probability of the event {(ζ, ξ) = (j,x)} given the event
{ξ[n]\i = z} equals

ρj(x) · μ(x)

μ[n]\i(z)
= ρj(x) · θi,z(x)

whenever j ∈ {1,2}, x ∈ An and z = x[n]\i . Now another appeal to Corollary 2.3 gives

I(ξi ; ζ | ξ[n]\i = z) = I(ξ ; ζ | ξ[n]\i = z)(48)

= 〈ρ1〉i,z · D
(

(θi,z)|ρ1

∥

∥ θi,z

) + 〈ρ2〉i,z · D
(

(θi,z)|ρ2

∥

∥ θi,z

)

for μ[n]\i-almost every z. Averaging over z, this becomes

I(ξi ; ζ | ξ[n]\i) =
∫

〈ρ1〉i,z · D
(

(θi,z)|ρ1

∥

∥ θi,z

)

μ[n]\i(dz)(49)

+
∫

〈ρ2〉i,z · D
(

(θi,z)|ρ2

∥

∥ θi,z

)

μ[n]\i(dz).

For the proof of Proposition 6.2, we use these calculations in the following special
case: suppose that f : An −→ [0,1] is 1-Lipschitz and that 0 ≤ t ≤ n/200, and let

(50) ρ1 := 1
2

e−tf and ρ2 := 1 − 1
2

e−tf .
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Note that

0 < ρ1 ≤ 1
2

and
1
2

≤ ρ2 < 1.

These bounds simplify the proof below, and are the reason for the factor of 1
2 in the

definition of ρ1.
For this choice of fuzzy partition, we need an upper bound for the right-hand side

in (49). It has two terms, which we estimate separately. The key to both estimates is the
following geometric feature of the present setting: the measure θi,z is supported on the set

Si,z := {x ∈ An : x[n]\i = z},
which has diameter 1/n in the normalized Hamming metric.

Lemma 6.4. — For the choice of ρ1 and ρ2 in (50), we have

∫

〈ρ1〉i,z · D
(

(θi,z)|ρ1

∥

∥ θi,z

)

μ[n]\i(dz) ≤ t2

n2
〈ρ1〉.

Proof. — The function tf is t-Lipschitz, so for any i and z we have

max
{

ρ1(y) : y ∈ Si,z

} ≤ et/n min
{

ρ1(y) : y ∈ Si,z

}

.

Therefore Lemma 5.12 gives

D
(

(θi,z)|ρ1

∥

∥ θi,z

) ≤ t2/n2.

Substituting into the desired integral, we obtain
∫

〈ρ1〉i,z · D
(

(θi,z)|ρ1

∥

∥ θi,z

)

μ[n]\i(dz) ≤ t2

n2

∫

〈ρ1〉i,z μ[n]\i(dz),

and this right-hand integral is equal to 〈ρ1〉 by (47). �

Lemma 6.5. — For the choice of ρ1 and ρ2 in (50), we have

∫

〈ρ2〉i,z · D
(

(θi,z)|ρ2

∥

∥ θi,z

)

μ[n]\i(dz) ≤ 32
t2

n2
〈ρ1〉.

Beware that the average on the right here is 〈ρ1〉, not 〈ρ2〉. Also, the factor of 32 is
chosen to be simple, not optimal.

Proof. — We certainly have 〈ρ2〉i,z ≤ 1 for all i and z, so it suffices to show that
∫

D
(

(θi,z)|ρ2

∥

∥ θi,z

)

μ[n]\i(dz) ≤ 32
t2

n2
〈ρ1〉.
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This is the work of the rest of the proof. It turns out to be slightly easier to work with an
integral over all of An, so let us re-write the last integral as

∫

D
(

(θi,x[n]\i
)|ρ2

∥

∥ θi,x[n]\i

)

μ(dx).

Now suppose that x ∈ An and that y,y′ ∈ Si,x[n]\i
. Then x, y and y′ agree in all but

possibly the ith coordinate. Since f is 1-Lipschitz, it follows that

ρ2(y′) − ρ2(y) = 1
2
(e−tf (y) − e−tf (y′)) ≤ 1

2
e−tf (x)(et/n − e−t/n).

Since 0 < t/n ≤ 1/200, we have et/n − e−t/n < 4t/n. Also, we have arranged that ρ2 is
always at least 1/2. Therefore the last estimate implies that

ρ2(y′) ≤ ρ2(y) + 2t

n
e−tf (x) ≤ ρ2(y)

(

1 + 4t

n
e−tf (x)

)

≤ ρ2(y) exp
(4t

n
e−tf (x)

)

for all y,y′ ∈ Si,x[n]\i
. Since θi,x[n]\i

is supported on Si,x[n]\i
, we may combine this estimate

with Lemma 5.12 to obtain

D
(

(θi,x[n]\i
)|ρ2

∥

∥ θi,x[n]\i

) ≤ 16t2

n2
e−2tf (x) ≤ 16t2

n2
e−tf (x) = 32

t2

n2
ρ1(x).

For the second inequality here, notice that we have bounded e−2tf (x) by e−tf (x). This is
extremely crude, but it suffices for the present argument.

Substituting into the desired integral, we obtain
∫

D
(

(θi,x[n]\i
)|ρ2

∥

∥ θi,x[n]\i

)

μ(dx) ≤ 32
t2

n2

∫

ρ1(x) μ(dx). �

Combining the preceding lemmas with (45), (46) and (49), we have shown the
following.

Corollary 6.6. — For the choice of (ρ1, ρ2) in (50) we have

DTC(μ) − 〈ρ1〉 · DTC(μ|ρ1) − 〈ρ2〉 · DTC(μ|ρ2)

≥ Iμ(ρ1, ρ2) − n
( t2

n2
〈ρ1〉 + 32

t2

n2
〈ρ1〉

)

= 〈ρ1〉 · D(μ|ρ1 ‖μ) + 〈ρ2〉 · D(μ|ρ2 ‖μ) − 33
t2

n
〈ρ1〉.

Proof of Proposition 6.2. — Since dn has diameter at most 1, any measure on (An, dn)

satisfies T(κ,1) for all κ > 0. We may therefore assume that r < 1. If μ does not satisfy
T(rn/200, r), then by Proposition 5.13 it also does not satisfy L([r/2, rn/200],100/n).
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This means there are a 1-Lipschitz function f : An −→ R and a value t ∈ [r/2, rn/200] ⊆
[0, n/200] such that

D(μ|etf ‖μ) > 100
t2

n
.

Replacing f with −f and then adding a constant if necessary, we may assume that f takes
values in [0,1] and satisfies

D(μ|e−tf ‖μ) = D(μ|(e−tf /2) ‖μ) > 100
t2

n
.

Now construct ρ1 and ρ2 from this function f as in (50). Combining the above
lower bound on D(μ|(e−tf /2) ‖μ) = D(μ|ρ1 ‖μ) with Corollary 6.6, we obtain

DTC(μ) − 〈ρ1〉 · DTC(μ|ρ1) − 〈ρ2〉 · DTC(μ|ρ2)

≥ 〈ρ1〉 · D(μ|ρ1 ‖μ) + 〈ρ2〉 · D(μ|ρ2 ‖μ) − 33
t2

n
〈ρ1〉

> 〈ρ1〉 · D(μ|ρ1 ‖μ) + 〈ρ2〉 · D(μ|ρ2 ‖μ) − 1
2
〈ρ1〉 · D(μ|ρ1 ‖μ)

≥ 1
2

(

〈ρ1〉 · D(μ|ρ1 ‖μ) + 〈ρ2〉 · D(μ|ρ2 ‖μ)
)

= 1
2

Iμ(ρ1, ρ2).

The last line here follows from another appeal to Corollary 2.3.
Finally, since f ≤ 1 and r/2 ≤ t ≤ rn/200 ≤ n, we also obtain

Iμ(ρ1, ρ2) ≥ 〈ρ1〉 · D(μ|ρ1 ‖μ) ≥
∫

1
2

e−tf dμ ·
(

100
r2

4n

)

≥ r2e−t

n
≥ r2n−1e−n. �

Remark. — The proof of Proposition 6.2 actually exploits the failure of μ to sat-
isfy the stronger L-inequality L([r/2, rn/200],100/n), rather than the T-inequality in the
statement of that proposition. Our proof therefore gives the conclusion of Theorem 6.1
with that L-inequality in place of the T-inequality for the measures μ|ρj

, 2 ≤ j ≤ k. How-
ever, later steps in the proof of Theorem B use some properties that we know only for
T-inequalities, such as those from Subsection 5.3. We do not refer to L-inequalities again
after the present section.



MEASURE CONCENTRATION AND THE WEAK PINSKER PROPERTY 53

6.3. The use of DTC in this section. — Both TC and DTC are notions of multi-
variate mutual information for a measure μ on An. In searching for a ‘decrement’ proof
of Theorem B, it is natural that we try such a quantity. This is because we regard product
measures, which exhibit very strong concentration, as an extreme case, and they are
precisely the measures for which any good notion of multi-variate mutual information
should be zero.

It is more subtle to describe why DTC, rather than TC or any other kind of multi-
variate mutual information, is the right quantity for the decrement. A valuable hint in
this direction comes from inspecting the terms that define DTC and comparing them
with older proofs of logarithmic Sobolev inequalities on Hamming cubes. Let us discuss
this with reference to the L-inequalities of Subsection 5.4, which are really a special case
of logarithmic Sobolev inequalities.

Let μ be the uniform distribution on {0,1}n, and let ξi : {0,1}n −→ {0,1} be the
ith coordinate projection for 1 ≤ i ≤ n. Following [52, Section 4] (where the argument is
credited to Bobkov), one obtains an L-inequality for the space ({0,1}n, dn) and measure
μ from the following pair of estimates:

(a) For any other ν ∈ Prob({0,1}n), we have

D(ν ‖μ) ≤
n

∑

i=1

D(ν ‖μ | ξ[n]\i),

where D(ν ‖μ | ξ[n]\i) denotes a conditional KL divergence (see [11, Sec-
tion 2.5]; the summands on the right in [52, Proposition 4.1] have this form).

(b) If ν = μ|e−tf for some 1-Lipschitz function f on {0,1}n, then

D(ν ‖μ | ξ[n]\i) ≤ t2

n2
for each i.

Combining (a) and (b), it follows that D(μ|e−tf ‖μ) ≤ t2/n for any 1-Lipschitz function f .
Now consider instead an arbitrary measure μ on {0,1}n, and suppose that ρ1 =

e−tf and ρ2 = 1−ρ1 for a 1-Lipschitz function f and some t (ignoring the technical factor
of 1/2 in (50)). Of the two estimates above, (b) still holds simply by Lemma 5.12, but (a)
is often false unless μ is a product measure.

Observe that the quantity D(μ|e−tf ‖μ) appears in the first term of (46), the for-
mula for I(ξ ; ζ ) in the previous subsection. Likewise, a simple re-write of the quantity
D(μ|e−tf ‖μ | ξ[n]\i = z) shows that it is equal to D((θi,z)|ρ1 ‖ θi,z), again using the notation
of the previous subsection. This quantity appears in the first term of (48), the formula for
I(ξi ; ζ | ξ[n]\i = z).

So for a general measure μ the difference

(51) D(μ|e−tf ‖μ) −
n

∑

i=1

D(μ|e−f ‖μ | ξ[n]\i)
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resembles part of the difference

(52) I(ξ ; ζ )−
n

∑

i=1

I(ξi ; ζ | ξ[n]\i) = DTC(μ)−〈ρ1〉 ·DTC(μ|ρ1)−〈ρ2〉 ·DTC(μ|ρ2).

The difference in (51) does not quite appear in (52) because the coefficients of the various
KL divergences here do not match. But the resemblance is enough to suggest the follow-
ing. If a suitable L-inequality fails, so one can find a function f and parameter t for which
D(μ|e−tf ‖μ) is large, then the difference in (51) must also be large, and then one might
hope to show that the DTC-decrement in (52) is also large. The work of Subsection 6.2
consists of the tweaks and technicalities that are needed to turn this hope into rigorous
estimates.

Ledoux uses the logarithmic Sobolev inequalities in [52, Section 4] to give a new
proof of an exponential moment bound for Lipschitz functions on product spaces. This
bound is in turn equivalent to Marton’s transportation inequalities (Proposition 5.2) via
the Bobkov–Götze equivalence (see the discussion after Proposition 5.6). Marton’s origi-
nal proof of Proposition 5.2 is quite different, and arguably more elementary. She uses an
induction on the dimension n, and no functional inequalities such as logarithmic Sobolev
inequalities appear. As remarked following Proposition 5.6, yet another proof can be
given using the Bobkov–Götze equivalence and the method of bounded martingale dif-
ferences. This last proof does involve bounding an exponential moment, but it still seems
more elementary than the logarithmic Sobolev approach.

Question 6.7. — Is there a proof of Theorem 6.1, or more generally of Theorem B, which uses

an induction on n and either (i) some variants of Marton’s ideas, or (ii) the Bobkov–Götze equivalence

and some more elementary way of controlling exponential moments of Lipschitz functions?

I expect that such an alternative proof would offer valuable additional insight into
the phenomena behind Theorem B.

7. Completed proof of Theorem B

We still have to turn Theorem 6.1 into Theorem B. This is the work of the present
section, which has two stages. The first, in Subsection 7.1, continues to work solely with
DTC. The second, in Subsection 7.2, takes us from DTC back to TC.

7.1. Another auxiliary decomposition.

Theorem 7.1. — For any ε, r > 0 there exists c > 0 such that the following holds. Any μ ∈
Prob(An) can be written as a mixture

μ = p1μ1 + · · · + pmμm
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so that

(a) m ≤ c exp(c · DTC(μ)),

(b) p1 < ε, and

(c) the measure μj satisfies T(rn/600, r) for every j = 2,3, . . . ,m.

Letting ρj := d(pjμj)/dμ, we always have

Iμ(ρ1, . . . , ρm) ≤ H(p1, . . . , pm) ≤ log m.

Therefore Theorem 7.1 is a strengthening of Theorem 6.1. We deduce Theorem 7.1
from Theorem 6.1 by using a simple sampling argument to ‘coarsen’ the representation
of μ given by Theorem 6.1 and allowing a slight degradation in the error estimates.

Proposition 7.2 (Sampling from a low-information mixture). — Let (X,μ) be a standard

probability space, and let μ be written as a mixture
∫

μ• dP using some other probability space (
,P)

and a kernel μ• from 
 to X. Let ε ∈ (0,1/2), let 
1 ⊆ 
 be measurable with P(
1) > 1 − ε/2,

and assume that

I :=
∫

D(μω ‖μ)P(dω) < ∞.

Finally, let m := �16ε−2e16(I+1)/ε�. Then there are elements ω1, . . . , ωm ∈ 
1, not necessarily dis-

tinct, such that

∥

∥

∥

1
m

m
∑

j=1

μωj
− μ

∥

∥

∥ < 3ε.

This is proved using the probabilistic method, together with a simple truncation
argument. This combination is reminiscent of classical proofs of the weak law of large
numbers for random variables without bounded second moments [19, Section X.2].

Proof. — Step 1: setup and truncation. Let Q := P � μ•, the hookup introduced in
Subsection 2.2, and let F be the Radon–Nikodym derivative dQ/d(P × μ). Then we
have

μω = F(ω, ·) · μ for P-a.e. ω

and

I =
∫

F log F d(P × μ).

The function t log t on [0,∞) has a global minimum at t = e−1 and its value there is
−e−1. Therefore

(53)
∫

F log+ F d(P × μ) ≤ I + e−1 < I + 1.
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Now define

F′ := min{F, e8(I+1)/ε} and μ′
ω := F′(ω, ·) · μ for each ω.

Each μ′
ω is a positive measure bounded by μω, so Markov’s inequality and (53) give

∫

‖μω − μ′
ω‖P(dω) =

∫

(F − F′) d(P × μ)

≤
∫

{F>e8(I+1)/ε}
F d(P × μ)

≤ ε

8(I + 1)

∫

F log+ F d(P × μ)

< ε/8.

Define

μ′ :=
∫

μ′
ω P(dω) and f ′(x) :=

∫

F′(ω, x)P(dω).

Then μ′ is a positive measure bounded by μ which satisfies ‖μ − μ′‖ ≤ ε/8, and f ′ is a
version of the Radon–Nikodym derivative dμ′/dμ.

Step 2: the probabilistic method. Let Y1, . . . , Ym be i.i.d. random elements of 
, each
with distribution P, and let P denote the underlying probability measure for those ran-
dom elements. Let E and Var denote expectation and variance with respect to P.

For each x ∈ X, consider the random variable

Xx := 1
m

m
∑

j=1

F′(Yj, x).

This is an average of i.i.d. random variables. Each of them satisfies

EF′(Yj, x) =
∫

F′(ω, x)P(dω) = f ′(x).

Also, each is bounded by e8(I+1)/ε, and hence satisfies Var(F′(Yj, x)) ≤ e16(I+1)/ε.
Now consider the empirical average of the measures μ′

Yj
: it is given by

1
m

m
∑

j=1

μ′
Yj

= 1
m

m
∑

j=1

(F′(Yj, · ) · μ) =
( 1

m

m
∑

j=1

F′(Yj, · )
)

· μ.

Therefore, by Fubini’s theorem,
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E
∥

∥

∥

1
m

m
∑

j=1

μ′
Yj

− μ′
∥

∥

∥ = E
∫

∣

∣

∣

1
m

m
∑

j=1

F′(Yj, · ) − f ′
∣

∣

∣dμ

=
∫

E|Xx − EXx| μ(dx)

≤
∫

√

Var(Xx) μ(dx)

≤ m−1/2e8(I+1)/ε.

Combining the bounds above, we obtain

E
∥

∥

∥

1
m

m
∑

j=1

μYj
− μ

∥

∥

∥

≤ 1
m

m
∑

j=1

E‖μYj
− μ′

Yj
‖ + E

∥

∥

∥

1
m

m
∑

j=1

μ′
Yj

− μ′
∥

∥

∥ + ‖μ′ − μ‖

=
∫

‖μω − μ′
ω‖P(dω) + E

∥

∥

∥

1
m

m
∑

j=1

μ′
Yj

− μ′
∥

∥

∥ + ‖μ′ − μ‖

< ε/4 + m−1/2e8(I+1)/ε ≤ ε/2.

Therefore Markov’s inequality gives

P
{∥

∥

∥

1
m

m
∑

j=1

μYj
− μ

∥

∥

∥ < ε
}

>
1
2
.

On the other hand, we have

E|{ j ∈ [m] : Yj ∈ 
 \ 
1}| = mP(
 \ 
1) < mε/2,

so another appeal to Markov’s inequality gives

P
{|{ j ∈ [m] : Yj ∈ 
1}| > (1 − ε)m

}

>
1
2
.

Combining this probability lower bound with the previous one, it follows that the inter-
section of these events has positive probability. Therefore some possible values ω1, . . . ,
ωm of Y1, . . . , Ym satisfy both

∥

∥

∥μ − 1
m

m
∑

j=1

μωj

∥

∥

∥ < ε
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and

|{ j ∈ [m] : ωj ∈ 
1}| > (1 − ε)m.

To complete the proof, we simply discard any values ωj that lie in 
 \ 
1 and replace
them with arbitrary members of 
1. This incurs an additional error of at most 2ε in the
total-variation approximation to μ. �

Proof of Theorem 7.1. — By shrinking ε if necessary, we may assume that

(54) ε <
1
6

and also 400 log((1 − 3ε/2)−1) < r2.

Now apply Theorem 6.1 with ε2/2 in place of ε and with the present value of r.
Let (ρ1, . . . , ρk) be the resulting fuzzy partition. Let 
 := [k], and let P be the probability
distribution on this set defined by P(j) := pj := 〈ρj〉. The formula from Corollary 2.3 and
conclusion (a) of Theorem 6.1 give

I := Iμ(ρ1, . . . , ρk) =
∑

j∈


pj · D(μ|ρj
‖μ) ≤ 2 · DTC(μ).

Also, let 
1 = {2,3, . . . , k}, so conclusion (b) of Theorem 6.1 gives P(
1) > 1 − ε2/2.
We now apply Proposition 7.2 to μ and its representation as a mixture of the

measures μ|ρj
, which we abbreviate to μj . We apply that proposition with ε2 in place of ε.

It provides a constant c which depends on ε (and hence also on r, because of (54)), an
integer m ≤ cecI, and elements i1, . . . , im ∈ 
1 such that

(55) ‖μ − μ′‖ < 3ε2 where μ′ := 1
m

m
∑

j=1

μij .

Using the Jordan decomposition of μ − μ′, we may now write

μ = γ + ν and μ′ = γ + ν ′

for some measures γ , ν and ν ′ such that ν and ν ′ are mutually singular. These measures
satisfy

‖ν‖ = ‖ν ′‖ = 1
2
‖μ − μ′‖ < 3ε2/2 and hence ‖γ ‖ > 1 − 3ε2/2.

Let f be the Radon–Nikodym derivative dγ /dμ′. Then 0 ≤ f ≤ 1, and we have

1
m

m
∑

j=1

∫

f dμij =
∫

f dμ′ = ‖γ ‖ > 1 − 3ε2/2.
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Therefore, by Markov’s inequality, the set J of all j ∈ [m] which satisfy

(56)
∫

f dμij > 1 − 3ε/2

has cardinality at least (1 − ε)m.
If j ∈ J, then (56) implies that

d(μij )|f
dμij

= f
∫

f dμij

< (1 − 3ε/2)−1.

For these j, Lemma 5.7 gives that the measure (μij )|f still satisfies

T
(

rn/200,400 log((1 − 3ε/2)−1)/rn + 2r
)

.

By the second upper bound in (54), this implies T(rn/200,3r).
So now we can write

μ = ν + γ(57)

= ν + f · μ′

= ν + 1
m

∑

j∈[m]\J

f · μij +
1
m

∑

j∈J

f · μij .

In this last sum, the first few terms satisfy
∥

∥

∥ν + 1
m

∑

j∈[m]\J

f · μij

∥

∥

∥ < 3ε/2 + m − | J|
m

< 4ε.

On the other hand, the remainder

1
m

∑

j∈J

f · μij

is a non-negative linear combination of probability measures that all satisfy T(rn/200,3r).
So now let us combine the first few terms in (57) into a single ‘bad’ term. This gives a
mixture of at most m measures which has the desired properties, except that the bad term
has total variation bounded by 4ε rather than ε, and the parameter r has been replaced
by 3r throughout. Since ε > 0 and r > 0 are both arbitrary, this completes the proof. �

Our route to Theorem 7.1 is quite indirect. This is because the proof of Theo-
rem 6.1 relates the decrement in the DTC to a change in the mutual information of the
fuzzy partition (ρj)j , not a change in the entropy of the probability vector (〈ρj〉)j . As a
result, Theorem 6.1 might give a representation of μ as a mixture with far too many sum-
mands, and we must then go back and find a more efficient representation by sampling
as in Proposition 7.2.
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Question 7.3. — Can one give a more direct proof of Theorem 7.1 by improving some of the

estimates in the proof of Theorem 6.1?

7.2. Completed proof of Theorem B. — Let μ be as in the statement of Theorem B.
To deduce Theorem B from Theorem 7.1, the last step is to combine that theorem with
Lemmas 3.7 and 5.10.

Proof of Theorem B. — As remarked previously, (An, dn,μ) must satisfy T(κ,1) for all
κ > 0, so we may assume that r < 1.

In the statement of Theorem B we have E = TC(μ). Let S ⊆ [n] be the subset
provided by Lemma 3.7, so |S| ≥ (1 − r)n and DTC(μS) ≤ E/r. Let c1 be the constant
given by Theorem 7.1 for the current values of ε and r. Applying Theorem 7.1 to μS, we
can write it as a mixture

μS = ρ1 · μS + · · · + ρm · μS

for some fuzzy partition (ρj)
m
j=1 on AS such that

(a) m ≤ c1 exp(c1 · DTC(μS)) ≤ cecE where c := max{c1/r,1},
(b)

∫

ρ1 dμS < ε, and
(c) the measure (μS)|ρj

is defined and satisfies T(r|S|/600, r) for every j =
2,3, . . . ,m.

Let ρ ′
j (x) = ρj(xS) for every x ∈ An. Then the resulting mixture

μ = ρ ′
1 · μ + · · · + ρ ′

m · μ
still satisfies the analogues of properties (a) and (b) above. Finally, property (c) above com-
bines with Lemma 5.10 to give that μ|ρ′

j
satisfies

T
( n

|S| · r|S|
600

,
|S|
n

r + r
)

for every j = 2,3, . . . ,m. This inequality implies T(rn/600,2r), and they coincide in case
S = [n]. Since r > 0 is arbitrary, this completes the proof. �

7.3. Aside: another possible connection. — Theorem 7.1 is worth comparing with re-
cent results of Ellis, Friedgut, Kindler and Yehudayoff in [18]. In our terminology, they
prove that if DTC(μ) is very small, then μ must itself be close to a product measure in
a rather strong sense (certainly strong enough to imply a good concentration inequality).
However, they prove this only when DTC(μ) is bounded by a fixed and sufficiently small
tolerance ε, independently of the dimension n. By contrast, in Part III we need to apply
Theorem B when DTC(μ) is of order n. This is far outside the domain covered by the
results of [18].

It would be interesting to understand whether our present work and the proofs
in [18] have some underlying structure in common.
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8. Proof of Theorem C

To prove Theorem C, we carve out the desired partition of An one set at a time.

Proposition 8.1. — For any r > 0 there exist c, κ > 0 such that, for any alphabet A, the

following holds for all sufficiently large n. If μ ∈ Prob(An), then there is a subset V ⊆ An such that

μ(V) ≥ exp(−c · TC(μ))

and such that μ|V satisfies T(κn, r).

Proof of Theorem C from Proposition 8.1. — Consider ε, r > 0 as in the statement of
Theorem C. Clearly we may assume that ε < 1. For this value of r and for the alphabet
A, let n be large enough to apply Proposition 8.1. Let c1 and κ be the new constants given
by that proposition.

We now construct a finite disjoint sequence of subsets V1, V2, . . . , Vm−1 of An by
the following recursion.

To start, let V1 be a subset such that

μ(V1) ≥ exp(−c1 · TC(μ))

and such that μ|V1 satisfies T(κn, r), as provided by Proposition 8.1.
Now suppose we have already constructed V1, . . . , V� for some � ≥ 1, and let W :=

An \ (V1 ∪ · · · ∪ V�). If μ(W) < ε, then stop the recursion and set m := �+ 1. Otherwise,
let μ′ := μ|W, and apply Proposition 8.1 again to this new measure. By Corollary 3.2 we
have

TC(μ′) ≤ 1
μ(W)

(TC(μ) + log 2) ≤ ε−1(TC(μ) + log 2),

so Proposition 8.1 gives a new subset V�+1 of An such that

μ(V�+1) ≥ μ(W) · μ′(V�+1) ≥ ε exp(−c1 · TC(μ′))

≥ ε2−c1/ε exp(−c1 · TC(μ)/ε)

and such that μ′
|V�+1

satisfies T(κn, r). Since μ′ is supported on W, we may intersect V�+1

with W without disrupting either of these conclusions, and so assume that V�+1 ⊆ W.
Having done so, we have μ′

|V�+1
= μ|V�+1 . This continues the recursion.

The sets Vj are pairwise disjoint, and they all have measure at least

ε2−c1/ε exp(−c1 · TC(μ)/ε).

Therefore the recursion must terminate at some finite value � which satisfies
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m = � + 1 ≤ ε−12c1/ε exp(c1 · TC(μ)/ε) + 1

≤ (ε−12c1/ε + 1) exp(c1 · TC(μ)/ε).

Once it has terminated, let Uj := Vj−1 for j = 2,3, . . . ,m, and let U1 be the complement
of all these sets.

If we set c := max{(2−c1/ε/ε +1), c1/ε}, then this partition U1, . . . , Um has all three
of the desired properties. �

It remains to prove Proposition 8.1. Fix r > 0 for the rest of the section, and con-
sider μ ∈ Prob(An). Let κ := r/1200, and let cB be the constant provided by Theorem B
with the input parameters r and ε := 1/2. Cearly we may assume that cB ≥ 1 without
disrupting the conclusions of Theorem B. We prove Proposition 8.1 with this value for κ

but with 9r in place of r and with a new constant c derived from r and cB. Since r > 0
was arbitrary this still completes the proof. Since any measure on An satisfies T(κn,9r) if
r ≥ 1/9, we may also assume that r < 1/9.

To lighten notation, let us define

(58) δ := min{r2/42,1/18}.
We make frequent references to this small auxiliary quantity below. Its definition results
in a correct dependence on r for certain estimates near the end of the proof.

At a few points in this section it is necessary that n be sufficiently large in terms of
r and |A|. These points are explained as they arise.

There are three different cases in the proof of Proposition 8.1, in which the desired
set V exists for different reasons. Two of those cases are very simple. All of the real work
goes into the third case, including an appeal to Theorem B. The analysis of that third case
could be applied to any measure μ on An, but I do not see how to control the necessary
estimates unless we assume the negations of the first two cases — this is why we separate
the proof into cases at all.

The first and simplest case is when μ has a single atom of measure at least

(59) exp
(

− 161cB

δ2
· TC(μ)

)

.

Then we just take V to be that singleton. So in the rest of our analysis we may assume
that all atoms of μ weigh less than this. Of course, the constant that appears in front of
TC(μ) in (59) is chosen to meet our needs when we come to apply this assumption later.

The next case is when TC(μ) is sufficiently small. This is dispatched by the follow-
ing lemma.

Lemma 8.2. — If TC(μ) ≤ r4n, and if n is sufficiently large in terms of r, then there is a

subset V of An satisfying μ(V) ≥ 1/2 such that μ|V satisfies T(8rn,9r).
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Proof. — Let μ{i} be the ith marginal of μ for i = 1,2, . . . , n. Recall from (15) that

TC(μ) = D(μ‖μ{1} × · · · × μ{n}).

Therefore Marton’s inequality from the first part of Proposition 5.2 gives

dn(μ,μ{1} × · · · × μ{n}) ≤
√

TC(μ)

2n
≤ r2,

where in the end we ignore a factor of
√

1/2. Since our assumptions imply that r < 1/8,
we may now apply the second part of Proposition 5.2 and then Proposition 5.9. These
give a subset V of An satisfying μ(V) ≥ 1 − 4r ≥ 1/2 and such that μ|V satisfies

T
(

8rn,
8r + 2 log 4

8rn
+ 4r + 4r

)

.

If n is sufficiently large, this implies T(8rn,9r). �

So now we may assume that μ has no atoms of measure at least (59), and also
that TC(μ) is greater than r4n. We keep these assumptions in place until the proof of
Proposition 8.1 is completed near the end of this section.

This leaves the case in which we must use Theorem B. This argument is more
complicated. It begins by deriving some useful structure for the measure μ from the
two assumptions above. This is done in two steps which we formulate as Lemma 8.3
and Proposition 8.4. Lemma 8.3 can be seen as a quantitative form of the asymptotic
equipartition property for a big piece of the measure μ.

Lemma 8.3. — Consider a measure μ satisfying the assumptions above, and let M :=
�n log |A|�. If n is sufficiently large, then there are a subset P ⊆ An and a constant h ≥
160cBTC(μ)/δ2 such that μ(P) ≥ 1/4M,

TC(μ|P) ≤ 4TC(μ),

and

e−h ≥ μ|P(x) > e−h−1 ∀x ∈ P.

Proof. — Let E := TC(μ) and let h0 := 161cBE/δ2 (the exponent from (59)). Let

Pj := {x : e−h0−j ≥ μ(x) > e−h0−j−1} for j = 0,1, . . . ,M − 1

and let

PM := {x : e−h0−M ≥ μ(x)}.
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Since, by assumption, all atoms of μ weigh less than e−h0 , the sets P0,P1, . . . ,PM consti-
tute a partition of An. Also, from its definition, the last of these sets must satisfy

(60) μ(PM) ≤ e−h0−M|PM| ≤ e−h0 |A|−n|A|n = e−161cBE/δ2
.

Since we are also assuming that E > r4n, this bound is less than 1/4 provided n is large
enough in terms of r.

Using this partition, we may write

μ =
M

∑

j=0

μ(Pj) · μ|Pj
.

By Lemma 3.1, this leads to

(61) TC(μ) + H
(

μ(P0), . . . ,μ(PM)
) ≥

M
∑

j=0

μ(Pj) · TC(μ|Pj
).

The left-hand side here is at most

TC(μ) + log(M + 1) ≤ TC(μ) + log log |A| + log n + 2.

Since we are assuming that TC(μ) > r4n, this upper bound is less than 2TC(μ) provided
n is sufficiently large in terms of r and |A|.

Therefore, provided n is sufficiently large, the right-hand side of (61) is at most
2TC(μ). By Markov’s inequality, it follows that more than half of μ is supported on cells
Pj which satisfy

(62) TC(μ|Pj
) ≤ 4TC(μ).

By (60), it follows that more than a quarter of μ is supported on such cells Pj with j ≤
M − 1.

Now choose j ≤ M − 1 for which (62) holds and such that μ(Pj) is maximal, and
let P := Pj . This maximal value must be at least 1/4M. By the definition of P, each x ∈ P
satisfies

ea−h0−j ≥ μ|P(x) > ea−h0−j−1, where ea := 1/μ(P).

Finally, let h := h0 + j − a, and observe that

h ≥ h0 − a ≥ 161cBE/δ2 − log
(

4�n log |A|�).
Since we are assuming that E > r4n, this is at least 160cBE/δ2 provided n is sufficiently
large in terms of r and |A|. �
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Proposition 8.4. — Consider a measure μ as in the preceding lemma. Let P be the set and h the

constant obtained there. Let m := �(1 − δ)n�. Then there are subsets

S ⊆ [n], R ⊆ An and Q ⊆ AS

such that

(a) |S| = m,

(b) μ(R) ≥ δ/32M,

(c) xS ∈ Q for all x ∈ R,

(d) every z ∈ Q has the property that

max
x∈R: xS=z

μ|R(x) ≤ e−δh/4μ|R{x : xS = z},

and

(e) TC(μ|R) ≤ 33TC(μ)/δ.

Proof. — Let μ′ := μ|P, and let ξi : An −→ A be the coordinate projection for i =
1, . . . , n.

By re-ordering the coordinates of An if necessary, let us assume that

(63) Hμ′(ξ1) ≤ · · · ≤ Hμ′(ξn).

Having done so, let S := {1,2, . . . ,m}. Let μ′
[m] be the projection of μ′ to Am.

From (63) and the subadditivity of entropy, we obtain

Hμ′(ξ[m]) ≤
m

∑

i=1

Hμ′(ξi) ≤ m

n

n
∑

i=1

Hμ′(ξi) = m

n

(

H(μ′) + TC(μ′)
)

.

Provided n is sufficiently large in terms of r, this is at most

(1 − 3δ/4)H(μ′) + (1 − 3δ/4)TC(μ′) ≤ (1 − 3δ/4)H(μ′) + TC(μ′).

The first conclusion of Lemma 8.3 gives that TC(μ′) ≤ 4TC(μ) = 4E. On the other
hand, the second conclusion gives that

(64) h + 1 > H(μ′) ≥ h,

and h is greater than 16E/δ because of our earlier assumption that cB ≥ 1. Combining
these inequalities, we deduce that

Hμ′(ξ[m]) ≤ (1 − 3δ/4)H(μ′) + 4E < (1 − 3δ/4)H(μ′) + δ

4
H(μ′)(65)

≤ (1 − δ/2)H(μ′) < (1 − δ/2)(h + 1).
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Let

Q := {

z ∈ Am : μ′
[m](z) ≥ e−(1−δ/4)h

}

= {

z ∈ Am : − logμ′
[m](z) ≤ (1 − δ/4)h

}

.

Since

Hμ′(ξ[m]) =
∑

z∈Am

μ′
[m](z) · ( − logμ′

[m](z)
)

,

we deduce from (65) and Markov’s inequality that

μ′
[m](Q) ≥ 1 − (1 − δ/2)(h + 1)

(1 − δ/4)h
= δ/4

(1 − δ/4)
− (1 − δ/2)

(1 − δ/4)h
.

Since our assumptions on μ give

h ≥ 160cBE/δ2 ≥ 160cBr4n/δ2,

it follows that μ′
[m](Q) ≥ δ/8 provided n is large enough in terms of r.

Let R := {x ∈ P : x[m] ∈ Q}. Since R ⊆ P, we have μ′
|R = μ|R.

This completes the construction of S, R and Q. Among the desired properties, (a)
and (c) are clear from the construction. Property (b) holds because

μ(R) = μ|P(R) · μ(P) = μ′
[m](Q) · μ(P) ≥ δ

8
· 1

4M
.

To prove property (d), observe that every x ∈ R ⊆ P satisfies

μ|R(x) = μ′(x)

μ′(R)
= μ′(x)

μ′
[m](Q)

≤ e−h

μ′
[m](Q)

,

whereas every z ∈ Q satisfies

μ|R{x : x[m] = z} = μ′{x : x[m] = z}
μ′(R)

= μ′
[m](z)

μ′
[m](Q)

≥ e−(1−δ/4)h

μ′
[m](Q)

.

Finally, towards property (e), Corollary 3.2 and Lemma 8.3 give

TC(μ|R) ≤ 1
μ′(R)

(TC(μ′) + log 2) ≤ 8
δ
(4TC(μ) + log 2).

Since we assume TC(μ) > r4n, this last upper bound is less than 33TC(μ)/δ provided n

is sufficiently large in terms of r. �

Next we explain how the sets S, R and Q obtained by Proposition 8.4 can be
turned into a set V as required by Proposition 8.1.
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Let ν := μ|R, and let 〈·〉ν denote integration with respect to ν. We apply Theorem
B to ν with input parameters r and ε := 1/2. The number of terms in the resulting
mixture is at most cB exp(cB · TC(ν)), and by conclusion (e) of Proposition 8.4 this is at
most cB exp(33cBE/δ). At least half the weight in the mixture must belong to terms that
satisfy T(κn, r). Therefore there is at least one term, which we may write in the form
ρ · ν, which satisfies T(κn, r) and also

(66) 〈ρ〉ν ≥ 1
2cB

e−33cBE/δ.

For each z ∈ Q, let

Bz := {x ∈ R : xS = z},
and now let

Q1 :=
{

z ∈ Q :
∫

Bz

ρ dν ≥ δ · ν(Bz) · 〈ρ〉ν

}

.

The next step in the construction of V is to choose a subset U ⊆ R at random
so that the events {U � x} have independent probabilities ρ(x) for x ∈ R. In the final
step, V is obtained from U by trimming it slightly. Let E and Var denote expectation and
variance with respect to the random choice of U.

Lemma 8.5. — Provided n is sufficiently large in terms of r, we have

E
∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣ ≤ δ

∫

Bz

ρ dν

for every z ∈ Q1.

Proof. — In this proof we need the inequality

(67) e−δh/4 ≤ δ3

2cB
exp(−33cBE/δ),

where h is the quantity from Lemma 8.3. Since h ≥ 160cBE/δ2, this holds provided

exp(−40cBE/δ) ≤ δ3

2cB
exp(−33cBE/δ).

Given our current assumption that E > r4n, this last requirement holds for all n that are
sufficiently large in terms of r.

So now assume that (67) holds. Then for each z ∈ Q1 we may combine (66), (67),
conclusion (d) from Proposition 8.4, and the definition of Q1 to obtain

(68) max
x∈Bz

ν(x) ≤ δ3

2cB
e−33cBE/δν(Bz) ≤ δ3 · ν(Bz) · 〈ρ〉ν ≤ δ2

∫

Bz

ρ dν.
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Now consider the random variable

X := ν(U ∩ Bz) −
∫

Bz

ρ dν =
∑

x∈Bz

ν(x) · (1{U�x} − ρ(x)).

From the distribution of the random set U, it follows that EX = 0 and

Var(X) =
∑

x∈Bz

(ν(x))2 · Var(1{U�x}) ≤
∑

x∈Bz

(ν(x))2 · ρ(x).

By (68), this is at most

δ2

∫

Bz

ρ dν ·
∑

x∈Bz

ν(x)ρ(x) = δ2
(

∫

Bz

ρ dν
)2

.

Therefore, by the monotonicity of Lebesgue norms,

E|X| ≤
√

E(X2) = √

Var(X) ≤ δ

∫

Bz

ρ dν. �

Corollary 8.6. — Provided n is sufficiently large in terms of r, we have

E
∣

∣ν(U) − 〈ρ〉ν

∣

∣ ≤
∑

z∈Q

E
∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣ ≤ 3δ〈ρ〉ν.

Proof. — The left-hand inequality follows from the triangle inequality and the fact
that (Bz : z ∈ Q) is a partition of R. So consider the right-hand inequality. By separating
Q into Q1 and Q \ Q1, the sum over Q is at most

∑

z∈Q1

E
∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣ +
∑

z∈Q\Q1

Eν(U ∩ Bz) +
∑

z∈Q\Q1

∫

Bz

ρ dν(69)

=
∑

z∈Q1

E
∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣ + 2
∑

z∈Q\Q1

∫

Bz

ρ dν.

Using the previous lemma, the first sum in (69) is at most

δ
∑

z∈Q1

∫

Bz

ρ dν ≤ δ〈ρ〉ν.

By the definition of Q1, the second sum in (69) is at most

2δ
∑

z∈Q\Q1

ν(Bz) · 〈ρ〉ν ≤ 2δ〈ρ〉ν.
�
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Lemma 8.7. — Provided n is sufficiently large in terms of r, we have

E
[

ν(U) · dn(ν|U, ν|ρ)
] ≤ 7δ〈ρ〉ν.

Proof. — In the event that ν(U) > 0, we can bound the distance dn(ν|U, ν|ρ) using
Corollary 4.2 with the partition (Bz : z ∈ Q) of R. Each Bz has diameter at most δ

according to dn, and the diameter of the whole of An is 1, so that corollary gives

dn(ν|U, ν|ρ) ≤ δ
∑

z∈Q

ν|ρ(Bz) + 1
2

∑

z∈Q

|ν|U(Bz) − ν|ρ(Bz)|.

Since the values ν|ρ(Bz) for z ∈ Q must sum to 1, the first term on the right is just δ. Let
us also remove the factor 1/2 from the second right-hand term for simplicity.

Multiplying by ν(U), we obtain

ν(U) · dn(ν|U, ν|ρ) ≤ δν(U) + ν(U)
∑

z∈Q

|ν|U(Bz) − ν|ρ(Bz)|

= δν(U) +
∑

z∈Q

∣

∣ν(U ∩ Bz) − ν(U)ν|ρ(Bz)
∣

∣

≤ δν(U) +
∑

z∈Q

∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣

+
∑

z∈Q

|ν(U) − 〈ρ〉ν| · ν|ρ(Bz),

using that
∫

Bz
ρ dν = 〈ρ〉ν · ν|ρ(Bz) for the last step. These inequalities also hold in case

ν(U) = 0.
Taking expectations, we obtain

E
[

ν(U) · dn(ν|U, ν|ρ)
]

≤ δEν(U) +
∑

z∈Q

E
∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣

+ E|ν(U) − 〈ρ〉ν| ·
∑

z∈Q

ν|ρ(Bz)

= δ〈ρ〉ν +
∑

z∈Q

E
∣

∣

∣ν(U ∩ Bz) −
∫

Bz

ρ dν

∣

∣

∣ + E|ν(U) − 〈ρ〉ν|.

Corollary 8.6 bounds both the second and the third terms here: each is at most 3δ〈ρ〉ν .
Adding these estimates completes the proof. �
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Proof of Proposition 8.1. — We may assume that r < 1/8 without loss of generality.
As explained previously, there are three cases to consider. In case μ has an atom

x of measure at least (59), we can let V := {x}. In case TC(μ) ≤ r4n, we use the set V
provided by Lemma 8.2.

So now suppose that neither of those cases holds. This assumption provides the
hypotheses for Proposition 8.4. Let R be the set provided by that proposition, and let
ν := μ|R. Choose ρ and construct a random subset U of R as above. By Corollary 8.6,
Lemma 8.7, and two applications of Markov’s inequality, the random set U satisfies each
of the inequalities

∣

∣ν(U) − 〈ρ〉ν

∣

∣ ≤ 9δ〈ρ〉ν

and

ν(U) · dn(ν|U, ν|ρ) ≤ 21δ〈ρ〉ν

with probability at least 2/3.
Therefore there exists a subset U ⊆ R which satisfies both of these inequalities.

For that set U, and recalling that we chose δ ≤ 1/18 (see (58)), the first inequality gives
ν(U) ≥ 〈ρ〉ν/2. Using this, the second inequality implies that

dn(ν|U, ν|ρ) ≤ 42δ.

Since we also chose δ ≤ r2/42 (see (58) again), and since ν|ρ satisfies T(κn, r), we
may now repeat the proof of Lemma 8.2 (based on Proposition 5.9). It gives another
subset V of An with ν|U(V) ≥ 1 − 4r ≥ 1/2 and such that the measure (ν|U)|V satisfies
T(κn,9r), provided n is sufficiently large in terms of κ and r. Since ν|U is supported on
U, we may replace V with U ∩ V if necessary and then assume that V ⊆ U. Having done
so, we have (ν|U)|V = (μ|U)|V = μ|V.

Finally we must prove the lower bound on μ(V) for a suitable constant c. Recall-
ing (66), it follows from the estimates above that

μ(V) ≥ μ(U) · μ(V |U) = μ(R) · ν(U) · ν(V |U)

≥ δ

32M
· 〈ρ〉ν

2
· 1

2
≥ δ

256cBM
· e−33cBE/δ.

Recalling the definition of M in Lemma 8.3, this last expression is equal to

δ

256cB�n log |A|� · e−33cBE/δ.

Since we have restricted attention to the last of our three cases, we know that E > r4n.
Therefore, for any fixed c > 33cB/δ, the last expression must be greater than e−cE for
all sufficiently large n, since the negative exponential is stronger than the prefactor as
n −→ ∞. �
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Remark. — In Part III we apply Theorem C during the proof of Theorem A. In
that application, the measure μ is the conditional distribution of n consecutive letters in a
stationary ergodic process, given the corresponding letters in another process coupled to
the first. In this case, the Shannon–McMillan theorem enables us to obtain conclusion (d)
of Proposition 8.4 after just trimming the measure μ slightly, without using Lemma 8.3.
This makes for a slightly easier proof of Theorem C in this case.

Remark. — In the proof of Theorem C, we first obtain the new measure ν = μ|R.
Then we apply Theorem B to it, consider just one of the summands ρ · ν in the resulting
mixture, and use a random construction to produce a set U such that dn(ν|U, ν|ρ) is small.

An alternative is to consider the whole mixture

(70) ν = ρ1 · ν1 + · · · + ρm · νm

given by Theorem B, and then use a random partition U1, . . . , Um so that (i) each x ∈ An

chooses independently which cell to belong to and (ii) each event {Uj � x} has probability
ρj(x). Using similar estimates to those above, one can show that, in expectation, most of
the weight in the mixture is on terms for which dn(ν|Uj

, ν|ρj
) is small.

However, in this alternative approach, we must still begin by passing from μ to
ν = μ|R. It does not give directly a partition as required by Theorem C, since we have
ν|Uj

= μ|R∩Uj
, and the sets R ∩ Uj do not cover the whole of An. For this reason, it seems

easier to use just one well-chosen term from (70), as we have above.

9. A reformulation: extremality

The work of Parts II and III is much easier if we base it on a slightly different notion
of measure concentration than that studied so far. This alternative notion comes from an
idea of Thouvenot in ergodic theory, described in [107, Definition 6.3]. It is implied by a
suitable T-inequality, so we can still bring Theorem C to bear when we need it later, but
this new notion is more robust and therefore easier to carry from one setting to another.

9.1. Extremal measures. — Here is our new notion of measure concentration.

Definition 9.1. — Let (K, d,μ) be a metric probability space. It is (κ, r)-extremal if any

representation of μ as a mixture
∫

μ• dP satisfies

∫

d(μω,μ)P(dω) ≤ 1
κ

∫

D(μω ‖μ)P(dω) + r.

In the first place, notice that if r is at least the diameter of (K, d) then (K, d,μ) is
(κ, r)-extremal for every κ > 0.
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If (K, d,μ) satisfies T(κ, r) then it is also (κ, r)-extremal: T(κ, r) gives an inequal-
ity for each d(μω,μ), and we can simply integrate this with respect to P(dω). However,
extremality is generally slightly weaker than a T-inequality. This becomes clearer from
various stability properties of extremality. In particular, the next lemma shows that ex-
tremality survives with roughly the same constants under sufficiently small perturbations
in d , whereas T-inequalities can degrade substantially unless we also condition the per-
turbed measure on a subset (Proposition 5.9). This deficiency of T-inqualities may be seen
in the examples sketched in the second remark after the proof of Proposition 5.9.

Lemma 9.2 (Stability under perturbation in transportation). — Let μ,μ′ ∈ Prob(K), assume

that μ is (κ, r)-extremal, and let δ := d(μ,μ′). Then μ′ is (κ, r + 2δ)-extremal.

Proof. — By the vague compactness of Prob(K), there is a coupling λ of μ′ and μ

such that
∫

d(x′, x) λ(dx′,dx) = δ.

Let us disintegrate λ over the first coordinate, thus:

(71) λ =
∫

K
δx′ × λx′ μ′(dx′).

Now suppose that μ′ is equal to the mixture
∫

μ′
• dP. Combining this with (71), we

obtain

μ =
∫

K
λx′ μ′(dx′) =

∫




[

∫

K
λx′ μ′

ω(dx′)
]

P(dω) =
∫




μω P(dω),

where

(72) μω :=
∫

K
λx′ μ′

ω(dx′).

Thus, we have turned our representation of μ′ as a mixture into a corresponding repre-
sentation of μ. Therefore the assumed extremality gives

∫

d(μω,μ) P(dω) ≤ 1
κ

∫

D(μω ‖μ) P(dω) + r.

The triangle inequality for d gives
∫

d(μ′
ω,μ′) P(dω)

≤
∫

d(μ′
ω,μω) P(dω) +

∫

d(μω,μ) P(dω) + d(μ,μ′).
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The last right-hand term here is δ. We have just found a bound for the middle term.
Finally, by the definition (72), the first term is at most

∫

[

∫∫

d(x′, x) λx′(dx) μ′
ω(dx′)

]

P(dω) =
∫∫

d(x′, x) λx′(dx) μ′(dx′)

=
∫

d dλ = δ.

Combining these estimates gives
∫

d(μ′
ω,μ′) P(dω) ≤ 1

κ

∫

D(μω ‖μ) P(dω) + r + 2δ.

Finally, for the remaining integral on the right-hand side, we apply the fact that KL diver-
gence is non-increasing when one forms the compounds of two probability measures with
the same kernel. See, for instance, [11, Section 4.4, part 1] for this standard consequence
of the chain rule. This gives

∫

D(μω ‖μ) P(dω) =
∫

D
(

∫

K
λx′ μ′

ω(dx′)
∥

∥

∥

∫

K
λx′ μ′(dx′)

)

P(dω)

≤
∫

D(μ′
ω ‖μ′) P(dω). �

Next we show how extremality is inherited by product measures.

Lemma 9.3 (Products of extremal measures). — Let (K, dK) and (L, dL) be compact metric

spaces, let 0 < α < 1, and let d be the following metric on K × L:

(73) d((x, y), (x′, y′)) := αdK(x, x′) + (1 − α)dL(y, y′).

Let μ ∈ Prob(K) and ν ∈ Prob(L), and assume that they are (ακ, rK)-extremal and ((1 −
α)κ, rL)-extremal, respectively. Let r := αrK + (1 − α)rL. Then μ × ν is (κ, r)-extremal on the

metric space (K × L, d).

Proof. — Consider a representation

μ × ν =
∫




λω P(dω).

For each ω, let λK,ω be the marginal of λω on K, and consider the disintegration of λω

over the first coordinate:

λω =
∫

K
(δx × λL,(ω,x)) λK,ω(dx).
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We apply Lemma 4.3 to each ω separately and then integrate. This gives
∫

d(λω,μ × ν) P(dω)(74)

≤ α

∫

dK(λK,ω,μ) P(dω)

+ (1 − α)

∫∫

dL(λL,(ω,x), ν) λK,ω(dx) P(dω).

The measure μ is equal to the mixture
∫

λK,ω dP. Since μ is (ακ, rK)-extremal, it
follows that the first right-hand term in (74) is at most

1
κ

∫

D(λK,ω ‖μ) P(dω) + αrK.

On the other hand, let 
′ := 
× K, and let Q := P � λK,•. Then ν is equal to the
mixture

∫∫

λL,(ω,x) λK,ω(dx)P(dω) =
∫

λL,(ω,x) Q(dω,dx).

Applying the fact that ν is ((1 − α)κ, rL)-extremal to this mixture, it follows that the
second right-hand term in (74) is at most

1
κ

∫∫

D(λL,(ω,x) ‖ν) λK,ω(dx) P(dω) + (1 − α)rL.

Adding these two estimates, we obtain
∫

d(λω,μ × ν) P(dω)

≤ 1
κ

∫

D(λK,ω ‖μ) P(dω) + 1
κ

∫∫

D(λL,(ω,x) ‖ν) λK,ω(dx) P(dω) + r.

By the chain rule for KL divergence, this is equal to

1
κ

∫

D(λω ‖μ × ν) P(dω) + r. �

9.2. Extremal kernels. — In Parts II and III, we use extremality not just for one
measure on a compact metric space (K, d), but for a Prob(K)-valued kernel μ• on an-
other probability space (Y, ν). In those applications, the important property is that the
individual measures μy are highly extremal for most y ∈ Y according to ν. An exceptional
set of small probability is allowed.

With this in mind, let us extend Definition 9.1 to kernels.
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Definition 9.4. — Let (Y, ν) be a probability space, let (K, d) be a compact metric space, and

let μ• be a kernel from Y to K. The pair (ν,μ•) is (κ, r)-extremal if there is a measurable function

Y −→ (0,∞) : y �→ ry

such that μy is (κ, ry)-extremal for every y ∈ Y and such that

(75)
∫

ry ν(dy) ≤ r.

Thus, we control the extremality of the individual measures μy by the average of
their parameters in (75), rather than by explicitly introducing a ‘bad set’ of small proba-
bility. This turns out to give much simpler estimates in many of the proofs below, starting
with Lemma 9.7. Of course, Definition 9.4 is easily related to such a ‘bad set’ via Markov’s
inequality:

Lemma 9.5. — If (ν,μ•) is (κ, r)-extremal, then there is a subset Y1 ⊆ Y such that ν(Y1) ≥
1 − √

r and such that μy is (κ,
√

r)-extremal for every y ∈ Y.

On the other hand, if (K, d) has diameter r0, Y1 ⊆ Y is measurable, and μy is (κ, r)-extremal

for all y ∈ Y1, then (ν,μ•) is extremal with parameters

(

κ, r + r0ν(Y \ Y1)
)

.

Example 9.6. — Let p1μ1 + · · · + pmμm be a mixture given by Theorem B. Regard
p = (p1, . . . , pm) as a measure on [m] and (μj)

m
j=1 as a kernel from [m] to An. Then the

pair (p,μ•) is (rn/1200, r + ε)-extremal.

Definition 9.4 clearly depends on the kernel μ• only up to agreement ν-almost
everywhere. Therefore it may be regarded unambiguously as a property of the measure
ν � μ• on the product space Y × K. In the sequel we sometimes write (κ, r)-extremality
as a property of a measure on Y × K rather than of a pair such as (ν,μ•).

The next result is an easy extension of Lemma 9.2 to this setting.

Lemma 9.7 (Stability under perturbation in transportation). — Let (Y, ν) be a probability

space, let (K, d) be a compact metric space, and let μ• and μ′
• be two kernels from Y to K. Assume

that (ν,μ•) is (κ, r)-extremal, and let

δ :=
∫

d(μy,μ
′
y) ν(dy).

Then (ν,μ′
•) is (κ, r + 2δ)-extremal.

Proof. — Let y �→ ry be the function promised by Definition 9.4 for (ν,μ•). By
applying Lemma 9.2 for each y separately, it follows that the function
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y �→ ry + 2d(μy,μ
′
y)

serves the same purpose for (ν,μ′
•). This function has integral at most r + 2δ. �

Lemma 9.3 also has an easy generalization to kernels.

Lemma 9.8 (Pointwise products of extremal measures). — Let (K, dK) and (L, dL) be compact

metric spaces, let 0 < α < 1, and let d be the metric (73) on K × L.

Let μ• and μ′
• be kernels from (Y, ν) to K and L, respectively, and assume that (ν,μ•) and

(ν,μ′
•) are (ακ, rK)-extremal and ((1 − α)κ, rL)-extremal, respectively. Let r := αrK + (1 − α)rL.

Then the measure ν and pointwise-product kernel y �→ μy ×μ′
y are (κ, r)-extremal on the metric

space (K × L, d).

Proof. — Let y �→ rK,y and y �→ rL,y be functions as promised by Definition 9.4 for
μ• and μ′

•, respectively. For each y ∈ Y, apply Lemma 9.3 to conclude that μy × μ′
y is

(κ,αrK,y + (1 − α)rL,y)-extremal. Finally, observe that
∫

(αrK,y + (1 − α)rL,y) ν(dy) ≤ αrK + (1 − α)rL. �

We often use extremality when μ• is a conditional distribution of a K-valued ran-
dom variable F given G , where F is defined on a probability space (
,F ,P) and G is a
σ -subalgebra of F . Then the following nomenclature is useful.

Definition 9.9. — In the setting above, F is (κ, r)-extremal over G if P � μ• is (κ, r)-

extremal, where μ• is a conditional distribution of F given G .

In this setting, the important consequence of extremality is the following.

Lemma 9.10. — Let (
,F ,P) be a probability space, let G ⊆ H be σ -subalgebras of

F that are countably generated modulo P, let (K, d) be a finite metric space, and let F : 
 −→ K
be measurable and (κ, r)-extremal over G . Let μ• and ν• be conditional distributions for F given G
and H , respectively. Then

∫

d(νω,μω)P(dω) ≤ 1
κ

[

H(F |G ) − H(F |H )
] + r.

One can drop the assumption of countable generation, but we omit the details.

Proof. — Let ω �→ rω be the function promised by Definition 9.4 for (P,μ•).
Since H is countably generated modulo P, there is a measurable map ψ :


 −→ Y to a standard measurable space such that ψ generates H modulo P. Up to
agreement P-a.e., we may write νω as ν ′

ψ(ω) for some kernel ν ′
• from Y to K.
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In addition, let Q• : 
 −→ Prob(Y) be a conditional distribution for ψ given G .
Such a Q• exists because Y is standard. Since H ⊇ G , the tower property of conditional
expectation gives

(76) μω =
∫

Y
ν ′

y Qω(dy) for P-a.e. ω.

Therefore, for P-a.e. ω, we may apply the (κ, rω)-extremality of μω to obtain
∫

d(ν ′
y,μω)Qω(dy) ≤ 1

κ

∫

D(ν ′
y ‖μω) Qω(dy) + rω.

Integrating with respect to P(dω), this gives
∫

d(νω,μω)P(dω) =
∫∫

d(ν ′
y,μω)Qω(dy)P(dω)

≤ 1
κ

∫∫

D(ν ′
y ‖μω) Qω(dy) P(dω) +

∫

rω P(dω)

≤ 1
κ

∫

D(νω ‖μω) P(dω) + r.

On the other hand, using again that H ⊇ G , Lemma 2.2 gives
∫

D(νω ‖μω) P(dω) = H(F |G ) − H(F |H ). �

Combining Lemmas 9.10 and 9.7 gives the following useful consequence.

Corollary 9.11 (Inheritance of extremality). — In the setting of Lemma 9.10, let

a := H(F |G ) − H(F |H ).

Then F is (κ,2a/κ + 3r)-extremal over H .

Finally, here is an analog of Lemma 5.10 for extremal kernels.

Lemma 9.12 (Stability under lifting). — Let dn be the normalized Hamming metric on An for

some finite set A, and let ν � μ• be a probability measure on Y × An. Let S ⊆ [n] satisfy |S| ≥
(1 − a)n, and let μS,y be the projection of μy to AS for each y ∈ Y. If ν � μS,• is (κ, r)-extremal,

then ν � μ• is (nκ/|S|, r + a)-extremal.

Proof. — First consider the case when Y is a single point. Effectively this means
we have a single measure μ on An for which μS is (κ, r)-extremal. Suppose μ is rep-
resented as the mixture

∫

μω P(dω). Projecting to AS, this becomes μS = ∫

μS,ω P(dω),



78 T. AUSTIN

and we have D(μS,ω ‖μS) ≤ D(μω ‖μ) for each ω as in the proof of Lemma 5.10. So our
assumption on μS gives

∫

dS(μS,ω,μS)P(dω) ≤ 1
κ

∫

D(μS,ω ‖μS)P(dω) + r

≤ 1
κ

∫

D(μω ‖μ)P(dω) + r.

Now, just as in the proof of Lemma 5.10, we may lift a family of couplings which realize
the distances dS(μS,ω,μS), and thereby turn the above inequalities into

∫

dn(μω,μ)P(dω) ≤ |S|
n

(1
κ

∫

D(μω ‖μ)P(dω) + r
)

+ a.

Casually taking r outside the parentheses, this shows (nκ/|S|, r + a)-extremality.
In the case of general Y and a kernel μ•, simply apply the special case above to

each μy separately. �

Part II
RELATIVE BERNOULLICITY

To prove Theorem A, we construct a factor of (X,μ,T) using a sequence of appli-
cations of Theorem C, and then show that the measure concentration promised by that
theorem implies relative Bernoullicity. The second of these steps rests on Thouvenot’s
relative version of Ornstein theory. In this part of the paper we recall the main results of
that theory, and provide some small additions which assist in its application later.

At the heart of Ornstein’s original work on Bernoullicity are two necessary and suf-
ficient conditions for an ergodic finite-state process to be isomorphic to a Bernoulli shift:
the finitely determined property, and the very weak Bernoulli property. More recently,
other necessary and sufficient conditions have been added to this list, such as extremal-
ity [107, Definition 6.3] or a version of measure concentration [61] (historically referred
to as the ‘almost blowing-up property’ in ergodic theory).

This theory can be generalized to characterize relative Bernoullicity of an ergodic
measure-preserving system over a distinguished factor map. This was realized by Thou-
venot, who proved the first key extensions of Ornstein’s results in [104, 105] (see also [44]
for another treatment). Thouvenot’s more recent survey [107] describes the broader con-
text. In the first instance, the theory is based on a relative version of the finitely deter-
mined property. Thouvenot’s theorem that relative finite determination implies relative
Bernoullicity is recalled as Theorem 11.5 below.

In general, a proof that a given system is relatively Bernoulli over some factor
map has two stages: (i) a proof of relative finite determination, and then (ii) an appeal
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to Theorem 11.5. To prove Theorem A, we construct the new factor map π1 that it
promises, and then show relative Bernoullicity over π1 following those two stages.

Stage (ii) simply amounts to citing Theorem 11.5 from Thouvenot’s work. That
theorem is the most substantial fact that we bring into play from outside this paper.

There is more variety among instances of stage (i) in the literature: that is, proofs
of relative finite determination itself. For the construction in our proof of Theorem A,
we obtain it from a relative version of extremality. Relative extremality is a much more
concrete property than finite determination, and is built on the ideas of Section 9.

Regarding these two stages, let us make a curious observation. The assumption
of ergodicity in Theorem A is needed only as a necessary hypothesis for Theorem 11.5.
We do not use it anywhere in stage (i) of our proof of Theorem A. In particular, because
we have chosen to prove Theorem C in general, rather than just for the examples com-
ing from ergodic theory, we make no direct use of the Shannon–McMillan theorem in
this paper (see the first remark at the end of Section 8). Ergodicity does play a crucial
role within Thouvenot’s proof of Theorem 11.5 via the ergodic and Shannon–McMillan
theorems.

This part of the paper has the following outline. Section 10 recalls some standard
theory of Kolmogorov–Sinai entropy relative to a factor. Sections 11 and 12 introduce
relative finite determination and relative extremality, respectively. Then Section 13 proves
the crucial implication from the latter to the former.

The ideas in these sections have all been known in this branch of ergodic theory
for many years, at least as folklore. For the sake of completeness, I include full proofs of all
but the most basic results that we subsequently use, with the exception of Theorem 11.5.
Nevertheless, this part of the paper covers only those pieces of relative Ornstein theory
that are needed in Part III, and omits many other topics. For example, a knowledge-
able reader will see a version of relative very weak Bernoullicity at work in the proof of
Proposition 13.3 below, and will recognize a relative version of ‘almost block indepen-
dence’ in its conclusion: see the remark following that proof. But we do not introduce
these properties formally, and leave aside the implications between them. Relative very
weak Bernoullicity already appears in [104], and is known to be equivalent to relative
finite determination by results of Thouvenot [104], Rahe [82] and Kieffer [43].

10. Background on relative entropy in ergodic theory

This section contains the most classical facts that we need. We recount some of
them carefully for ease of reference later and to establish notation, but we omit most of
the proofs.

10.1. Factors, observables, and relative entropy. — For any set A we write TA for the
leftward coordinate shift on AZ. In the sequel the letters A and B always denote finite
alphabets.
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Most traditional accounts of entropy in ergodic theory are explained in terms of
finite measurable partitions. Here we adopt the slightly different language of observables,
which is closer to the spirit of coding and information theory (see, for instance, [5, Chap-
ter 5]).

Let (X,μ,T) be a measure-preserving system. An A-valued observable on X is
simply a measurable map X −→ A. An A-valued process is a bi-infinite sequence

ξ = (. . . , ξ−1, ξ0, ξ1, . . . )

of observables which together define a factor map from (X,μ,T) to (AZ, ξ∗μ,TA). We
often adopt the point of view that a process is a special kind of factor map. By equivari-
ance, it follows that these maps must satisfy

(77) ξn(x) = ξ0(Tnx) μ-a.s.

Thus, up to agreement modulo μ, ξ is completely specified by the time-zero coordinate
ξ0. On the other hand, any A-valued observable ξ0 gives rise to a unique A-valued pro-
cess: simply use (77) as the definition of all the other ξns.

Given a sequence ξ as above and any subset F ⊆ Z, we let

ξF := (ξn)n∈F.

We use this notation mostly when F is a discrete interval. For any integers a and b, we
write

[a; b] = (a − 1; b] = [a; b + 1) = (a − 1; b + 1) := {a, a + 1, . . . , b},
interpreting this as ∅ if b < a. We extend this notation to allow a = −∞ or b = ∞ in the
obvious way.

Given a system (X,μ,T) and a process ξ , the finite-dimensional distribu-
tions of ξ are the distributions of the observables ξF corresponding to finite subsets
F ⊆ Z. In case X = AZ, T = TA, and ξ is the canonical process, we denote the distri-
bution of ξF by μF.

The following conditional version of this notation is less standard, but also useful
later in the paper.

Definition 10.1 (Block kernels). — Given a system (X,μ,T), processes ξ : X −→ AZ and

π : X −→ BZ, and n ∈ N, the (ξ,π, n)-block kernel is the conditional distribution

μ(ξ[0;n) = a |π[0;n) = b) (a ∈ An, b ∈ Bn),

regarded as a kernel from Bn to An. We define it arbitrarily for any b for which μ(π[0;n) = b) = 0.

In case X = BZ × AZ, T = TB×A, and ξ and π are the canonical A- and B-valued processes

on X, we may refer simply to the n-block kernel, and denote it by μblock
[0;n) (a |b).
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Now let ξ : X −→ AZ be a process and let π : (X,μ,T) −→ (Y, ν,S) be a general
factor map. The relative Kolmogorov–Sinai (‘KS’) entropy of (X,μ,T, ξ) over π

is the quantity

h(ξ,μ,T |π) = lim
n−→∞

1
n

Hμ(ξ[0;n) |π).

The limit exists by the usual subadditivity argument. In case π is trivial it simplifies to

h(ξ,μ,T) = h(ξ∗μ,TA),

the KS entropy of the factor system (AZ, ξ∗μ,TA), by the Kolmogorov–Sinai theorem.
Henceforth we frequently omit the subscript μ from Hμ, provided this measure is

clear from the context.
In general, if π and ϕ are measurable maps on (X,μ), then we say that ϕ is π -

measurable if ϕ is measurable with respect to the σ -algebra generated by π up to
μ-negligible sets.

The next lemma describes a standard alternative approach to relative KS entropy
in case the factor map π is also a process.

Lemma 10.2. — If π : X −→ BZ is a process, then

H(ξ[0;n) |π[0;n)) ≥ H(ξ[0;n) |π)

for every n, both of these sequences are subadditive in n, and both have the form

h(ξ,μ,T |π) · n + o(n) as n −→ ∞.

If π is an arbitrary factor map, then

h(ξ,μ,T |π) = inf
{

h(ξ,μ,T |π ′) : π ′ is a π -measurable process
}

.

If ϕ is another general factor map of (X,μ,T), then we define

h(ϕ,μ,T |π) := sup
{

h(ξ,μ,T |π) : ξ is a ϕ-measurable process
}

.

In particular,

h(μ,T |π) := h(idX,μ,T |π)

= sup
{

h(ξ,μ,T |π) : ξ a process on (X,μ,T)
}

.

Once again, an important special case arises when X = BZ × AZ, T = TB×A, and
π is the canonical B-valued process on X. In this case we frequently abbreviate

h(μ,T |π) =: h(μ |π).
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If π : X −→ Y and ϕ : X −→ Z are maps between measurable spaces, then we
write π ∨ ϕ for the map

X −→ Y × Z : x �→ (π(x), ϕ(x)).

In the case of observables, this notation deliberately suggests the common refinement of a
pair of partitions. We extend it to larger collections of maps or observables in the obvious
way.

Relative KS entropy is a dynamical cousin of conditional Shannon entropy, and it
has many analogous properties. The next result is an analog of the chain rule for Shannon
entropy. It follows at once from that rule, Lemma 10.2, and the definitions above.

Lemma 10.3 (Chain rule). — For any factor maps π , ϕ and ψ on (X,μ,T), we have

(78) h(ϕ ∨ ψ,μ,T |π) = h(ϕ,μ,T |π) + h(ψ,μ,T |ϕ ∨ π).

Corollary 10.4 (Chain inequality). — For any factor maps π , ϕ and ψ , we have

h(ψ,μ,T |ϕ ∨ π) ≥ h(ψ,μ,T |π) − h(ϕ,μ,T |π).

Proof. — This follows by re-arranging (78) and using the monotonicity

h(ϕ ∨ ψ,μ,T |π) ≥ h(ψ,μ,T |π). �

The next lemma generalizes the well-known equality between the KS entropy of
a process and the Shannon entropy of its present conditioned on its past (see, for in-
stance, [5, Equation (12.5)]). The method of proof is the same. That method also appears
in the proof of a further generalization in Lemma 10.6 below.

Lemma 10.5. — For any process ξ and factor map π , we have

h(ξ,μ,T |π) = H(ξ0 |π ∨ ξ(−∞;0)).

10.2. The use of a periodic set. — At a few points later we need a slightly less standard
variation on the calculations above. To formulate it, we say that a measurable subset
F ⊆ X is m-periodic under T modulo μ for some m ∈ N if (i) the sets F, T−1F, . . . ,
T−(m−1)F form a partition of X modulo μ-negligible sets and (ii) T−mF = F modulo μ.

Lemma 10.6. — If π is a factor map of (X,μ,T), ξ is a process, and F is π -measurable

and m-periodic under T modulo μ, then

H(ξ[0;m) |π;F) ≥ H(ξ[0;m) |π ∨ ξ(−∞;0);F) = h(ξ,μ,T |π) · m.
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(Recall (7) for the notation H( · | · ;F).)

Proof. — The inequality on the left follows from the monotonicity of H under
conditioning, so we focus on the equality on the right. In case m = 1, this is precisely the
statement of Lemma 10.5. To handle the general case we simply mimic the usual proof
of that special case.

First, for any k ∈ N, the chain rule for Shannon entropy gives

(79) H(ξ[0;km) |π;F) =
k−1
∑

i=0

H(ξ[im;(i+1)m) |π ∨ ξ[0;im);F).

For each i in this sum we have T−imF = F modulo μ, because F is m-periodic. Since the
σ -algebra generated by π is globally T-invariant, the conditional distribution of ξ[im;(i+1)m)

given π ∨ ξ[0;im) is the same as the conditional distribution of ξ[0;m) given π ∨ ξ[−im;0), up
to shifting by T. Therefore the right-hand side of (79) is equal to

k−1
∑

i=0

H(ξ[0;m) |π ∨ ξ[−im;0);F).

By the usual appeal to the martingale convergence theorem (see, for instance, [5, Theo-
rem 12.1]), this sum is equal to

(80) k · H(ξ[0;m) |π ∨ ξ(−∞;0);F) + o(k) as k −→ ∞.

On the other hand, consider some t ∈ {1, . . . ,m − 1}. Then, reasoning again from
the T-invariance of the σ -algebra generated by π , we have

H(ξ[0;km) |π;T−tF) = H(ξ[t;t+km) |π;F)

= H(ξ[0;km) |π;F) + O(t log |A|) = H(ξ[0;km) |π;F) + O(m log |A|),
since each of the observables ξ[t;t+km) and ξ[0;km) determines all but t coordinates of the
other. Therefore

H(ξ[0;km) |π) = 1
m

m−1
∑

t=0

H(ξ[0;km) |π;T−tF)

= H(ξ[0;km) |π;F) + O(m log |A|),
where the first equality holds because the partition F, T−1F, . . . , T−(m−1)F is π -
measurable and all these sets have measure 1/m. Combining this with (79) and (80),
dividing by k, and then letting k −→ ∞, we obtain
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H(ξ[0;m) |π ∨ ξ(−∞;0);F) = lim
k−→∞

1
k

H(ξ[0;km) |π;F)

= lim
k−→∞

1
k

H(ξ[0;km) |π) = h(ξ,μ,T |π) · m. �

Remark. — Lemma 10.6 is really a relative-entropy version of Abramov’s formula
for the entropy of an induced transformation [1], in the special case where we induce on
a periodic set.

11. Relative finite determination

11.1. Extensions, joinings, and relative d-distance. — Before we define relative finite
determination, we need some more notation in the setting of finite-alphabet processes.
Let A and B be finite sets, and let β be the canonical process from BZ × AZ to BZ. Let
ν be a shift-invariant probability measure on BZ, and let Ext(ν,A) be the set of all shift-
invariant probability measures λ on BZ × AZ which satisfy β∗λ = ν.

Given λ, θ ∈ Ext(ν,A), let

Join(λ, θ |β)

be the set of all invariant probability measures γ on BZ × AZ × AZ which satisfy

γ {(b, a, a′) : (b, a) ∈ U} = λ(U) and γ {(b, a, a′) : (b, a′) ∈ U} = θ(U)

for all measurable U ⊆ BZ × AZ. Members of Join(λ, θ |β) are called relative joinings
of λ and θ over β .

The set Join(λ, θ |β) always contains the relative product of λ and θ over the
map β , so this set is never empty. If λ and θ are both ergodic, then Join(λ, θ |β) also
contains all ergodic components of that relative product, so in particular it has some
ergodic members.

Definition 11.1. — In the setting above, the relative d-distance between λ and θ

over β is the quantity

d(λ, θ |β) = inf
{

γ {(b, a, a′) : a0 �= a′
0} : γ ∈ Join(λ, θ |β)

}

.

A standard vague-compactness argument in the space Join(λ, θ |β) shows that this
infimum is achieved by some γ .

In order to estimate d(λ, θ |β), it is helpful to relate it to transportation distances
and the finite-dimensional distributions λ[0;n) and θ[0;n). We may do this in terms of the
associated block kernels from Definition 10.1.
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Lemma 11.2. — For any λ, θ ∈ Ext(ν,A) we have

d(λ, θ |β) = lim
n−→∞

∫

dn

(

λblock
[0;n) ( · | b[0;n)), θblock

[0;n) ( · | b[0;n))
)

ν(db),

Proof. — This is a relative version of a well-known formula for Ornstein’s original
d-metric: see, for instance, [91, Theorem I.9.7]. The existence of the right-hand limit is
part of the conclusion to be proved.

We see easily that d(λ, θ |β) is at least the limit supremum of the right-hand side:
if γ is any element of Join(λ, θ |β) which achieves the value of d(λ, θ |β), then its finite-
dimensional distributions γ[0;n) give an upper bound for that limit supremum. So now
let δ be the limit infimum of the right-hand side, and let us show that d(λ, θ |β) ≤ δ.
Suppose δ is the true limit along the subsequence indexed by n1 < n2 < . . . .

For each n ∈ N and b ∈ Bn, select an optimal coupling of λblock
[0;n) ( · |b) and

θblock
[0;n) ( · |b). These couplings together define a kernel from Bn to An × An for each n.

Hooking these kernels up to the measures ν[0;n), we obtain a sequence of probability
measures γn on Bn × An × An such that γn couples λ[0;n) and θ[0;n) over a common copy of
Bn and such that

∫

Bnk ×Ank ×Ank

dnk
(a,a′) γnk

(db,da,da′)(81)

= 1
nk

nk
∑

i=1

γnk
{(b,a,a′) : ai �= a′

i} −→ δ as k −→ ∞.

For each n, let γ ′
n be any probability measure on BZ × AZ × AZ whose projection to

B[0;n) × A[0;n) × A[0;n) agrees with γn, and let γ ′′
n be the following averaged measure on

BZ × AZ × AZ:

γ ′′
n := 1

n

n−1
∑

t=0

(Tt
B×A×A)∗γ ′

n .

Because of this averaging, the bound (81) implies that

(82) γ ′′
nk
{(b, a, a′) : a0 �= a′

0} = 1
nk

nk−1
∑

i=0

γ ′
nk
{(b, a, a′) : ai �= a′

i} −→ δ as k −→ ∞.

Finally, let γ ′′ be any subsequential vague limit of the sequence (γ ′′
nk
)∞

k=1. Then γ ′′

is invariant, because the averaged measures γ ′′
n satisfy

‖γ ′′
n − (TB×A×A)∗γ ′′

n ‖ = O(1/n).

Taking the limit in (82), we have

γ ′′{(b, a, a′) : a0 �= a′
0} = δ.
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It remains to show that γ ′′ is a coupling of λ and θ over β . We show that the first
projection of γ ′′ to BZ × AZ is λ; the argument for the second projection is the same.

Fix � ∈ N and two strings b ∈ B� and a ∈ A�, and let

Y := {

(b, a) ∈ BZ × AZ : b[0;�) = b and a[0;�) = a
}

.

For each n, the definition of γ ′′
n gives

(83) γ ′′
n (Y × AZ) = 1

n

n−1
∑

t=0

γ ′
n(T

−t
B×A×A(Y × AZ)).

For 0 ≤ t ≤ n − �, the set

T−t
B×A×A(Y × AZ) = {

(b, a, a′) : b[t;t+�) = b and a[t;t+�) = a
}

depends only on coordinates with indices in [0; n), and so we have

γ ′
n(T

−t
B×A×A(Y × AZ))

= λ[0;n)
{

(b0, . . . , bn−1, a0, . . . , an−1) :
(bt, . . . , bt+�−1) = b and (at, . . . , at+�−1) = a

}

= λ(Y).

Inserting this into (83), we obtain

1
n

n−�
∑

t=0

λ(Y) + O(�/n) = λ(Y) + O(�/n).

Taking n = nk here and letting k −→ ∞, we conclude that γ ′′(Y × AZ) = λ(Y) for any
such choice of �, b and a. Therefore the first projection of γ ′′ to BZ × AZ is equal to λ. �

It follows from Lemma 11.2 that the function d( · , · |β) is indeed a metric on
Ext(ν,A), but we do not use this particular fact later in the paper. See [91, Section I.9]
for the analogous proof in the non-relative setting.

11.2. Relative finite determination. — The relative version of the finitely determined
property has been studied in various papers, particularly [104], [82] and [44]. Here we
essentially follow the ideas of [104], except that we also define a quantitative version of
this property, in which various small parameters are fixed rather than being subject to a
universal or existential quantifier. We do this because several arguments later in the paper
require that we keep track of these parameters explicitly.

We define relative finite determination in two steps: for shift-invariant measures,
and then for processes. Suppose first that ν ∈ Prob(BZ) is shift-invariant, and let β be the
canonical B-valued process on BZ × AZ.
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Definition 11.3. — Let δ > 0. A measure λ ∈ Ext(ν,A) is relatively δ-finitely de-
termined (‘relatively δ-FD’) over β if there exist ε > 0 and n ∈ N for which the following

holds: if another measure θ ∈ Ext(ν,A) satisfies

(i) h(θ |β) > h(λ |β) − ε and

(ii) ‖θ[0;n) − λ[0;n)‖ < ε,

then d(λ, θ |β) < δ.

The measure λ is relatively FD over β if it is relatively δ-FD over β for every δ > 0.

Now consider a general system (X,μ,T) and a pair of processes π : X −→ BZ

and ξ : X −→ AZ.

Definition 11.4. — The process ξ is relatively δ-FD (resp. relatively FD) over π if

the joint distribution

λ = (π ∨ ξ)∗μ

is relatively δ-FD (resp. relatively FD) over β .

The part of this definition which quantifies over all δ agrees with the definition
in [44, 104].

The following result is the heart of Thouvenot’s original work [104].

Theorem 11.5. — If the system (BZ × AZ, λ,TB×A) is ergodic and λ is relatively FD over

β , then (BZ × AZ, λ,TB×A) is relatively Bernoulli over β .

We use this theorem as a ‘black box’ in Part III. It is the most significant result that
we cite from outside this paper.

Lemma 11.6. — Let (X,μ,T) be a system, let

ξ : X −→ AZ, π : X −→ BZ and π ′ : X −→ (B′)Z

be three processes, and assume that π and π ′ generate the same factor of (X,μ,T) modulo μ-neglible

sets. If ξ is relatively δ-FD over π , then it is also relatively δ-FD over π ′.

Proof. — Since π and π ′ generate the same σ -subalgebra of BX modulo negligible
sets, and since our measurable spaces are all standard, there is a commutative diagram of
factor maps

(X,μ,T)

π π ′

(BZ, ν,TB) ((B′)Z, ν ′,TB′),
ϕ
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where ϕ is an isomorphism of systems. (See, for instance, the subsection on isomorphism
vs. conjugacy in [5, Section 5].)

Let

λ := (π ∨ ξ)∗μ and λ′ := (π ′ ∨ ξ)∗μ.

Let β be the coordinate projection BZ × AZ −→ BZ, and define β ′ analogously. Let α be
the canonical process on AZ, so that αF is the coordinate projection AZ −→ AF for any
F ⊆ Z.

For the given value of δ and for the processes ξ and π , let ε > 0 and n ∈ N be the
values promised by Definition 11.4.

Let ε′ := ε/3. Since ϕ[0;n) : (B′)Z −→ B[0;n) is measurable, there exist m ∈ N, a map
� : (B′)Z −→ B[0;n) that depends only on coordinates in [−m; n + m), and a measurable
subset U ⊆ (B′)Z with ν ′(U) > 1 − ε/6 such that

(84) ϕ[0;n)|U = �|U.

Let n′ := n + 2m, and let Uc := (B′)Z \ U.
Now suppose that θ ′ ∈ Ext(ν ′,A) satisfies

(i′) h(θ ′ |β ′) > h(λ′ |β ′) − ε′ and
(ii′) ‖θ ′

[0;n′) − λ′
[0;n′)‖ < ε′, hence also

(85) ‖θ ′
[−m;n+m) − λ′

[−m;n+m)‖ < ε′

by shift-invariance.

Let θ := (ϕ × α)∗θ ′ ∈ Prob(BZ × AZ). We shall deduce from (i′) and (ii′) that θ and λ

satisfy the anologous conditions (i) and (ii) in Definition 11.3.
Towards (i), the chain rule and the Kolmogorov–Sinai theorem give that

h(λ |β) = h(λ) − h(ν) = h(λ′) − h(ν ′) = h(λ′ |β ′),

and similarly h(θ |β) = h(θ ′ |β ′). Therefore, by (i′),

h(θ |β) > h(λ |β) − ε′ > h(λ |β) − ε.

To verify (ii), consider the estimates

‖θ[0;n) − λ[0;n)‖ = ∥

∥(ϕ[0;n) × α[0;n))∗(θ ′ − λ′)
∥

∥(86)

≤ ‖(ϕ[0;n) × α[0;n))∗(1Uc×AZ · θ ′)‖
+ ∥

∥(ϕ[0;n) × α[0;n))∗(1U×AZ · (θ ′ − λ′))
∥

∥

+ ‖(ϕ[0;n) × α[0;n))∗(1Uc×AZ · λ′)‖.
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Since θ ′(U × AZ) = λ′(U × AZ) = ν ′(U), the first and last terms here are both less than
ε/6. On the other hand, by (84), the middle term is equal to

∥

∥(� × α[0;n))∗(1U×AZ · (θ ′ − λ′))
∥

∥,

which is at most

(87)
∥

∥(� × α[0;n))∗(θ ′ − λ′)
∥

∥ + 2 · (ε/6)

by the same reasoning that gave (86). Since � depends only on coordinates in [−m; n +
m), the first term of (87) is bounded by the left-hand side of (85), hence is at most ε/3.
Adding up these estimates, we obtain condition (ii):

‖θ[0;n) − λ[0;n)‖ < ε.

Having shown conditions (i) and (ii) for θ and λ, our choice of ε and n gives
d(λ, θ |β) < δ. Let γ be a triple joining that witnesses this inequality, and let

γ ′ := (ϕ−1 × α × α)∗γ.

This new triple joining witnesses that d(λ′, θ ′ |β ′) < δ. �

12. Relative extremality

Extremality is one of the characterizations of Bernoullicity for a finite-state ergodic
process. It was introduced by Thouvenot in the mid 1970s, and began to circulate in
unpublished notes by Feldman and in Antoine Lamotte’s PhD thesis, also unpublished.
The earliest published reference I know is [84], where Rudolph uses this characteriza-
tion of Bernoullicity without proof. Ornstein and Weiss introduce extremality and prove
its equivalence to Bernoullicity in the general setting of amenable groups in [77, Sec-
tion III.4], and use it for their extension of Ornstein theory to that setting. Extremality
is also defined and compared to other characterizations of Bernoullicity in [107, Defini-
tion 6.3], and a complete account of its place in the theory for a single automorphism
appears in [36, Chapter 5].

In this paper we need a relative version of extremality for one process over another.
We define this as a natural sequel to Definition 9.9. The resulting definition is superficially
a little different from Thouvenot’s, but equivalent in all important respects.

Consider again a general system (X,μ,T) and a pair of processes ξ : X −→ AZ

and π : X −→ BZ.

Definition 12.1. — Let r, κ > 0. The process ξ is relatively (κ, r)-extremal over
π if the map ξ[0;n) is (κn, r)-extremal over π[0;n) on the probability space (X,μ) for all sufficiently

large n.
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This definition was the motivation for our work in Section 9. Unpacking Defi-
nition 9.9, we can write Definition 12.1 more explicitly as follows. Let ν := π∗μ, let
λ := (π ∨ ξ)∗μ, and let λblock

[0;n) be the (ξ,π, n)-block kernel from Definition 10.1. The
process ξ is (κ, r)-extremal over π if, for every sufficiently large n, there is a real-valued
function b �→ rb on Bn such that

– the conditional measure λblock
[0;n) ( · |b) is a (κn, rb)-extremal measure on the metric

space (An, dn) for each b ∈ Bn, and
– we have

∫

rb ν[0;n)(db) ≤ r.

Extremality is the notion that forms the key link between measure concentration
as studied in Part I and relative Bernoullicity. As such, it is the backbone of this whole
paper.

The next lemma is a dynamical version of Corollary 9.11. It is used during the
proof of Theorem A in Subsection 15.1. During that proof, we need to construct a new
observable with respect to which another is fairly extremal, and then enlarge that new
observable a little further without losing too much extremality.

Lemma 12.2. — Let ξ and π be processes on (X,μ,T) and suppose that ξ is relatively

(κ, r)-extremal over π . Let π ′ be another process such that π ′
0 refines π0, and assume that

(88) h(ξ,μ,T |π) − h(ξ,μ,T |π ′) ≤ κr.

Then ξ is relatively (κ,6r)-extremal over π ′.

Proof. — Let n be large enough that

– ξ[0;n) is (κn, r)-extremal over π[0;n), and
– H(ξ[0;n) |π[0;n)) ≤ (h(ξ,μ,T |π) + κr/2) · n.

Then Lemma 10.2 and the assumed bound (88) give

H(ξ[0;n) |π[0;n)) − H(ξ[0;n) |π ′
[0;n))

≤ (

h(ξ,μ,T |π) − h(ξ,μ,T |π ′) + κr/2
) · n ≤ 3κrn/2.

Now apply Corollary 9.11 to ξ[0;n), π[0;n) and π ′
[0;n). It gives that ξ[0;n) is extremal over

π ′
[0;n) with parameters

(

κn,
2 · (3κrn/2)

κn
+ 3r

)

= (κn,6r). �
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13. From extremality to finite determination

Consider again a system (X,μ,T) and processes ξ : X −→ AZ and π : X −→ BZ.
The main result of this section is that extremality implies finite determination, with some
explicit dependence between the quantitative versions of these properties.

Proposition 13.1. — Let r > 0. If ξ is relatively (κ, r)-extremal over π for some κ > 0, then

ξ is relatively (7r)-FD over π .

The constant 7 that appears here is convenient, but certainly not optimal.

13.1. Comparison with a product of block kernels. — Let λ be a measure on BZ × AZ,
and let ν be its marginal on BZ. Let α and β be the canonical A- and B-valued processes
on BZ × AZ, respectively. In this subsection we write H for Hλ.

The key to Proposition 13.1 is a comparison between the block kernel λblock
[0;kn) and

the product of k copies of λblock
[0;n) . This is given in Proposition 13.3. This comparison is

also used for another purpose later in the paper: see the proof of Lemma 14.6. For that
later application, we need a little extra generality: we can assume that λ is invariant
only under the n-fold shift Tn

B×A, not necessarily under the single shift TB×A. We can still
define the block kernels λblock

[0,kn) as in Definition 10.1. We return to the setting of true shift-
invariance in Subsection 13.2, where we apply Proposition 13.3 with λ := (π ∨ ξ)∗μ to
prove Proposition 13.1.

So now assume that λ is Tn
B×A-invariant, but not necessarily TB×A-invariant.

Lemma 13.2. — We have

H(α[0;n) |β ∨ α(−∞;0)) = h(α[0;n), λ,Tn
B×A |β).

Proof. — This just requires the right point of view. The triple (BZ × AZ, λ,Tn
B×A)

is a measure-preserving system. In this system, we may regard the map α[0;n) as a single
observable taking values in An. Under the transformation Tn

B×A, this observable generates
the process

(. . . , α[−2n;n), α[n;0), α[0;n), α[n;2n), . . . ).

This is just a copy of α, divided into consecutive blocks of n letters which we now regard
as single letters in the enlarged alphabet An. We may identify β with a process generated
by β[0;n) in the same way.

Now apply Lemma 10.5 to this system and pair of processes. �

Proposition 13.3. — In the situation above, assume that

(i) (extremality) α[0;n) is relatively (κn, r)-extremal over β[0;n) according to λ, and
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(ii) (conditional Shannon entropy is close to its Kolmogorov–Sinai limit)

H(α[0;n) |β[0;n)) < h(α[0;n), λ,Tn
B×A |β) + κrn.

Then
∫

dkn

(

λblock
[0;kn)( · | b[0;kn)), λblock

[0;n) ( · | b[0;n)) × · · · × λblock
[0;n) ( · | b[(k−1)n;kn))

)

ν(db)

< 2r

for every k ∈ N. Here dkn is the transportation metric associated to (Akn, dkn).

If λ is actually shift-invariant, then hypothesis (ii) of Proposition 13.3 may be rewrit-
ten as

H(α[0;n) |β[0;n)) <
(

h(λ,TB×A |β) + κr
) · n.

Therefore, in this special case, hypothesis (ii) holds for all sufficiently large n by
Lemma 10.2.

Proof. — We prove this by induction on k, but first we need to formulate a slightly
more general inductive hypotheses. Suppose that k ∈ N and that S is any subset of Z.
Then we write

BS −→ Prob(Akn) : b �→ λblock
[0;kn) |S( · |b)

for a version of the conditional distribution of α[0;kn) given βS under λ. In this notation we
have λblock

[0;kn) = λblock
[0;kn) | [0;kn). We show by induction on k that

(89)
∫

dkn

(

λblock
[0;kn) |S( · | bS), λblock

[0;n) ( · | b[0;n)) × · · · × λblock
[0;n) ( · | b[(k−1)n;kn))

)

ν(db) < 2r

whenever k ∈ N and S ⊇ [0; kn). The case S = [0; kn) gives Proposition 13.3.
The proof of (89) when k = 1 is a slightly degenerate version of the proof when

k > 1, so we explain them together.
Thus, assume we already know (89) with k − 1 in place of k and whenever S ⊇

[0; (k − 1)n). If k = 1, then regard this inductive assumption as vacuous. To extend the
desired conclusion to k we use Lemma 4.3. Assume now that S ⊇ [0; kn).

For each b ∈ BS, we have a probability measure λblock
[0;kn) |S( · |b) on

Akn = An × · · · × An

︸ ︷︷ ︸

k

.

The projection of this measure onto the first k − 1 copies of An is λblock
[0;(k−1)n) |S( · |b). This

is where we need the additional flexibility that comes from choosing S separately: the
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projection of λblock
[0;kn)( · |b) is λblock

[0;(k−1)n) | [0;kn)( · |b), and in general this can be different from
λblock

[0;(k−1)n)( · |b[0;(k−1)n)).
We now disintegrate the measure λblock

[0;kn) |S( · |b) further: for each b ∈ BS, let

A(k−1)n −→ Prob(An) : a �→ λ′( · |b,a)

be a conditional distribution under λblock
[0;kn) |S( · |b) of the last n coordinates in Akn, given

that the first (k − 1)n coordinates agree with a. If k = 1, then simply ignore a and set
λ′( · |b) := λblock

[0;n) |S( · |b).
In terms of this further disintegration, we may apply Lemma 4.3 to obtain

∫

dkn

(

λblock
[0;kn) |S( · | bS),

k−1
ą

j=0

λblock
[0;n) ( · | b[jn;(j+1)n))

)

ν(db)

≤ k − 1
k

∫

d(k−1)n

(

λblock
[0;(k−1)n) |S( · | bS),

k−2
ą

j=0

λblock
[0;n) ( · | b[jn;(j+1)n))

)

ν(db)

+ 1
k

∫∫

dn

(

λ′( · | bS,a), λblock
[0;n) ( · | b[(k−1)n;kn))

)

λblock
[0;(k−1)n) |S(da | bS) ν(db).

If k = 1, then simply ignore the first term on the right of this inequality.
By the inductive hypothesis, the first right-hand term here is less than 2(k − 1)r/k.

To finish the proof, we show that
∫∫

dn

(

λ′( · | bS,a), λblock
[0;n) ( · | b[(k−1)n;kn))

)

λblock
[0;(k−1)n) |S(da | bS) ν(db) < 2r.

The two kernels appearing inside the transportation distance here,

λ′( · | bS,a) and λblock
[0;n) ( · | b[(k−1)n;kn)),

are conditional distributions for α[(k−1)n;kn) under λ given the σ -algebras

H generated by βS ∨ α[0;(k−1)n) and G generated by β[(k−1)n;kn),

respectively.
Clearly H ⊇ G . Therefore, by Lemma 9.10, the desired estimate follows from the

(κn, r)-extremality of α[0;n) over β[0;n), provided we show that

H(α[(k−1)n;kn) |H ) > H(α[(k−1)n;kn) |G ) − κrn.

This, in turn, holds because of assumption (ii) in the statement of the current proposition:



94 T. AUSTIN

H(α[(k−1)n;kn) |H ) = H(α[(k−1)n;kn) |βS ∨ α[0;(k−1)n))

≥ H(α[(k−1)n;kn) |β ∨ α(−∞;(k−1)n))

= h(α[0;n), λ,Tn
B×A |β)

> H(α[(k−1)n;kn) |G ) − κrn,

where the third line is obtained from Lemma 13.2 and invariance under Tn
B×A, and the

fourth is our appeal to assumption (ii).
This continues the induction, and hence completes the proof. �

Remark. — Proposition 13.3 may be seen as a relative version of one of the standard
implications of Ornstein theory: that extremality implies almost block independence. We
do not formulate a precise relative version of almost block independence in this paper,
but this could easily be done along the same lines as the non-relative version: see, for
instance, [91, Section IV.1] or [36, Definitions 473 and 476] (the latter reference calls
this the ‘independent concatenations’ property). Then the conclusion of Proposition 13.3
should imply that λ is (2r)-almost block independent. I expect this leads to another char-
acterization of relative Bernoullicity for this λ, but we do not pursue this idea here.

In the next subsection we use Proposition 13.3 to prove Proposition 13.1. At an-
other point later we also need a different consequence of Proposition 13.3:

Corollary 13.4 (Stretching property of extremality). — Assume hypotheses (i) and (ii) from the

statement of Proposition 13.3. Then the observable α[0;kn) is relatively (κkn,5r)-extremal over β[0;kn)

for all k ∈ N.

Proof. — Let us write a general element of Bkn as (b1, . . . ,bk), where bj ∈ Bn for
each j = 1,2, . . . , k. A k-fold application of Lemma 9.8 gives that the measure ν[0;kn) and
the pointwise-product kernel

(b1, . . . ,bk) �→ λblock
[0;n) ( · |b1) × · · · × λblock

[0;n) ( · |bk)

are (κkn, r)-extremal. Now combine this fact with Proposition 13.3 and Lemma 9.7. �

13.2. From extremality to finite determination. — We return to the system (X,μ,T) and
processes ξ and π that appear in Proposition 13.1. Let ν := π∗μ and λ := (π ∨ ξ)∗μ.
Let α and β be the canonical A- and B-valued processes on BZ × AZ, respectively.

Proof of Proposition 13.1. — Choose n ∈ N so large that both of the following hold:

(a) α[0;n) is (κn, r)-extremal over β[0;n), and
(b) Hλ(α[0;n) |β[0;n)) < (h(α,λ,TB×A |β) + κr) · n = (h(λ |β) + κr) · n.
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The former holds for all sufficiently large n by assumption. The latter holds for all suffi-
ciently large n by Lemma 10.2.

By Proposition 13.3, conditions (a) and (b) imply that

(90)
∫

dkn

(

λblock
[0;kn)( · | b[0;kn)),

k−1
ą

j=0

λblock
[0;n) ( · | b[jn;(j+1)n))

)

ν(db) < 2r

for all k ∈ N.
Now suppose that θ ∈ Ext(ν,A) satisfies the conditions

(i) h(θ |β) > h(λ |β) − ε, and
(ii) ‖θ[0;n) − λ[0;n)‖ < ε

for some ε > 0.
Since λ[0;n) and θ[0;n) have the same marginal on Bn (namely, ν[0;n)), assumption (ii)

implies that the following also holds:

(ii′) (conditional distributions close in dn)
∫

dn

(

λblock
[0;n) ( · | b[0;n)), θblock

[0;n) ( · | b[0;n))
)

ν(db) < ε.

If ε is sufficiently small in terms of r, then we can apply Lemma 9.7 to conclude that

(91) α[0;n) is (κn,2r)-extremal over β[0;n) according to θ ,

in addition to the extremality according to λ.
On the other hand, the quantity

Hθ (α[0;n) |β[0;n)) = Hθ (α[0;n) ∨ β[0;n)) − Hθ (β[0;n))

is a continuous function of the joint distribution θ[0;n). Therefore, provided we chose ε

suffficiently small, assumption (ii) implies that

Hθ (α[0;n) |β[0;n)) < Hλ(α[0;n) |β[0;n)) + κrn/2.

Provided also that we chose ε < κr/2, condition (b) and assumption (i) give that this
right-hand side is less than

(h(λ |β) + κr + κr/2) · n < (h(θ |β) + 2κr) · n.

Combining these inequalities, we obtain

(92) Hθ (α[0;n) |β[0;n)) < (h(θ |β) + 2κr) · n.
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Conclusions (91) and (92) now provide the hypotheses for another application of
Proposition 13.3, this time to the system (BZ × AZ, θ,TB×A) and with r replaced by 2r.
We conclude that

(93)
∫

dkn

(

θblock
[0;kn)( · | b[0;kn)),

k−1
ą

j=0

θblock
[0;n) ( · | b[jn;(j+1)n))

)

ν(db) < 4r

for all k ∈ N.
Finally, for any k ∈ N and b ∈ BZ, a (k − 1)-fold application of Lemma 4.3 gives

dkn

(
k−1
ą

j=0

λblock
[0;n) ( · | b[jn;(j+1)n)),

k−1
ą

j=0

θblock
[0;n) ( · | b[jn;(j+1)n))

)

≤ 1
k

k−1
∑

j=0

dn

(

λblock
[0;n) ( · | b[jn;(j+1)n)), θblock

[0;n) ( · | b[jn;(j+1)n))
)

.

Here we have used only the special case of Lemma 4.3 that compares two product mea-
sures. Integrating this inequality with respect to ν(db), and recalling condition (ii′), it
follows that

(94)
∫

dkn

(
k−1
ą

j=0

λblock
[0;n) ( · | b[jn;(j+1)n)),

k−1
ą

j=0

θblock
[0;n) ( · | b[jn;(j+1)n))

)

ν(db) < ε,

which we now assume is less than r. Combined with (90), (93), and the triangle inequality
for dkn, we obtain that

∫

dkn

(

λblock
[0;kn)( · | b[0;kn)), θblock

[0;kn)( · | b[0;kn))
)

ν(db) < 7r.

Letting k −→ ∞, Lemma 11.2 completes the proof. �

Part III
THE WEAK PINSKER PROPERTY

14. A quantitative step towards Theorem A

In this section, we consider a factor map π : (X,μ,T) −→ (Y, ν,S) of ergodic
systems such that (Y, ν,S) satisfies the following special conditions:

The entropy h(ν,S) is finite, and S has an N-periodic set modulo ν for every
N ∈ N.
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We refer to this as assumption (A). There certainly exist atomless and ergodic auto-
morphisms that satisfy these conditions. For instance, let

Y :=
∏

N≥1

(Z/NZ),

let S be the rotation of this compact group by the element (1,1, . . . ), and let ν be any
S-invariant ergodic measure.

Since h(ν,S) is finite, Krieger’s generator theorem [47] tells us that (Y, ν,S) is
isomorphic to a shift-system with a finite state space. Since the conclusion of Theorem
A depends on (Y, ν,S) only up to isomorphism, we are free to replace (Y, ν,S) with
that shift-system: that is, we may assume that Y = BZ and S = TB for some finite set B.
Accordingly, π is now a B-valued process on (X,μ,T). We retain these assumptions until
the proof of Theorem A under assumption (A) is completed in Subsection 15.1.

Now let ξ : X −→ AZ be another process in addition to π .

Proposition 14.1. — Suppose assumption (A) holds, and let r > 0 and ε > 0. Then there exist

a new process ϕ on (X,μ,T) and a value κ > 0 such that

(a) h(ϕ,μ,T) < ε, and

(b) ξ is relatively (κ, r)-extremal over π ∨ ϕ.

In the light of Proposition 13.1 and Theorem 11.5, this should be seen as a quan-
titative step towards relative Bernoullicity for ξ over π ∨ ϕ. In Subsection 15.1, we apply
Proposition 14.1 repeatedly with smaller and smaller values of r to prove Theorem A un-
der assumption (A). Then it only remains to use some orbit equivalence theory to deduce
Theorem A in full.

Throughout this section we abbreviate Hμ to H and h(ξ,μ,T |π) to h(ξ |π), and
similarly. When the measure is omitted from the notation, the correct choice is always μ.

Remark. — It is possible to prove Theorem A in a single step, without ever treat-
ing the special case of assumption (A), by replacing periodic sets with sufficiently good
Rokhlin sets (see, for instance, [30, p71]). However, the use of Rokhlin’s lemma introduces
another error tolerance, which then complicates several of the estimates in the proof.
Since we use orbit equivalences to extend Theorem A to general amenable groups any-
way, there seems to be little value in trying to avoid assumption (A). Of course, Rokhlin’s
lemma is still implicitly at work within the results that we cite from orbit equivalence
theory.

14.1. The construction of a new observable. — Before proving Proposition 14.1, we
formulate and prove a proposition that gives a new observable ϕ with some related but
more technical properties.
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Proposition 14.2. — Suppose assumption (A) holds, and let r > 0 and ε > 0. Then there

exist a new process ϕ on (X,μ,T), a positive integer N, a value κ > 0, and a ϕ0-measurable and

N-periodic set F modulo μ such that:

(a) h(ϕ) < ε;

(b) ξ[0;N) is relatively (κN, r)-extremal over (π ∨ ϕ)[0;N) according to μ( · |F);

(c) H(ξ[0;N) | (π ∨ ϕ)[0;N);F) <
(

h(ξ |π ∨ ϕ) + rκ
) · N.

The proof of Proposition 14.2 occupies this subsection. It is the longest and trickiest
part of the proof of Theorem A. It includes the key point at which we apply Theorem C.

A warning is in order at this juncture. In the statement of Theorem C we denote
the alphabet by A. However, in this subsection our application of Theorem C does not
use the alphabet A of the process ξ , but rather some large Cartesian power A�. The
integer � is chosen in Step 1 of the proof below, based on the behaviour of the process ξ

(see choice (P2)).
The data N and F given by Proposition 14.2 do not appear in Proposition 14.1, but

they play an essential auxiliary role in the construction of the new process ϕ and the proof
that it has all the desired properties. This is why we formulate and prove Proposition 14.2
separately.

Conclusions (b) and (c) of Proposition 14.2 match hypotheses (i) and (ii) of Proposi-
tion 13.3, but for the conditioned measure μ( · |F) rather than μ. In the next subsection
we show how true extremality of ξ over π ∨ ϕ can be deduced from Proposition 14.2
using Corollary 13.4.

We break the construction of F and ϕ into several steps, and complete the proof of
Proposition 14.2 at the end of this subsection.

Step 1: choice of parameters. — By reducing ε if necessary, we may assume it is less
than log 2. We now choose several more auxiliary parameters as follows.

(P1) (Constants provided by Theorem C.) Let cC and κC be the constants provided
by Theorem C when both the input error tolerances in that theorem are set
equal to r. Now choose some positive δ < min{ε/cC, r}.

(P2) (First time-scale.) Choose � ∈ N so large that

H(ξ[0;�) |π[0;�)) < (h(ξ |π) + δ2/2) · �.
This choice of � is possible by Lemma 10.2. Set κ := κC/�.

(P3) (Second time-scale.) Lastly, choose n ∈ N so large that all of the following
hold:
(P3.1) (entropy estimate)

H(ξ[0;n�) |π[0;n�)) < (h(ξ |π) + κr/2) · n · �;
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(P3.2) (requirement for Theorem C) Theorem C applies to the n-fold power
of the alphabet A� when both of the input error tolerances equal r;

(P3.3) (another auxiliary estimate needed below)

cC exp(cCδn�) < exp(εn�).

The fact that (P3.1) holds for all sufficiently large n is a consequence of
Lemma 10.2. The fact that (P3.2) can be satisfied is precisely Theorem C.

Let N := n�.

Each of these choices is needed for a particular step in the argument below, and
is explained when we reach that step. The relation between � and n is very important:
it allows us to regard certain conditional distributions on An� as measures on the n-fold
product of the alphabet A� for which we have control over the total correlation. This
control is established in Lemma 14.4 below.

Step 2: introducing a periodic set. — Having chosen N, it is time to invoke assumption
(A). It provides a π -measurable set F0 ⊆ X which is N-periodic under T modulo μ.
Modulo negligible sets, we can now define a π -measurable factor map τ : X −→ Z/NZ
to a finite rotation by requiring that

τ(x) = j mod N when T−j x ∈ F0.

Let Fj := {τ = j mod N} for each j ∈ Z, so this equals TjF0 modulo μ, and let Fj := {τ =
j mod �}, which agrees with

Fj ∪ T−�Fj ∪ ∪· · · ∪ T−(n−1)�Fj

modulo μ. Each Fj is N-periodic under T modulo μ, each Fj is �-periodic under T
modulo μ, and Fj+� = Fj modulo μ for every j ∈ Z.

Lemma 14.3. — There exists j ∈ {0,1, . . . ,N − 1} satisfying both

(a) H(ξ[0;N) |π[0;N);Fj) < (h(ξ |π) + κr) · N

and

(b)
1
n

n−1
∑

i=0

H(ξ[0;�) |π[0;�);T−i�Fj) < (h(ξ |π) + δ2) · �.

Proof. — Up to a negligible set, the sets Fj for 0 ≤ j ≤ N−1 agree with the partition
of X generated by τ . Therefore we can compute H(ξ[0;N) | τ ∨π[0;N)) by first conditioning
onto each of the sets Fj , and then refining that partition by π[0;N). This gives

1
N

N−1
∑

j=0

H(ξ[0;N) |π[0;N);Fj) = H(ξ[0;N) | τ ∨ π[0;N))
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≤ H(ξ[0;N) |π[0;N)) < (h(ξ |π) + κr/2) · N,

by assumption (P3.1). On the other hand, each of the sets Fj is π -measurable and N-
periodic under T, so the terms in the left-hand average here all satisfy

H(ξ[0;N) |π[0;N);Fj) ≥ H(ξ[0;N) |π;Fj) ≥ h(ξ |π) · N,

using Lemma 10.6 for the second inequality. Therefore, by Markov’s inequality, inequal-
ity (a) is satisfied for more than half of the values j ∈ {0,1, . . . ,N − 1}.

Turning to inequality (b), we start by observing the following. Since Fj+� = Fj mod-
ulo μ and N is a multiple of �, we have

1
N

N−1
∑

j=0

H(ξ[0;�) |π[0;�);Fj) = 1
�

�−1
∑

j=0

H(ξ[0;�) |π[0;�);Fj).

This lets us re-apply the argument for inequality (a). This time we use the �-periodic sets
Fj in place of Fj , the maps ξ[0;�) and π[0;�), and assumption (P2) in place of (P3.1). We
deduce that more than half of the values j ∈ {0,1, . . . ,N − 1} satisfy

(95) H(ξ[0;�) |π[0;�);Fj) < (h(ξ |π) + δ2) · �.
On the other hand, for each j, the sets T−i�Fj for 0 ≤ i ≤ n − 1 are a partition of Fj into
n further subsets of equal measure (again up to a negligible set), and this partition of Fj

is generated by the restriction τ |Fj . From this, the chain rule, and monotonicity under
conditioning, we deduce that

1
n

n−1
∑

i=0

H(ξ[0;�) |π[0;�);T−i�Fj) = H(ξ[0;�) |π[0;�) ∨ τ ;Fj)

≤ H(ξ[0;�) |π[0;�);Fj).

Therefore any value of j which satisfies (95) also satisfies inequality (b).
Combining the conclusions above, there is at least one j for which both (a) and (b)

hold. �

With j as given by Lemma 14.3, fix F := Fj .

Step 3: some properties of the conditional marginals. — Set ˜A := A�, so that we may iden-
tify An� = AN with ˜An. Now define a new kernel by

˜λ(a |b) := μ(ξ[0;N) = a | {π[0;N) = b} ∩ F) (a ∈ AN = ˜An, b ∈ BN).

This is an instance of an N-block kernel, as in Definition 10.1, except for the extra
conditioning on F. At this point it is important that we regard this as a kernel from
BN to ˜An, rather than to AN. In addition, define the probability measure ν̃ on BN by
ν̃(b) := μ(π[0;N) = b |F).
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Lemma 14.4. — Let W be the set of all b ∈ BN which satisfy

ν̃(b) > 0 and TC(˜λ( · |b) ) ≤ δN.

Then ν̃(W) = μ(π[0;N) ∈ W |F) > 1 − δ.

Proof. — Consider a string b ∈ BN for which ν̃(b) > 0. Then ˜λ( · |b) is the con-
ditional distribution of ξ[0;N) given the event {π[0;N) = b} ∩ F, where we regard ξ[0;N) as
taking values in ˜An. Accordingly, the n marginals of ˜λ( · |b) on the space ˜A are the con-
ditional distributions of the ˜A-valued observables

ξ[0;�), ξ[�;2�), . . . , ξ[(n−1)�;n�)

given the event {π[0;N) = b} ∩ F. Therefore, by the definition of total correlation,

TC
(

˜λ( · |b)
) =

n
∑

i=1

H(ξ[(i−1)�;i�) | {π[0;N) = b} ∩ F)

− H(ξ[0;N) | {π[0;N) = b} ∩ F)

=
n

∑

i=1

Hμ( · |F)(ξ[(i−1)�;i�) | {π[0;N) = b})

− Hμ( · |F)(ξ[0;N) | {π[0;N) = b}).
Integrating this equality with respect to ν̃(db), we obtain:

(96)
∫

TC
(

˜λ( · |b)
)

ν̃(db) =
n

∑

i=1

H(ξ[(i−1)�;i�) |π[0;N);F) − H(ξ[0;N) |π[0;N);F).

By the monotonicity of Shannon entropy under conditioning, and then by the T-
invariance of μ, this is at most

n
∑

i=1

H(ξ[(i−1)�;i�) |π[(i−1)�;i�);F) − H(ξ[0;N) |π[0;N);F)(97)

=
n−1
∑

i=0

H(ξ[0;�) |π[0;�);T−i�F) − H(ξ[0;N) |π[0;N);F).

By inequality (b) from Lemma 14.3, the sum of positive terms here is less than

(h(ξ |π) + δ2) · � · n = (h(ξ |π) + δ2) · N.
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On the other hand, H(ξ[0;N) |π[0;N);F) is at least H(ξ[0;N) |π;F) by the monotonicity of
Shannon entropy under conditioning, and the latter is at least h(ξ |π) ·N by Lemma 10.6.
Therefore the whole of (97) is strictly less than

N · (h(ξ |π) + δ2
) − N · h(ξ |π) = δ2N,

and hence so is the integral on the left-hand side of (96). So ν̃(W) > 1 − δ by Markov’s
inequality. �

Step 4: application of Theorem C. — For each b ∈ W, we now apply Theorem C to
the measure ˜λ( · |b) with the choice of parameters in (P1) above. For each b ∈ W, that
theorem provides a partition

(98) ˜An = Ub,1 ∪ · · · ∪ Ub,mb

with the following properties:

(a) The number of cells satisfies mb ≤ cC exp(cCδN), which is less than eεN by our
choice in (P3.3).

(b) The first cell satisfies˜λ(Ub,1 |b) < r.
(c) The twice-conditioned measure (˜λ( · |b))|Ub,j

is well-defined and satisfies
T(κCn, r) for every j = 2,3, . . . ,mb, where the underlying metric is the nor-
malized Hamming metric dn on the n-fold product ˜An. This is greater than or
equal to the normalized Hamming metric dN when we identify ˜An with the
N-fold product AN, so (˜λ( · |b))|Ub,j

satisfies T(κCn, r) for that choice of metric
also. Recalling that κ = κC/�, let us write this last inequality as T(κN, r).

By including a few copies of the empty set, let us suppose that mb equals a fixed value m for
each b ∈ W, with the modification that conclusion (c) above holds only when Ub,j �= ∅.
Also, for b ∈ BN \ W, choose an arbitrary partition of ˜An into m subsets, so that the
notation in (98) still makes sense for those b.

We now switch back from ˜An to AN in our discussion.
In the rest of the construction, we need the right-hand side of (98) to be indexed by

strings over some alphabet, rather than by the integers 1, . . . , m. Since we have chosen
ε < log 2, we have m ≤ 2N. So let S ⊆ {0,1}N be any subset of cardinality m, and re-write
the partitions on the right-hand side of (98) so that the parts are indexed by the strings in
S:

(99) AN =
⋃

c∈S

Ub,c.

Do this in such a way that some fixed element c1 ∈ S has Ub,c1 equal to the ‘bad’ cell Ub,1

from property (b) for each b.
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Define � : BN × AN −→ S by

�(b,a) = c whenever a ∈ Ub,c,

and define � : F −→ S by

�(x) := �
(

π[0;N)(x), ξ[0;N)(x)
)

.

Lemma 14.5. — The map ξ[0;N) is (κN,3r)-extremal over π[0;N) ∨� according to μ( · |F).

Proof. — The point is that the measures

λb,c := (˜λ( · |b))|Ub,c

constitute a conditional distribution of ξ[0;N) given π[0;N) ∨� according to μ( · |F). To see
this, let a ∈ AN, b ∈ BN and c ∈ S, and suppose that the conditional probability

μ
(

ξ[0;N) ∨ π[0;N) ∨ � = (a,b,c)
∣

∣F
)

μ
(

π[0;N) ∨ � = (b,c)
∣

∣F
)

= μ
({ξ[0;N) ∨ π[0;N) ∨ � = (a,b,c)} ∩ F

)

μ
({π[0;N) ∨ � = (b,c)} ∩ F

)

has nonzero denominator. Then this fraction satisfies the following:

– It is zero if c �= �(b,a), or equivalently if a �∈ Ub,c. In this case λb,c(a) is also
zero.

– If c = �(b,a), then the fraction equals

μ
({π[0;N) = b} ∩ {ξ[0;N) = a} ∩ F

)

μ
({π[0;N) = b} ∩ {�(b, ξ[0;N)) = c} ∩ F

)

= μ
(

ξ[0;N) = a
∣

∣ {π[0;N) = b} ∩ F
)

μ
(

ξ[0;N) ∈ Ub,c

∣

∣ {π[0;N) = b} ∩ F
) = ˜λ(a |b)

˜λ(Ub,c |b)
= λb,c(a).

Having identified this conditional distribution, we may use the following conse-
quence of our appeal to Theorem C:

μ
(

π[0;N) ∨ � ∈ {

(b,c) : λb,c satisfies T(κN, r)
} ∣

∣F
)

≥ 1 − μ
(

π[0;N) �∈ W or ξ[0;N) ∈ Uπ[0;N),c1

∣

∣F
)

≥ 1 − μ(π[0;N) �∈ W |F) −
∫

W

˜λ(Ub,c1 |b) ν̃(db).

By Lemma 14.4 and conclusion (b) obtained from Theorem C, this is at least 1 − δ − r,
which is at least 1 − 2r. Now Lemma 9.5 completes the proof. �
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Step 5: finishing the construction. — It remains to construct the new process ϕ. It is ob-
tained from τ together with another new observable ψ0 : X −→ {0,1}. The idea behind
ψ0 is that names should be written as length-N blocks that are given by �, where the
blocks start at the return times to F. In notation, we wish to define ψ0 so that

(100) ψ[0;N)|F = �.

This is possible because F is N-periodic — indeed, this is precisely why we introduce
an N-periodic set into the construction. The formal definition that achieves (100) is as
follows. Given x ∈ X, choose t ∈ [0;N) so that T−tx ∈ F, and now let ψ0(x) be the (t +1)th

letter of the string

�(T−tx).

(We need the (t + 1)th letter because we index {0,1}N using {1, . . . ,N}, not [0;N).)
Let ψ : X −→ {0,1}Z be the process generated by ψ0. Now let ϕ := τ ∨ ψ , and

observe that π ∨ ϕ and π ∨ ψ generate the same factor of (X,μ,T).

Proof of Proposition 14.2. — First, (100) and Lemma 10.6 give that

h(ϕ) = h(ψ) ≤ 1
N

H(ψ[0;N) |F) = 1
N

H(� |F) ≤ log |S|
N

< ε.

This proves (a).
Next, the definition (100) has the consequence that the conditional distribution of

ξ[0;N) given π[0;N) ∨ ϕ[0;N) according to μ( · |F) is the same as its conditional distribution
given π[0;N) ∨ � according to μ( · |F). In particular, τ has no effect on this conditional
distribution, because τ |F is constant. Therefore ξ[0;N) is relatively (κN,3r)-extremal over
(π ∨ ϕ)[0;N) according to μ( · |F), by Lemma 14.5.

Now we turn to (c). On the event F, we have from (100) that the map ψ[0;N) agrees
with �, which is a function of π[0;N)∨ξ[0;N). Therefore the chain rule for Shannon entropy
gives

H(ξ[0;N) |ϕ[0;N) ∨ π[0;N) ; F) = H(ξ[0;N) |ψ[0;N) ∨ π[0;N) ; F)

= H(ξ[0;N) |� ∨ π[0;N) ; F)

= H(ξ[0;N) |π[0;N) ; F) − H(� |π[0;N) ; F)

= H(ξ[0;N) |π[0;N) ; F) − H(ψ[0;N) |π[0;N) ; F).

By inequality (a) from Lemma 14.3, this is less than

(h(ξ |π) + κr) · N − H(ψ[0;N) |π[0;N) ; F).

On the other hand, Lemma 10.6 gives

H(ψ[0;N) |π[0;N) ; F) ≥ h(ψ |π) · N,
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so it follows that

H(ξ[0;N) |ϕ[0;N) ∨ π[0;N) ; F) < (h(ξ |π) − h(ψ |π) + κr) · N.

Finally, π ∨ψ and π ∨ϕ generate the same σ -algebra modulo μ and are both measurable
with respect to π ∨ ξ , so Lemma 10.3 can be applied and re-arranged to give

h(ξ |π) − h(ψ |π) = h(ξ ∨ ϕ |π) − h(ϕ |π) = h(ξ |π ∨ ϕ).

Substituting this into the previous inequality, we have shown that

H(ξ[0;N) | (π ∨ ϕ)[0;N) ; F) <
(

h(ξ |π ∨ ϕ) + κr
) · N.

Since r < 3r, this completes the proof of all three desired properties with 3r in place
of r. This suffices because r > 0 was arbitrary. �

14.2. Completion of the quantitative step. — We now complete the proof of Proposi-
tion 14.1. Let r′ := r/17, and apply Proposition 14.2 with r′ in place of r. Let ϕ, N ∈ N,
κ > 0 and F ⊆ X be the data given by that proposition.

We show that this ϕ satisfies the conclusions of Proposition 14.1. Essentially, this
requires that we replace conclusion (b) of Proposition 14.2 with extremality that holds
without reference to the periodic set F and over arbitrarily long time-scales.

This replacement is enabled by the next two lemmas. Let π̃ := π ∨ϕ, and suppose
it takes values in CZ. The first lemma gives extremality over longer time-scales, but still
according to μ( · |F).

Lemma 14.6. — For any k ∈ N, the observable ξ[0;kN) is relatively (κkN,5r′)-extremal over

π̃[0;kN) according to μ( · |F).

Proof. — This is our application of the ‘stretching’ result for extremality given by
Corollary 13.4. Let μ′ := μ( · |F). Since F is N-periodic, μ′ is invariant under TN, and so
we may apply Corollary 13.4 to the joint distribution of ξ and π̃ under μ′. Conclusions
(b) and (c) of Proposition 14.2 give precisely the hypotheses (i) and (ii) needed by that
corollary. The result follows. �

Using Lemma 14.6, we now prove a similar result for each of the shifted sets T−iF,
and for all sufficiently large time-scales rather than just multiples of N.

Lemma 14.7. — Let i ∈ {0,1, . . . ,N − 1}. For all sufficiently large t, the observable ξ[0;t)
is (κ t, r)-extremal over π̃[0;t) according to μ( · |T−iF).

Proof. — For this we must combine Lemma 14.6, the invariance of μ, and some of
the stability properties of extremality from Section 9.
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Step 1. Assume t ≥ N, and let k ≥ 0 be the largest integer satisfying i + kN ≤ t. Let
j := i + kN. Then [i; j) is the largest subinterval of [0; t) that starts at i and has length a
multiple of N.

For any (c,a) ∈ (C × A)kN, the T-invariance of μ gives

μ
(

(π̃ ∨ ξ)[i;j) = (c,a)
∣

∣T−iF
) = μ

(

(π̃ ∨ ξ)[0;kN) = (c,a)
∣

∣F
)

.

Therefore, by Lemma 14.6, ξ[i;j) is (κkN,5r′)-extremal over π̃[i;j) according to μ( · |T−iF).

Step 2. The observable π̃[0;t) generates a finer partition of CZ than the observable
π̃[i;j). On the other hand,

H(ξ[i;j) | π̃[i;j)) − H(ξ[i;j) | π̃[0;t)) ≤ H(π̃[0;t) | π̃[i;j)) ≤ H(π̃[0;i) ∨ π̃[j;t))

≤ 2NH(π̃0),

where the last estimate holds by stationarity and because i ≤ N and t − j ≤ N. Therefore
we may combine Step 1 with Corollary 9.11 to conclude that ξ[i;j) is extremal over π̃[0;t)
according to μ( · |T−iF) with parameters

(

κkN,
4NH(π̃0)

κkN
+ 15r′

)

.

If t is sufficiently large, and hence k is sufficiently large, then these parameters are at least
as strong as (κkN,16r′).

Step 3. Finally, assume t is so large that kN ≥ (1 − r′)t. Since ξ[i;j) is an image of
ξ[0;t) under coordinate projection, we may apply Lemma 9.12. Starting from the conclu-
sion of Step 2, that lemma gives that ξ[0;t) is (κ t,17r′)-extremal over π̃[0;t) according to
μ( · |T−iF). Since r = 17r′, this completes the proof. �

Proof of Proposition 14.1. — Let θ := (π̃ ∨ ξ)∗μ and γ := π̃∗μ. For t ∈ N, consider
the t-block kernel of θ :

θblock
[0;t) (a |c) := μ(ξ[0;t) = a | π̃[0;t) = c) (a ∈ At, c ∈ Ct)

(see Definition 10.1). (It does not matter how we interpret this in case μ(π̃[0;t) = c) is
zero.)

Each of the sets T−iF is measurable with respect to π̃0, hence certainly with respect
to π̃[0;t). So there is a partition

Ct = G1 ∪ · · · ∪ GN

such that T−iF = {π̃[0;t) ∈ Gi} modulo μ for each i = 1,2, . . . ,N. By Lemma 14.7 the
measure γ[0;t)( · |Gi) and kernel θblock

[0;t) ( · | ·) are (κ t, r)-extremal for each i. Since the Gis
are a partition of Ct , it follows directly from Definition 9.4 that γ[0;t) itself and θblock

[0;t) ( · | ·)
are (κ t, r)-extremal. �
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15. Completed proof of Theorem A

15.1. Proof under assumption (A). — Let π : (X,μ,T) −→ (Y, ν,S) be the factor
map in the statement of Theorem A. We must prove the relative weak Pinsker property
over this factor. We first do this under the additional assumption (A) from the previous
section. Note that we do not assume that (X,μ,T) itself has finite entropy.

Proof of Theorem A under assumption (A). — As in the previous section, under assump-
tion (A) we may assume that π is a finite-valued process, not just an arbitrary factor map.

Let ξ (k) : X −→ AZ
k , k ≥ 1, be a sequence of finite-valued processes which toegether

generate the whole of BX. By replacing each ξ (k) with the common refinement ξ (1) ∨· · ·∨
ξ (k) if necessary, we may assume that ξ (k) is ξ (k+1)-measurable for every k. For the sake of
notation, let ξ (0) be a trivial process.

(In case h(μ,T) < ∞, Krieger’s generator theorem provides a single generating
process, but this makes the rest of the proof only slightly simpler.)

Construction. Fix a sequence (ki)
∞
i=1 ∈ NN in which every natural number appears

infinitely often. We use a recursion to construct sequences of finite-valued processes ϕ(i)

and real values κi > 0 such that the following hold for every i:

(a) we have

h(ϕ(i),μ,T) < 2−i min
{

ε, κ1, . . . , κi−1

}

.

(b) ξ (ki) is conditionally (κi,2−i)-extremal over the process

ψ(i) := π ∨ ξ (ki−1) ∨ ϕ(1) ∨ · · · ∨ ϕ(i).

To start the recursion, apply Proposition 14.1 to the processes π ∨ ξ (k1−1) and ξ (k1).
If i ≥ 2 and we have already found ϕ(j) for all j < i, then apply Proposition 14.1 to the
processes

π ∨ ξ (ki−1) ∨ ϕ(1) ∨ · · · ∨ ϕ(i−1) and ξ (ki).

Completion of the proof. Consider the factor of (X,μ,T) generated by π and all the
new processes ϕ(i). By property (a), it satisfies

h
(

π ∨
∨

i≥1

ϕ(i),μ,T
∣

∣

∣π
)

≤ lim
�−→∞

h(ϕ(1) ∨ · · · ∨ ϕ(�),μ,T)

≤ lim
�−→∞

�
∑

j=1

h(ϕ(j),μ,T) < ε.

Therefore, by Krieger’s generator theorem, there is a finite-valued process π̃ that gener-
ates the same factor of (X,μ,T) as π ∨ ∨

i≥1 ϕ(i), modulo μ-negligible sets.
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More generally, for any i ∈ N, a similar estimate using property (a) gives

(101) h(π̃,μ,T |π ∨ ϕ(1) ∨ · · · ∨ ϕ(i)) ≤
∞

∑

j=i+1

h(ϕ(j),μ,T) <

∞
∑

j=i+1

2−jκi = 2−iκi.

Now consider one of the processes ξ (k). Since k appears in the sequence (ki)i in-
finitely often, there are arbitrarily large i ∈ N for which ki = k. We consider such a choice
of i, and argue as follows:

– According to property (b) above, ξ (k) = ξ (ki) is conditionally (κi,2−i)-extremal
over ψ(i).

– Using estimate (101) and Lemma 12.2, it follows that ξ (k) is also (κi,6 · 2−i)-
extremal over π̃ ∨ ψ(i).

– Next, Proposition 13.1 gives that ξ (k) is relatively (42 · 2−i)-FD over π̃ ∨ ψ(i).
– Finally, Lemma 11.6 gives the same conclusion for ξ (k) over π̃ ∨ ξ (k−1), since the

the two processes π̃ ∨ ψ(i) and π̃ ∨ ξ (k−1) generate the same factor of (X,μ,T)

modulo μ.

Thus, we have shown that ξ (k) is relatively (42 · 2−i)-FD over π̃ ∨ ξ (k−1) for arbi-
trarily large values of i. Now Thouvenot’s theorem (Theorem 11.5) gives that it is also
relatively Bernoulli.

For each k, this fact promises an i.i.d. process ζ (k) : X −→ CZ
k such that (i) the map

ζ (k) is independent from the map

π̃ ∨ ξ (1) ∨ · · · ∨ ξ (k−1),

and (ii) the maps

π̃ ∨ ξ (1) ∨ · · · ∨ ξ (k−1) ∨ ζ (k) and π̃ ∨ ξ (1) ∨ · · · ∨ ξ (k−1) ∨ ξ (k)

generate the same factor of (X,μ,T) modulo μ. It follows that the factor map
∨

k≥1

ζ (k) : X −→
∏

k≥1

CZ
k

has image a Bernoulli shift (possibly of infinite entropy), is independent from the factor
map π̃ , and is such that

π̃ ∨
∨

k≥1

ζ (k) and π̃ ∨
∨

k≥1

ξ (k)

generate the same factor of (X,μ,T) modulo μ. This factor is the whole of BX by our
choice of the ξ (k)s, so this completes the proof. �
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Remark. — An important part of the above proof is our appeal to Lemma 12.2.
Given the extremality of ξ (ki) over ψ(i) and the entropy bound (101), that lemma promises
that ξ (ki) is still extremal, with slightly worse parameters, over the limiting factor map
π̃ ∨ ψ(i).

It is natural to ask whether a more qualitative fact could be used in place of this
argument. Specifically, suppose that ξ is a process and π(i) is a sequence of factor maps
such that π(i) is π(i+1)-measurable for every i. If ξ is relatively Bernoulli over each π(i), is
it also relatively Bernoulli over

∨

i≥1 π(i)? Unfortunately, Jean-Paul Thouvenot has indi-
cated to me an example in which the answer is No. It seems that some more quantitative
argument, like our appeal to Lemma 12.2, really is needed.

15.2. Removing assumption (A), and general amenable groups. — We now complete the
proof of Theorem A in full.

In fact, for the work that is left to do, it makes no difference if we prove a result for
actions of a general countable amenable group G. So suppose now that T = (Tg)g∈G is a
free and ergodic measure-preserving action of G on a standard probability space (X,μ),
and let

π : (X,μ,T) −→ (Y, ν,S)

be a factor map of measure-preserving G-actions.

Theorem 15.1. — For every ε > 0, there is another factor map π̃ of the G-system (X,μ,T)

such that π is π̃ -measurable, (X,μ,T) is relatively Bernoulli over π̃ , and

h(π̃,μ,T |π) < ε.

The deduction of Theorem 15.1 from the special case of the preceding subsection
uses some machinery from orbit equivalence theory. The results we need can mostly be
found in Danilenko and Park’s development [15] of the ‘orbital approach’ to Ornstein
theory for amenable group actions.

Proof of Theorem 15.1, and hence of Theorem A. — First, we may enlarge π with as little
additional entropy as we please in order to assume that the G-system (Y, ν,S) is free
(see [15, Theorem 5.4]).

Having done so, Connes, Feldman and Weiss’ classic generalization of Dye’s the-
orem [10] provides a single automorphism S1 of (Y, ν) that has the same orbits as S.
Moreover, we may choose S1 to be isomorphic to any atomless and ergodic automor-
phism we like. In particular, we can insist that S1 satisfy the conditions in assumption (A).

Since (Y, ν,S) is free, the factor map π restricts to a bijection on almost every indi-
vidual orbit of T. Using these bijections we obtain a unique lift of S1 to an automorphism
T1 of (X,μ) with the same orbits as T.
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Now let

π̃ : (X,μ,T1) −→ (˜Y, ν̃,˜S1)

be a new factor map provided by the special case of Theorem A that we have already
proved. Then π̃ is also a factor map for the original G-action T, because the σ -algebra
generated by π̃ contains the σ -algebra generated by π , and the orbit-equivalence cocycle
is π -measurable. By Rudolph and Weiss’ relative entropy theorem [86], we have

h(π̃,μ,T |π) = h(π̃,μ,T1 |π) < ε.

On the other hand, the automorphism T1 is relatively Bernoulli over π̃ , and the orbit-
equivalence cocycle is also π̃ -measurable. To finish, [15, Proposition 3.8] shows that this
property of relative Bernoullicity really depends on only (i) the orbit equivalence relation
on (˜Y, ν̃) inherited from (X,μ,T1), and (ii) the associated cocycle of automorphisms of
(X,μ). Therefore the automorphism T1 is relatively Bernoulli over π̃ if and only if this
holds for the G-action T. �

16. Some known consequences and open questions

Since Thouvenot proposed the weak Pinsker property, it has been shown to have
many consequences in ergodic theory. Here we recall some of these, now stated as un-
conditional results about ergodic automorphisms. We also present a couple of new results
and collect a few open questions. Jean-Paul Thouvenot contributed a great deal to the
contents of this section.

16.1. Results about joinings, factors, and isomorphisms. —

Proposition 16.1 (From [108]). — Let X and X′ be ergodic automorphisms, let B be a

Bernoulli shift with finite entropy, and suppose that X × B is isomorphic to X′ × B. Then X and X′

are themselves isomorphic.

(The statement of Proposition 16.1 in [108] is restricted to finite-entropy automor-
phisms, but one sees easily from the proof that the assumption of finite entropy for X and
X′ can be removed once we have Theorem A.)

The following question, also posed by Thouvenot, remains open.

Question 16.2. — Does Proposition 16.1 still hold if both occurrences of ‘isomorphic’ are

replaced with ‘Kakutani equivalent’?

It is not clear whether the weak Pinsker property offers any insight here. The ques-
tion is open even when X and X′ both have entropy zero. The following related question
may be even more basic, and is also open.
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Question 16.3. — Does every ergodic automorphism have an induced transformation that splits

into a system of entropy zero and a Bernoulli system?

Curiously, the weak Pinsker property also gives a result about canceling more gen-
eral K-automorphisms from direct products in the opposite direction to Proposition 16.1.

Proposition 16.4. — Let X and X′ be ergodic systems of equal entropy h, possibly infinite, and

let ε > 0. Then there is a system Z of entropy less than ε such that

X × Z is isomorphic to X′ × Z.

If the two original systems are K-automorphisms, then Z may be chosen to be K.

Proof. — Let X0 := X and X′
0 := X′. A recursive application of the weak Pinsker

property gives sequences of systems Xi and Bi , i ≥ 1, such that Xi has entropy less than
2−i−1ε, each Bi is Bernoulli, and such that

Xi is isomorphic to Xi+1 × Bi+1 ∀i ≥ 0.

If X0 has the K-property, then so do all its factors Xi . Apply the same argument to X′
0 to

obtain X′
i and B′

i for i ≥ 1. If X′
0 has the K-property, then so does every X′

i .
Now let

Z := X1 × X2 × · · · × X′
1 × X′

2 × · · · .

This has entropy less than
∞

∑

i=1

2−i−1ε +
∞

∑

i=1

2−i−1ε = ε.

If X0 and X′
0 have the K-property, then Z is a direct product of K-automorphisms, so it

also has the K-property.
To finish the proof, consider the direct product

X0 × Z = X0 × X1 × X2 × · · · × X′
1 × X′

2 × · · · .

In the product on the right, we know that each coordinate factor Xi may be replaced
with Xi+1 × Bi+1 up to isomorphism. Therefore this product is isomorphic to

(X1 × B1) × (X2 × B2) × · · · × X′
1 × X′

2 × .

Re-ordering the factors, this is isomorphic to

X1 × X2 × · · · × X′
1 × X′

2 × · · · × B1 × B2 × · · · ,

which is equal to the direct product of Z with a Bernoulli shift. Similarly, X′
0 × Z is

isomorphic to the direct product of Z and a Bernoulli shift. Since X0 × Z and X′
0 × Z

have the same entropy, it follows that they are isomorphic to each other. �
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Proposition 16.5 (From [94]). — If X is ergodic and has positive entropy, then it has two

Bernoulli factors that together generate the whole σ -algebra modulo μ; equivalently, X is isomorphic to

a joining of two Bernoulli systems. For any ε > 0, we may choose one of those Bernoulli factors to have

entropy less than ε.

The next result answers a question of Benjamin Weiss which has circulated in-
formally for some time. I was introduced to the question by Yonatan Gutman. The neat
proof below was shown to me by Jean-Paul Thouvenot. Thouvenot discusses the question
further as problem (1) in [109].

Proposition 16.6. — If X and X′ are K-automorphisms of equal entropy h, possibly infinite,

then they have a common extension that is also a K-automorphism of entropy h.

Proof. — The desired conclusion depends on our two systems only up to isomor-
phism. Therefore, by the weak Pinsker property, we may assume that

X = X1 × B

and

X′ = X′
1 × B′,

where B and B′ are Bernoulli and where the entropies a := h(X1) and b := h(X′
1) satisfy

a + b < h. The new systems X1 and X′
1 inherit the K-property from the original systems.

Let B′′ be a Bernoulli shift of entropy h − a − b, interpreting this as ∞ if h = ∞.
Now consider the system

˜X := X1 × X′
1 × B′′.

This is a product of K-automorphisms, hence still has the K-property. Its entropy is

a + b + (h − a − b) = h.

Finally, it admits both of our original systems as factors. Indeed, by Sinai’s theorem, there
is a factor map from X′

1 to another Bernoulli shift B′
1 of entropy b. Applying this map to

the middle coordinate of ˜X gives a factor map from ˜X to

X1 × B′
1 × B′′,

which is isomorphic to X1 × B and hence to X. The argument for X′ is analogous. �

Given an automorphism (X,μ,T), another object of interest in ergodic theory
is its centralizer: the group of all other μ-preserving transformations of X that com-
mute with T. Informally, it is known that the centralizer of a Bernoulli system is very
large. A precise result in this direction is due to Rudolph, who proved in [85] that if T is
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Bernoulli and S is another automorphism that commutes with the whole centralizer of
T, then S must be a power of T.

If (X,μ,T) is any ergodic automorphism with positive entropy, then Theorem A
provides a non-trivial splitting

(102) (X,μ,T)
iso−→ (Y, ν,S) × B.

Under this splitting, we obtain many elements of the centralizer of T of the form Sm × U,
where m ∈ Z and U is any centralizer element of B. In the first place, this answers a simple
question posed in [85]: if (X,μ,T) has positive entropy, then its centralizer contains
many elements that are not just powers of T. I understand from Jean-Paul Thouvenot
that by combining these centralizer elements with unpublished work of Ferenczi and the
ideas in [94, Remark 2], one can also extend Rudolph’s main result from [85] to any
ergodic automorphism of positive entropy. We do not explore this fully here, but leave
the reader with the next natural question:

Question 16.7. — Is there a K-automorphism (X,μ,T) such that every element of the central-

izer arises as Sm × U for some splitting as in (102)?

An old heuristic of Ornstein asserts that the classification of factors within a
fixed Bernoulli shift should mirror the complexity of the classification of general K-
automorphisms: see the discussion in [74] and the examples in [34]. Can the methods
of the present paper shed additional light on the lattice of all factors of a fixed Bernoulli
shift?

Finally, here is a question that seems to lie strictly beyond the weak Pinsker prop-
erty. Theorem A promises that any ergodic system with positive entropy may be split into
a non-trivial direct product in which one factor is Bernoulli.

Question 16.8. — Is there a non-Bernoulli K-automorphism with the property that any non-

trivial splitting of it consists of one Bernoulli and one non-Bernoulli factor?

16.2. Results about generating observables and processes. — Recall that a process α :
(X,μ,T) −→ (AZ, α∗μ,TA) is uniquely determined by its time-zero observable α0. That
observable is called generating if α is an isomorphism of systems.

Proposition 16.9 (From [108]). — Any ergodic system of finite entropy has a generating observ-

able whose two-sided tail equals the Pinsker factor.

Proposition 16.10 (From [78]). — Any ergodic system of finite entropy has a generating observ-

able whose one-sided super-tail equals the Pinsker factor (see [78] for the relevant definitions).
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Proposition 16.11 (From [111]). — For any ergodic finite-state process, Vershik’s secondary

entropy (defined in [111]) grows slower than any doubly exponential function (although it can grow

faster than any single exponential [62]).

The next result is a consequence of Proposition 16.6. It was brought to my at-
tention by Yonatan Gutman, who established the connection together with Michael
Hochman.

Corollary 16.12 (From [29]). — The class of finite-entropy, non-Bernoulli K-processes has no

finitely observable invariants other than entropy (see [29] for the relevant definitions).

If (X,μ,T) is a system and α : X −→ AZ is a finite-valued generating process, then
the conditional entropy Hμ(α0 |α(−∞;0)) equals the Kolmogorov–Sinai entropy h(μ,T).
However, if the process is real-valued (so A = R), then in general one knows only that

Hμ(α0 |α(−∞;0)) ≤ h(μ,T).

In connection with these quantities, the next result answers an early question of Rokhlin
and Sinai [83, paragraph 12.7].

Proposition 16.13. — If (X,μ,T) is a finite-entropy K-automorphism, then for any c ∈
(0,h(μ,T)] it has a real-valued generating process α : X −→ RZ such that

Hμ(α0 |α(−∞;0)) = c.

Proof. — If c = h(μ,T) then we simply take a finite-valued generating observable,
as provided by Krieger’s generator theorem. So let us assume that c < h(μ,T).

In case (X,μ,T) is Bernoulli, the result is proved by Lindenstrauss, Peres and
Schlag in [55] using an elegant construction of α in terms of Bernoulli convolutions.

For the general case, by Theorem A we may split (X,μ,T) into a factor of entropy
less than h(μ,T)− c and a Bernoulli factor. Take any finite-valued generating observable
of the low-entropy factor, and apply the result from [55] to the Bernoulli factor. The
resulting product observable gives conditional entropy equal to c. �

Another natural question about generating processes asks for a refinement of The-
orem A. It was suggested to me by Gábor Pete.

Question 16.14. — Let (AZ,μ,TA) be an ergodic finite-state process and let ε > 0. Must

the process be finitarily isomorphic to a direct product of the form

(CZ, ν,TC)
︸ ︷︷ ︸

entropy <ε

× (BZ, p×Z,TB)
︸ ︷︷ ︸

i.i.d.

?

If this does not always hold, are there natural sufficient conditions?

What if we ask instead for an isomorphism that is unilateral in one direction or the other?
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16.3. More general groups and actions. — Many of the corollaries listed above should
extend to actions of general countable amenable groups. Indeed, the orbital methods
of [15] yield some such generalizations quite easily: for instance, Proposition 16.5 above
should imply its extension to actions of amenable groups using the same arguments as
for [15, Theorem 6.1].

Here is another consequence of the weak Pinsker property for actions of an arbi-
trary countable amenable group G:

Proposition 16.15. — Let G be a countable amenable group. For any ε > 0, any free and

ergodic G-system (X,μ,T) of finite entropy h has a generating observable α with the property that

(103) Hμ

(

α

∣

∣

∣

∨

g∈G\{e}
α ◦ Tg

)

> h − ε.

To prove this, simply combine the two time-zero observables in a direct product of
a low-entropy system and a Bernoulli shift. Proposition 16.15 resulted from discussions
with Brandon Seward about ‘percolative entropy’, a quantity of current interest in the
ergodic theory of non-amenable groups. In case G = Z, the left-hand side of (103) is
the same as Verdú and Weissman’s ‘erasure entropy rate’ from [110]. In that setting,
Proposition 16.15 asserts that any stationary ergodic source with a finite alphabet admits
generating observables whose erasure entropy rate is arbitrarily close to the Kolmogorov–
Sinai entropy. This can be seen as an opposite to Ornstein and Weiss’ celebrated result
that any such source has a generating observable which is bilaterally deterministic [76].

Fieldsteel showed in [21, Theorem 3] that an ergodic flow (Tt)t∈R (that is, a bi-
measurable and measure-preserving action of R) has the weak Pinsker property if and
only if the map Tt is ergodic and has the weak Pinsker property for at least one value of
t. Combined with Theorem A, this immediately gives the following.

Proposition 16.16. — Every ergodic flow has the weak Pinsker property.

Do Theorem 15.1 and Proposition 16.16 have a common generalization to actions
of a larger class of locally compact, second countable groups? It would be natural to
start with those that have a ‘good entropy theory’ [77]. Some relevant techniques may
be available in [4]. In another direction, is there a sensible generalization to non-free
actions?

Beyond the class of amenable groups one cannot hope for too much. For sofic
groups, one can ask after a version of the weak Pinsker property with sofic entropy [8]
or Rokhlin entropy [89] in place of KS entropy, but Lewis Bowen has found natural
examples of actions of non-amenable free groups for which those properties fail.
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