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ABSTRACT

We introduce and study stochastic N-particle ensembles which are discretizations for general-β log-gases of ran-
dom matrix theory. The examples include random tilings, families of non-intersecting paths, (z,w)-measures, etc. We prove
that under technical assumptions on general analytic potential, the global fluctuations for such ensembles are asymptoti-
cally Gaussian as N → ∞. The covariance is universal and coincides with its counterpart in random matrix theory.

Our main tool is an appropriate discrete version of the Schwinger-Dyson (or loop) equations, which originates in
the work of Nekrasov and his collaborators.
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1. Introduction

1.1. Continuous log-gases. — A general-β log-gas is a probability distribution on
N-tuples of reals x1 < x2 < · · · < xN with density proportional to

(1)
∏

1≤i≤j≤N

(xj − xi)
β

N∏

i=1

exp
(−NV(xi)

)
,

DOI 10.1007/s10240-016-0085-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10240-016-0085-5&domain=pdf


2 ALEXEI BORODIN, VADIM GORIN, ALICE GUIONNET

where V(x) is a continuous function called potential. For V(x) = x2 and β = 1,2,4,
the density (1) describes the joint distribution of the eigenvalues of random matrices
from Gaussian Orthogonal/Unitary/Symplectic Ensemble; much more general poten-
tials V(x) are widespread and extensively studied in random matrix theory and beyond,
see the books [Me], [Fo], [AGZ], [Ox], [PS].

Under weak assumptions on the potential, the ensembles (1) exhibit a Law of Large
Numbers as N → ∞, which means that the (random) empirical measure μN defined via

μN = 1
N

N∑

i=1

δxi

converges (weakly, in probability) to a non-random equilibrium measure μ. For β = 1,2,4
and V(x) = x2, this statement dates back to the work of Wigner [Wi], and μ is known in
this case as the Wigner semicircle law. The results for generic V(x) were established much
later, see [BPS], [BeGu], [J1].

The next order asymptotics asks about global fluctuations, i.e. how the functional
μN − μ behaves as N → ∞. A natural approach here is to take (sufficiently smooth)
functions f (x) and consider the asymptotic behavior of random variables

(2) N
(∫

f (x)μN(dx) −
∫

f (x)μ(dx)

)
, N → ∞.

For quite general potentials V(x) the limits of (2) are Gaussian with universal covariance
depending only on the support of the equilibrium measure μ. In the breakthrough paper
[J1] Johansson proved such a statement for general β > 0 and wide class of potentials
under the assumption that μ has a single interval of support. Further developments have
led to establishing such results for generic analytic potentials, see [KS], [BoGu1], [Shch],
[BoGu2]. Note that when the support of μ has several intervals one needs to be careful
as an additional discrete component might appear. This does not happen if one determin-
istically fixes the filling fractions, which are the numbers of particles in each interval of the
support. In the one-interval case the limiting covariance can be identified with that of a
1d section of the two-dimensional Gaussian Free Field, see [B2], [BoGo2] for the details.

While for certain specific choices of potentials V(x) as well as for special values
β = 1,2,4 there are several different methods for establishing central limit theorems for
global fluctuations, all the developments for generic β and V(x) rely on the analysis of loop

equations (also known as Schwinger-Dyson equations). These are equations for certain ob-
servables of the log-gases (1), which originated and have been widely used in physics liter-
ature, cf. [Mi], [AM], [Ey1], [CE] and references therein. More precisely, the observables
of interest are the Stieltjes transforms of the empirical measure μN and the Schwinger-
Dyson equations involve their cumulants. Formally assuming that these cumulants have a
converging N−1 expansion as N → ∞, one can use the equations to derive recursively
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the asymptotics of the cumulants starting from the equilibrium measure. These recur-
sive relations are sometimes called the topological recursion because, at least when β = 2,
they mimic the relations between maps of different genus, see e.g. [EO] and allow to
recover the result from ’t Hooft and Brézin-Itzykson-Parisi-Zuber [BIPZ] showing that
matrix integrals can be seen as generating functions of maps; for the general β recursion
see [CE].

Loop equations were introduced to the mathematical community by Johansson in
[J1] to derive the Gaussian behavior; his results were significantly extended in the later
work [KS], [BoGu1], [Shch], [BoGu2]. The loop equations, or rather “their spirit”, also
have further applications far beyond the central limit theorems for global fluctuations,
e.g. they were used in the recent work on local universality for random matrices, see [BEY],
[BFG]. We would like to emphasize an important distinction between the approaches of
physics and mathematics literature: the latter operates not with formal expansions, but
with converging asymptotic expansions. This requires a priori estimates, whose derivations
rely on a set of tools different from the loop equations themselves.

The Schwinger-Dyson equations for general-β log-gases are obtained by integra-
tion by parts and derivation with respect to the potential. In fact, they can be derived in a
much more general continuous setting, for instance when the underlying measure is the
Haar measure on a compact Lie group, see e.g. [AGZ, (5.4.29)], and further used to de-
rive the topological asymptotic expansions of related matrix models, see [CGM], [GN].
For a recent application of the Schwinger-Dyson equations to the lattice gauge theory see
[Cha].

1.2. Integrable discretization of log-gases. — The discrete versions of the distribution (1)
(with xi ’s living on a lattice) at β = 2 arise in numerous problems of 2d statistical me-
chanics. Examples include random tilings (cf. Figure 1 and [CLP], [J4], [G], [BKMM]),
stochastic systems of non-intersecting paths (cf. [KOR], [BBDT]), last passage percola-
tion (cf. [J2]), interacting particle systems (cf. [J3], [BF]).

The law of large numbers for such systems (even for general values of β ) can be
established by essentially the same methods as for the continuous ones, cf. [J3], [J4], [Fe].
However, the situation is drastically different for the study of the asymptotics for global
fluctuations. While for some very specific integrable choices of the potential at β = 2 the
central limit theorem was proven (cf. [BF], [P2], [BD]), until now no general approach
that would work for generic β and V(x) existed. We note however the works [HO, Chap-
ter 12], [DF], [Mo] where the global Gaussian asymptotics was proven for certain (very
concrete) discrete general β probabilistic models originating in the representation theory.
Moreover, it was not clear whether the CLT in the case of general potential should be the
same as in the continuous case, or there should be some significant differences (indeed,
for instance the local limits in the bulk must be different). The main technical difficulty
lied in the absence of a nice generalization of the loop equations to the discrete setting.

In [Ey2], [Ey3], Eynard proposed to interpret laws of random partitions, which
include discrete β = 2 analogues of (3), as matrix models. One of the key points in his
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FIG. 1. — The discrete particle systems arising in uniformly random domino tilings of the Aztec diamond (left panel) and
uniformly random lozenge tilings of a hexagon (right panel). The distributions of 3 particles on both pictures have the form (1)
with N = 3, β = 2 and suitable (different) potentials V(x)

interpretation is to view discrete sums as highly oscillatory continuous integrals. Based
on this identification, he conjectured that the asymptotic expansions in this case are de-
scribed by the same Schwinger-Dyson equations with initial step given by the equilibrium
measure of the model, see e.g. [Ey2, Section 2.4, Section 2.7.1]. In particular, the fluc-
tuations in the context of the central limit theorem should be universal. However, so far
this approach has not yet progressed much beyond the predictions.

The central goal of this article is to study global fluctuations of the empirical mea-
sure for discrete analogues of general-β log-gases. One outcome is that indeed these fluc-
tuations are universal and described by the same covariance as for their continuous coun-
terparts. Our analysis is based on appropriate discrete versions of the Schwinger-Dyson
equations, which (unlike in the continuous setting) do not appear as a direct consequence
of integration by parts or perturbative arguments.

The search for the discrete loop equations starts with identifying a good discrete
analogue of the general β distribution (1). For that we fix a parameter θ > 0 and a positive
real-valued function w(x;N).1 Consider the probability distribution

(3) PN(�1, . . . , �N) = 1
ZN

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)

N∏

i=1

w(�i;N)

on ordered N-tuples �1 < �2 < · · · < �N, such that �i = λi + θ i and λ1 ≤ λ2 · · · ≤ λN are
integers. We refer to �i ’s as the positions of N particles. Let us note that if θ �= 1, then �i

do not sit on the fixed lattice.

1 w(x;N) should decay at least as |x|−(2N−2)θ−1−const with const > 0 as |x| → ∞.
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Note that if θ = 1, then (3) has the same form as (1) with β = 2. Similarly, θ = 1/2
leads to (1) with β = 1.2 More generally, if we set �i = Lxi , then as L → ∞, the ratio of
Gamma-functions in (3) behaves as (�j − �i)

2θ and mimics (1) with β = 2θ .
The most important reason to view (3) as a correct integrable discretization of the

continuous log-gas (1) is the following observation which is the starting point of the results
in the present paper.

Theorem 1.1 (Nekrasov’s equation). — Consider the probability distribution (3), and assume

that

w(x;N)

w(x − 1;N)
= φ+

N (x)

φ−
N (x)

and define

RN(ξ) = φ−
N (ξ) · EPN

[
N∏

i=1

(
1 − θ

ξ − �i

)]
(4)

+ φ+
N (ξ) · EPN

[
N∏

i=1

(
1 + θ

ξ − �i − 1

)]
.

If φ±
N (ξ) are holomorphic in a domain MN ⊂ C, then so is RN(ξ). Moreover, if φ±

N (ξ) are polyno-

mials of degree at most d, then so is RN(ξ).

Theorem 1.1 is essentially due to Nekrasov and his collaborators, as it is a variant
of similar statements in [N], [NP], [NS]. For the proof see Theorem 4.1 below.

It is reasonable to ask how one could guess the form of the measure (3), which
would lead to Theorem 1.1. The integrability properties of such measures, including the
product of the ratios of Gamma functions as in (3), can be traced to their connections
to representation theory and symmetric functions. The same products of Gamma func-
tions appear in the evaluation formulas for Jack symmetric polynomials (cf. [Ma, Chapter
VI, Section 10]) and in problems of asymptotic representation theory (cf. [O2]). Another
trace of integrability is the existence of discrete Selberg integrals, which are evaluation formu-
las for the partition function ZN in (3) for special choices of the weight w(x;N). Exam-
ples of such evaluations can be found in [O2, Section 2], [GS, Section 2.2]. The latter
reference also explains the degeneration to the conventional Selberg integral, which is
the computation of the normalization constants for continuous log-gases (1) with specific
choices of the potential V(x), see [Me, Chapter 17], [Fo, Chapter 4]. On the other hand,
for a “naive” discrete version, when one takes the same formula (1) as a definition of a
discrete log-gas, we are not aware of the existence of similar evaluation formulas (outside
β = 2, when (1) and (3) coincide).

2 However, observe that the lattice where particles sit at θ = 1/2 is not Z.
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1.3. Global fluctuations of discrete log-gases: one cut case. — We proceed to our results on
global fluctuations for the distributions (3) as N → ∞. For that we need to postulate how
the weight w(x;N) changes as N → ∞. Our methods work for a variety of possibilities
here, but to simplify the exposition we stick to the following assumption in this section:

w(x;N) = exp
(

−NV
(

x

N

))
,(5)

where V(z) is an analytic function of real argument z such that for |z| large enough,
V(z) is monotone and satisfies

V(z) > c ln(|z|), where c > 2θ.(6)

Our first result is the law of large numbers for the empirical measures μN defined
via

μN = 1
N

N∑

i=1

δ�i/N, (�1, . . . , �N) is PN-distributed.

Theorem 1.2. — There exists a deterministic absolutely continuous compactly supported prob-

ability measure μ(x)dx with 0 ≤ μ(x) ≤ θ−1, such that μN converges to μ(x)dx as N → ∞, in

the sense that for any compactly supported Lipshitz function f (x) the following convergence in probability

holds:

lim
N→∞

∫

R
f (x)μN(dx) =

∫

R
f (x)μ(x)dx.

In fact, we prove a more general statement where, in particular, V(x) does not have
to be analytic, see Theorems 5.3 and 10.1 below. The measure μ(x)dx is the equilibrium
measure, and it can be found as a solution to a variational problem. At θ = 1, Theo-
rem 5.3 reduces to results of [J3, J4, Fe]. For general values of θ , additional arguments
are required, and we present them.

Note the condition μ(x) ≤ θ−1, which is not present in the continuous log-gases,
and arises from the fact that the minimal distance between adjacent particles in (3) is at
least θ . This is a specific feature of the discrete models.

At this moment we need to make certain assumptions on the equilibrium measure.
A band3 of μ(x) is a maximal interval (α,β) such that 0 < μ(x) < θ−1 on (α,β). From
the random matrix literature (cf. [BDE], [Shch], [BoGu2]) one expects that the global
fluctuations are qualitatively different depending on whether μ(x) has one or more bands.
Here we stick to the one band case.

3 We follow the terminology from [BKMM].
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Theorem 1.3. — Assume (5), (6), that μ(x) has a unique band (a−, a+), and that (technical)

Assumption 4 from Section 3.2 holds. Take any m ≥ 1 bounded analytic functions f1, . . . , fm on R.

Then the m random variables

Lfj =
N∑

i=1

(
fj(�i) − EPN fj(�i)

)
, (�1, . . . , �N) is PN-distributed,

converge (in distribution and in the sense of moments) to centered Gaussian random variables with explicit

covariance depending on a± and θ , and given in (127) below. In particular, if fi(x) = (zi − x)−1,

zi ∈ C \ R, i = 1, . . . ,m, then

lim
N→∞

EPNLfiLfj = − θ−1

2(zi − zj)2
(7)

×
(

1 − zizj − 1
2(a− + a+)(z+zj) + a+a−√

(zi − a−)(zi − a+)
√

(zj − a−)(zj − a+)

)
,

Remark 1.4. — We prove below in Theorem 10.1 that with exponentially high
probability all particles �i are inside an interval [−DN,DN]. Further, it is enough to
assume in Theorem 1.3 that fi are analytic only in [−D,D]. Moreover, we believe (but
do not prove) that the analyticity assumption can be replaced by sufficient smoothness.

Remark 1.5. — The second order asymptotic expansion of the mean EPN(
∑N

i=1 fj(�i))

can be also analyzed, cf. Theorem 6.1 with k = 1, m = 0.

The proof of Theorem 1.3 is a combination of Theorem 7.1 and Theorem 10.1 in
the main text.

The technical Assumption 4 from Section 3.2 is a statement that a certain function
produced from the equilibrium measure μ(x)dx has no zeros. In Section 9.3 we show
that this assumption always holds when V(x) is a convex function. A somewhat similar
assumption appears in the work of Johansson [J1] on the central limit theorem for global
fluctuations of continuous log-gases.

Let us emphasize that the limiting covariance in Theorem 1.3 depends only on the
support of the equilibrium measure, but it is not sensitive to other features. The same phe-
nomenon is known in the random matrix setting. Moreover, comparing (7) with expres-
sions in [J1, Theorem 4.2], [PS, Chapter 3], we conclude that the covariance is precisely

the same as for the continuous log-gases. Thus, the discreteness of the model is invisible on
the level of the central limit theorem.

The covariance in Theorem 1.3 can be related to that of a section of the 2d Gaus-
sian Free Field in the upper half-plane with Dirichlet boundary conditions. One way
to predict that is by noticing that sections in lozenge tilings models with several specific
boundary conditions yield distributions of the form (3) with θ = 1, see Section 9.2 for one
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example. On the other hand, there exist several results on the appearance of the Gaus-
sian Free Field in the asymptotics for global fluctuations in lozenge tilings, cf. [K], [BF],
[P2], [BuGo2].

Subsequent work [KS], [BoGu1] for continuous log-gases showed that Johansson’s
technical assumption on the equilibrium measure can be relaxed and replaced by certain
weaker assumptions, which hold for generic analytic potentials. We hope that a similar
thing can also be done in the present discrete setting, but this would require further
investigations.

1.4. Weight supported on several finite intervals. — In several applications the weight
w(x;N) is not defined on the whole real line, but instead it is supported by a union
of several disjoint intervals (ai(N), bi(N)), i = 1, . . . , k. In other words, the particles �i

are now confined to the union of these intervals
⋃N

i=1(ai(N), bi(N)). For instance, this
happens in tilings models, see Section 9.2.

At this point we have an additional choice: One could either fix the filling fractions
ni(N), which are the numbers of particles �i in each of the intervals (ai(N), bi(N)), or not.
In the present paper we stick to the former and fix ni(N).

We refer to Sections 3 and 5 below for details of the exact assumptions that we
impose on the weight w(x;N), intervals (ai(N), bi(N)), and filling fractions ni(N). Here
we will only briefly summarize the results obtained in such a framework.

The first result is the law of large numbers, which is the exact analogue of The-
orem 1.2, see Theorem 5.3 for the details. As before, for the asymptotics of the global
fluctuations we need to have some information about the bands of the equilibrium mea-
sure μ(x)dx. We assume that there is one band per interval.

Theorem 1.6 (Theorem 7.1). — Assume that all the data specifying the model satisfies Assump-

tions 1–5 in Section 3.2 below. In particular, the equilibrium measure μ(x)dx has k bands (αi, βi),

i = 1, . . . , k, one per interval of the support of the model. Take m ≥ 1 functions f1(z), . . . , fm(z),

which are analytic in a neighborhood of
⋃k

i=1[ai(N)/N, bi(N)/N] for large N. Then as N → ∞ the

joint moments of the m random variables

Lfj =
N∑

i=1

(
fj(�i) − EPN fj(�i)

)
, (�1, . . . , �N) is PN-distributed,

approximate those of centered Gaussian random variables with asymptotic covariance depending only on

θ,α1, . . . , αk, β1, . . . , βk and given by (116).

For k = 1, the limiting covariance coincides with that of Theorem 1.3. For k > 1
it is no longer expressible through elementary functions, e.g. for k = 2 elliptic functions
appear in the formulas. We again emphasize that the covariance depend only on the
end-points of the bands and is not sensitive to other features of the equilibrium mea-
sure. Furthermore, the covariance is the same as for the continuous log-gases, cf. [Shch],
[BoGu2].
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Similarly to the k = 1 case, one could try to identify the covariance with that of a
canonically defined random field. We believe that there should be a link to sections of the
Gaussian Free Field in a domain with k − 1 holes, but we postpone this discussion till a
future publication.

1.5. Organization of the paper. — In Section 2 we present our approach and results:
Nekrasov’s equation, Law of Large Numbers and Central Limit Theorem—in the sim-
plest yet non-trivial case when θ = 1 and φ±

N in Theorem 1.1 are linear functions. The
measure PN in this case is known as the Krawtchouk orthogonal polynomial ensemble;
it appeared and was studied in numerous previous articles. In particular, the Central
Limit Theorem for global fluctuations in this specific case can be also obtained by other
methods: see [CJY], [BD], and [BuGo2].4

In Sections 3–8 we explain a much more general framework, in which the same
ideas work and lead to the Law of Large Numbers and Central Limit Theorem. In these
sections θ is an arbitrary positive number, and the weight w(x;N) and functions φ±

N are
general (subject to certain technical assumptions).

In Section 9 we specialize the general framework to certain specific examples,
which include lozenge tilings and (z,w)-measures from asymptotic representation the-
ory. We explain how all the technical assumptions are checked in all these examples.

Finally, Section 10 explains how the case of the infinite support of w(x;N) can be
reduced to the case of the bounded support (which is studied in Sections 3–8) through
large deviations estimates.

2. Toy example: θ = 1 binomial weight

The aim of this section is to describe our method in the simplest, yet non-trivial
case of the binomial weight and θ = 1. The resulting N-particle ensemble is known as
the Krawtchouk orthogonal polynomial ensemble. It appeared in the literature before in the
connection with uniformly random domino tilings of the Aztec diamond (cf. [J4]), last
passage percolation (cf. [J2]), stochastic systems of non-intersecting paths (cf. [KOR],
[BBDT]), and with representation theory of the infinite-dimensional unitary group U(∞)

(cf. [BO2, Section 5], [B1, Section 4]).
In the subsequent sections we will extend our approach to more general cases, but

the methodology and many key ideas remain the same.
Fix two integers 0 < N ≤ M and consider the space WN of N-tuples of integers

0 ≤ �1 < �2 < · · · < �N ≤ M.

4 We remark that while the approaches of these articles admit various generalizations, to the best of our knowledge,
they do not extend further in the direction of the present paper.
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We define a probability distribution PN on WN through

PN(�1, . . . , �N) = 1
Z(N,M)

∏

1≤i<j≤N

(�i − �j)
2

N∏

i=1

(
M
�i

)
.(8)

We remark that the partition function Z(N,M) is explicitly known in this case:

Z(N,M) = 2N(M−N+1)(M!)N
N−1∏

j=0

j!
(M − j)! .

However, in a generic situation there are typically no simple formulas for the partition
function and we are not going to use its explicit form.

Our analysis of the distribution PN is based on the following θ = 1 version of The-
orem 4.1. This is essentially due to [N], [NP], [NS] and we will call the main statement
the Nekrasov’s equation. It should be viewed as a discrete space analogue of the Schwinger-
Dyson (also known as “loop”) equations.

Proposition 2.1. — Let PN be a probability distribution on N-tuples 0 ≤ �1 < · · · < �N ≤ M
such that

PN(�1, . . . , �N) = 1
Z

∏

1≤i<j≤N

(�i − �j)
2

N∏

i=1

w(�i),

where

w(x)

w(x − 1)
= φ+

N (x)

φ−
N (x)

,

and φ±
N (x) are analytic functions in a complex neighborhood of [−1,M + 1] which are positive on

[0,M] and satisfy φ+
N (M + 1) = φ−

N (0) = 0. Define

RN(ξ) = φ−
N (ξ) · EPN

[
N∏

i=1

(
1 − 1

ξ − �i

)]
(9)

+ φ+
N(ξ) · EPN

[ N∏

i=1

(
1 + 1

ξ − �i − 1

)]
.

Then RN(ξ) is analytic in the same complex neighborhood of [−1,M + 1]. If φ±
N (ξ) are polynomials

of degree at most d, then RN(ξ) is also a polynomial of degree at most d.

Proof. — The possible singularities of RN(ξ) are simple poles at points m =
0,1,2, . . . ,M. Let us compute a residue at such a point.
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The expectation EPN in (9) is a sum over all possible configurations (�1, . . . ,

�N) ∈ WN. Such a configuration contributes to the residue at m if either �i = m or
�i + 1 = m for some i = 1, . . . ,N.

We separately analyze the contributions appearing from each i = 1, . . . ,N, which
we now fix. Given a particle configuration � = (�1, . . . , �N), let �+ denote the config-
uration with ith coordinate increased by 1 and let �− denote the configuration with ith
coordinate decreased by 1. Note that, in principle �+ (similarly �−) might fail to be in WN,
as the coordinates might coincide. However, in this case the formula for PN(�+) still ap-
plies and gives zero.5

The contribution to the residue of RN at m ∈ {0, . . . ,M}, arising from the ith co-
ordinate of (�1, . . . , �N) is

−
∑

�∈WN|�i=m

φ−
N(m)PN(�1, . . . , �N)

∏

j �=i

(
1 − 1

m − �j

)
(10)

+
∑

�∈WN|�i=m−1

φ+
N(m)PN(�1, . . . , �N)

∏

j �=i

(
1 + 1

m − �j − 1

)
.

But using the definition of PN we see that

φ−
N(m)PN(�1, . . . �i−1,m, �i+1, . . . , �N)

∏

j �=i

(
1 − 1

m − �j

)

= φ+
N (m)PN(�1, . . . �i−1,m − 1, �i+1, . . . , �N)

∏

j �=i

(
1 + 1

m − �j − 1

)
.

We conclude that for each μ, the terms with � = μ and � = μ+ (or � = μ− and � = μ) in
the first and second sum in (10) cancel out and the total residue is zero.

For the polynomiality statement it suffices to notice that if φ±
N (ξ) are polynomials

of degree at most d , then RN(ξ) is an entire function which grows as O(ξ d) as ξ → ∞.
Hence, by Liouville’s theorem RN(ξ) is a polynomial. �

Note that for the distribution (8) the functions φ±
N (x) can be chosen to be linear

and we set

φ−
N(x) = x

N
, φ+

N(x) = M + 1
N

− x

N
.(11)

Thus, in a sense, (8) is one of the simplest possible distribution in the framework of Propo-
sition 2.1.

In this section we aim to study the asymptotics of the distributions PN as N → ∞.
The parameter M will also depend on N. We fix m > 1 and set M = 
mN�.

5 This is where we need the condition of φ+
N (M + 1) = φ−

N (0) = 0, which translates into w(M + 1) = w(−1) = 0.
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2.1. Law of large numbers. — As N → ∞, a certain law of large numbers holds for
the measures PN. Let us introduce a random probability measure μN on R via

μN = 1
N

N∑

i=1

δ

(
�i

N

)
, (�1, . . . , �N) is PN-distributed.(12)

The measure μN is often referred to as the empirical measure of the point configuration
�1, . . . , �N. Note that our definitions imply the condition �i+1 − �i ≥ 1, which shows that
for any interval [p, q], its μN-measure is bounded from above by (q − p + 1/N).

The idea for the proof of the law of large numbers for μN as N → ∞ is to establish
the large deviations principle for the measures PN, which would show that the measure is
concentrated on �i which maximize the probability density (8). This was done rigorously
in [J3], [J4], [Fe], see also Section 2.4 below for some details. The explicit formula for
limN→∞ μN is then obtained as a solution of a variational problem, this solution for our
weight was found earlier in [DS, Example 4.2]. The developments of these articles are
summarized in the following proposition.

Proposition 2.2. — The measures μN converge (weakly, in probability) to a deterministic abso-

lutely continuous measure μm(x)dx, which is called equilibrium measure. For m ≥ 2, the density of

the measure μm(x)dx is

μm(x) =

⎧
⎪⎨

⎪⎩

1
π

arccot
(

m− 2

2
√
m− 1 − (x −m/2)2

)
, |x − m

2 | < √
m− 1,

0, |x − m

2 | ≥ √
m− 1,

and for 1 < m ≤ 2,

μm(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
π

arccot
(

m− 2

2
√
m− 1 − (x −m/2)2

)
, |x − m

2 | < √
m− 1,

1, m
2 ≥ |x − m

2 | ≥ √
m− 1,

0, |x − m
2 | ≥ m

2 ,

where arccot(y) is the inverse cotangent function.

A convenient way of working with the equilibrium measure μm(x) is through its
Stieltjes transform Gm(z) defined through

Gm(z) =
∫ ∞

−∞

μm(x)dx

z − x
.(13)

Observe that (13) makes sense for all z outside the support of μm(x), and Gm(z) is holo-
morphic there. Further, as z → ∞, we have Gμ(z) ∼ z−1. An explicit formula for Gm(z)

can be readily extracted from Proposition 2.3 below.
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We introduce two functions

Rm(z) = z exp
(−Gm(z)

)+ (m− z) exp
(
Gm(z)

)
,

Qm(z) = z exp
(−Gm(z)

)− (m− z) exp
(
Gm(z)

)
,

for z ∈ C \ [0,m] and consider their analytic continuations.

Proposition 2.3. — For any m > 1,

Rm(z) = m− 2, Qm(z) = 2
√

(z −m/2)2 − (m− 1),

with the branch of the square root chosen so that Qm(z) ∼ 2z as z → ∞.

Proof. — We first observe that Rm(z) is, in fact, a linear polynomial. Indeed, this
is the N → ∞ limit of RN(Nz) in Proposition 2.1 for the measure PN. The fact that
Gm(z) ∼ z−1 as z → ∞, implies limz→∞ Rm(z) = m− 2, and thus Rm(z) = m− 2. Fur-
ther, observe that the definition of Qm and Rm implies

Qm(z)2 − Rm(z)2 = −4z(m− z).

Therefore,

Qm(z)2 = 4z2 − 4zm+ (m− 2)2 = 4(z −m/2)2 − 4(m− 1). �

2.2. Second order expansion. — Define the Stieltjes transform GN(z) of the prelimit
empirical measure (12) through

GN(z) =
∫ ∞

−∞

1
z − x

μN(dx) = 1
N

N∑

i=1

1
z − �i/N

,(14)

(�1, . . . , �N) is PN-distributed.

We aim to study how GN(z) approximate Gm(z) as N → ∞. For that we in-
troduce a deformed version of the same function. Take 2k parameters t = (t1, . . . , tk),
v = (v1, . . . , vk) such that va + ta − y �= 0 for all a = 1, . . . , k and all y ∈ [0,m] and let the
deformed distribution Pt,v

N be defined through

Pt,v
N (�1, . . . , �N)(15)

= 1
Z(N,M; t,v)

∏

1≤i<j≤N

(�i − �j)
2

N∏

i=1

[(
M
�i

) k∏

a=1

(
1 + ta

va − �i/N

)]
.

If k = 0, then Pt,v
N = PN is the undeformed measure. In general, Pt,v

N may be a complex-
valued measure. The normalizing constant Z(N,M; t,v) in (15) is chosen so that the
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total mass of Pt,v
N is 1, i.e.

∑
�∈WN

Pt,v
N (�) = 1. Let us note that the numbers ta are always

chosen small enough, which guarantees that Z(N,M; t, v) �= 0.
Observe that Pt,v

N satisfies the assumptions of Proposition 2.1 with

φ+
N(x) =

(
M + 1

N
− x

N

)
·

k∏

a=1

(
va − x

N
+ 1

N

)(
ta + va − x

N

)
,(16)

φ−
N(x) = x

N
·

k∏

a=1

(
va − x

N

)(
ta + va − x

N
+ 1

N

)
.(17)

As above, we set M = 
mN�, and omit it from the notations. We also define

ψ+
N (z) = (
mN� + 1 −mN

)+
k∑

a=1

m− z

va − z
, ψ−

N (z) =
k∑

a=1

z

ta + va − z
.

Clearly,

φ+
N(Nz) =

(
m− z + ψ+

N (z)

N
+ O
(

1
N2

))
·

k∏

a=1

(va − z)(ta + va − z),

φ−
N(Nz) =

(
z + ψ−

N (z)

N
+ O
(

1
N2

))
·

k∏

a=1

(va − z)(ta + va − z).

We further define μ
t,v
N as the empirical distribution of Pt,v

N and set

GN(z) =
∫ ∞

−∞

1
z − x

μ
t,v
N (dx) = 1

N

N∑

i=1

1
z − �i/N

,(18)

(�1, . . . , �N) is Pt,v
N -distributed.

Define

GN(z) = N
(
GN(z) − Gm(z)

)
.(19)

Note that we often omit the dependence on t,v from the notations, to keep them concise.
The definition of the deformed measure Pt,v

N is motivated by the following obser-
vation. It was used before in the related context in random matrix theory, cf. [Mi], [Ey1].

Lemma 2.4. — For any k ≥ 1, the kth mixed derivative

∂ k

∂ t1∂ t2 . . . ∂ tk
EPt,v

N

(
GN(u)

)∣∣∣∣
ta=0,1≤a≤k

(20)

is the joint cumulant of k + 1 random variables NGN(u), NGN(v1), . . . ,NGN(vk) with respect to

the measure PN.



GAUSSIAN ASYMPTOTICS OF DISCRETE β-ENSEMBLES 15

Proof. — We first note that the joint cumulants are invariant under addition of
constants. Therefore, we can replace NGN(u) by GN(u) for the purpose of computing
the cumulants.

Further recall that one way to define the joint cumulant of k + 1 bounded random
variables ξ0, . . . , ξk is through

∂ k+1

∂ t0∂ t1 . . . ∂ tk
ln

(
E exp

(
k∑

i=0

tiξi

))∣∣∣∣
t0=t1=···=tk=0

.

Taking the derivative with respect to t0 explicitly, we can rewrite this also as

∂ k

∂ t1 . . . ∂ tk

E(ξ0 exp(
∑k

i=1 tiξi))

E(exp(
∑k

i=1 tiξi))

∣∣∣∣
t1=···=tk=0

.

Setting ξ0 = NGN(u), ξi = NGN(vi), i = 1, . . . , k and observing that

exp
(
tNGN(v)

)=
N∏

i=1

(
1 + t

v − �i/N

)
+ O
(
t2
)
, t → 0,

we get the desired statement. �

Theorem 2.5. — Fix k = 0,1, . . . and choose k complex numbers v = (v1, . . . , vk) ∈ (C \
[0,m])k . Then, as N → ∞,

∂ k

∂ t1 · · · ∂ tk
EPt,v

N

(
GN(u)

)∣∣∣∣
ta=0,1≤a≤k

(21)

= o(1) + ∂ k

∂ t1 · · · ∂ tk

[
1

2π i · 2
√

(u −m/2)2 − (m− 1)

×
∮

γ[0,m]

dz

(u − z)
·
(

ψ−
N (z)e−Gm(z) + ψ+

N (z)eGm(z)

+√(z −m/2)2 − (m− 1) · ∂

∂z
Gm(z)

)]

ta=0,1≤a≤k

,

where γ[0,m] is a simple positively-oriented contour enclosing the segment [0,m] (the points u and

v1, . . . , vk are outside the contour). The remainder o(1) is uniform over u, v1, . . . , vk in compact

subsets of the unbounded component of C \ γ[0,m]. The k = 0 case is that we take no derivatives in (21).

Remark 2.6. — The only cases, where the right-hand side of (21) is meaningful are
k = 0,1, since its N → ∞ limit is zero for k ≥ 2. Indeed, only ψ−

N depends on ta, and
moreover it is a sum of functions of single variables ta, a = 1, . . . , k; therefore, all mixed
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partial derivatives vanish. However, we present Theorem 2.5 in this way, since that’s the
form which appears in our proofs. For k = 1 we will compute the limit of (21) below
in Theorem 2.8. For k = 0 and generic m the right-hand side of (21) has no limit, as
(
mN� + 1 −mN) in the definition of ψ+

N oscillates.

Remark 2.7. — It might seem a bit unexpected that for k = 0 the right-hand side
of (21) does not vanish when θ = 1. Indeed, in the context of random matrices this cor-
responds to β = 2 case, where the mean is known to vanish (cf. [J1]). For our model the
non-zero mean can be traced back to two features. First, due to discreteness we can not
adjust M = 
mN� so that (
mN� + 1 − mN) becomes zero for all N. Second, the log-
arithm of the weight, ln

((M
x

))
, has a non-trivial N → ∞ asymptotic expansion, which

affects the result.

Before providing a proof of Theorem 2.5, let us give its important corollaries. Note
that if we set k = 0 in Theorem 2.5, then it gives the limit behavior for EPNGN(z). In
fact, it also gives the Central Limit Theorem for GN(z).

Theorem 2.8. — The random field N(GN(z) − EPNGN(z)), z ∈ C \ [0,m], converges as

N → ∞ (in the sense of joint moments, uniformly in z in compact subsets of C \ [0,m]) to a centered

complex Gaussian random field with second moment

lim
N→∞

N2
(
EPN

(
GN(u)GN(v)

)− EPNGN(u)EPNGN(v)
)=: C(u, v)(22)

= − 1
2(u − v)2

(
1 − uv − 1

2(a− + a+)(u + v) + a+a−√
(u − a−)(u − a+)

√
(v − a−)(v − a+)

)
,

where a± = m

2 ± √
m− 1.

Remark 2.9. — Note that the covariance C(u, v) has no singularity at u = v, since
the right-hand side of (22) has a finite u → v limit.

Remark 2.10. — Since GN(u) = GN(u), the formula (22) is sufficient for determin-
ing the asymptotic covariance of the random field GN(u).

Proof of Theorem 2.8. — We start from the result of Lemma 2.4 for the joint cumulant
of k + 1 random variables NGN(u), NGN(v1), . . . ,NGN(vk). In particular, if k = 1, then
we get the covariance of NGN(u) and NGN(v1).

For k > 1, differentiating (21) we see that the result vanishes as N → ∞, see
Remark 2.6. This implies the asymptotic Gaussianity of the random field N(GN(z) −
EPNGN(z)).
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In the case k = 1, differentiating (21) we see that the covariance given by (20) is
(recall that u and v1 lie outside the integration contour)

1

2π i · 2
√

(u −m/2)2 − (m− 1)

∮

γ[0,m]

dz

(u − z)
·
(

− z

(v1 − z)2
e−Gm(z)

)
(23)

= 1

2π i · 4
√

(u −m/2)2 − (m− 1)

∮

γ[0,m]

dz

(z − u)(v1 − z)2

× (Rm(z) + Qm(z)
)
.

The term with Rm(z) integrates to 0, as it has no singularities inside γ[0,m]. The term
with Qm is computed as the sum of the residues at z = u and at z = v1, which gives the
desired covariance formula. �

Theorem 2.8 implies the central limit theorem for general analytic linear statistics.

Corollary 2.11. — Let the distribution PN be given by (8) with M = 
mN�. Take k real valued

functions f1(z), . . . , fk(z) on [0,m], which can be extended to holomorphic functions in a complex

neighborhood B of [0,m]. Then as N → ∞ the k random variables

Lfj =
N∑

i=1

(
fj(�i) − EPN fj(�i)

)
, (�1, . . . , �N) is PN-distributed,

converge in the sense of moments to centered Gaussian random variables with covariance

lim
N→∞

EPNLfiLfj =
1

(2π i)2

∮

γ[0,m]

∮

γ[0,m]
fi(u)fj(v)C(u, v)dudv,(24)

where γ[0,m] is a positively oriented contour in B which encloses [0,m], and C(u, v) is given by (22).

Remark 2.12. — The covariance (24) has the same form as for random matrices
and log-gases in the one cut regime. It depends only on the restrictions of functions fj
onto the interval [a−, a+] and can be rewritten in several other equivalent forms, cf. [J1,
Theorem 4.2], [PS, Chapter 3], [AGZ, Section 4.3.3].

Proof of Corollary 2.11. — Observe that

Lf = N
2π i

∮

γ[0,m]
f (z)
(
GN(z) − EPNGN(z)

)
dz.

Therefore, all the moments of Lf are obtained from the centered moments of GN(z) by
integration. Since the latter converge uniformly in z on the integration contour, so do the
former. It remains to use the fact that the integrals of jointly Gaussian random variables
are also Gaussian. �
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Remark 2.13. — Similarly to Corollary 2.11, Theorem 2.5 can be used to obtain
the first two terms in the N → ∞ asymptotic expansion of EPN

∑N
i=1 f (�i) for functions f

holomorphic in a neighborhood of [0,m].
The rest of this section is devoted to the proof of Theorem 2.5.

2.3. Heuristic argument for Theorem 2.5. — In this section we present a sketch of the
proof for Theorem 2.5 in which we omit crucial bounds on remainders in the asymptotic
formulas. These bounds will be established further on.

We start from the statement of Proposition 2.1 for the measures Pt,v
N . Making the

change of variables ξ = Nz, we have for z outside [0,m]
N∏

i=1

(
1 − 1

ξ − �i

)
(25)

= exp
( N∑

i=1

ln
(

1 − 1
N

· 1
z − �i/N

))

= exp
(

−GN(z) + 1
2N

· ∂

∂z
GN(z) + O

(
1

N2

))

= exp
(

−Gm(z) − 1
N

GN(z) + 1
2N

· ∂

∂z
GN(z) + O

(
1

N2

))
,

where the remainder is uniform over z in compact subsets of C \ [0,m]. Similarly,

N∏

i=1

(
1 + 1

ξ − �i − 1

)
= exp

(
ln
(

1 + 1
N

· 1
z − �i/N − 1/N

))
(26)

= exp
(

Gm(z) + 1
N

GN(z) − 1
2N

· ∂

∂z
GN(z) + O

(
1

N2

))
.

Recalling the definition of Rm(z), we conclude that the function RN(Nz) from
Proposition 2.1 can be written in the following form

RN(Nz) =
k∏

a=1

(va − z)(ta + va − z)(27)

×
[

Rm(z) + ze−Gm(z)EPt,v
N

(
exp
(

1
N

GN(z)

)
− 1
)

+ (m− z)eGm(z)EPt,v
N

(
exp
(

− 1
N

GN(z)

)
− 1
)
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+ ψ−
N (z)

N
e−Gm(z) + ψ+

N (z)

N
eGm(z) + ze−Gm(z)

N

(
1
2

∂

∂z
Gm(z)

)

+ (m− z)eGm(z)

N

(
−1

2
∂

∂z
Gm(z)

)]
+ o

(
1
N

)
,

where ψ±
N appeared from the second terms in 1/N expansion of φ±

N from (16), (17). We
further want to simplify the expression in the second line of (27), by replacing eh − 1 by h

under expectations. For that we note a simple inequality, which we will use with n = 2:
∣∣∣∣∣∣
eh −

n−1∑

j=0

hj

j!

∣∣∣∣∣∣
≤ |h|ne|h|, h ∈ C, n = 1,2, . . . .(28)

We will later establish in Section 2.5 that uniformly in z in compact subsets of C \ [0,m]
we have

EPt,v
N

(∣∣∣∣
1
N

GN(z)

∣∣∣∣
2

exp
(∣∣∣∣

1
N

GN(z)

∣∣∣∣

))
= o

(
1
N

)
, N → ∞.(29)

We therefore can rewrite (27) as

RN(Nz) =
k∏

a=1

(va − z)(ta + va − z) ·
[

Rm(z) + Qm(z)

N
EPt,v

N

(
GN(z)

)
(30)

+ ψ−
N (z)

N
e−Gm(z) + ψ+

N (z)

N
eGm(z) + ze−Gm(z)

N

(
1
2

∂

∂z
Gm(z)

)

+ (m− z)eGm(z)

N

(
−1

2
∂

∂z
Gm(z)

)]
+ o

(
1
N

)
,

where the estimate of the remainder is uniform over z in compact subsets of C \ [0,m].
Let us now fix u outside the contour γ[0,m] enclosing the interval [0,m], divide (30)

by

2 · 2π i · (u − z) ·
k∏

a=1

(va − z)(ta + va − z)

and integrate over γ[0,m]. Since both RN(Nz) and Rm(z) are holomorphic inside the
contour, the integrals of the corresponding terms vanish. From the rest we get, with the
help of Proposition 2.3,

1
2π i

∮

γ[0,m]

√
(z − a−)(z − a+)

u − z
· EPt,v

N

(
GN(z)

)
dz(31)
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= − 1
2π i

∮

γ[0,m]

dz

2(u − z)
·
(

ψ−
N (z)e−Gm(z) + ψ+

N (z)eGm(z)

+ ze−Gm(z)

(
1
2

∂

∂z
Gm(z)

)
+ (m− z)eGm(z)

(
−1

2
∂

∂z
Gm(z)

))
+ o(1).

For the first line of (31), note that EPt,v
N

(GN(z)) is analytic outside the contour of in-
tegration and decays as 1/z2 when z → ∞. Therefore, we can compute the integral as
(minus) the residue at z = u, which is

√
(u − a−)(u − a+) · EPt,v

N

(
GN(u)

)
.

This leads, via differentiation in t’s, to the desired formula (21) of Theorem 2.5.
Let us point out the parts of the above argument that are not yet rigorous and

whose justification is necessary to complete the proof of Theorem 2.5:

• We need to show that the bound (29) is valid.
• We need to prove that all the remainders remain small when we differentiate

with respect to variables ta, a = 1, . . . , k.

2.4. A weak a priori estimate. — The following lemma is a first step for establishing
the desired estimates.

Lemma 2.14. — Fix a positive integer n and take a compact set A ⊂ C \ [0,m]. Then for

every ε > 0 there exists a constant C > 0 such that for every z1, . . . , zn ∈ A and every N = 1,2, . . .

we have

EPN

∣∣∣∣∣

n∏

i=1

GN(zi)

∣∣∣∣∣≤ C · Nn( 1
2 +ε),(32)

with GN(z) defined by (19) with k = 0.

Remark 2.15. — We will show in the next section that C · Nn( 1
2 +ε) in the right-hand

side of (32) can be replaced by a constant. However, to produce such a sharp estimate we
need to start from this weaker one.

The proof of Lemma 2.14 that we now present is similar to the argument of
[BoGu2, Lemma 3.4.5], which follows the ideas of [1].

Before we proceed we need to recall the characterization of the equilibrium mea-
sure μm. Introduce the functional I[μ] of a measure μ on [0,m] via

I[μ] =
∫∫

0≤x,y≤m

x �=y

ln |x − y|dμ(x)dμ(y) −
∫ m

0
V(x)dμ(x),(33)
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where

V(x) = x ln(x) + (m− x) ln(m− x).

Note that if the measure μ has atoms, then it is important to exclude the diagonal in the
integral (33), i.e. integrate only over x �= y.

The variational characterization of the measure μm(x)dx6 (see [J3], [J4], [Fe])
yields that μm(x)dx is the unique minimizer of I[μ] among the probability measures of
density at most 1.

Define the functions Fm(x) through

Fm(x) = 2
∫ m

0
ln |x − t|μm(t)dt − V(x).(34)

Then varying the functional I[μ] at μm, one proves (cf. [DS], [Fe], [ST]) that there
exists a real number f such that Fm(x) − f = 0 on S = {0 ≤ x ≤ m | 0 < μm(x) < 1},
Fm(x) − f < 0 on the complement of the support of μm, and Fm(x) − f > 0 when the
density μm(x) is equal to 1.

Now take any two compactly supported absolutely continuous probability mea-
sures with uniformly bounded densities ν(dx) = ν(x)dx and ρ(dx) = ρ(x)dx and define
D(ν, ρ) through

D2(ν, ρ) = −
∫

R

∫

R
ln |x − y|(ν(x) − ρ(x)

)(
ν(y) − ρ(y)

)
dxdy.(35)

There is an alternative formula for D(ν(x), ρ(x)) in terms of Fourier transforms,
cf. [BeGu]:

D(ν, ρ) =
√∫ ∞

0

1
t

∣∣∣∣
∫

R
eitx
(
ν(x) − ρ(x)

)
dx

∣∣∣∣
2

dt.(36)

Fix a parameter p > 2 and let μ̃N denote the convolution of the empirical measure
μN given by (12) with uniform measure on the interval [0,N−p].

Proposition 2.16. — There exists C ∈ R such that for all γ > 0 and all N ≥ 1 we have

PN

(
D(μ̃N,μm) ≥ γ

)≤ exp
(
CN ln(N) − γ 2N2

)
.

Proof. — Observe that for every N-tuple 0 ≤ �1 < �2 < · · · < �N ≤ M we have,
using Stirling’s formula for factorials,

PN(�1, . . . , �N)

= exp(2N(N − 1) ln(N) + N2I[mes[�1, . . . , �N]] + O(N ln(N)))

Z(N, 
mN�) ,

(37)

6 Throughout the paper the density of a measure μ is denoted μ(x).
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where

mes[�1, . . . , �N] = 1
N

N∑

i=1

δ

(
�i

N

)
.

Let us obtain a lower bound for the partition function Z(N, 
mN�) in (37). For that let xi ,
i = 1, . . . ,N be quantiles of μm defined through

∫ xi

0
μm(x)dx = i − 1/2

N
, 1 ≤ i ≤ N.

Since μm(x) ≤ 1, xi+1 − xi ≥ 1/N and therefore, the numbers 
Nxi�, 1 ≤ i ≤ N are all
distinct. We can then write

Z
(
N, 
mN�)≥ exp

(
2N(N − 1) ln(N) + N2I

[
mes
[
Nx1�, . . . , 
NxN�]](38)

+ O
(
N ln(N)

))
.

We claim that (38) can be transformed into

exp
(
2N(N − 1) ln(N) + N2I[μm] + O

(
N ln(N)

))
.

Indeed, for the double-integral part of I[·] we write using the monotonicity of logarithm

∑

i<j

ln
(
Nxj�

N
− 
Nxi�

N

)

≤
∑

i<j

ln
(

xj − xi + 1
N

)

≤ N2
∑

i<j

∫ xj+1

xj

∫ xi

xi−1

ln
(

t − s + 1
N

)
μm(t)μm(s)dtds + O

(
N ln(N)

)

= N2

∫∫

s<t

ln(t − s)μm(t)μm(s)dtds + O
(
N ln(N)

)
,

and similarly for the opposite inequality. For the single-integral part of I[·] we have

N
N∑

i=1

V
(
Nxi�

N

)
= N2

N−2∑

i=2

∫ xi+1

xi

(
V(t) +

(
t − 
Nxi�

N

)
V′(κ(t)

))
μm(t)dt

+ O(N),

where κ(t) is a point inside [x1, xN]. Observe that |V′(κ(t))| = O(ln(N)), and thus
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N
N∑

i=1

V
(
Nxi�

N

)

= N2
N−2∑

i=2

∫ xi+1

xi

(
V(t) +

(
xi+1 − xi + 1

N

)
O
(
ln(N)

))
μm(t)dt + O(N)

= N2

∫ m

0
V(t)μm(t)dt + N2 O(ln(N))

N

N−2∑

i=2

(
xi+1 − xi + 1

N

)

= N2

∫ m

0
V(t)μm(t)dt + O

(
N ln(N)

)
.

The next step is to replace mes[�1, . . . , �N] in (37) by its convolution with the uni-
form measure on [0,N−p], that we denote m̃es[�1, . . . , �N]. For that take two independent
random variables u, ũ uniformly distributed on [0,N−p], where p > 2 as above. Then

I
[
m̃es[�1, . . . , �N]](39)

= Eu,ũ

∫ m

0

∫ m

0
ln |x − y + u − ũ|mes[�1, . . . , �N](dx)mes[�1, . . . , �N](dy)

− Eu

∫ m

0
V(x + u)mes[�1, . . . , �N](dx)

= I
[
mes[�1, . . . , �N]]+ 1

N
Eu,ũ

∫ m

0
ln |u − ũ|mes[�1, . . . , �N](dx)

+ Eu,ũ

∫∫

x �=y

ln

∣∣∣∣1 + u − ũ

x − y

∣∣∣∣mes[�1, . . . , �N](dx)mes[�1, . . . , �N](dy)

+ Eu

∫ m

0

(
V(x + u) − V(x)

)
mes[�1, . . . , �N](dx)

= I
[
mes[�1, . . . , �N]]+ O

(
ln(N)

N

)
.

We conclude that there exists a constant C such that

PN(�1, . . . , �N) ≤ exp
(
CN ln(N)

)
exp
(
N2
(
I
[
m̃es[�1, . . . , �N]]− I[μm])).

Further, completing the square we get

I
[
m̃es[�1, . . . , �N]]− I[μm](40)

= −D2
(
μm, m̃es[�1, . . . , �N])+

∫ m

0
Fm(x)

(
m̃es[�1, . . . , �N] − μm

)
(dx)



24 ALEXEI BORODIN, VADIM GORIN, ALICE GUIONNET

= −D2
(
μm, m̃es[�1, . . . , �N])

+
∫ m

0

(
Fm(x) − f

)(
m̃es[�1, . . . , �N] − μm

)
(dx),

with Fm(x) and f defined in (34) and directly below that formula, respectively. Let us
analyze the last term in (40). On the set S = {x | 0 < μm(x) < 1} the function Fm(x) − f

vanishes. On the complement of the support of μm(x) we have Fm(x) − f < 0 and the
corresponding part of the last integral in (40) is negative. Finally, on the set S′ = {x |
μm(x) = 1}, we have Fm(x) − f > 0. Since all the points �i/N are at least 1/N apart, for
any a such that [a, a + 1/N] ⊂ S′ we have

(
m̃es[�1, . . . , �N] − μm

)([a, a + 1/N])≤ 0.

Thus,
∫ a+1/N

a

(
Fm(x) − f

)(
m̃es[�1, . . . , �N] − μm

)
(dx)(41)

≤
∫ a+1/N

a

(
Fm(x) − Fm(a)

)(
m̃es[�1, . . . , �N] − μm

)
(dx)

≤ 2
N

sup
x,y∈S′

|x−y|≤1/N

∣∣Fm(x) − Fm(y)
∣∣.

Observe that the last sup is at most O(ln(N)/N). Now partition S′ into segments of the
form [a, a + 1/N] and note that for boundary segments (which have to be shorter than
1/N) the bound for the integral of the form (41) is still valid as Fm(x) is equal to f in
one of the end-points of such segment. Summing the bounds over all segments, we get a
bound on the integral over S′. It follows that as N → ∞

∫ m

0

(
Fm(x) − f

)(
m̃es[�1, . . . , �N] − μm

)
(dx) ≤ O

(
ln(N)

N

)
.

Therefore, we finally obtain

PN(�1, . . . , �N) ≤ exp
(
C′N ln(N)

)
exp
(−N2D2

(
m̃es[�1, . . . , �N],μm

))
.

Since the total number of N-tuples 0 ≤ �1 < . . . �N ≤ 
mN� is
(
mN�+1

N

) =
exp(O(N ln(N))), the proof is complete. �

Corollary 2.17. — For a compactly supported Lipschitz function g define

‖g‖1/2 =
(∫ ∞

−∞
|s|
∣∣∣∣
∫ ∞

−∞
eisxg(x)dx

∣∣∣∣
2

ds

)1/2

, ‖g‖Lip = sup
x �=y

∣∣∣∣
g(x) − g(y)

x − y

∣∣∣∣.
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Fix any p > 2. Then there exists C ∈ R such that for all γ > 0, all N ≥ 1 and all g we have

PN

(∣∣∣∣
∫ m

0
g(x)μN(dx) −

∫ m

0
g(x)μm(dx)

∣∣∣∣≥ γ ‖g‖1/2 + ‖g‖Lip

Np

)
(42)

≤ exp
(

CN ln(N) − γ 2N2

2

)
.

Proof. — We have
∣∣∣∣
∫ m

0
g(x)μN(dx) −

∫ m

0
g(x)μm(dx)

∣∣∣∣

≤
∣∣∣∣
∫ m

0
g(x)μN(dx) −

∫ m

0
g(x)μ̃N(dx)

∣∣∣∣

+
∣∣∣∣
∫ m

0
g(x)μ̃N(dx) −

∫ m

0
g(x)μm(dx)

∣∣∣∣.

The first term is bounded by ‖g‖Lip

Np and corresponds to such term in (42). Therefore, it
remains to work out the second term. Since scalar products are preserved under Fourier
transform, with the notation

φ̂(s) =
∫ ∞

−∞
eisxφ(x)dx

we write the Plancherel formula (note that g(x) and (μ̃N(x) − μm(x)) are bounded and
belong to L1[0,m] ∩ L2[0,m]) and use the Cauchy-Schwartz inequality

∣∣∣∣
∫ m

0
g(x)
(
μ̃N(x) − μm(x)

)
dx

∣∣∣∣=
∣∣∣∣
∫ ∞

−∞

(√|t|ĝ(t))
ˆ̃μN(t) − μ̂m(t)√|t| dt

∣∣∣∣

≤ ‖g‖1/2

√∫ ∞

−∞

| ˆ̃μN(t) − μ̂m(t)|2
|t| dt

= √
2‖g‖1/2D(μ̃N,μm).

It remains to use Proposition 2.16. �

Proof of Lemma 2.14. — Choose a small η > 0 and take an infinitely differentiable
function h(x), whose support is inside [−η,m+ η] and such that h(x) = 1 for 0 ≤ x ≤m.

Since both μN and μm are supported on [0,m], we can replace 1/(z−x) in the def-
inition of GN(z) and Gm(z) by a nice smooth compactly supported function h(x)/(z − x)

without changing GN(z) and Gm(z). Now choose γ = q ·N−1/2+ε, q > 0, in Corollary 2.17
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and note that for this choice the right-hand side of (42) still exponentially decays as
N → ∞. This readily implies the bound of Lemma 2.14. �

2.5. Self-improving estimates and the proof of Theorem 2.5. — The aim of this section is
to finish the proof of Theorem 2.5. The key part is establishing the following statement.

Proposition 2.18. — For any k ≥ 1 and any u1, . . . , uk ∈ C \ [0,m], the joint moments

EPN

k∏

a=1

∣∣GN(ua)
∣∣

are uniformly (in N and in u1, . . . , uk in compact subsets of C \ [0,m]) bounded.

The idea for getting such estimates is to start from Lemma 2.14 and then recur-
sively feed the existing estimates into the argument of Section 2.3 to obtain the stronger
ones. This is very similar to the argument of [BoGu1, Section 4.3].

Proof of Proposition 2.18. — Fix n = 0,1, . . . and v = (v1, . . . , vn). Arguing as in
Lemma 2.4, we prove that for any bounded random variable ξ we have

∂n

∂ t1 · · · ∂ tn

(
EPt;v

N
ξ
)∣∣∣∣

t1=···=tn=0

= Mc

(
ξ,NGN(v1), . . . ,NGN(vn)

)
,(43)

where Mc is the joint cumulant. Since the cumulants are unchanged under shifts, we can
also replace NGN(va) by GN(va) in (43).

We aim to differentiate the formulas of Section 2.3 with respect to ta at ta = 0.
For that we need to examine the remainders. The remainder o(N−1) in (27) comes from
three sources: from the expansions (25), (26); from the N−1 expansion of φ±

N (z); from
the replacement of ∂

∂z
GN(z) by ∂

∂z
Gm(z). The remainder can then be written as a sum

corresponding to these three sources:

n∏

a=1

(va − z)(ta + va − z)

[
1

N2
EPt;v

N
ξN(z) + 1

N2
c(z; t,v)EPt;v

N
ξ ′

N(z)(44)

+ 1
N2

EPt;v
N

(
ξ ′′

N(z)
∂

∂z
GN(z)

)]

where ξN(z), ξ ′
N(z), ξ ′′

N(z) are random variables, which are bounded uniformly in N, in
z belonging to compact subsets of C \ [0,m], and which do not depend on t,v. The
function c(z; t,v) arises from the large N expansions of (16), (17), and it is uniformly
bounded in z belonging to compact subsets of C \ {v1, . . . , vn; t1 + v1; . . . tn + vn}. The
dependence on z is holomorphic in all the terms.
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Further, when we pass from (27) to (30), we need to expand EPN(exp( 1
NGN(z))

− 1). Since 1
NGN(z) is a bounded random variable, we can use the Taylor expansion to

get

EPt;v
N

(
exp
(

1
N

GN(z)

)
− 1
)

(45)

= EPt,v
N

(
1
N

GN(z)

)
+ 1

2
EPt,v

N

(
1
N

GN(z)

)2

+ 1
6

EPt,v
N

(
1
N

GN(z)

)3

+ . . .

Thus, after reconstructing the remainders, (31) is replaced by

1
4π i

∮

γ[0,m]

1
u − z

·
(

Qm(z)EPt,v
N

(
GN(z)

)+ Rm(z)

2N
EPt,v

N

(
GN(z)2

)
(46)

+ Qm(z)

6N2
EPt,v

N

(
GN(z)3

)+ . . .

+ 1
N

[
EPt;v

N
ξN(z) + c(z; t,v)EPt;v

N
ξ ′

N(z)

+ EPt;v
N

(
ξ ′′

N(z)
∂

∂z
GN(z)

)])
dz

= − 1
2π i

∮

γ[0,m]

dz

2(u − z)

×
(

ψ−
N (z)e−Gm(z) + ψ+

N (z)eGm(z) + Qm(z)

2
∂

∂z
Gm(z)

)
.

We now differentiate (46) with respect to all ta at ta = 0. For all the terms involving random
variables we use (43) to rewrite the result as a cumulant. Note that when we differentiate
c(z; t,v)EPt;v

N
ξ ′′

N(z), we need to apply the Leibnitz rule and therefore to differentiate each
of the two factors and get a sum. We also compute the integral of 1

u−z
Qm(z)EPt,v

N
(GN(z))

as minus the residue at z = u to get

Qm(u)

2
Mc

(
GN(u),GN(v1), . . . ,GN(vn)

)
(47)

+ 1
4π i

∮

γ[0,m]

1
u − z

(
Rm(z)

4N
Mc

((
GN(z)

)2
,GN(v1), . . . ,GN(vn)

)

+ Qm(z)

12N2
Mc

((
GN(z)

)3
,GN(v1), . . . ,GN(vn)

)+ . . .

)
dz
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+ 1
N

· 1
4π i

∮

γ[0,m]

1
u − z

Mc

×
(

ξN(z) + ξ ′′
N(z)

∂

∂z
GN(z),GN(v1), . . . ,GN(vn)

)
dz

+ 1
N

· 1
4π i

∑

A⊂{1,...,n}

∮

γ[0,m]

1
u − z

cA(z; t,v)Mc

(
ξ ′

N(z),GN(va), a ∈ A
)
dz

= ∂n

∂ t1 · · · ∂ tn

[
1

4π i

∮

γ[0,m]

dz

(u − z)
·
(

ψ−
N (z)e−Gm(z) + ψ+

N (z)eGm(z)

+ Qm(z)

2
· ∂

∂z
Gm(z)

)]

ta=0,1≤a≤n

,

where the fifth line is the result of the differentiation of c(z; t,v)EPt;v
N

ξ ′′
N(z), i.e. cA(z; t,v)

is the mixed derivative of c(z; t,v) with respect to ta, a ∈ {1, . . . , n} \ A. Let us analyze
the resulting expression (47) as N → ∞. At this moment all we need from the right-hand
side of (47) is that it is O(1) as N → ∞.

Consider the infinite sum over growing powers of GN(z) in (47). All the terms
starting from the Hth one can be combined into

Mc

( ∞∑

h=H

(Q/R)h

(GN(z))h

2h!Nh−1
,GN(v1), . . . ,GN(vn)

)
,(48)

where (Q/R)h is either Qm(z) or Rm(z) depending on the parity of h. Expanding the
cumulants in terms of centered moments and using Holder’s inequality, we observe that
if ζ is a bounded random variable, then for any fixed k ≥ 1 there is a constant Ck such
that

∣∣Mc

(
ζ,GN(v1), . . . ,GN(vk)

)∣∣

≤ Ck

√
E|ζ |2

k∏

i=1

[
E|GN(vi) − E

[
GN(vi)

]|2k
]1/2k

(49)

Observe that the random variables GN(va) are uniformly bounded, same is true about
(Q/R)h (for z and va in compact subsets of C \ [0,m]), and

ζ =
∞∑

h=H

(Q/R)h

(GN(z))h

2h!Nh−1

satisfies (uniformly over z in compact subsets of C \ [0,m]) the point-wise bound

|ζ | ≤ const · N ·
∣∣∣∣
GN(z)

N

∣∣∣∣
H

exp

∣∣∣∣
GN(z)

N

∣∣∣∣.
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Thus, we can bound (48) by

const · Nn+1 sup
z

√

EPN

(∣∣∣∣
GN(z)

N

∣∣∣∣
2H

exp

∣∣∣∣
2GN(z)

N

∣∣∣∣

)

≤ const · Nn+1 sup
z

√

EPN

(∣∣∣∣
GN(z)

N

∣∣∣∣
2H)

,

(50)

where in the last inequality we used the uniform boundness of GN(u)

N , and supz is to be
taken over any set which includes both γ[0,m] and all points va, a = 1, . . . , n.

We can use Lemma 2.14 to bound the expectation in (50) and conclude that if
H > 3n, then (48) is o(1). Therefore, renaming u into v0, (47) is rewritten as

Qm(v0)

2
Mc

(
GN(v0),GN(v1), . . . ,GN(vn)

)
(51)

+ 1
4π i

∮

γ[0,m]

1
v0 − z

(
3n∑

h=2

1
Nh−1

× (Q/R)h

2h! Mc

((
GN(z)

)h
,GN(v1), . . . ,GN(vn)

))
dz

+ 1
N

· 1
4π i

∮

γ[0,m]

1
v0 − z

Mc

(
ξN(z)

+ ξ ′′
N(z)

∂

∂z
GN(z),GN(v1), . . . ,GN(vn)

)
dz

+ 1
N

· 1
4π i

∑

A⊂{1,...,n}

∮

γ[0,m]

1
v0 − z

cA(z; t,v)

× Mc

(
ξ ′

N(z),GN(va), a ∈ A
)
dz

= O(1),

where (Q/R)h is either Qm(z) or Rm(z) depending on the parity of h, and we replaced u

by v0.
At this moment we claim that (51) for all n = 0,1,2 . . . together with the bound

of Lemma 2.14 implies Proposition 2.18. Indeed, take any two disjoint compact sets
U ,V ⊂ C \ [0,m], which are invariant under conjugation, and suppose that γ[0,m] ⊂ U .
Expanding cumulants in terms of centered moments and using Lemma 2.14, we obtain
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sup
v0,...,vn∈V

1
N

· 1
4π i

∮

γ[0,m]

1
v0 − z

(52)

× Mc

(
ξN(z) + ξ ′′

N(z)
∂

∂z
GN(z),GN(v1), . . . ,GN(vn)

)
dz

= O
(
N(n+1)(1/2+ε)−1

)
,

sup
v0,...,vn∈V

1
N

· 1
4π i

∑

A⊂{1,...,n}

∮

γ[0,m]

1
v0 − z

cA(z; t,v)(53)

× Mc

(
ξ ′

N(z),GN(va), a ∈ A
)
dz

= O
(
Nn(1/2+ε)−1

)
,

sup
v0,...,vn∈V

1
4π i

∮

γ[0,m]

1
v0 − z

(
1

Nh−1
(54)

× (Q/R)h

2h! Mc

((
GN(z)

)h
,GN(v1), . . . ,GN(vn)

))
dz

= O
(
N(h+n)(1/2+ε)+1−h

)
.

One might be cautious about (52), as it involves the derivative of GN(z) (instead of
GN(z) itself as in Lemma 2.14), yet for analytic functions a uniform bound for a func-
tion implies a uniform bound for its derivative, therefore, the bound is valid.

We plug (52), (53), (54) into (51) to get

sup
v0,...,vn∈V

Qm(v0)

2
Mc

(
GN(v0),GN(v1), . . . ,GN(vn)

)
(55)

+
[

3n∑

h=2

O
(
N(h+n)(1/2+ε)+1−h

)
]

+ O
(
N(n+1)(1/2+ε)−1

)+ O
(
Nn(1/2+ε)−1

)

= O(1),

which implies that for each n = 0,1,2 . . .

sup
v0,v1,...,vn∈V

∣∣Mc

(
GN(v0), . . . ,GN(vn−1)

)∣∣(56)

= O
(
N(n+1)(1/2+ε)−(1/2−ε)

)+ O(1),

where the remainder depends on the choice of the compact set V ⊂ C \ [0,m]. As cen-
tered moments are linear combinations of products of joint cumulants, we deduce from
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(56) that for all k = 1,2, . . . ,

sup
v1,...,vk∈V

E

[
k∏

a=1

(
GN(va) − E

[
GN(va)

])
]

= O
(
Nk(1/2+ε)−(1/2−ε)

)+ O(1).(57)

Combining n = 0 version of (56) with (57) we finally conclude that

sup
v1,...,vk∈V

E

[
k∏

a=1

GN(va)

]
= O
(
Nk(1/2+ε)−(1/2−ε)

)+ O(1), k = 1,2, . . . .(58)

If k is even, then we can choose v1 = · · · = vk/2 = v and vk/2+1 = · · · = vk = v̄ in (58) and
get

sup
v∈V

E
[∣∣GN(v)

∣∣k]= O
(
Nk(1/2+ε)−(1/2−ε)

)+ O(1), k = 2,4,6, . . . .(59)

The estimate for odd k is reduced to the even k case with the use of Jensen’s inequality in
the form

E
(
ξ k
)≤ (E(ξ k+1

)) k
k+1 , k > 0,

which leads to the following bound for all k:

sup
v∈V

E
[∣∣GN(v)

∣∣k]= O
(
Nk(1/2+ε)− k

k+1 (1/2−ε)
)+ O(1), k = 1,2,3, . . . .(60)

We finally use the Holder inequality to get

sup
v1,...,vk∈V

E

[
k∏

a=1

∣∣GN(va)
∣∣
]

≤ sup
v∈V

E
[∣∣GN(v)

∣∣k](61)

= O
(
Nk(1/2+ε)− k

k+1 (1/2−ε)
)+ O(1)

= O
(
Nk(1/2+ε)−1/6

)+ O(1), k = 1,2,3, . . . ,

where we silently assumed that ε > 0 is small enough for the last equality to hold.
At this moment we can iterate the argument. Expanding cumulants in terms of

moments, we deduce from (61) the following three bounds:

sup
v0,...,vn∈V

1
N

· 1
4π i

∮

γ[0,m]

1
v0 − z

(62)

× Mc

(
ξN(z) + ξ ′′

N(z)
∂

∂z
GN(z),GN(v1), . . . ,GN(vn)

)
dz

= O
(
N(n+1)(1/2+ε)−1−1/6

)
,
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sup
v0,...,vn∈V

1
N

· 1
4π i

(63)

×
∑

A⊂{1,...,n}

∮

γ[0,m]

1
v0 − z

cA(z; t,v)Mc

(
ξ ′

N(z),GN(va), a ∈ A
)
dz

= O
(
Nn(1/2+ε)−1−1/6

)
,

sup
v0,...,vn∈V

1
4π i

∮

γ[0,m]

1
v0 − z

(64)

×
(

1
Nh−1

· (Q/R)h

2h! Mc

((
GN(z)

)h
,GN(v1), . . . ,GN(vn)

))
dz

= O
(
N(h+n)(1/2+ε)+1−h−1/6

)
.

The only difference between (52), (53), (54) and (62), (63), (64) is that the degree of N
in the bound decreased by 1/6 (which is because the bound of Lemma 2.14 is replaced
by (61)).

We then plug (62), (63), (64) into (51) to get

sup
v0,...,vn∈V

Qm(v0)

2
Mc

(
GN(v0),GN(v1), . . . ,GN(vn)

)
(65)

+
[

3n∑

h=2

O
(
N(h+n)(1/2+ε)+1−h−1/6

)
]

+ O
(
N(n+1)(1/2+ε)−1−1/6

)

+ O
(
Nn(1/2+ε)−1−1/6

)= O(1).

In the same way as (55) implied (61), the bound (65) implies

sup
v1,...,vk∈V

E

[
k∏

a=1

∣∣GN(va)
∣∣
]

= O
(
Nk(1/2+ε)− k

k+1 (1/2−ε)−1/6
)+ O(1)(66)

= O
(
Nk(1/2+ε)−2·1/6

)+ O(1), k = 1,2,3, . . . .

Repeating the same argument m − 2 more times, we improve (66) to

sup
v1,...,vk∈V

E

[
k∏

a=1

∣∣GN(va)
∣∣
]

= O
(
Nk(1/2+ε)−m/6

)+ O(1), k = 1,2,3, . . . .(67)

Since m is arbitrary, this implies

sup
v1,...,vk∈A

E

[
k∏

a=1

∣∣GN(va)
∣∣
]

= O(1), k = 1,2, . . . ,(68)

and finishes the proof of Proposition 2.18. �
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Proof of Theorem 2.5. — Take (47) and observe that the bounds of Section 2.5 imply
that all the terms except for the second line and the last line are negligible as N → ∞.
The second line of (47) is precisely the left-hand side of (21), while the last line of (47) is
the right-hand side of (21). �

3. General setup

3.1. Definition of the system. — Our next goal is to generalize the arguments of the
previous section to a much more general setting of a multi-cut fixed filling fractions model
with fixed parameter θ > 0 and general weight w(x). Informally, we want to consider
measures of the form

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)

N∏

i=1

w(�i;N)

on ordered N-tuples �1 < �2 < · · · < �N referred to as positions of N particles and sat-
isfying two additional constraints. First, the particles are separated into k groups, and
particles in each group must belong to its own interval of the real line. Second, if ith and
(i + 1)st particles are in the same group, then �i+1 − �i ∈ {θ, θ + 1, θ + 2, . . . }.

For instance, if we have a single group (k = 1), then after defining λi through
�i = λi + θ i, the constraint boils to down to saying that all λi are integers and they satisfy
λ1 ≥ λ2 ≥ · · · ≥ λN.

Let us give precise definitions for general k. The model depends on an integer
parameter N = 1,2, . . . and amounts to fixing for each N a probability distribution on
certain N-point subsets of R.

We fix an integer k = 1,2, . . . , whose meaning is the number of segments in the
support of the measure. For each N = 1,2, . . . we take k integers n1(N), . . . , nk(N), such
that
∑k

i=1 ni(N) = N and k disjoint intervals (a1(N), b1(N)), . . . , (ak(N), bk(N)) of the real
line ordered from left to right.7

We assume that bi(N)+θ ≤ ai+1(N) for i = 1, . . . , k −1. The numbers ai(N), bi(N)

must also satisfy the conditions

bi(N) − θni(N) − ai(N) ∈ Z.(69)

Further, the number ni(N) counts the number of the particles in the ith interval; to make
this statement precise we define the sets of indices Ij ⊂ {1, . . . ,N}, j = 1, . . . , k, via

Ij =
{

i ∈ Z

∣∣∣∣
j−1∑

m=1

nm(N) < i ≤
j∑

m=1

nm(N)

}
.

We also set I+
j and I−

j to be the maximal and minimal elements of Ij , respectively.

7 For a generalization to the case of infinite support see Sections 9.3, 9.4.
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FIG. 2. — The state space for N = 3, k = 2. Numbers int indicate various (possibly different) nonnegative integers

Definition 3.1. — The state space Wθ
N consists of N-tuples �1 < �2 < · · · < �N such that for

each j = 1, . . . , k:

(1) If i = I−
j , then �i − ai(N) ∈ Z>0.

(2) If i = I+
j , then bi(N) − �i ∈ Z>0.

(3) If i ∈ Ij , but i �= I+
j , then �i+1 − �i ∈ {θ, θ + 1, θ + 2, . . . }.

Note that the conditions of Definition 3.1 imply that for every i from Ij , we have
�i ∈ [ai(N)+ 1, bi(N)− 1]. An example of a configuration from Wθ

N is shown in Figure 2.
We also take a positive weight function w(x;N) for x ∈⋃k

i=1[ai(N) + 1, bi(N) − 1]
and define a probability measure PN on Wθ

N given by

PN(�1, . . . , �N) = 1
ZN

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)

N∏

i=1

w(�i;N),(70)

where ZN is a normalizing constant which we will refer to as the partition function.

3.2. List of regularity assumptions. — Our ultimate goal is to study the asymptotics of
the measures PN as N → ∞. For that we need to assume that the weights w(x;N), as well
as all other data specified in Section 3.1, depend on N in a regular way. Let us present all
the technical assumptions that we impose on the data.

Assumption 1. — We require that for each i = 1, . . . , k, as N → ∞
ai(N) = Nâi + O

(
ln(N)

)
, bi(N) = Nb̂i + O

(
ln(N)

)
,

â1 < b̂1 < â2 < · · · < âk < b̂k.

We require that w(x;N) in the intervals [ai(N) + 1, bi(N) − 1], i = 1, . . . , k, has the form

w(x;N) = exp
(

−NVN

(
x

N

))

for a function VN that is continuous in the intervals [ai(N) + 1, bi(N) − 1] and such that

VN(u) = V(u) + O
(

ln(N)

N

)
(71)
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uniformly over x = u · N in the intervals [ai(N) + 1, bi(N) − 1]. The function V(u) is differentiable

and the following bound holds for a constant C > 0

∣∣V′(u)
∣∣≤ C

[
1 +

k∑

i=1

(∣∣ln(u − âi)
∣∣+ ∣∣ln(u − b̂i)

∣∣)
]
.(72)

Remark 3.2. — We believe that the assumption on the remainders can be weakened
with minor changes in all the further statements and proofs. However, we do not pursue
this direction due to lack of natural examples.

For the filling fractions ni(N) we make a weaker assumption, as it might be impor-
tant for future applications, cf. [BoGu2].

Assumption 2. — There exists a constant C > 0 such that for all 1 ≤ i ≤ k and all large

enough N we have

C <
ni(N)

N
< θ−1(b̂i − âi) − C.

Note that our definition of the state space Wθ
N implies that ni(N)

N < θ−1(b̂i − âi) +
o(1).

Introduce the notation
ni

N
= n̂i, i = 1, . . . , k.

Note that the numbers n̂i still depend on N. However, we will hide this dependence from
our notations. It is important here that all the limiting values as well as all the remainders
in what follows will be uniform over n̂i satisfying Assumption 2.

The next two assumptions deal with analytic properties of the weight w(x;N)

and the equilibrium measure μ. We fix an open set MN ⊂ C, such that
⋃k

i=1[ai(N),

bi(N)] ⊂MN.

Assumption 3. — There exist a pair of analytic in x ∈MN functions φ+
N (x), φ−

N (x) such that

w(x;N)

w(x − 1;N)
= φ+

N (x)

φ−
N (x)

.

Moreover,

φ±
N(x) = φ±

(
x

N

)
+ 1

N
ϕ±

N

(
x

N

)
+ O
(

1
N2

)

uniformly over x/N in compact subsets of an open set MN, which contains the union of the intervals

[âi, b̂i], i = 1, . . . , k. All the aforementioned functions are holomorphic in MN and functions ϕ±
N are

uniformly bounded as N → ∞.
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Remark 3.3. — In the case when VN(x) in Assumption 1 is smooth and uniformly

converges to V together with its derivative in a neighborhood of a point x, we have

exp
(

− ∂

∂x
V(x)

)
= φ+(x)

φ−(x)
.(73)

Indeed, in this case,

φ+(x)

φ−(x)
= lim

N→∞
w(Nx;N)

w(Nx − 1;N)

= lim
N→∞

exp
(
−N
(

VN(x) − VN(x − 1/N)
))

= lim
N→∞

exp
(

−N
(∫ x

x−1/N
V′

N(y)dy

))
= exp

(
− ∂

∂x
V(x)

)
.

Recall that the equilibrium measure μ with the density μ(x) encodes the Law of
Large Numbers for PN stated in Theorem 1.2 and discussed in more details in Section 5.
A convenient way of working with the equilibrium measure is through its Stieltjes trans-
form Gμ(z) defined through

Gμ(z) =
∫ ∞

−∞

μ(x)dx

z − x
.(74)

The following two functions Rμ(z), Qμ(z) are important for our asymptotic study,
cf. Section 2.1:

Rμ(z) := φ−(z) exp
(−θGμ(z)

)+ φ+(z) exp
(
θGμ(z)

)
,(75)

Qμ(z) := φ−(z) exp
(−θGμ(z)

)− φ+(z) exp
(
θGμ(z)

)
.(76)

We explain in Section 5 that Rμ(z) is analytic, while Qμ(z) is a branch of a two-
valued analytic function which is the square-root of a function holomorphic in MN. An
important technical ingredient of our method is a restriction on its zeros, as is summarized
in the following assumption.

Assumption 4. — We require that for each large enough N and corresponding Qμ (which depends

on N through the filling fractions n̂i in the definition of μ), there exists a function H(z) holomorphic in

MN and numbers {αi, βi}k
i=1 such that

• âi ≤ αi < βi ≤ b̂i , i = 1, . . . , k;

• Qμ(z) = H(z)
k∏

i=1

√
(z − αi)(z − βi), where the branch of the square root is such that

√
(z − αi)(z − βi) ∼ z when z → ∞;

• H(z) �= 0 for all z ∈⋃k

i=1[âi, b̂i].
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We remark that Assumption 4 does not describe a generic case. In particular, it
implies that there is precisely one interval of support of μ(x) in each interval [âi, b̂i].
The authors are not aware of simple ways to check such property by examining the
potential V(x). Nevertheless, many natural models arising in the applications satisfy As-
sumption 4. We demonstrate this general principle by considering several examples in
Section 9.

Finally, we need a simple vanishing assumption. It is convenient to work with it,
yet we later show in Section 8 how it can be relaxed.

Assumption 5. — For all i = 1, . . . , k, we have φ−
N(ai(N) + 1) = φ+

N (bi(N)) = 0.

4. Nekrasov’s equation

The main tool for our study of the probability distributions PN from the last section
is a statement, which is essentially due to Nekrasov [N], [NP], [NS]. Its affine and q-
versions are given in the following two theorems.

Theorem 4.1. — Let PN be a distribution on N-tuples (�1, . . . , �N) ∈ Wθ
N as in the previous

section. Suppose that

w(x;N)

w(x − 1;N)
= φ+

N (x)

φ−
N (x)

,(77)

and for all i = 1, . . . , k, we have φ−
N (ai(N) + 1) = φ+

N (bi(N)) = 0. Define

RN(ξ) = φ−
N (ξ) · EPN

[
N∏

i=1

(
1 − θ

ξ − �i

)]
(78)

+ φ+
N (ξ) · EPN

[
N∏

i=1

(
1 + θ

ξ − �i − 1

)]
.

If φ±
N (ξ) are holomorphic in a domain MN ⊂ C, then so is RN(ξ). Moreover, if φ±

N (ξ) are polyno-

mials of degree at most d, then so is RN(ξ).

Proof. — The possible singularities of RN(ξ) are simple poles arising from the de-
nominator of the expression under expectation EPN in (78). Let us compute a residue at
such a pole m.

The expectation EPN in (78) is a sum over all (�1, . . . , �N) ∈ Wθ
N. Such a configura-

tion contributes to the residue if �i = m or �i = m + 1 for some i = 1, . . . ,N.
We separately analyze the contributions appearing from each i = 1, . . . ,N, which

we now fix. According to definitions, the possible values for �i are {A,A+1,A+2, . . . ,B}
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for certain A and B. Given a particle configuration � = (�1, . . . , �N), let �+ denote the
configuration with ith coordinate increased by 1, and let �− denote the configuration
with ith coordinate decreased by 1. Note that in principle, �+ (similarly �−) may fail to be
in Wθ

N. However, in this case the formula for PN(�+) still applies, but gives zero.
Let us explain how the weight (70) of a configuration (�1, . . . , �N) changes when

one coordinate is changed from �i = x to �i = x − 1, i.e. we compute the ratio of the
weights at �i = x − 1 and at �i = x (all other coordinates are unchanged). The double
product over i < j in (70) produces factors (we denote �j = r here)

�(r − x + 1)�(r − x + θ)

�(r − x)�(r − x + 1 − θ)
· �(r − x + 1)�(r − x + 2 − θ)

�(r − x + 2)�(r − x + 1 + θ)
(79)

= (r − x)(r − x + 1 − θ)

(r − x + 1)(r − x + θ)
,

if i < j, and the factor

�(x − r + 1)�(x − r + θ)

�(x − r)�(x − r + 1 − θ)
· �(x − r − 1)�(x − r − θ)

�(x − r)�(x − r + θ − 1)
(80)

= (x − r)(x − r + θ − 1)

(x − r − 1)(x − r − θ)
,

if i > j. Note that (79) and (80) are two forms of the same rational expression.
Now take m ∈ {A,A + 1, . . . ,B}. The contribution to the residue of RN at z = m,

arising from the ith coordinate of configurations (�1, . . . , �N) is

−θ
∑

�∈Wθ
N|�i=m

φ−
N(m)PN(�1, . . . , �N)

∏

j �=i

(
1 − θ

m − �j

)
(81)

+ θ
∑

�∈Wθ
N|�i=m−1

φ+
N (m)PN(�1, . . . , �N)

∏

j �=i

(
1 + θ

m − �j − 1

)
.

Note the difference between two summation sets in (81). If �i is not the smallest
particle in an interval [ah(N) + 1, bh(N) − 1], then the first sum contains the terms with
�i−1 = m − θ , while the second one does not. However, each such term in the first sum is
actually zero. Also if �i is the smallest particle and m = A = ah(N) + 1, then the second
sum is empty as �i is never m. But we also know that φ−

h (m) = φ−
h (ah(N) + 1) = 0 and

the first sum vanishes as well. Similar considerations apply to two cases whether �i is
the largest particle or not. We conclude, that it suffices to study the case when there is
one-to-one correspondence between terms of two sums in (81).
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Using (79), (80), and (77) we see that

φ−
N (m)PN(�1, . . . �i−1,m, �i+1, . . . , �N)

∏

j �=i

(
1 − θ

m − �j

)

= φ+
N (m)PN(�1, . . . �i−1,m − 1, �i+1, . . . , �N)

∏

j �=i

(
1 + θ

m − �j − 1

)
.

We conclude that for each μ, the terms with � = μ and � = μ+ (or � = μ− and � = μ) in
the first and second sum in (81) cancel out and the total residue is zero.

For the polynomiality statement it suffices to notice that if φ±
N (ξ) are polynomials

of degree at most d , then RN(ξ) is an entire function which grows as O(ξ d) as ξ → ∞.
Hence, by Liouville’s theorem RN(ξ) is a polynomial. �

The proof of Theorem 4.1 reveals that it admits a natural q-deformation. Recall
the definition of q-Gamma function �q:

�q(x) = (1 − q)1−x (q; q)∞
(qx; q)∞

,

where

(a; q)∞ =
∞∏

n=0

(
1 − aqn

)
.

In the same framework of Section 3, define a q-deformation of PN through

Pq

N(�1, . . . , �N) = 1
Zq

N

∏

1≤i<j≤N

q−θ(�j−�i)
�q(�j − �i + 1)�q(�j − �i + θ)

�q(�j − �i)�q(�j − �i + 1 − θ)
(82)

×
N∏

i=1

w(�i;N).

Theorem 4.2. — Let Pq

N be a distribution on N-tuples (�1, . . . , �N) ∈ Wθ
N as above. Suppose

that

w(x;N)

w(x − 1;N)
= φ+

N (x)

φ−
N (x)

,

and for all i = 1, . . . , k, we have φ−
N (ai(N) + 1) = φ+

N (bi(N)) = 0. Define

Rq

N(ξ) = φ−
N (ξ) · EPq

N

[
N∏

i=1

(
q

θ
2

1 − qξ−�i−θ

1 − qξ−�i

)]

+ φ+
N (ξ) · EPq

N

[
N∏

i=1

(
q− θ

2
1 − qξ−�i−1+θ

1 − qξ−�i−1

)]
.

(83)
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If φ±
N (ξ) are holomorphic in a domain MN ⊂ C, then so is Rq

N(ξ). Moreover, if φ±
N(ξ) are polyno-

mials of degree at most d, then so is RN(ξ).

Proof. — The proof is the same as for Theorem 4.1. The only new ingredient is a
q-deformation of (79), (80), which now reads

q−θ(r−x)
�q(r − x + 1)�q(r − x + θ)

�q(r − x)�q(r − x + 1 − θ)
(84)

× qθ(r−x+1)
�q(r − x + 1)�q(r − x + 2 − θ)

�q(r − x + 2)�q(r − x + 1 + θ)

= qθ (1 − qr−x)(1 − qr−x+1−θ )

(1 − qr−x+1)(1 − qr−x+θ )

and

q−θ(x−r)
�q(x − r + 1)�q(x − r + θ)

�q(x − r)�q(x − r + 1 − θ)
(85)

× qθ(x−r−1)
�q(x − r − 1)�q(x − r − θ)

�q(x − r)�q(x − r + θ − 1)

= q−θ (1 − qx−r)(1 − qx−r+θ−1)

(1 − qx−r−1)(1 − qx−r−θ )
.

One readily recognizes the same expression in (84) and (85). We further conclude that

φ−
N(m)Pq

N(�1, . . . �i−1,m, �i+1, . . . , �N)
∏

j �=i

(
q

θ
2

1 − qm−�j−θ

1 − qm−�j

)

= φ+
N (m)Pq

N(�1, . . . �i−1,m − 1, �i+1, . . . , �N)
∏

j �=i

(
q− θ

2
1 − qm−�j−1+θ

1 − qm−�j−1

)
,

and therefore there is a cancellation of the poles. �

5. Law of large numbers

5.1. Limit shape. — Assumptions 1 and 2 guarantee that a certain law of large
numbers for the measures PN holds as N → ∞. To state it we introduce a random prob-
ability measure μN on R via

μN = 1
N

N∑

i=1

δ

(
�i

N

)
, (�1, . . . , �N) is PN-distributed.(86)
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The measure μN is often referred to as the empirical measure of point configuration
�1, . . . , �N, cf. (12). Note that our definitions imply the condition �i+1 − �i ≥ θ , which
shows that for any interval [p, q], its μN-measure is bounded from above by θ−1(q −
p + N−1).

The first order asymptotic behavior of measures μN can be understood through a
variational problem. For a probability measure ρ supported on

⋃
i[âi, b̂i], define

IV[ρ] = θ

∫∫

x �=y

ln |x − y|ρ(dx)ρ(dy) −
∫ ∞

−∞
V(x)ρ(dx).(87)

Lemma 5.1. — Let � be the set of absolutely continuous probability measures ρ(x)dx supported

on
⋃

i[âi, b̂i], whose density is between 0 and θ−1 and such that

∫ b̂i

âi

ρ(x)dx = n̂i, 1 ≤ i ≤ k,

where 0 < n̂i < θ−1(b̂i − âi), i = 1, . . . , k, are such that
∑k

i=1 n̂i = 1. Then the functional IV has a

unique maximum μ(x)dx on �.

Remark 5.2. — The maximizer of IV is called the equilibrium measure.

Proof of Lemma 5.1. — Let us equip � with weak topology, i.e. the topology of
pointwise convergence for the distribution functions. Then � is compact.

Observe that the functional IV is continuous in the weak topology on �; here it is
crucial that the measures in � have density between 0 and θ−1. Therefore, IV attains its
maximum on �. It remains to show that such a maximum is unique.

For that we note that IV is strictly concave, i.e. for any ρ,ρ ′ ∈ � and any 0 < t < 1

IV

[
tρ + (1 − t)ρ ′]> tIV[ρ] + (1 − t)IV

[
ρ ′].

Indeed, the linear part of IV is concave by the definition. The quadratic part is negatively-
definite due to the formula (36) for it, therefore, it is strictly concave.

Since a strictly concave functional cannot have more than one maximum on a
convex set, we are done. �

Theorem 5.3. — Under Assumptions 1 and 2 the random measures μN concentrate (in prob-

ability) near μ(x)dx of Lemma 5.1. More precisely, for each Lipshitz function f (x) defined in a real

neighborhood of
⋃k

i=1[âi, b̂i], and each ε > 0 the random variables

N1/2−ε

∣∣∣∣
∫ ∞

−∞
f (x)μN(dx) −

∫ ∞

−∞
f (x)μ(x)dx

∣∣∣∣

converge to 0 in probability and in the sense of moments.
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Remark 5.4. — Since μ(x) depends on n̂i , and the latter depend on N, so is the
former. When n̂i converge as N → ∞, this dependence can be removed by using the
continuity of μ(x) in n̂i , established below in Proposition 5.8.

Analogues of Theorem 5.3 are known in the literature, cf. [1], [AGZ], [Fe]. Our
proof of Theorem 5.3 relies on a different characterization for μ maximizing the func-
tional IV[·].

The restriction 0 ≤ μ(x) ≤ θ−1 leads to the subdivision of R into three types of
regions (we borrow the terminology from [BKMM]):

• Maximal (with respect to inclusion) closed connected intervals where μ(x) = 0
are called voids.

• Maximal open connected intervals where 0 < μ(x) < θ−1 are called bands.
• Maximal closed connected intervals where μ(x) = θ−1 are called saturated regions.

In a related context of random tilings and periodically-weighted dimers the voids and
saturated regions are usually called frozen, while bands are liquid regions.

We further define the effective potential FV(x) through (cf. (34))

FV(x) = 2θ

∫ ∞

−∞
ln |x − y|μ(y)dy − V(x).

Lemma 5.5. — There exist k constants f1, . . . , fk , such that

FV(x) − fi ≤ 0, for all x in voids in
[
âi, b̂i

];(88)

FV(x) − fi ≥ 0, for all x in saturated regions in
[
âi, b̂i

];(89)

FV(x) − fi = 0, for all x in bands in
[
âi, b̂i

]
.(90)

Proof. — This characterization is readily obtained from the variation of the func-
tional IV[·], cf. [ST], [DS]. �

Further fix a parameter p > 2 and let μ̃N denote the convolution of the empirical
measure μN with uniform measure on the interval [0,N−p]. The following statement is a
generalization of Proposition 2.16. Let us emphasize that the measure μ here and below
depends on the filling fractions n̂i = ni(N)/N, and thus changes with N.

Proposition 5.6. — Let μ be the maximizer of Lemma 5.1. Then there exists C ∈ R such that

for all γ > 0 and all N we have

PN

(
D(μ̃N,μ) ≥ γ

)≤ exp
(
CN ln2(N) − γ 2N2

)
,

where D was defined in (35), (36).
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Proof. — We start by analyzing the asymptotic of the formula for PN. We observe
that the definition of IV[·] by (87) makes sense for discrete measures. It is important here
that we integrate only over x �= y in (87) as otherwise the integral would be infinite. Using
for the double product in (70) the following corollary of the Stirling’s formula

�(h + θ)

�(h)
= hθ
(
1 + O

(
h−1
))

, h → +∞,(91)

we can write for every (�1, �2, . . . , �N) ∈ Wθ
N

PN(�1, . . . , �N)(92)

= exp(2θN(N − 1) ln(N) + N2IV[mes[�1, . . . , �N]] + O(N ln(N)))

ZN
,

where

mes[�1, . . . , �N] = 1
N

N∑

i=1

δ

(
�i

N

)
.

Let us obtain a lower bound for the partition function ZN in (92). For that let xi ,
i = 1, . . . ,N be quantiles of μ defined through

∫ xi

0
μ(x)dx = i − 1/2

N
, 1 ≤ i ≤ N.

Since μ(x) ≤ θ−1, θ(xi+1 −xi) ≥ 1/N. Therefore, using the asymptotics of ai(N) and bi(N)

of Assumption 1 we conclude that there exists an absolute constant U (independent of N)
and a configuration (�̂1, . . . , �̂N) ∈ Wθ

N such that

∣∣Nxi − �̂i

∣∣≤ U(93)

for all 1 ≤ i ≤ N except for O(ln(N)) ones. Arguing as in Proposition 2.16, we write

ZN

N2θN(N−1)
≥ exp

(
N2IV

[
mes
[
�̂1, . . . , �̂N

]]+ O(N ln N)
)

= exp
(
N2IV[μ] + O

(
N ln2(N)

))
.

Note that the remainder in the last formula is O(N ln2(N)) instead of O(N ln(N)) in the
proof of Proposition 2.16. This is due to an additional error produced by the �i for which
(93) does not hold: there are O(ln(N)) of such �i and each of them produces (at most)
O(N ln(N)) of error.

From here on the proof literally repeats that of Proposition 2.16. �
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Corollary 5.7. — Recall the notations ‖g‖1/2 and ‖g‖Lip of Corollary 2.17. Fix any p > 2
and let μ(x)dx be the maximizer of Lemma 5.1. Then there exists C ∈ R such that for all γ > 0, all

N and all f we have

PN

(∣∣∣∣
∫

R
g(x)μN(dx) −

∫

R
g(x)μ(x)dx

∣∣∣∣≥ γ ‖g‖1/2 + ‖g‖Lip

Np

)
(94)

≤ exp
(

CN ln2(N) − γ 2N2

2

)
.

Proof. — The proof is the same as for Corollary 2.17. �

Proof of Theorem 5.3. — The desired statement follows from Corollary 5.7 with γ =
q · Nε−1/2, q > 0. �

Recall that the set of measures � and the equilibrium measure μ of Lemma 5.1
implicitly depend on many parameters. For the next statement we reconstruct a part of
this dependence in the notations. For n̂ = (n̂1, . . . , n̂k) let μn̂ be the maximizer of IV over
�n̂, the set of probability measures μ absolutely continuous with respect to Lebesgue
measure, with density bounded above by 1/θ and with mass μ([âi, b̂i]) = n̂i,

∑k

i=1 n̂i = 1.

Proposition 5.8. — Assume that 0 < n̂i < θ−1(b̂i − âi) for all i = 1, . . . , k and that the

measure μn̂i has at least one band in each of the intervals [âi, b̂i], i = 1, . . . , k. Then there exists a

finite constant Cn̂ such that for n̂′ close enough to n̂

D
(
μn̂,μn̂′)≤ Cn̂‖n̂ − n̂′‖∞.(95)

Remark 5.9. — Arguing as in the proof of Corollary 2.17, one deduces from (95)
that for any smooth function g(x), the averages

∫
g(x)μn̂(x)dx and

∫
g(x)μn̂′

(x)dx are close.
Their difference goes to zero as n̂′ → n̂.

Remark 5.10. — In all the applications that we present, the assumption that the
measure μn̂i has at least one band in each of the intervals [âi, b̂i], i = 1, . . . , k, is satisfied
automatically, see the end of Section 9.1 for a general argument in this direction.

Proof of Proposition 5.8. — By definition, for any probability measure ν with den-
sity ν(x)

IV(ν) = IV

(
μn̂
)− θD2

(
ν,μn̂

)

−
∫ (

V(x) − 2θ

∫
log |x − y|μn̂(y)dy

)(
ν(x) − μn̂(x)

)
dx
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= IV

(
μn̂
)− θD2

(
ν,μn̂

)+
∫

F̃V(x)
(
ν(x) − μn̂(x)

)
dx

+
k∑

i=1

fi
(
ν − μn̂

)([
âi, b̂i

])

where F̃V(x) = FV(x) − fi on [âi, b̂i] is nonpositive on voids, nonnegative on saturated
regions and vanishes on bands for μn̂, cf. (88)–(90). We next choose n̂′ �= n̂ and let ν be a
probability measure with filling fractions n̂′ so that

IV(ν) ≤ IV

(
μn̂′)

.

The above decomposition and (ν − μn̂′
)([âi, b̂i]) = 0 implies

θD2
(
μn̂′

,μn̂
)−
∫

F̃V(x)
(
μn̂′

(x) − μn̂(x)
)
dx

≤ θD2
(
ν,μn̂

)−
∫

F̃V(x)
(
ν(x) − μn̂(x)

)
dx.

Observe that
∫

F̃V(x)(ν(x)−μn̂(x))dx is nonpositive for any probability measure ν whose
density is at most θ−1, and vanishes if ν −μn̂ is supported on the bands of μn̂. We assume
that this is the case to deduce that

D2
(
μn̂′

,μn̂
)≤D2

(
ν,μn̂

)
.(96)

Finally we choose ν = μn̂ +∑i(n̂
′
i − n̂i)

1Bi

|Bi |dx where Bi denotes a subset in the interior of

bands in [âi, b̂i] so that on Bi we have δ ≤ dμn̂/dx ≤ 1/θ − δ for some small δ > 0. Note
that our assumption on the existence of bands in all the intervals [âi, b̂i] implies that Bi is
not empty. For n′

i − ni small enough (smaller than δ|Bi|), ν ∈ �n̂′
. Hence, we have

D2
(
ν,μn̂

)= −
k∑

i,j=1

(n̂′
i − n̂i)(n̂

′
j − n̂j)

|Bi||Bj|
∫

t∈Bi

∫

s∈Bj

ln |t − s|dtds ≤ Cn̂

∥∥n̂ − n̂′∥∥2

∞(97)

for a constant Cn̂ > 0. Combining (96) and (97) we obtain

D2
(
μn̂′

,μn̂
)≤ Cn̂

∥∥n̂ − n̂′∥∥2

∞. �

5.2. Functions R and Q. — We work with the equilibrium measure μ of density
μ(x) in terms of its Stieltjes transform G(z) defined through

Gμ(z) =
∫ ∞

−∞

μ(x)dx

z − x
.(98)
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Observe that (98) makes sense for all z outside the support of μ(x) and Gμ(z) is holomor-
phic there.

We are going to extensively use the following two notations for any function F(z)

of a complex variable z:

F(z + i0) := lim
δ→0

F(z + iδ), F(z − i0) := lim
δ→0

F(z − iδ).

At every point x where μ(x) is continuous, it can be reconstructed by its Stieltjes trans-
form via

μ(x) = 1
2π i

(
Gμ(x + i0) − Gμ(x − i0)

)
, x ∈ R.(99)

On the other hand, the equilibrium measure characterization (90) implies (cf. [DS], [ST])
that for x in a band of the equilibrium measure

θ
(
Gμ(x + i0) + Gμ(x − i0)

)= ∂

∂x
V(x).(100)

We also define the Stieltjes transform GN(z) of the prelimit empirical measure (86)
through

GN(z) =
∫ ∞

−∞

1
z − x

μN(dx) = 1
N

N∑

i=1

1
z − �i/N

,(101)

(�1, . . . , �N) ∈ Wθ
N is PN-distributed.

The functions Rμ(z), Qμ(z) defined in (75), (76) are important for our asymptotic
study.

Proposition 5.11. — Under Assumptions 1, 2, 3, 5, Rμ(z) is holomorphic in MN.

Proof of Proposition 5.11. — Since Gμ(z) is holomorphic everywhere outside the (real)
support of the equilibrium measure μ(x), so is Rμ(z).

Further take any point x in the support of μ(x). Choose a simple contour γ in
MN \ [âi, b̂i] enclosing x. Observe that as N → ∞ under the change of variables ξ = Nz,
we have

(
1 − θ

ξ − �i

)
=
(

1 − 1
N

· θ

z − �i/N

)

= exp
(

− 1
N

· θ

z − �i/N
+ O
(

1
N

))
,(102)
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(
1 + θ

ξ − �i − 1

)
=
(

1 + 1
N

· θ

z − �i/N − 1/N

)

= exp
(

1
N

· θ

z − �i/N
+ O
(

1
N

))
.

Now fix n̂i, i = 1, . . . , k and choose the filling fractions ni(N) in such a way that
|ni(N) − Nn̂i| ≤ 1 for all N and i. We claim that RN(Nz) of Theorem 4.1 converges
to Rμ(z) uniformly on γ . Indeed, the functions φ±

N converge to φ± by Assumption 3.
By (102) and Theorem 5.3 the two expectations in the definition of RN(Nz) approximate
exp(−θGν(z)) and exp(−θGν(z)), respectively, where ν is the maximizer of Lemma 5.1
with filling fractions n1(N)

N , . . . , nk(N)

N . Since ni(N)

N → n̂i as N → ∞, Proposition 5.8 implies
that Gν(z) converges to Gμ(z).

Since uniform convergence on γ of holomorphic (everywhere inside the contour)
functions RN(Nz) implies the same convergence inside the contour and the holomor-
phicity of the limit, we are done. �

Remark 5.12. — Alternatively, one can prove Proposition 5.11 by showing that
Rμ(z) is continuous near real x via combining (100) with (73).

Despite their similar form, the analytic properties of the function Qμ(z) are very
different. Observe that

(
Qμ(z)

)2 = (Rμ(z)
)2 − 4φ+(z)φ−(z).(103)

Thus, Qμ(z) is a branch of a two-valued analytic function which is the square-root of a
function holomorphic in MN. Note that Qμ(z) is analytic outside

⋃k

i=1[âi, b̂i]. On the
other hand, combining (100) with (73) one observes that Qμ(z) must have discontinuities
in the bands of μ(x) and the endpoints of the bands should be its branching points.
Therefore, Qμ(z) has at least two branching points inside each interval [âi, b̂i], which
also have to be zeros of Qμ(z). For our method it is important to assume that there are
precisely two zeros in each interval, as is summarized in Assumption 4.

6. Second order expansion

The goal of this section is to prove a generalization of Theorem 2.5 in the setup of
Section 3.

Theorem 5.3 implies that GN(z) − Gμ(z) vanishes as N → ∞ uniformly over z in
compact subsets of C\⋃k

i=1[âi, b̂i]. Moreover, since all the involved functions are analytic
in z, we can infer also the uniform convergence of the derivatives.

Similarly to Section 2.2, we introduce a deformed version of GN(z). Take 2m pa-
rameters t = (t1, . . . , tm), v = (v1, . . . , vm) such that va + ta − y �= 0 for all a = 1, . . . ,m
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and all y ∈⋃k

i=1[âi, b̂i], and let the deformed distribution Pt,v
N be defined through

Pt,v
N (�1, . . . , �N) = ZN

ZN(t,v)
· PN(�1, . . . , �N) ·

N∏

i=1

m∏

a=1

(
1 + ta

va − �i/N

)
,(104)

where PN was defined in (70). In general, Pt,v
N may be a complex-valued measure, but the

normalizing constant ZN(t,v) in (104) is chosen so that the total mass of Pt,v
N is 1, i.e.∑

�∈Wθ
N

Pt,v
N (�) = 1. The numbers ta, a = 1, . . . , k are always assumed to be in a small

neighborhood of 0, which guarantees, in particular, that the measure is normalizable, i.e.
ZN(t,v) �= 0.

Observe that Pt,v
N satisfies the assumptions of Theorem 4.1 with (in the notations

of Assumption 3)

φ+
N(x) =

(
φ+
(

x

N

)
+ 1

N
ϕ+

N

(
x

N

)
+ O
(

1
N2

))

×
m∏

a=1

(
va − x

N
+ 1

N

)(
ta + va − x

N

)
,

φ−
N(x) =

(
φ−
(

x

N

)
+ 1

N
ϕ−

N

(
x

N

)
+ O
(

1
N2

))

×
m∏

a=1

(
va − x

N

)(
ta + va − x

N
+ 1

N

)
.

We also define

ψ−
N (z) = ϕ−

N (z) +
m∑

a=1

φ−(z)

ta + va − z
, ψ+

N (z) = ϕ+
N (z) +

m∑

a=1

φ+(z)

va − z
.

Clearly,

φ±
N(Nz) =

(
φ±(z) + ψ±

N (z)

N
+ O
(

1
N2

))
·

m∏

a=1

(va − z)(ta + va − z).

We further define μ
t,v
N as the empirical distribution of Pt,v

N and set, cf. (18)

GN(z) =
∫ ∞

−∞

1
z − x

μ
t,v
N (dx) = 1

N

N∑

i=1

1
z − �i/N

,(105)

(�1, . . . , �N) is Pt,v
N -distributed.

Define

GN(z) = N
(
GN(z) − Gμ(z)

)
.(106)
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We will now formulate a generalization of Theorem 2.5. For that we need to introduce
certain notations from the theory of hyperelliptic integrals.

Fix k simple positively-oriented complex contours γ1, γ2, . . . , γk , such that each
γi (1 ≤ i ≤ k) encloses the segment [âi, b̂i] (and thus, also [αi, βi]), but not the other
segments.

Let P(z) = p0 + p1z + · · · + pk−2zk−2 be a polynomial of degree k − 2, and consider
the map

� : P(z) �→
(

1
2π i

∮

γ1

P(z)dz
∏k

i=1

√
(z − αi)(z − βi)

, . . . ,

1
2π i

∮

γk

P(z)dz
∏k

i=1

√
(z − αi)(z − βi)

)

Note that the sum of the integrals in the definition of � equals (−2π i) times the residue
of P(z)∏k

i=1
√

(z−αi)(z−βi)
at infinity, which is zero. Therefore, � is a linear map between (k − 1)-

dimensional vector spaces. This map is very non-trivial, but it is known to be an isomor-
phism for any k ≥ 2 (cf. [Du, Section 2.1]).

Using � we can now define a more complicated map ϒ . Given a (continuous)
function f (z) defined on the contours γi and such that the sum of its integrals over these
contours is zero, we define a function ϒz[ f ] through

ϒz[ f ] = f (z) + P(z)
∏k

i=1

√
(z − αi)(z − βi)

,

where P(z) is a unique polynomial of degree at most k −2, such that for each i = 1, . . . , k

1
2π i

∮

γi

ϒz[ f ]dz = 0.

The polynomial P(z) can be evaluated in terms of the map � via

P = �−1

(
− 1

2π i

∮

γ1

f (z)dz, − 1
2π i

∮

γ2

f (z)dz, . . . , − 1
2π i

∮

γk

f (z)dz

)
.

Note that the map f �→ ϒz[ f ] is linear and does not depend on t, v.

Theorem 6.1. — Fix m = 0,1, . . . and choose complex numbers v = (v1, . . . , vm) ⊂ (C \⋃k

i=1[âi, b̂i])m. Under Assumptions 1–5 we have as N → ∞
∂m

∂ t1 · · · ∂ tm
EPt,v

N

(
GN(u)

)∣∣∣∣
ta=0,1≤a≤m

(107)

= o(1) + ∂m

∂ t1 · · · ∂ tm

(
ϒu

[
θ−1

2π i
∏k

i=1

√
(u − αi)(u − βi)
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×
∮

⋃k
i=1 γi

dz

(u − z)H(z)

(
ψ−

N (z)e−θGμ(z) + ψ+
N (z)eθGμ(z)

+ φ−(z)e−θGμ(z) θ
2

2
∂

∂z
Gμ(z)

+ φ+(z)eθGμ(z)

(
θ 2

2
− θ

)
∂

∂z
Gμ(z)

)])

ta=0,1≤a≤m

,

where γi are simple positively-oriented contours enclosing the segment [âi, b̂i] (the points u and v1, . . . , vm

are outside the contours). The remainder o(1) is uniform over u, v1, . . . , vm in compact subsets of the

unbounded component of C \⋃k

i=1 γi .

Remark 6.2. — Theorem 6.1 generalizes Theorem 2.5 in several directions. First,
before we had k = 1 and now we allow any k = 1,2, . . . . Second, θ was equal to 1 and
now θ > 0 is arbitrary. Finally, in Theorem 2.5 the functions H(z), φ±(z), Gμ(z) had a
specific form.

Proof. — Similarly to Theorem 2.5, the proof has two parts: algebraic manipula-
tions and self-improving estimates for the remainders. The latter literally repeats Sec-
tion 2.5 and we are not going to present it.

For the former we start from the statement of Theorem 4.1. Making the change of
variables ξ = Nz, we can write for z outside

⋃k

i=1[âi, b̂i]
N∏

i=1

(
1 − θ

ξ − �i

)
= exp

( N∑

i=1

ln
(

1 − 1
N

· θ

z − �i/N

))

= exp
(

−θGN(z) + θ 2

2N
· ∂

∂z
GN(z) + O

(
1

N2

))

= exp
(

−θGμ(z) − θ

N
GN(z) + θ 2

2N
· ∂

∂z
GN(z)

+ O
(

1
N2

))
.

(108)

Similarly, also

N∏

i=1

(
1 + θ

ξ − �i − 1

)
= exp

( N∑

i=1

ln
(

1 + 1
N

· θ

z − �i/N − 1/N

))
(109)

= exp
(

θGμ(z) + θ

N
GN(z) + θ 2/2 − θ

N
· ∂

∂z
GN(z) + O

(
1

N2

))
.
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Recalling the definition of Rμ(z), we conclude that the function RN(Nz) from
Theorem 4.1 for Pt,v

N can be written in the following form

RN(Nz) =
m∏

a=1

(va − z)(ta + va − z)(110)

×
[

Rμ(z) + φ−(z)eθGμ(z)EPt,v
N

(
exp
(

θ

N
GN(z)

)
− 1
)

+ φ+(z)e−θGμ(z)EPt,v
N

(
exp
(

− θ

N
GN(z)

)
− 1
)

+ ψ−
N (z)

N
e−θGμ(z) + ψ+

N (z)

N
eθGμ(z) + φ−(z)e−θGμ(z)

N
θ 2

2
∂

∂z
Gμ(z)

+ φ+(z)eθGμ(z)

N

(
θ 2

2
− θ

)
∂

∂z
Gμ(z)

]
+ o

(
1
N

)
.

We further want to simplify the expression in the second line of (110), by replacing eh − 1
by h under expectations. As in Theorem 2.5, for that we use the inequality

∣∣eh − h − 1
∣∣≤ |h|2e|h|, h ∈ C,

and the fact that

EPt,v
N

(∣∣∣∣
θ

N
GN(z)

∣∣∣∣
2

exp
(∣∣∣∣

θ

N
GN(z)

∣∣∣∣

))
= o

(
1
N

)
, N → ∞,

which is established via self-improving estimates.
We therefore can rewrite (110) as

RN(Nz) =
m∏

a=1

(va − z)(ta + va − z) ·
[

Rμ(z) − θQμ(z)

N
EPt,v

N

(
GN(z)

)
(111)

+ ψ−
N (z)

N
e−θGμ(z) + ψ+

N (z)

N
eθGμ(z) + φ−(z)e−θGμ(z)

N
θ 2

2
∂

∂z
Gμ(z)

+ φ+(z)eθGμ(z)

N

(
θ 2

2
− θ

)
∂

∂z
Gμ(z)

]
+ o

(
1
N

)
,

where the remainder is uniform over z in compact subsets of C \⋃k

i=1[âi, b̂i].
Let us now fix u outside the contours γ1, . . . , γk , divide (111) by 2π i

∏m

a=1(va − z)

(ta + va − z) · H(z) · (u − z) (the definition of H(z) is given in Assumption 4) and integrate
over the union of contours γi . We get
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θ

2π i

∮

⋃k
i=1 γi

∏k

i=1

√
(z − αi)(z − βi)

u − z
· EPt,v

N

(
GN(z)

)
dz(112)

= 1
2π i

∮

⋃k
i=1 γi

dz

(u − z)H(z)
·
(

ψ−
N (z)e−θGμ(z) + ψ+

N (z)eθGμ(z)

+ φ−(z)e−θGμ(z) θ
2

2
∂

∂z
Gμ(z) + φ+(z)eθGμ(z)

(
θ 2

2
− θ

)
∂

∂z
Gμ(z)

)

+ 1
2π i

∮

⋃k
i=1 γi

(−NRN(Nz)

(u − z)H(z)
+ NRμ(z)

(u − z)H(z)
+ o(1)

)
dz.

Since H(z) is non-zero on all the segments [âi, b̂i], by a proper choice of small contours γi

we can guarantee that H(z) is non-zero inside the integration contours. Then the terms
in the last line of (112) vanish as they have no singularities inside the integration contours.

Turning to the first line of (112), note that EPt,v
N

(GN(z)) is analytic outside the
contours of integration and decays as 1/z2 when z → ∞. Therefore, we can compute the
integral as (minus) the sum of the residues at z = u and at z = ∞. The former is

θ

k∏

i=1

√
(u − αi)(u − βi) · EPt,v

N

(
GN(u)

)
,

while the latter is a polynomial PN(u) of degree at most k − 2 (to see that one uses
(z − u)−1 = z−1

∑
m≥0(uz)m). We conclude that

θ · EPt,v
N

(
GN(u)

)+ PN(u)
∏k

i=1

√
(u − αi)(u − βi)

(113)

= 1

2π i ·∏k

i=1

√
(u − αi)(u − βi)

∮

⋃k
i=1 γi

dz

(u − z)H(z)

×
(

ψ−
N (z)e−θGμ(z) + ψ+

N (z)eθGμ(z) + φ−(z)e−θGμ(z) θ
2

2
∂

∂z
Gμ(z)

+ φ+(z)eθGμ(z)

(
θ 2

2
− θ

)
∂

∂z
Gμ(z)

)
+ o(1).

Now we are in a position to apply the map ϒu. Indeed, the integral of GN(z) around γi

is deterministic and equals ni(N)/N. On the other hand, the integral of Gμ(z) around γi

equals the total mass of μ(x) inside γi , which is n̂i. Since, n̂i = ni(N)/N, the integral of
EPt,v

N
(GN(u)) around each loop γi vanishes.
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Therefore,

EPt,v
N

(
GN(u)

)
(114)

= ϒu

[
θ−1

2π i ·∏k

i=1

√
(u − αi)(u − βi)

∮

⋃k
i=1 γi

dz

(u − z)H(z)

×
(

ψ−
N (z)e−θGμ(z) + ψ+

N (z)eθGμ(z) + φ−(z)e−θGμ(z)

(
θ 2

2
∂

∂z
GN(z)(z)

)

+ φ+(z)eθGμ(z)

((
θ 2/2 − θ

) ∂

∂z
Gμ(z)(z)

))]
+ o(1).

It remains to show that (114) can be differentiated with respect to t1, . . . , tm and t1 = · · · =
tm = 0, which is done in the same way as in Theorem 2.5, see Section 2.5 for the details. It
is important to note here that due to its explicit definition, the map ϒu is continuous and
even Lipshitz (in uniform norm on the contours γi , i = 1, . . . , k). Moreover, it is linear
and does not depend on t. Therefore, its appearance in the formulas does not affect the
argument. �

7. Central Limit Theorem

The following two theorems are corollaries of Theorem 6.1, cf. Section 2.2.

Theorem 7.1. — Under Assumptions 1–5 the joint moments of the random variables

N(GN(z) − EPNGN(z)) approximate (uniformly in z in compact subsets of C \⋃k

i=1[âi, b̂i]) those

of centered Gaussian random variables with covariance

N2
(
EPN

(
GN(z)GN(w)

)− EPNGN(z)EPNGN(w)
)= θ−1

C(z,w) + o(1),

N → ∞,

where

C(z,w) = ϒw

[
1

(w − z)2
−
√∏

i(z − αi)(z − βi)√∏
i(w − αi)(w − βi)

(
1

(z − w)2
(115)

− 1
2(z − w)

k∑

i=1

(
1

z − αi

+ 1
z − βi

))]
.

Remark 7.2. — The map ϒ was defined in Section 6. In cases k = 1 and k = 2
the resulting covariance function C(z,w) can be brought to a more explicit form. When
k = 1,

C(z,w) = 1
(z − w)2

(
1 − zw − 1

2(α1 + β1)(z + w) + α1β1√
(z − α1)(z − β1)

√
(w − α1)(w − β1)

)
.
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The expression for k = 2 involves the values of complete elliptic integrals and we do not
pursue it here, cf. [BDE, Section 3].

Remark 7.3. — Note that the numbers αi, βi may depend on μ(x), which, in turn,
may depend on N through filling fractions n̂i = ni(N)/N. However, this dependence is
continuous (see Proposition 5.8) and thus, if n̂i converges as N → ∞, then so is C(z,w),
and Theorem 7.1 turns into a conventional central limit theorem for NGN(z) as N → ∞.
In particular, if k = 1, then this is always the case.

Remark 7.4. — In the general beta random matrix models the covariance has pre-
cisely the same form, cf. [J3], [Shch], [BoGu2].

Corollary 7.5. — Take m ≥ 1 real functions f1(z), . . . , fm(z) on
⋃k

i=1[âi, b̂i] that can be ex-

tended to holomorphic functions in a complex neighborhood B of
⋃k

i=1[âi, b̂i]. Under Assumptions 1–5,

as N → ∞ the joint moments of the m random variables

Lfj =
N∑

i=1

(
fj(�i) − EPN fj(�i)

)
, (�1, . . . , �N) is PN-distributed,

approximate those of centered Gaussian random variables with asymptotic covariance

EPNLfiLfj =
1

(2π i)2

∮

⋃
i γi

∮

⋃
i γi

fi(u)fj(v)C(u, v)dudv + o(1),(116)

where γi , i = 1, . . . , k, are positively oriented contours in B that enclose [âi, b̂i], respectively, and

C(u, v) is given by (115).

Remark 7.6. — Similarly to Corollary 7.5, Theorem 6.1 can be used to obtain the
first two terms in the asymptotic expansion of

∑N
i=1 EPN f (�i) for functions f holomorphic

in a neighborhood of
⋃k

i=1[âi, b̂i].

8. Non-vanishing weights

Assumption 5 of the general setup of Section 3 was vanishing of the weight at the
end-points of the supporting intervals. For future applications it is convenient to relax this
condition and replace it by the following exponential bound on probabilities of having
particles at ai(N) + 1 or bi(N) − 1.

Assumption 6. — We require the existence of constants C1, C2, C3 > 0 such that for all

N = 1,2, . . . , the PN-probability of the event

�j = ai(N) + 1 or �j = bi(N) − 1 for at least one pair 1 ≤ j ≤ N, 1 ≤ i ≤ k

is bounded from above by C1 exp(−C2NC3).
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Theorem 8.1. — If we replace Assumption 5 by Assumption 6, then the results of Theorem 6.1,

Theorem 7.1, Corollary 7.5 are still valid for measures PN.

The proof of Theorem 8.1 is based on the following observation.

Proposition 8.2. — In the notations of Theorem 4.1, suppose that the condition φ−
N (ai(N) +

1) = φ+
N (bi(N)) = 0, i = 1, . . . , k, does not hold. If φ±

N (ξ) are holomorphic in a domain MN ⊂ C,

then so is RN(ξ) except for at most 2k simple poles. These poles are at points {ai(N) + 1,

bi(N) − 1}k
i=1. Under Assumption 6 the corresponding residues decay exponentially in N as N → ∞

in the same sense as in the bound of Assumption 6 (perhaps, with different constants C1, C2, C3).

Proof. — We repeat the proof of Theorem 4.1 and observe the same cancellation of
the poles. The only poles for which the cancellations do not occur, are endpoints of the
interval: in Theorem 4.1 the functions φ± were vanishing at these endpoints, but this is
no longer the case. The residue at an end-point can be bounded for the first term in (78)
by the probability to have a particle at such an end-point (denote it by m) multiplied by

max
�i

∣∣∣∣
∏

i:�i �=m

(
1 − θ

m − �i

)∣∣∣∣≤
∣∣∣∣∣

N−1∏

i=1

(
1 + θ

θ i

)∣∣∣∣∣= N.

Thus, the exponential decay of the probability in Assumption 6 implies the exponential
decay of the residue. For the second term in (78) the argument is the same. �

Proof of Theorem 8.1. — Note that an analogue of Proposition 8.2 is readily estab-
lished also for the deformed measures Pt,v

N as in Section 6. Indeed, we need such mea-
sures only for small (i.e. tending to 0) values of ti , but then the exponential bounds on
probability remain valid. Therefore, all the arguments of Section 6 go through for the
measures PN. Indeed, the only difference between Theorem 4.1 and Proposition 8.2 is in
the appearance of finitely many simple poles. However, since the residues are exponen-
tially small, these poles will only add exponentially small terms to all the remainders and
thus will not contribute to the expansions in powers of 1/N that we study. �

9. Examples

The aim of this section is to demonstrate how the Assumptions 1–4 are checked in
applications, which yields the validity of Theorem 6.1, Theorem 7.1, and Corollary 7.5
for certain stochastic systems.

9.1. Multi-cut general θ extension of the Krawtchouk ensemble. — The first example is an
extension of that of Section 2 to general values of θ and k.
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We fix k = 1,2, . . . and take 3k numbers âi , b̂i , n̂i , such that

â1 < b̂1 < â2 < b̂2 < · · · < âk < b̂k,

0 < n̂i < θ−1(b̂i − âi) for all i = 1, . . . , k, and
∑k

i=1 n̂i = 1. Then we further choose num-
bers ai(N), bi(N), ni(N) such that the model fits into the setup of Section 3. The weight
w(x;N) is then defined through the identity

w(x;N)

w(x − 1;N)
= −

k∏

i=1

x − bi(N)

x + 1 − ai(N)
.(117)

Note that (117) agrees with the conditions w(x;N) > 0, x ∈⋃k

i=1[ai(N) + 1, bi(N) − 1]
and with Assumption 5. Since the weight w(x;N) is supported on

⋃k

i=1(ai(N), bi(N)), we
need to supplement (117) by the choice of k constants

ci(N) = w
(
ai(N) + 1;N

)
, i = 1, . . . , k.(118)

Observe that the multiplication of all ci by a same constant leaves the probability distri-
bution unchanged. Therefore, for each N the system depends on the choice of 4k − 2
constants. In particular, if k = 1 and θ = 1, then (up to a shift of the lattice) we arrive at
the example of Section 2.

If we now assume that all the parameters are chosen so that as N → ∞
ai(N) = Nâi + O(1), bi(N) = Nb̂i + O(1), ni(N) = Nn̂i + O(1),

ci(N) = exp(Nĉi), i = 1, . . . , k,

then using Stirling’s formula for the factorials appearing in the explicit expressions for
w(x;N), it is easy to see that the model satisfies Assumptions 1, 2, 3. Further,

φ+(z) = −
k∏

i=1

(z − b̂i), φ−(z) =
k∏

i=1

(z − âi).

The function Rμ(z) is an analytic function in z, which is O(zk−1) as z → ∞. Therefore, by
Liouville’s theorem Rμ(z) is a polynomial of degree at most k − 1. Hence, the quadratic
equation (103) implies that Qμ(z) is the square root of a degree 2k polynomial. In other
words, decomposing into linear factors we get

Qμ(z) = 2

√√√√
k∏

i=1

(z − αi)(z − βi).(119)

On the other hand, our choice of n̂i guarantees, that the equilibrium measure μ(x)dx in
each interval [âi, b̂i] has some points where μ(x) > 0 and some points where μ(x) < θ−1.
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Combining this with the observation (that is immediate from (76)) that Qμ(âi) and Qμ(b̂i)

have different signs for each i = 1, . . . , k, we conclude that αi, βi ∈ [âi, b̂i]. For each i there
are two options: either μ(x) has a band inside [âi, b̂i], and then αi and βi are endpoints
inside this band, or [âi, b̂i] is a union of a void and a saturated region. Let us explain that
the latter is impossible. Indeed, then there must be a point x ∈ R and ε > 0 such that
μ(x) = 0 on (x − ε, x) and μ(x) = θ−1 on (x, x + ε) (or vice versa which is considered in
the same way). Therefore, as z approaches x along the real axis from the left, the Stieltjes
transform Gμ(z) explodes:

lim
z→x− Gμ(z) = lim

z→x−

∫
μ(t)

z − t
dt = −∞.

This implies limz→x− exp(Gμ(z)) = 0 and limz→x− exp(−Gμ(z)) = +∞. But then the
definition (75) of Rμ(z) implies that Rμ(z) has a singularity at z = x, which contradicts
the fact that Rμ(z) is a polynomial. Note that it is crucial in this argument that φ± does
not have zeros inside

⋃
(âi, b̂i), and indeed the end-points âi , b̂i might separate voids and

saturated regions.
The conclusion is that this class of probability models satisfies Assumptions 1–5

and Theorem 6.1, Theorem 7.1, Corollary 7.5 are valid for them. As far as we know,
these results are new with the exception of the case θ = k = 1.

9.2. Lozenge tilings. — The second example demonstrates that at least two instances
of probability measures arising in the study of uniformly random lozenge tilings fit into
our framework.

Consider an A×B×C hexagon drawn on the regular triangular lattice. We tile this
hexagon with three types of elementary lozenges (which are unions of adjacent triangular
faces of the lattice), cf. Figure 3. There are finitely many such tilings, and we are interested
in the asymptotic behavior of uniformly random tiling as A,B,C → ∞. This is a well-
studied model, with many results available, cf. [CLP], [BKMM], [JN], [G], [BoGo],
[P1], [P2].

Let us dissect the hexagon by a vertical line at distance t from the left boundary.
There will be a fixed (depending on A,B,C, t) number N of horizontal lozenges on this
line; let PN denote the distribution of these lozenges. This distribution can be computed
by noticing that the tiling can be viewed as two Gelfand-Tsetlin patterns glued together, as
shown in the right panel of Figure 3. The enumeration of Gelfand-Tsetlin patterns is well-
known and can be used to compute the distribution PN (see [CLP], [G], [BP], [BuGo] for
more details). Assuming t > max(B,C) as in Figure 3, which yields N = B + C − t, and
introducing the coordinate system such that the lowest possible position for horizontal
lozenges on the tth vertical line is 1 and the highest one is A + B + C − t, we obtain the
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FIG. 3. — Left panel: Lozenge tiling of the 3 × 4 × 5 hexagon and 3 horizontal lozenges on the sixth from the left vertical line.
Right panel: two Gelfand-Tsetlin patterns (inside blue and red contours) corresponding to each tiling (Color figure online)

formula

PN(�1, . . . , �N) = 1
ZN

∏

i<j

(�i − �j)
2

×
N∏

i=1

[
(A + B + C + 1 − t − �i)t−B(�i)t−C

]
,

(120)

where (a)n is the Pochhammer symbol, (a)n = a(a + 1) · · · (a + n − 1), and ZN is a nor-
malizing constant (which can be computed explicitly in this case). The distribution of the
form (120) is known as Hahn orthogonal polynomial ensemble.

Take a large parameter L and suppose that

A = ÂL + O(1), B = B̂L + O(1),

C = ĈL + O(1), t = t̂L + O(1),
(121)

for positive constants Â, B̂, Ĉ, t̂. We assume that t̂ > max(B̂, Ĉ)—other possibilities for t

are considered similarly. Let us check that under such choice of parameters the ensemble
(120) satisfies Assumptions 1–5.

• Assumption 1 is satisfied due to Stirling’s formula applied to Pochhammer sym-
bols. The potential V(u) has the form:

V(u) = −(Â + Ĉ − u) ln(Â + Ĉ − u)

+ (Â + B̂ + Ĉ − t̂ − u) ln(Â + B̂ + Ĉ − t̂ − u)

− (t̂ − Ĉ + u) ln(t̂ − Ĉ + u) + u ln(u).
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FIG. 4. — Lozenge tiling of the 4 × 7 × 5 hexagon with a rhombic 2 × 2 hole (shown in blue). The center of the hole is
at distance t from the left side of the hexagon. The remaining horizontal lozenges on tth vertical line are shown in gray (Color
figure online)

• Assumption 2 is empty, as there is only one filling fraction, n1(N) = N.
• Assumption 3 is immediate from the definitions, and we have

φ+(z) = (t̂ − Ĉ + z)(Â + B̂ + Ĉ − t̂ − z), φ−(z) = z(Â + Ĉ − z).

• For Assumption 4 note that Rμ(z) is an analytic function which grows as O(z2)

as z → ∞ and therefore it is a polynomial of degree at most two. Hence,
by (103), the function Qμ(z) is a square root of a polynomial. The definition
implies that Qμ(z) is O(z) as z → ∞. Thus Qμ(z) is a square root of degree
two polynomial and has the form

Qμ(z) = const ·√(z − a)(z − b).

The points a and b are necessarily endpoints of the band of the equilibrium
measure μ(x)dx.

• Assumption 5 is immediate from the formula (120).

The conclusion is that Theorem 6.1, Theorem 7.1, Corollary 7.5 are valid. This implies
a form of the Central Limit Theorem for fluctuations of lozenge tilings of a hexagon.
We remark that the same CLT (and even stronger statement concerning joint asymptotic
Gaussianity for several values of t̂) can be also established by other methods, cf. [P2],
[BD], [BuGo2].

Remark 9.1. — One can probably use the fact that Rμ(z) is a degree two polyno-
mial to find an explicit formula for Rμ(z) and thus, also for Gμ(z), and for the equilibrium
measure μ(x)dx describing the limit shape for lozenge tilings, cf. Section 9.4 for a similar
argument. Explicit formulas for μ(x) were previously found by other methods in [CLP],
[BKMM], [KO], [G], [P1].

One can also analyze tilings of more complicated domains. Let us cut a rhombic
D × D hole in the hexagon, as shown in Figure 4. Assume that the bottom point of the
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hole is at distance t from the left side of the hexagon and at height H (counted from
the bottom of the hexagon along tth vertical line). Let PN be the probability distribution
of the horizontal lozenges (outside the hole) on tth vertical line induced by the uniform
measure on all tilings of the hexagon with the hole. We can repeat the same argument as
the one used for the complete hexagon for computing PN. Assuming t > max(B,C) as in
Figure 3, which yields N = B + C − D − t, and introducing the coordinate system such
that the lowest possible position for horizontal lozenge on the tth vertical line is 1 and the
highest one is A + B + C − t, we obtain

PN(�1, . . . , �N)(122)

= 1
ZN

∏

1≤i<j≤N

(�i − �j)
2

×
N∏

i=1

[
(A + B + C + 1 − t − �i)t−B(�i)t−C(H − �i)D(H − �i)D

]
.

We also need two filling fractions n1 and n2: we consider only such tilings that there are
n1 horizontal lozenges (on tth vertical line) below the hole and n2 lozenges above. Take a
large parameter L and suppose that in addition to (121) we have

H = ĤL + O(1), D = D̂L + O(1),

Ĥ > 0, D̂ > 0, Ĥ + D̂ < Â + B̂ + Ĉ − t̂,

n1 = n̂1L + O(1), n2 = n̂2L + O(1),

0 < n̂1 < Ĥ, 0 < n2 < Â + B̂ + Ĉ − t̂ − Ĥ − D̂.

We again assume that t̂ > max(B̂, Ĉ) and remark that other possibilities for t are con-
sidered similarly. Let us check that under such choice of parameters the ensemble (122)
satisfies Assumptions 1–5.

• Assumption 1 is satisfied due to Stirling’s formula applied to Pochhammer sym-
bols.

• Assumption 2 is satisfied due to restrictions on n̂1, n̂2.
• Assumption 3 is immediate from the definitions, and we have

φ+(z) = (t̂ − Ĉ + z)(Â + B̂ + Ĉ − t̂ − z)(Ĥ − z)2,

φ−(z) = z(Â + Ĉ − z)(Ĥ + D̂ − z)2.

• For Assumption 4 note that Rμ(z) is an analytic function which grows as O(z4)

as z → ∞ and therefore it is a polynomial of degree at most four. Hence,
by (103), the function Qμ(z) is a square root of a polynomial. The definition
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implies that Qμ(z) is O(z3) as z → ∞. Thus, Qμ(z) is a square root of a de-
gree six polynomial. Further observe that according to definitions Qμ(0) < 0,
Qμ(Ĥ) > 0, Qμ(Ĥ+ D̂) < 0, Qμ(Â+ B̂+ Ĉ− t̂) > 0. Together with analyticity
of Qμ(z) outside the support of the equilibrium measure this yields

Qμ(z) = const(z − c)
√

(z − a1)(z − b1)(z − a2)(z − b2),

where

0 < a1 ≤ b1 < Ĥ < c < Ĥ + D̂ < a2 < b2 < Â + B̂ + Ĉ − t̂.

As before, the points a1, b1, a2, b2 can be identified with the endpoints of the
bands of the equilibrium measure.

• Assumption 5 is immediate from the formula (122).

The conclusion is that Theorem 6.1, Theorem 7.1, Corollary 7.5 are valid. This implies
a form of the Central Limit Theorem for fluctuations of lozenge tilings of a hexagon with
a hole (with fixed filling fractions above and below the hole). As far as we know, these
results are new; the same applies to the examples of the next sections.

9.3. Arbitrary convex potential on R with no saturation. — For our third example take
a real convex analytic function V(x), i.e. such that V′′(x) > 0 for all x ∈ R. Fix a constant
κ > 0 such that

lim inf
x→∞

κV(x)

2θ ln |x| > 1(123)

and consider a probability distribution

PN(�1, . . . , �N) = 1
ZN

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)
(124)

×
N∏

i=1

exp
(

−κN · V
(

�i

N

))

on N-tuples �1 < �2 < · · · < �N such that

�i = λi + θ i, λ1 ≤ λ2 ≤ · · · ≤ λN, λi ∈ Z.

In other words, we are in the framework of Section 3 except that now the distribution
is supported on an infinite and unbounded subset of RN. In particular, when V(x) = x2,
we obtain a discretization of the celebrated general β Gaussian ensemble from random
matrix theory.
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Proposition 9.2. — For any real analytic V(x) satisfying V′′(x) > 0 and (123), the functional

IκV of (87) has a unique maximizer (equilibrium measure) on the set of all absolutely continuous prob-

ability measures on R (without any restrictions on the density). The equilibrium measure is compactly

supported, has a continuous density μ(x) and has a single band. At the end-points of the band the density

of the equilibrium measure behaves like c
√

x.

Proof. — This is well-known, see [DS], [J1] and references therein. �

Note that the equilibrium measure μ(x)dx of Proposition 9.2 is unchanged when
we multiply both θ and κ on the same positive constant (as the functional is then multi-
plied by the same constant) and, therefore, depends only on their ratio κ/θ . In particular,
if we fix ratio and then choose small κ (equivalently, small θ ), then the density μ(x) will
be smaller than θ−1 for all θ . But then the solution to constrained maximization problem
with 0 ≤ μ(x) ≤ θ−1 as in Theorem 5.3 will be the same as the solution of the uncon-
strained minimization problem as in Proposition 9.2. The conclusion is that for small κ

the equilibrium measure has no saturated regions; this is crucial for our considerations.
We now want to show that Theorem 6.1, Theorem 7.1, and Corollary 7.5 apply in

this situation. This is done by localizing the probability measure PN onto a finite interval
with help of the following proposition.

Proposition 9.3. — Assume that V(x) is convex and satisfies (123). Then with exponentially

high probability the measure (124) is supported on configurations in a linearly growing interval, i.e. there

exist constants C,D > 0 such that

PN

(
−D ≤ �1

N
≤ �N

N
≤ D
)

> 1 − 1
C

· exp(−NC), N = 1,2, . . . .

Proof. — This a particular case of Theorem 10.1. We remark that statements of
this flavor are well-known as large deviations principles for the largest/smallest particles
in both discrete and continuous log-gases, cf. [J3, Theorem 2.2], [Fe, Theorem 4.2],
[AGZ, Section 2.6]. �

Proposition 9.3 motivates the definition of measure P̂N as PN conditioned on the
event that |�i/N| ≤ D + 1 for all i = 1, . . . ,N. An advantage of the measure P̂N is that
�i/N are P̂N-almost surely bounded, and therefore, there exists a finite complex contour
which enclose them all and we can apply the developments of previous sections.

Lemma 9.4. — Assume (123) and that analytic V(x) satisfies V′′(x) > 0 for all x ∈ R. Then

the results of Theorem 6.1, Theorem 7.1, Corollary 7.5 are valid for measures P̂N. Here k = 1, the
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points a1 and b1 are two endpoints of the band of the equilibrium measure,

φ−(z) = 1, ϕ−
N (z) = 0, φ+(z) = exp

(−κV′(z)
)
,

ϕ+
N (z) = κV′′(z)

2
exp
(−κV′(z)

)
.

Proof. — We will apply Theorem 8.1, and we need to check all its assumptions.
With w(x;N) = exp(−κNV(x/N)), we have

w(x;N)

w(x − 1;N)
= exp

[
κN
(

V
(

ξ − 1
N

)
− V
(

ξ

N

))]
.(125)

Therefore, the formulas for φ+ and ϕ+ are obtained through large N expansion of the
right-hand side in (125).

We only check that Assumption 4 is satisfied, as the rest is automatic. We have

Qμ(z) = exp
(−θGμ(z)

)− exp
(−κV′(z)

)
exp
(
θGμ(z)

)
.

As before, Qμ(z) is a square root of an analytic function due to (103). Further, Qμ is an-
alytic outside the single band of the equilibrium measure μ(x)dx. Near the end-points of
the band, the density μ(x) behaves like a square root and thus similar behavior for Qμ(z).
Therefore,

Qμ(z) = H(z)
√

(z − a)(z − b),

where a < b are endpoints of the band. We will now show that H(z) has no zeros on R,
which would also imply that H(z) is holomorphic, since H2(z) is.

We already ruled out H(a) = 0 and H(b) = 0, and there are 3 more cases to con-
sider:

• H(x) = 0, a < x < b. Then also Qμ(x + i0) = Qμ(x − i0) = 0. Therefore,

exp
(
κV′(x)

)= exp
(
2θGμ(x + i0)

)= exp
(
2θGμ(x − i0)

)
.

Comparing with (100) (V′(x) should be replaced by κV′(x) to match the nota-
tions) we conclude that

exp
(
θGμ(x + i0) − θGμ(x − i0)

)= 1.

But this contradicts 0 < μ(x) < θ−1 and (99).
• For x > b, if H(x) = 0, then also Q(x) = 0 and

exp
(
κV′(x)

)= exp
(
2θGμ(x)

)
.(126)
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But note that (126) holds at x = b as a corollary of (100). And as x > b grows,
the left-hand side of (126) also grows due to V′′(x) > 0, but the right-hand side
decays due to the definition of Gμ(x). Thus, (126) can not hold at x > b.

• For x < a the argument is similar. �

As a corollary we obtain a central limit theorem for the original measure PN.

Corollary 9.5. — Assume (123), V′′(x) > 0 for all x ∈ R, and consider the probability

measure PN given by (124). Suppose that κ is so small that the equilibrium measure has one band. Take

any m functions f1(z), . . . , fm(z) on R which are bounded and extend to holomorphic functions in a

complex neighborhood of (−D,D). Then the m random variables

Lfj =
N∑

i=1

(
fj(�i) − EPN fj(�i)

)
, (�1, . . . , �N) is PN-distributed,

converge (in distribution and in the sense of moments) to centered Gaussian random variables with covari-

ance

lim
N→∞

EPNLfiLfj =
θ−1

(2π i)2

∮

γ

∮

γ

fi(u)fj(v)C(u, v)dudv,(127)

where C(u, v) is given by (22) with a± being endpoints of the band of the equilibrium measure μ(x)dx,

and γ is a positively oriented contour which encloses [a−, a+].

Proof. — Due to Proposition 9.3 and boundedness of functions fj , the joint moments
of
∑N

i=1 fj(�i) with respect to PN and with respect to P̂N differ by exponentially small (in N)
error. It remains to use Corollary 7.5 for P̂N. �

Remark 9.6. — One way to construct functions fj satisfying conditions of Corol-
lary 9.5 is to take any analytic functions on [−D,D] and extend them to all of R by
setting equal to 0 outside [−D,D]. The condition that fj must be bounded on R can be
weakened. However, we need a growth condition on these functions, as we want to be
able to replace EPN(

∑N
i=1 fj(�i))

r by EP̂N
(
∑N

i=1 fj(�i))
r with negligible error. The analyt-

icity assumption can also likely be weakened, but we do not address this in the present
paper.

Remark 9.7. — The covariance (127) has the same form as for random matrices
and log-gases in the one cut regime. It depends only on the restrictions of functions fj
onto the interval [a−, a+] and can be rewritten in several other equivalent forms, cf. [J1,
Theorem 4.2], [PS, Chapter 3].



GAUSSIAN ASYMPTOTICS OF DISCRETE β-ENSEMBLES 65

9.4. (z,w)-Measures. — Our last example originates in the asymptotic represen-
tation theory of unitary groups U(N), cf. [O], [BO1], [O2].

Fix two sequences of non-real parameters z(N) and w(N) and define

PN(�1, . . . , �N)

= 1
ZN

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)

×
N∏

i=1

1
�(z(N) − �i)�(z̄(N) − �i)�(w(N) + �i)�(w̄(N) + �i)

(128)

on N-tuples �1 < �2 < · · · < �N such that

�i = λi + θ i, λ1 ≤ λ2 ≤ · · · ≤ λN, λi ∈ Z.

Here z̄(N) and w̄(N) are complex conjugates of z(N) and w(N), respectively.
If θ = 1, z(N) = z + N + 1, w(N) = w with Re(z + w) > −1/2, and {λi}N

i=1
are identified with highest weights of irreducible representations of U(N), then (128) de-
scribes the decomposition of the character of the “generalized bi-regular” representation
of the infinite-dimensional unitary group U(∞), see [O].

With the notation

w(x;N) = 1
�(z(N) − x)�(z̄(N) − x)�(w(N) + x)�(w̄(N) + x)

,

we have

w(x;N)

w(x − 1;N)
= (x − z(N))(x − z̄(N))

(x + w(N) − 1)(x + w̄(N) − 1)

= 1 − w(N) + w̄(N) + z(N) + z̄(N) − 2
x

+ O
(

1
x2

)
.

The last formula implies that as |x| → ∞, the weight decays as

w(x;N) = O
(|x|w(N)+w̄(N)+z(N)+z̄(N)−2

)
.(129)

Therefore, the real part of w(N) + w̄(N) + z(N) + z̄(N) needs to be large in order to
guarantee that the measure PN is finite. Let us assume that as N → ∞

w(N) = w∞ · N + O(1), z(N) = z∞ · N + O(1),

Re(w∞ + z∞) > 1.
(130)

Then w(x;N) decays fast enough so that a condition of the form (123) is satisfied. Note
that the original representation-theoretic case z(N) = z + N + 1, w(N) = w does not
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satisfy this assumption, and indeed the equilibrium measure in this case is known to be
somewhat degenerate, and one generally does not expect to see the Gaussian behavior.
This case with θ = 1 was studied in [BO1].

Proposition 9.8. — Assume (130). Then with exponentially high probability the measure (128)
is supported on configurations in a linearly growing interval, i.e. there exist constants C,D > 0 such that

PN

(
−D ≤ �1

N
≤ �N

N
≤ D
)

> 1 − 1
C

· exp(−NC), N = 1,2, . . . .

Proof. — This is a particular case of Theorem 10.1. �

Proposition 9.8 implies that we can use for PN the techniques developed in Sec-
tions 3–6. Let us present the functions Rμ and Qμ, as they can be found explicitly in this
case. Indeed, we have

Rμ(ξ) = (ξ − z∞)(ξ − z̄∞) exp
(
θGμ(ξ)

)

+ (ξ + w∞)(ξ + w̄∞) exp
(−θGμ(ξ)

)
.

Since Rμ(ξ) is analytic and grows as 2ξ 2 as |ξ | → ∞, Rμ(ξ) is a degree two polynomial,
i.e.

Rμ(ξ) = 2ξ 2 + Aξ + B.

Let us find the coefficients A and B. Expand Gμ in power series near ξ = ∞ as

Gμ(ξ) = 1
ξ

+ p1

ξ 2
+ O
(
ξ−3
)
,

where p1 is unknown. Plugging this into the definition of Rμ(ξ) and expanding up to
O(ξ−1) we get

Rμ(ξ) = (ξ − z∞)(ξ − z̄∞)

(
1 + θ

ξ
+ θp1 + θ 2

ξ 2

)
(131)

+ (ξ + w∞)(ξ + w̄∞)

(
1 − θ

ξ
+ −θp1 + θ 2

ξ 2

)
+ O
(
ξ−1
)

= 2ξ 2 + (w∞ + w̄∞ − z∞ − z̄∞)ξ + z∞z̄∞ + w∞w̄∞

− θ(z∞ + z̄∞ + w∞ + w̄∞) + 2θ 2.

Therefore, we can also find Qμ through (103):

Qμ(ξ) =
√(

Rμ(ξ)
)2 − 4(ξ − z∞)(ξ − z̄∞)(ξ + w∞)(ξ + w̄∞)

= c
√

(ξ − a−)(ξ − a+)

(132)
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with explicit a± and c which are found by plugging (131) in (103) (the resulting formulas
are somewhat complicated and we omit them). This is precisely the form we need for
Assumption 4.

Now repeating the argument of Lemma 9.4, we see that the results of Theorem 6.1,
Theorem 7.1, Corollary 7.5 are valid for measures PN conditioned on the event of Propo-
sition 9.8. Thus, as in Corollary 9.5, we arrive at the following result.

Corollary 9.9. — Assume (130) and consider the probability measure PN given by (128). Take

m ≥ 1 functions f1(z), . . . , fm(z) on R that are bounded and extend to holomorphic functions in a

complex neighborhood of (−D,D), where D is given by Proposition 9.8. Then m random variables

Lfj =
N∑

i=1

(
fj(�i) − EPN fj(�i)

)
, (�1, . . . , �N) is PN-distributed,

converge (in distribution and in the sense of moments) to centered Gaussian random variables with covari-

ance

lim
N→∞

EPNLfiLfj =
θ−1

(2π i)2

∮

γ

∮

γ

fi(u)fj(v)C(u, v)dudv,(133)

where C(u, v) is given by (22) with a± found from (131), (132), and γ is a positively oriented contour

which encloses [a−, a+].

10. Exponential bound on the support

Take a continuous function V : R → R and numbers ε > 0, H > 1+ θ−1 such that

V(x)

2θ ln |x| > 1 + ε, when |x| > H.(134)

Set T = 
θ� + 1 and assume that V(x) is increasing for x > H, decreasing for x < −H
and is Lipshitz with a constant s for |x| < H + T.

Consider a probability distribution

PN(�1, . . . , �N) = 1
ZN

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)
(135)

×
N∏

i=1

exp
(

−N · V
(

�i

N

))

on N-tuples �1 < �2 < · · · < �N such that

�i = λi + θ i, λ1 ≤ λ2 ≤ · · · ≤ λN, λi ∈ Z.(136)

The aim of this section is to prove the following statement describing the tails of PN.
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Theorem 10.1. — There exist two constants C = C(θ, ε,H, s) and D = D(θ, ε,H, s)

that depend only on θ, ε,H, s, and such that

PN,N

(
−D ≤ �1

N
≤ �N

N
≤ D
)

> 1 − 1
C

· exp(−NC), N = 1,2, . . . .

The proof of Theorem 10.1 borrows ideas from similar proofs in [J3], [AGZ, Sec-
tion 2.7], [Fe], but additional care is required because of the shifts by θ in the definition
of �i . We present the proof as a series of lemmas.

It is useful to consider several modifications of the measure PN, which we now in-
troduce. The probability measure PN,+ is defined on the same space of �s by the formula

PN,+(�1, . . . , �N) = 1
ZN,+

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)
(137)

×
N∏

i=1

exp
(

−N · V
(

�i

N + 1

))
.

The probability measure PN,++ is defined on the same space of �s by the formula

PN,++(�1, . . . , �N)(138)

= 1
ZN,++

∏

1≤i<j≤N

�(�j − �i + 1)�(�j − �i + θ)

�(�j − �i)�(�j − �i + 1 − θ)

×
N∏

i=1

exp
(

−(N + 1) · V
(

�i

N + 1

))
.

We also define shifted measures P(k)
N , P(k)

N,+, P(k)
N,++, k = 1, . . . ,N + 1, which are given

by the same formulas (135), (137), (138) as P(k)
N , P(k)

N,+, P(k)
N,++, respectively, but with �i

confined to a different lattice, namely

�i =
{

λi + θ i, i < k,

λi + θ(i + 1), i ≥ k,
λ1 ≤ λ2 ≤ · · · ≤ λN, λi ∈ Z.(139)

We also let Z(k)
N , Z(k)

N,+, Z(k)
N,++ to be the normalizing constant for the corresponding mea-

sures. Further denote

MN(�1, . . . , �N) = ZNPN(�1, . . . , �N),

and similarly for PN,+, PN,++, P(k)
N , P(k)

N,+, P(k)
N,++.

All the constants c1, c2, . . . in the following statements depend only on θ, ε,H, s,
the exact values of the constants might change from statement to statement.
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Lemma 10.2. — Then there exists c1 > 0 such that for any 1 ≤ k ≤ N + 1, and any �

satisfying (136) there exists �′ satisfying (139), for which
∣∣�i − �′

i

∣∣≤ T, for all 1 ≤ i ≤ N(140)

and

M(k)
N (�′)

MN(�)
≤ c1 exp(Nc1).(141)

There also exists a (possibly different) �′′ such that
∣∣�i − �′′

i

∣∣≤ T, for all 1 ≤ i ≤ N(142)

and

M(k)
N (�′′)

MN(�)
≥ 1

c1
exp(−Nc1).(143)

Similarly, for any �′ satisfying (139), there exists � satisfying (136) such that (140) and (141) hold.

Further, for any �′′ satisfying (139), there exists � satisfying (136) such that (142) and (143) hold.

Finally, the same statements hold for the measures P(k)
N,+ and P(k)

N,++.

Proof. — We will only prove the first two statements of the Lemma, as the rest can
be proven similarly.

Let x = (x1, . . . , xN) ∈ RN and y = (y1, . . . , yN) ∈ RN be such that xj − xi ≥ θ(j − i),
for 1 ≤ i < j ≤ N and there exists m = 1, . . . ,N and M ∈ R such that

yi =
{

xi, 1 ≤ i ≤ m,

xi + M, m < i ≤ N.

We claim that there exists c2 = c2(M) such that

1
c2

exp(−Nc2)(144)

≤
∏

1≤i<j≤N

(
�(xj − xi + 1)�(xj − xi + θ)

�(xj − xi)�(xj − xi + 1 − θ)
· �(yj − yi)�(yj − yi + 1 − θ)

�(yj − yi + 1)�(yj − yi + θ)

)

≤ c2 exp(Nc2).

Indeed, (91) implies that
∏

i<j

(
�(xj − xi + 1)�(xj − xi + θ)

�(xj − xi)�(xj − xi + 1 − θ)
· �(yj − yi)�(yj − yi + 1 − θ)

�(yj − yi + 1)�(yj − yi + θ)

)

=
∏

i≤m<j

(
1 + O

(
1

xj − xi

))
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Since xj − xi ≥ θ(j − i), the last product is bounded below by 1
c2

exp(−Nc2) and above by
c2 exp(−Nc2) for some c2 > 0.

Take � satisfying (136). Suppose that �i < −H for i = 1, . . . ,m1, |�i| ≤ H for i =
m1 + 1, . . . ,m2, and �i > H for i = m2 + 1, . . . ,N.

Define �̃ = (�̃1, . . . , �̃N) through

�̃i =
{

�i, i < k,

�i + θ, i ≥ k.

And further define �′ = (�′
1, . . . , �

′
N) through

�′
i =
{

�̃i − T, i ≤ m1,

�̃i, i > m1

We claim that (141) holds. Indeed, the ratio of the factors in double product
∏

i<j

is bounded by two applications of (144), and it remains to bound

N∏

i=1

exp
(

NV
(

�i

N

)
− NV

(
�′

i

N

))
.

If i ≤ m1, then �′
i ≤ �i and the monotonicity of V(x) implies that corresponding factors

are less than 1. If i > m2, then �′
i ≥ �i and again the monotonicity of V(x) implies that

corresponding factors are less than 1. Finally, if m1 < i ≤ m2, then the Lipshitz property
of V(x) gives the desired bound.

Next, we construct �′′. For i ≤ m1 we set �′′
i := �̃i . For i > m2 we set �′′

i = �̃i − T.
Since H > 1 + θ−1, we can always choose the remaining coordinates �′′

i , m1 < i ≤ m2 in
such a way that �′′ satisfies (139) and (140). We claim that (143) holds. Indeed, the ratio
of the factors in double product

∏
i<j is bounded by (144), and it remains to bound

N∏

i=1

exp
(

NV
(

�i

N

)
− NV

(
�′

i

N

))
.

If i ≤ m1, then �′
i ≥ �i and the monotonicity of V(x) implies that corresponding factors

are greater than 1. If i > m2, then �′
i ≤ �i and again the monotonicity of V(x) implies

that corresponding factors are greater than 1. Finally, if m1 < i ≤ m2, then the Lipshitz
property of V(x) gives the desired bound. �

Lemma 10.3. — There exists c2 > 0 such that

Z(k)
N,+

ZN,+
≤ c2 exp(c2N), 1 ≤ k ≤ N + 1.(145)
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Proof. — For �′ satisfying (139) let s(�) denote the corresponding � of Lemma 10.2.
Then

Z(k)
N,+ =

∑

�′
M(k)

N,+
(
�′)≤ c1 exp(Nc1)

∑

�′
MN,+

(
s
(
�′))

≤ c1 exp(Nc1)(2T + 1)N
∑

�

MN,+(�) = c1 exp(Nc1)(2T + 1)NZN,+.

�

Lemma 10.4. — There exists c3 > 0 such that

ZN−1,++
ZN

≤ c3 exp(Nc3) · N−2θN, N = 1,2, . . . .

Proof. — We have

N
ZN

ZN−1,++
= N
∑

�

MN(�)

ZN−1,++
(146)

=
N∑

k=1

∑

�(k)

M(k)
N−1,++(�(k))

ZN−1,++

×
�
(k)
k −θ∑

m=�
(k)
k−1+θ

N−1∏

i=1

�(|m − �
(k)

i | + 1)�(|m − �
(k)

i | + θ)

�(|m − �
(k)

i |)�(|m − �
(k)

i | + 1 − θ)

× exp
(

−NV
(

m

N

))
,

where �(k) varies over (139) with N replaced by N−1, and we use the notation �
(1)

0 = −∞,

�
(N)

N = +∞. Note that by the definitions, the sum
∑�

(k)
k −θ

m=�
(k)
k−1+θ

is always non-empty. Take �

satisfying (136) with N replaced by N − 1 and let s(k)(�) denote the corresponding �′ of
Lemma 10.2. Then (146) implies

N
ZN

ZN−1,++
≥ (2T + 1)−N

N∑

k=1

∑

�

M(k)
N−1,++(s(k)(�))

ZN−1,++
(147)

×
s(k)(�)k−θ∑

m=s(k)(�)k−1+θ

N−1∏

i=1

�(|m − s(k)(�)i| + 1)�(|m − s(k)(�)i| + θ)

�(|m − s(k)(�)i|)�(|m − s(k)(�)i| + 1 − θ)

× exp
(

−NV
(

m

N

))
,

where � varies over (136).
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Using Stirling’s formula, its corollary (91), and definition of the state space (139),
we see that the product of Gamma functions in the above formula is bounded from below
by

exp(−Nc4)

c4
· N2θN

with a constant c4 > 0. Let v be the maximum of V(x) over [−2T,2T]. Then (147) and
Lemma 10.2 imply that for c5 > 0

N
ZN

ZN−1,++
≥ N2θN exp(−c5N)

c5

N∑

k=1

∑

�

PN−1,++(�)

×
s(k)(�)k−θ∑

m=s(k)(�)k−1+θ

I−2T≤m≤2T exp(−Nv)

Note that for every � satisfying (136) there exists at least one k, such that for at least one
m ∈ s(k)(�)k−1 + θ, s(k)(�)k−1 + θ + 1, . . . , s(k)(�)k − θ , we have |m| ≤ 2T (here again we
use the notation s(1)(�)0 = −∞, s(N)(�)N = +∞). Therefore,

N
ZN

ZN−1,++
≥ N2θN exp(−c5N)

c5

∑

�

PN−1,++(�) exp(−Nv)

= N2θN exp(−c5N)

c5
exp(−Nv). �

Lemma 10.5. — There exists c4 > 0 such that

ZN,+
ZN,++

≤ c4 exp(c4N), N = 1,2, . . . .(148)

Proof. — Define the random probability measure νN through

νN = 1
N

N∑

i=1

δ�i/(N+1), (�1, . . . , �N) is PN,++-distributed

Then

ZN,+
ZN,++

=
∑

�

MN,+(�)

ZN,++
= EPN,++

[
exp
(

N
∫

V(x)νN(dx)

)]
.(149)

In order to bound (149) we start with a lower bound

ZN,++ ≥ MN,++(θ,2θ, . . . ,Nθ) ≥ exp
(−c5N2

) · N2θN2
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for some c5 > 0. On the other hand, using (91) we obtain

ln MN,++(�1, . . . , �N)

≤ exp
(

2θN2 ln N − N2

∫∫

x �=y

(
V(x) + V(y)

2
− θ ln |x − y|

)

× νN(dx)νN(dy) + c6N2

)
,

for some c6 > 0. Assumption (134) and inequality ln |x − y| ≤ ln(|x| + 1) + ln(|y| + 1)

imply that that there exist c7 > 0 such that for all x �= y,

V(x) + V(y) − 2θ ln |x − y|

≥ ε

1 + ε

(
V(x) + V(y)

)+
(

V(x)

1 + ε
− 2θ ln(|x| + 1)

)

+
(

V(y)

1 + ε
− 2θ ln(|y| + 1)

)

≥ ε

1 + ε

(
V(x) + V(y)

)− c7.

Therefore, for each L > 0 we have

EPN,++

[∫
V(x)μN(dx) > L

]

≤ exp
(

c5N2 + c6N2 + c7

2
N2 − ε

2(1 + ε)
N2L
)

×
N∏

i=1

( ∑

m∈Z+iθ

exp
(

− ε

2(1 + ε)
NV(m/N)

))
.

Hence, there exists c8 > 0, and L0 such that for all L > L0,

EPN,++

[∫
V(x)μN(dx) > L

]
≤ exp

(−c8LN2
)
.

Together with (149) this implies (148). �

Proof of Theorem 10.1. — We have

PN(�N > DN) = ZN−1,+
ZN

∑

�̃

PN−1,+(�̃)
∑

m>max(�̃N−1,DN)

exp
(

−NV
(

m

N

))

×
N−1∏

i=1

[
�(m − �̃i + 1)�(m − �̃i + θ)

�(m − �̃i)�(m − �̃i + 1 − θ)
exp
(

−V
(

�̃i

N

))]
,

(150)
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where �̃ ranges over (136) with N replaced by N − 1. The combination of Lemmas 10.3
and 10.5 implies that for c5 > 0 we have a bound

ZN−1,+
ZN

≤ c5 exp(Nc5) · N−2θN.

For the product of gamma-functions in (150) we use Stirling’s formula and its corol-
lary (91), which yields

N−1∏

i=1

[
�(m − �̃i + 1)�(m − �̃i + θ)

�(m − �̃i)�(m − �̃i + 1 − θ)

]

≤ c6 exp(c6N)N2θN
N−1∏

i=1

∣∣∣∣
m

N
− �̃i

N

∣∣∣∣
2θ

≤ c6 exp(c6N)N2θN2(2θ+1)(N−1)

N−1∏

i=1

[∣∣∣∣
m

N

∣∣∣∣
2θ

+
∣∣∣∣
�̃i

N

∣∣∣∣
2θ]

.

It follows that for c7 > 0,

PN(�N > DN) ≤ c7 exp(c7N)
∑

�̃

PN−1,+(�̃)
∑

m>max(�̃N−1,DN)

exp
(
−NV

(
m

N

))
(151)

×
N−1∏

i=1

[(
| m

N
|2θ + | �̃i

N
|2θ

)
exp
(

−V
(

�̃i

N

))]
.

Further, take δ > (2θ)−1, and observe that when D > H + 1,

∑

m>max(�̃N−1,DN)

exp
(

−δV
(

m

N

))
≤

∞∑

m=
DN�
exp
(−2δθ ln(m/N)

)

= N2δθ

∞∑

m=
DN�

1
m2δθ

≤ 2ND1−2δθ .

Also due to (134), when m > DN > (H + 1)N, we have
(∣∣∣∣

m

N

∣∣∣∣
2θ

+
∣∣∣∣
�̃i

N

∣∣∣∣
2θ)

exp
(

−V
(

�̃i

N

)
− 1 + ε/2

1 + ε
V
(

m

N

))

≤ const ·
∣∣∣∣
m

N

∣∣∣∣
2θ

exp
(

−1 + ε/2
1 + ε

V
(

m

N

))
≤ const

∣∣∣∣
N
m

∣∣∣∣
θε

≤ const · D−θε
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Therefore, writing N(V( m

N)) in (151) as

N
(

V
(

m

N

))
= 1 + ε/2

1 + ε
(N − 1)V

(
m

N

)
+ δV

(
m

N

)

+
(

N − 1 + ε/2
1 + ε

(N − 1) − δ

)
V
(

m

N

)
,

and noticing that the last term is positive when m > DN and N is large, we conclude that
for some c8 > 0, all D > H + 1 and all N > N0

PN(�N > DN) ≤ c8 exp(c8N) · N2 · D−θεN.

Choosing D large enough, we obtain the desired exponential estimate for PN(�N > DN).
The estimate for PN(�1 < −DN) is obtained in the same way—the only difference is that

we now need to bound
Z(1)

N−1,+
ZN

instead of ZN−1,+
ZN

, but for that we use Lemma 10.4. �

Remark 10.6. — It is very plausible that one can similarly establish an analogue of
Theorem 10.1 for more general models in the framework of Section 3 with a1(N) = −∞
and bk(N) = +∞. The only necessary modification in the above proofs is in Lemma
10.2, where we should take into account that the Lipshitz property of V(x) might fail
near the endpoints ai(N), bi(N), cf. (72). We will not address here the exact conditions
on V(x) under which an analogue of Lemma 10.2 holds for the models in framework of
Section 3.
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