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ABSTRACT

In this paper we settle two long-standing questions regarding the combinatorial complexity of Minkowski sums
of polytopes: We give a tight upper bound for the number of faces of a Minkowski sum, including a characterization of
the case of equality. We similarly give a (tight) upper bound theorem for mixed facets of Minkowski sums. This has a wide
range of applications and generalizes the classical Upper Bound Theorems of McMullen and Stanley.

Our main observation is that within (relative) Stanley–Reisner theory, it is possible to encode topological as well
as combinatorial/geometric restrictions in an algebraic setup. We illustrate the technology by providing several simplicial
isoperimetric and reverse isoperimetric inequalities in addition to our treatment of Minkowski sums.

The Upper Bound Theorem (UBT) for polytopes is one of the cornerstones of discrete
geometry. The UBT gives precise bounds on the ‘combinatorial complexity’ of a con-
vex polytope P as measured by the number of k-dimensional faces fk(P) in terms of its
dimension and the number of vertices.

Upper Bound Theorem for polytopes. — For a d-dimensional polytope P on n vertices and

0 ≤ k < d

fk(P) ≤ fk
(
Cycd(n)

)

where Cycd(n) is a d-dimensional cyclic polytope on n vertices. Moreover, equality holds for all k whenever

it holds for some k0, k0 + 1 ≥ � d

2�.

Polytopes attaining the upper bound are called (simplicial) neighborly polytopes and
are characterized by the fact that all non-faces are of dimension at least d

2 . Cyclic poly-
topes are a particularly interesting class of neighborly polytopes whose combinatorial
structure allows for an elementary and explicit calculation of fk(Cycd(n)) in terms of d and
n; cf. [Zie95, Section 0]. The UBT was conjectured by Motzkin [Mot57] and proved by
McMullen [McM70]. One of the salient features to note is that for given d and n there is
a polytope that maximizes fk for all k simultaneously—a priori, this is not to be expected.

In this paper we will address more general upper bound problems for polytopes
and polytopal complexes. To state the main applications of the theory to be developed,
recall that the Minkowski sum of polytopes P,Q ⊆ Rd is the polytope

P + Q = {p + q : p ∈ P, q ∈ Q}.
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There is no understating the importance of Minkowski sums for modern mathematics. It
is named after Hermann Minkowski [Min11], who inaugurated the rich theory of mixed
volumes and geometric inequalities; see [Sch93]. Applications reach into algebraic geom-
etry [Hov78, CLS11], geometry of numbers and packings, computational commutative
algebra [GS93, Stu02], robot motion planning [Lat91], and game theory [MRTT53].
An important and practically relevant question is regarding the combinatorial complex-
ity of P + Q is in terms of P and Q. More precisely the Upper Bound Problem for Minkowski

sums (UBPM), raised (in print) by Gritzmann and Sturmfels [GS93], asks:

For given k < d and n1, n2, . . . , nm, what is the maximal number of k-dimensional faces of the

Minkowski sum P1 + P2 + · · · + Pm for polytopes P1, . . . ,Pm ⊆ Rd with vertex numbers

f0(Pi) = ni for i = 1, . . . ,m?

A solution to the UBPM subsumes the UBT for m = 1. For m > 1, it is nontrivial even
for k = 0: In [San09], a comparatively involved topological argument is employed to
show that for m ≥ d the trivial upper bound of n1n2 · · · nm vertices can not be attained.
On the constructive side, Fukuda and Weibel [FW07, FW10, Wei12] and Matschke–
Pfeifle–Pilaud [MPP11] gave several constructions for Minkowski sums that potentially
maximize the number of faces. In particular, the constructions maximize the number
of low-dimensional faces and, in analogy to the classical situation, they will be called
Minkowski neighborly families (see Sections 5 and 6). Weibel [Wei12] proved that the num-
ber of vertices of a Minkowski sum is maximized by Minkowski neighborly families. A re-
cent breakthrough was achieved by Karavelas and Tzanaki [KT11] who resolved the
UBPM for two summands and subsequently for three summands in collaboration with
Konaxis [KKT15]. Both papers adapt McMullen’s geometric approach via shellings but
with a dramatic increase in the complexity of the arguments. In this paper we give a
complete resolution of the UBPM including a characterization of the equality case using
a algebraic setup.

Upper Bound Theorem for Minkowski sums (UBTM). — For polytopes P1, . . . ,Pm ⊆ Rd

with n1, . . . , nm vertices and 0 ≤ k < d = dim P1 + · · · + Pm

fk(P1 + · · · + Pm) ≤ fk(N1 + · · · + Nm)

where the family (N1, . . . ,Nm) is Minkowski neighborly with f0(Ni) = ni for all i = 1, . . . ,m.

Equality holds for all k if it holds for some k0, k0 + 1 ≥ d+2m−2
2 .

A face of a Minkowski sum is mixed if it is the sum of positive-dimensional faces
of the summands. Mixed faces play an important role in mixed volume computations
and they prominently appear in toric/tropical intersection theory [FS97, Kat12, ST10],
sparse resultants [PS93, EC95] as well as colorful geometric combinatorics [ABPS15]
and game theory. Our methods also apply to the study of mixed faces and we estab-
lish strong upper bounds and in particular characterize the case of equality in the most
important case.
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Upper Bound Theorem for mixed facets. — The number of mixed facets of a Minkowski sum is

maximized by Minkowski neighborly families.

From discrete geometry to combinatorial topology to commutative algebra. — An intriguing
feature of the UBT is that its validity extends beyond the realm of convex polytopes
and into combinatorial topology. Let � be a triangulation of the (d − 1)-sphere and, as
before, let us write fk(�) for the number of k-dimensional faces. For example, boundaries
of simplicial d-dimensional polytopes yield simplicial spheres, but these are by far not all.

Upper Bound Theorem for spheres. — For a simplicial (d − 1)-dimensional sphere � on n

vertices

fk(�) ≤ fk
(
Cycd(n)

)

for all k = 0,1, . . . , d − 1. Equality holds for some k ≥ � d

2� if and only if � is neighborly.

The UBT for spheres was proved by Stanley [Sta75] in answer to a conjec-
ture of Klee [Kle64] and relied on a ground-breaking connection between combina-
torial topology and commutative algebra that was first described by Hochster and Reis-
ner [Hoc77, Rei76]. To a simplicial complex � one associates a finitely generated graded
k-algebra k[�]—the Stanley–Reisner ring of �—that algebraically encodes the simplicial
complex. Hochster and Reisner showed that, in turn, algebraic properties such as Cohen–
Macaulayness of k[�] are determined by topological properties of �. The key observa-
tion of Stanley was that enumerative properties and especially upper bounds on face num-
bers can be extracted from k[�] using algebraic implications of Cohen–Macaulayness.
This was the starting point of Stanley–Reisner theory. Stanley’s work spawned exten-
sions of the UBT to (pseudo-)manifolds with (mild) singularities; see for example [Nov03,
Nov05, MNS11, NS12]. A pivotal result was a formula of Schenzel [Sch81] that relates
algebraic properties of k[�] to the face numbers as well as topological properties of �,
provided k[�] is a Buchsbaum ring (which is in particular true for all manifolds).

The UBTM too will be the consequence of a statement in the topological domain
that we derive using algebra, though we will also briefly comment on a geometric ap-
proach to the problem. The appropriate combinatorial/topological setup for the UBPM
is that of relative simplicial complexes: A relative simplicial complex is a pair of simplicial
complexes � = (�,�) where � ⊆ � is a subcomplex. The faces of � are precisely the
faces of � not contained in �. The number of k-dimensional faces of � is therefore
fk(�) = fk(�,�) := fk(�) − fk(�). The algebraic object naturally associated to a rela-
tive complex � = (�,�) is the Stanley–Reisner module or face module M[�]. Upper Bound
Problems for relative complexes have been considered in different guises for instance
in the study of comparison theorems for f -vectors [Bjö07], Upper Bound Theorems of
manifolds [NS09] and polyhedra [BL81, BKL86], triangulations of polytopes [McM04],
and the study of sequentially Cohen–Macaulay complexes and rings [Duv96, ABG83].
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For the type of relative upper bound problems we will consider, however, it is crucial
to study complexes not only under topological restrictions (such as the Buchsbaum or
Cohen–Macaulay property) but to also take the combinatorics and geometry of � in �

into account. We show that relative Stanley–Reisner theory has the capacity to encode
such restrictions, and exploit this fact heavily in the present paper.

Outline of the paper. — We provide a gentle introduction to (relative) Stanley–Reisner
theory that starts (in Section 1) with a review of the classical setup, collecting also results
pertaining to relative simplicial complexes that are implicit in works of Stanley, Schenzel
and others. The same applies to Section 2, where we extend the Schenzel formula to the
relative setting. In Section 3 we recall Stanley’s proof of the UBT for spheres which sets
the stage for general relative upper bound theorems. In particular, we discuss combinato-
rial isoperimetric problems and the combinatorial restrictions we can impose on relative
complexes.

We illustrate our methods on a variety of simplicial isoperimetric and reverse
isoperimetric inequalities in parallel to the developments of the main methods. A com-
binatorial isoperimetric inequality bounds ( from above) the size of the interior of a com-
binatorial object in terms of its boundary; a reverse isoperimetric problem bounds the
boundary in terms of its interior.

The Schenzel formula states that the entries of the h-vector of � are given by an
algebraic component halg(�) and a topological component htop(�) that we study individually.
The latter is typically an invariant of the problem we wish to consider, and hence the
former will be of main interest to us. In Section 4 we develop several powerful tools for
studying the algebraic component.

(1) Section 4.1 provides bounds by comparing a given relative complex to a sim-
pler one. This technique recovers Stanley’s approach to the UBT as a special
case. The most challenging part is to characterize the case of equality which has
an interesting connection to the Nerve Lemma. This approach is demonstrated
in Section 4.2 for arrangements of Cohen–Macaulay subcomplexes.

(2) In Section 4.3, we integrate local information on the h-vector to obtain global
bounds. Combined with the fact that the algebraic component halg(�) is mono-
tone under passing to subcomplexes, this can be used to derive effective upper
bounds in many settings. This is an algebraic generalization of a geometric idea
due to McMullen.

(3) The latter technique is refined in Section 4.4, to give even stronger upper
bounds on the algebraic h-numbers; in particular, we obtain a reverse isoperi-
metric inequality of a kind that seems new to the subject.

(4) We close in Section 4.5 with a brief discussion of relative shellability. This tech-
nique can be used to give a combinatorial-geometric proof of the UBTM, al-
though a proper proof is more intricate.
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In Section 5 we cast the Upper Bound Problem for Minkowski sums into a rela-
tive upper bound problem. The connection to relative complexes is via Cayley polytopes.
Section 5.2 illustrates the general approach for two summands and gives a simple proof
for the results of Karavelas–Tzanaki [KT11]. The remainder of the section gives a com-
plete proof of the UBTM for pure collections, that is, polytopes P1, . . . ,Pm ⊆ Rd with
f0(Pi) ≥ d + 1 for all i. Section 6 treats the general case without restrictions on the
number of vertices. In Section 7 we combine our results with the combinatorics of Cay-
ley polytopes to give an upper bound on the number of mixed faces of a general sum
P1 + P2 + · · · + Pm. For mixed facets, this bound is tight, and maximized by Minkowski
neighborly families.

1. Relative Stanley–Reisner theory

In this section we lay out the foundations for relative Stanley–Reisner theory, an
algebraic-combinatorial theory for relative simplicial complexes. For further background
on Stanley–Reisner rings and combinatorial commutative algebra, we refer to [Sta96]
and [MS05].

A simplicial complex � is a collection of subsets � ⊆ 2[n] for some [n] := {1,2, . . . , n}
that is closed under taking subsets. We explicitly allow � to be empty and we call ∅ the
void complex. Thus any simplicial complex � �= ∅ contains the empty face ∅. For S ⊆ [n]
the simplex with vertex set S is denoted by �S := 2S. We also write �n = �[n], and set
�0 := {∅} �= ∅. A relative simplicial complex is a pair � = (�,�) of simplicial complexes
for which � ⊆ � is a proper subcomplex. The faces of � = (�,�) are the elements

�\� = {σ ∈ � : σ �∈ �}.
An ordinary simplicial complex is thus a relative simplicial complex with � = ∅. The
dimension of a relative simplicial complex is

dim� := max
{
dimσ : σ ∈ (�,�)

}

where dimσ = |σ | − 1. We say � is pure if all inclusion-maximal faces in �\� are of
the same dimension. The vertices of a relative complex are denoted by V(�) := {i ∈ [n] :
{i} ∈ �}. We write �(i) to denote the (i − 1)-skeleton of � , i.e. the subcomplex of all faces
of � of dimension < i.

We denote by H̃•(�,k) reduced homology with coefficients in k; unless reference
to the coefficient field is necessary, we omit it. If � = (�,�) is a relative simpli-
cial complex, then H̃•(�) = H̃•(�,�) is the usual relative homology. Observe that
H̃•(�,�0) is the unreduced homology of �. The reduced Betti numbers are denoted by
β̃i(�;k) = dimk H̃i(�;k).
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Let k[x] = k[x1, . . . , xn] be the polynomial ring over k in n variables. For a mono-
mial xα the support is defined as supp(xα) = supp(α) = {i ∈ [n] : αi > 0}. For a simplicial
complex � on [n], the Stanley–Reisner ideal, or face ideal, is the ideal

I� := 〈
xτ : τ ⊆ [n], τ �∈ �

〉 = k-span
{
xα : supp

(
xα

) �∈ �
} ⊆ k[x].

The Stanley–Reisner ring or face ring is k[�] := k[x]/I�. The appropriate algebraic object
associated to a relative complex � = (�,�) is the Stanley–Reisner module or face module

M[�] = M[�,�] := ker
(
k[�] −� k[�]) ∼= I�/I� ⊆ k[�].

We regard M[�] as a module over k[x]. If � = �0 is the empty complex, then

M[�] ∼= k[�].

1.1. Face numbers and Hilbert functions. — For a (relative) simplicial complex � of
dimension dim� = d − 1, the f -vector of � is defined as f (�) := ( f−1, f0, . . . , fd−1)

where fi = fi(�) is the number of i-dimensional faces of � . If � = (�,�), then f (�) =
f (�) − f (�).

A k[x]-module M is Zn-graded or finely graded if M = ⊕
α∈Zn Mα and xβMα ⊆ Mα+β

for all β ∈ Zn
≥0. For � = (�,�), the fine Hilbert series is given by

F
(
M[�], t

) = F
(
M[�], t1, . . . , tn

) :=
∑

α∈Zn

dimk M[�]α tα

=
∑

σ∈�\�

∏

i∈σ

ti

1 − ti
.

The fine grading specializes to a Z-grading or coarse grading and we obtain

F
(
M[�], t

) =
∑

σ∈�\�

t|σ |

(1 − t)|σ | =
∑d

k=0 fk−1 tk(1 − t)d−k

(1 − t)d

= h0 + h1t + · · · + hd td

(1 − t)d
.

We use the last equality as the definition of the h-vector h(�) = (h0, . . . , hd) of the (relative)
simplicial complex � . If � is a simplicial complex, that is, if � = ∅, then h0 = 1 and h1 =
f0(�)−d . If dim� = dim�, then h(�) = h(�)−h(�) and hence h0(�) = 0 and h1(�) =
f0(�) − f0(�). The conversion between f -vector and h-vector can be made explicit as

(1)
d∑

i=0

fi−1(�)td−i =
d∑

k=0

hk(�)(t + 1)d−k.
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Individual entries are thus given by

hk(�) =
k∑

i=0

(−1)k−i

(
d − i

k − i

)
fi−1(�) and

fi−1(�) =
i∑

k=0

(
d − k

i − k

)
hk(�).

The second formula is crucial for upper bounds on face numbers:

Observation 1.1. — The number of (i − 1)-faces fi−1(�) is a positive linear combination of

the h-numbers h0(�), . . . , hi(�). In particular, upper bounds on entries of the h-vector imply upper

bounds on the f -vector.

Finally, the g-vector of the (relative) simplicial complex � is

g(�) = (g1, . . . , gd) := (h1 − h0, h2 − h1, . . . , hd − hd−1).

The link of σ ⊆ [n] in a simplicial complex � is lk(σ,�) := {τ ∈ � : σ ∩ τ = ∅,

σ ∪ τ ∈ �}. In particular, lk(∅,�) = � and lk(σ,�) = ∅ is the void complex whenever
σ �∈ �. The (closed) star of a face σ in a simplicial complex � is defined as st(σ,�) :=
{τ ∈ � : σ ∪ τ ∈ �} and we define the deletion of a face σ of � as � − σ := {τ ∈ � :
σ �⊆ τ }. In particular, link and star of a face σ are related by lk(σ,�) = st(σ,�) − σ .
For a relative simplicial complex � = (�,�), the notions of link and star are defined
to respect the relative structure: For σ ⊆ [n], we set lk(σ,�) = (lk(σ,�), lk(σ,�)) and
st(σ,�) = (st(σ,�), st(σ,�)).

Lemma 1.2. — Let � = (�,�) be a relative simplicial complex. Let v ∈ V(�) be any

vertex and let e − 1 = dim st(v,�) = dim lk(v,�) + 1. Then

hk

(
lk(v,�)

) = hk

(
st(v,�)

)

for all 0 ≤ k < e and he(st(v,�)) = 0.

Proof. — Observe that M[st(v,�)]/xvM[st(v,�)] ∼= M[lk(v,�)] and that
M[st(v,�)] ×xv−−→ M[st(v,�)] is injective. Passing to the coarse Hilbert series proves the
claim. �

The Euler characteristic of a (relative) simplicial (d − 1)-complex � is

χ(�) :=
d−1∑

i=0

(−1)i fi(�) = (−1)d−1hd(�).
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Notice that χ(�) = χ(�,∅) is the reduced Euler characteristic and

χ(�) = χ(�) − χ(�).

It turns out that for various classes of simplicial complexes, the entries of the h-
vector are not independent from each other. If � is a simplicial sphere, the classical
Dehn–Sommerville equations state hk = hd−k for all k = 0, . . . , d , a relation closely related
to Poincaré duality.

The following two results are generalizations of the classical Dehn–Sommerville
relations to the relative setting, to manifolds and to balls. Recall that a (relative) sim-
plicial complex � = (�,�) is Eulerian if � is pure and χ(lk(σ,�)) = (−1)dim lk(σ,�)

for all σ ∈ � . For example, all (homology) spheres are Eulerian. For general (homol-
ogy) manifolds, a weaker notion is in order. The relative complex � is weakly Eulerian if
χ(lk(σ,�)) = (−1)dim lk(σ,�) for all nonempty faces σ . The following lemma is a version
of the Dehn–Sommerville relations (cf. [Kle64, Grä87, NS09]) for relative complexes.

Lemma 1.3 (Dehn–Sommerville relations). — Let � = (�,�) be a relative simplicial complex

of dimension d − 1. If � is weakly Eulerian, then

hd−i(�) = hi(�) + (−1)i

(
d

i

)
(
(−1)d−1χ(�,�) − 1

)
.

Lemma 1.3 is a direct consequence of the following reciprocity law of M[�].
Proposition 1.4. — Let � = (�,�) be a relative complex of dimension d − 1. Then the fine

Hilbert series of M[�] satisfies

(−1)d F
(
M[�], 1

t1
, . . . , 1

tn

) =
∑

a∈Zn≥0

(−1)codimσaχ
(
lk(σa,�)

)
ta

where σa = supp(a) and codimσa := dim� − dimσa.

This is a statement analogous to Lemma 5.4.3 in [BH93]. If � = (�,�) is weakly
Eulerian, then Proposition 1.4 yields

(−1)dF
(
M[�], 1

t

) = (−1)d−1χ(�,�) − 1 + F
(
M[�], t

)
.

Passing to the coarse Hilbert series proves Lemma 1.3.

1.2. Cohen–Macaulay and Buchsbaum modules and complexes. — Let M be a finitely
generated graded module over k[x]. For a sequence 
 = (θ1, . . . , θ�) of elements of
k[x], let us write 
s = (θ1, . . . , θs) for the subsequence of the first s elements and
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sM = ∑s

i=1 θiM. A partial homogeneous system of parameters (partial h.s.o.p.) is a sequence

 = (θ1, . . . , θ�) of homogeneous elements of k[x] such that

dim M/
M = dim M − �.

If � = dim M, then 
 is a homogeneous system of parameters. If all θi are of degree one,
then 
 is a (partial) linear system of parameters (l.s.o.p.). Throughout the paper we assume
that the field k is infinite, which guarantees the existence of a linear system of parameters
(cf. [Eis95, Theorem. 13.3]).

A sequence 
 = (θ1, . . . , θ�) of homogeneous elements is called M-regular, if

M �= M and


i−1M : θi := {m ∈ M : mθi ∈ 
i−1M} = 
i−1M

for all i = 1, . . . , �. Every regular sequence is a partial h.s.o.p. but the converse is false.
An immediate consequence of the definition is the following.

Proposition 1.5. — Let M be a finitely generated graded module over k[x] and


 = (θ1, . . . , θr)

be an M-regular sequence of linear forms. Then (1 − t)rF(M, t) = F(M/
M, t).

The length of the longest regular sequence of a module M is called the depth

depth(M) of M. Clearly, depth(M) ≤ dim(M), and Cohen–Macaulayness characterizes
the case of equality.

Definition 1.6. — A k[x]-module M is called Cohen–Macaulay if depth(M) = dim(M).

A relative simplicial complex � = (�,�) is Cohen–Macaulay (CM, for short) if M[�] is a Cohen–

Macaulay module.

To treat Upper Bound Problems on manifolds, we will need to consider a more
general class of complexes. Let us denote by m := 〈x1, . . . , xn〉 ⊆ k[x] the irrelevant ideal.
An h.s.o.p. 
 = (θ1, . . . , θ�) is a weak M-sequence if 
M �= M and

(2) 
i−1M : θi = 
i−1M : m
for all i = 1, . . . , �.

Definition 1.7. — A finitely generated graded module M over k[x] is Buchsbaum if every

h.s.o.p. is a weak M-sequence. A relative simplicial complex � is Buchsbaum if the face module M[�]
is Buchsbaum.
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Every Cohen–Macaulay module is also a Buchsbaum module. The converse is
clearly false, as will become clear once we provide the topological criterion for Cohen–
Macaulay and Buchsbaum complexes.

The depth of a module is detected by local cohomology. We denote by Hi
m
(M) the

ith local cohomology of M with support in m, cf. [ILL+07]. In the case of a face module, the
Zn-graded Hilbert-Poincaré series can be computed in terms of local topological infor-
mation of the relative simplicial complex. The following is a relative version of a formula
due to Hochster; see [Sta96, Theorem II.4.1] or [MS05, Theorem 13.13].

Theorem 1.8 (Hochster’s formula for relative complexes). — Let � = (�,�) be a relative

simplicial complex and let M = M[�] denote its face module. The Hilbert series of the local cohomology

modules in the fine grading is

F
(
Hi

m
(M), t

) =
∑

σ∈�

dimk H̃i−dimσ−2

(
lk(σ,�)

)∏

i∈σ

t−1
i

1 − t−1
i

.

In other words, for α ∈ Zn and σα := supp(α), we have

Hi
m
(M)α

∼=
{

H̃i−dimσ−2(lk(σα,�)) if α ≤ 0 and σα ∈ �, and

0 otherwise.

Proof. — Following the proof of [MS05, Theorem 13.13], let Č = ⊕
σ⊆[n] k[x]xσ be

the Zn-graded Čech complex with respect to x1, . . . , xn where k[x]xσ is the localization at
xσ . By definition of M = M[�], we have the short exact sequence of Zn-graded modules

0 −→ M −→ k[�] −→ k[�] −→ 0.

Let α ∈ Zn be arbitrary but fixed and let α+, α− ∈ Zn
≥0 such that α = α+ − α− and

supp(α+)∩ supp(α−) = ∅. Moreover let σ = supp(α). From the proof of Theorem 13.13
in [MS05], we know that the complex of k-vector spaces (k[�] ⊗ Č)α is isomorphic to
the chain complex of lk(σ,�) shifted by |supp(α−)| + 1 if α+ = 0 and acyclic otherwise.
The argument applies to (k[�] ⊗ Č)α as well and thus (M ⊗ Č)α is isomorphic to the
chain complex of the pair lk(σ,�) = (lk(σ,�, lk(σ,�)), again shifted by |supp(α−)| + 1
if α+ = 0. It follows that as k-vector spaces Hi

m
(M)α

∼= H̃i−dimσ−2(lk(σα,�)) whenever
α ≤ 0 and identically zero otherwise. �

From the relative Hochster formula and the fact that Hi
m
(M) = 0 for i < e =

depth(M) and He
m
(M) �= 0 we deduce a relative version of a criterion of Reisner [Rei76]

for simplicial complexes to be Cohen–Macaulay.

Theorem 1.9 (Sta96, Theorem III.7.2). — A relative simplicial complex � = (�,�) is

Cohen–Macaulay if and only if H̃i(lk(σ,�)) = 0 for all faces σ ∈ � and all i < dim lk(σ,�).
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Corollary 1.10 (Sta96, Theorem III.7.3). — Let � be a simplicial complex and � ⊆ � a

subcomplex. If � and � are Cohen–Macaulay and dim� − dim� ≤ 1, then (�,�) is Cohen–

Macaulay. Conversely, if � and (�,�) are Cohen–Macaulay then dim� − dim� ≤ 1 and

H̃i(lk(σ,�)) = 0 for all σ ∈ � and i < dim� − dimσ − 2.

Proof. — Let us write lk(σ,�) = (�σ ,�σ ) for σ ∈ �. For the pair (�σ ,�σ ) con-
sider the long exact sequence

· · · −→ H̃i(�σ) −→ H̃i(�σ ,�σ ) −→ H̃i−1(�σ ) −→ H̃i−1(�σ)

−→ H̃i−1(�σ ,�σ ) −→ · · ·
The vanishing of homologies splits the sequence and the first claim follows from

0 = H̃i(�σ) → H̃i(�σ ,�σ ) → H̃i−1(�σ ) = 0

for i < dim(�σ ,�σ ) ≤ dim�σ.

The second claim follows analogously. �

A similar criterion can be derived to characterize (relative) Buchsbaum complexes;
cf. [Miy89, Sch81].

Theorem 1.11. — For a pure relative simplicial complex � = (�,�) of dimension d − 1 the

following are equivalent:

(i) � is a Buchsbaum complex.

(ii) M[�] is a Buchsbaum module.

(iii) The link of every vertex is Cohen–Macaulay. (� is locally Cohen–Macaulay.)

(iv) For every nonempty face σ of � and all i < d −dimσ −1, we have H̃i(lk(σ,�)) = 0.

Proof. — (i) ⇔ (ii) is true by definition. The equivalence (iii) ⇔ (iv) is Theorem 1.9.
Assuming (ii), we obtain from equation (2) that every localization M[�]p at primes p �= m

yields a Cohen–Macaulay module. The implication (ii) ⇒ (iii) now follows from the
same argument as in [Rei76, Lemma 5] applied to face modules. Finally, assuming (iv),
it follows from Theorem 1.8 that Hi

m
(M[�])j = 0 whenever j �= 0 and 0 ≤ i ≤ dim�

and [Sch82, Satz 4.3.1] assures us that M[�] is Buchsbaum. �

An immediate corollary from the topological characterizations is that the Cohen–
Macaulay and Buchsbaum properties are inherited to skeleta.

Corollary 1.12. — The k-skeleton of a relative Cohen–Macaulay or Buchsbaum complex is

Cohen–Macaulay or Buchsbaum, respectively.



110 KARIM A. ADIPRASITO, RAMAN SANYAL

2. Local cohomology of Buchsbaum face modules

A key observation in Stanley’s proof of the UBT for spheres � is that

F
(
k[�]/
k[�], t

) = h0(�) + h1(�)t + · · · + hd(�)td

if 
 is a l.s.o.p. of length d = dim� + 1. However, this line of reasoning fails for general
manifolds or Buchsbaum complexes. For these cases, an important tool was developed by
Schenzel [Sch81] that takes into account the topological/homological properties of �. In
this section, we prove a generalization of Schenzel’s formula to relative complexes. Our
treatment is tailor-made for Stanley–Reisner modules and slightly simpler than Schenzel’s
original approach.

A criterion of Schenzel [Sch82, Satz 4.3.1] states that a graded k[x]-module M
is Buchsbaum whenever the Z-graded local cohomology Hi

m
(M) is concentrated in a

fixed degree for all 0 ≤ i < dim M. Schenzel [Sch81] showed that the converse holds
for special classes of Buchsbaum modules. For this, he used the purity of the Frobenius
based on earlier work of Hochster and Roberts [HR74]. For Stanley–Reisner modules,
the concentration of local cohomology is a consequence of Theorem 1.8:

Corollary 2.1. — Let � = (�,�) be a pure relative simplicial complex of dimension d − 1.

Then the following are equivalent:

(i) H̃i(lk(σ,�)) = 0 for all non-empty faces σ ∈ � and all i < dim lk(σ,�) = d −
dimσ − 1.

(ii) The coarse-graded local cohomology of � is concentrated in degree zero, that is,

Hi
m
(M[�])j = 0 for all i, j , j �= 0.

(iii) M[�] is a Buchsbaum module.

For the following discussion, let us write R = k[x] and define R(t) to be the free
rank-one R-module generated in degree −t. Recall that for an homogeneous element
θ1 ∈ Rt the Koszul complex K(θ1) is the complex

0 −→ R
×θ1−→ R(t) −→ 0.

For family of homogeneous elements 
 = (θ1, θ2, . . . , θn) the Koszul complex is defined
as

K(
) = K(θ1) ⊗R K(θ2) ⊗R · · · ⊗R K(θn).

For a graded R-module M we denote by H•(
;M) := H•(K(
) ⊗R M) the Koszul coho-

mology of M with respect to 
. The Koszul complex is a basic tool in the study of local
cohomology and we refer the reader to [BH93, ILL+07] for further information.
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Lemma 2.2. — Let M be a Buchsbaum module of dimension d and 
 = (θ1, . . . , θd) a

h.s.o.p. for M. Then for all 0 ≤ i < d, mHi(
;M) = 0. In particular, the Koszul cohomology

modules are k-vector spaces of dimension

dimk Hi(
s;M) =
i∑

j=0

(
s

i − j

)
dimk Hj

m
(M).

The lemma is a direct consequence of Lemma 4.2.1 of [Sch82] except that we
need to verify that Hi(
s;M) is of finite length for all i.

Proposition 2.3. — If M is a Buchsbaum module and 
 is a h.s.o.p., then Hi(
s;M) is of

finite length for all 0 ≤ i ≤ s.

Proof. — For s = d := dim M, 
 is a homogeneous system of parameters. Thus
Hd(
;M) = M/
M is of dimension zero, and therefore of finite length and the result
follows. For s < d , observe that for all j ≥ 1, 
′ = (θ1, . . . , θs, θ

j

s+1) is a partial h.s.o.p.
for M. Now, K(
′) is the mapping cone of ×θ

j

s+1 : K(
s) −→ K(
s) and the long exact
sequence in cohomology yields

0 −→ Hi−1(
s;M)/θ j+1
s Hi−1(
s;M) −→ Hi

(

′;M

)
.

By induction on s and Lemma 2.2, mHi−1(
s;M) = 0 since Hi(
′;M) is annihilated
by the irrelevant ideal for all j ≥ 1. The finite length of Hi−1(
s;M) now follows from
Nakayama’s Lemma. �

As a consequence we note the following.

Corollary 2.4. — Let M be Buchsbaum R-module of dimension d and let 
 be a l.s.o.p. for M.

Then for all 0 < s ≤ d, we have

dimk(
s−1M : θs)/(
s−1M) =
s−1∑

i=0

(
s − 1

i

)
dimk Hi

m
(M).

Proof. — As in [Sch82, Lemma 6.3.4], we have the short exact sequence

0 −→ Hs−2(
s−1;M) −→ Hs−1(
s;M) −→ (
s−1M : θs)/(
s−1M)

−→ 0

as Hs−1(
s;M) is annihilated by the irrelevant ideal. By Lemma 2.2 and the Buchsbaum
property (2), this is a sequence of k-vector spaces and hence splits. The result now follows
from Lemma 2.2. �
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With this, we can reprove and generalize Schenzel’s Formula to relative Buchs-
baum complexes, and therefore provide a central tool for relative Stanley–Reisner The-
ory.

Theorem 2.5 (Relative Schenzel formula). — Let � = (�,�) be a relative Buchsbaum com-

plex of dimension d − 1 and M = M[�] the associated face module. If 
 is a l.s.o.p. for M, then

(1 − t)dF(M, t) = F(M/
M, t) +
d∑

j=1

(
d

j

)( j−1∑

i=0

(−1)j−iβ̃i−1(�,�)

)
t j.

The formula states that the h-vector of a relative complex � is the sum of an
algebraic and a topological component. In this spirit, we denote the algebraic component by

h
alg
k (�) := dimk

(
M[�,�]/
M[�,�])

k
,

where 
 is a l.s.o.p. and the topological component by

h
top
k (�) :=

(
d

k

) k−1∑

i=0

(−1)k−iβ̃i−1(�,�).

We can rewrite the relative Schenzel formula as follows.

Theorem 2.5. — Let � = (�,�) be a relative Buchsbaum complex of dimension d − 1. If


 is a l.s.o.p. for M = M[�], then

hk(�) = h
alg
k (�) + h

top
k (�)

for any k.

Proof. — We closely follow Schenzel’s proof of the case of simplicial com-
plexes [Sch81, Theorem 4.3]. For a linear form θ ∈ k[x] and a graded k[x]-module
N we have the exact sequence

0 −→ (0N : θ) −→ N
θ−→ N(1) −→ (N/θN)(1) −→ 0

and hence

(1 − t)F(N, t) = F(N/θN, t) − tF
(
(0N : θ), t

)
.

Iterating this argument with N = M[�]/
sM[�] for 1 ≤ s ≤ d , this yields

(1 − t)dF(M, t)

= F(M/
M, t) −
d∑

s=1

t(1 − t)s−1F
(
(
s−1M : θs)/
s−1M, t

)
.
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By Corollary 2.4 and Hochster’s formula, we finally obtain

F
(
(
s−1M : θs)/
s−1M, t

) =
d−s∑

i=0

(
d − s

i

)
dimk β̃i−1(�) ti.

�

3. Relative upper bound problems

In this section we lay out model problems for relative upper bounds that will be ad-
dressed with relative Stanley–Reisner theory and in particular relative Buchsbaum com-
plexes. We start by discussing the classical Upper Bound Theorem for polytopes and
spheres. We address two combinatorial isoperimetric problems that allow us to introduce
the notion of full subcomplexes. The proofs of the respective upper bounds are postponed
to Section 4.2 where general techniques will be available.

3.1. The upper bound theorem for spheres. — In the proof of the UBT for polytopes,
the first step is to reduce the problem of finding a d-polytope on n vertices that maximizes
the number of k-faces to a problem about simplicial (d − 1)-spheres by observing that by
perturbing the vertices of a polytope, the number of faces can only increase, cf. [Kle64].
In light of Observation 1.1, it is now sufficient to bound the h-vector of �. The crucial
lemma due to Stanley is the following.

Lemma 3.1. — Let � be a (d −1)-dimensional Cohen–Macaulay complex on n vertices. Then

hk(�) ≤
(

n − d − 1 + k

k

)

for all 0 ≤ k ≤ d. Equality holds for some k0 if and only if � has no non-face of dimension < k0.

Proof. — For a linear system of parameters 
, Proposition 1.5 yields

H
(
k[�]/
k[�], t

) = h0 + h1t + · · · + hd td

where (h0, . . . , hd) is the h-vector of �. We have the canonical graded surjection

N := k[x1, . . . , xn] � k[�]
as k[x]-modules. Now, 
 is a regular sequence for N and N/
N ∼= k[y1, . . . , yh1] with
h1 = n − d . We obtain

hk(�) = dimk

(
k[�]/
k[�])

k

≤ dimk k[y1, . . . , yh1]k =
(

n − d + k − 1
k

)
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for all 0 ≤ k ≤ d which completes the proof of the inequality. For the equality case, we may
assume that � is not the (n − 1)-simplex and thus I� �= 0. By [BH93, Proposition 1.1.4]
we have the short exact sequence

0 −→ I�/
I� −→ k[x]/
k[x] −→ k[�]/
k[�] −→ 0.

Equality holds for k0 if and only if I�/
I� and hence I� has no generators in de-
grees ≤ k0. �

In fact stronger relations hold for the h-vector of a Cohen–Macaulay complex. The
following type of inequalities will be the subject of Section 4.3; see Example 4.19 for the
proof.

Proposition 3.2. — Let � be a (d − 1)-dimensional Cohen–Macaulay complex. Then

khk(�) ≤ (n − d + k − 1)hk−1(�)

for all k = 1, . . . , d. In particular, hk(�) ≤ (
n−d+k−1

k

)
and

gk(�) = hk(�) − hk−1(�) = hk−1(�)

(
hk(�)

hk−1(�)
− 1

)
≤

(
n − d + k − 2

k

)
.

Lemma 3.1 together with Reisner’s criterion (Theorem 1.9) now implies upper
bounds on the first half of the h-vector. The bounds are tight for boundary complexes of
neighborly polytopes. The second half of h(P) is taken care of by the Dehn–Sommerville
equations which apply as ∂P is Eulerian. This enabled Stanley [Sta75] to generalize Mc-
Mullen’s Upper Bound Theorem [McM70] from polytopes to simplicial spheres.

Theorem 3.3 (Upper Bound Theorem for spheres). — If � is a simplicial (d − 1)-sphere on n

vertices, then

hk(�) = hd−k(�) ≤
(

n − d + k − 1
k

)

for all 0 ≤ k ≤ � d

2�. Moreover, the h-vector is maximized precisely on neighborly (d − 1)-spheres.

For more on neighborly polytopes and McMullen’s geometric perspective on the
upper bound theorem, we refer the reader to Section 8 of Ziegler’s book [Zie95].

3.2. Combinatorial isoperimetric problems. — The classical isoperimetric problem asks
for the maximum volume of a d-dimensional convex body K with an upper bound on
the surface area. The following is a suitable discrete analog.
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Question 3.4 (Combinatorial isoperimetric problem). — Let � be a triangulation of a d-ball

on m + n vertices and n vertices in the boundary. What is the maximal number of k-faces in the interior

of �?

This is a model problem for relative complexes. We seek to maximize fk(�, ∂�) =
fk(�) − fk(∂�). As it turns out a resolution to the combinatorial isoperimetric problem
can be given using the “classical” tools of Section 1, provided that we make the additional
assumption that the Generalized Lower Bound Conjecture of McMullen and Walkup [MW71]
holds for � = ∂�, that is, gk(�) = hk(�) − hk−1(�) ≥ 0 for all k. For a relative complex
� = (�,�) with � �= ∅, we have h0(�) = 0 and h1(�) = f0(�) − f0(�) and we need
only to worry about hk(�) for k ≥ 2.

Theorem 3.5 (Combinatorial isoperimetry of balls I). — Let � be a simplicial (d − 1)-ball on

m + n vertices with n vertices in the boundary and assume that the Generalized Lower Bound Conjecture

holds for ∂�. Then the following inequalities hold:

(a) For 2 ≤ k ≤ d

2

hk(�, ∂�) ≤
(

m + n − d + k − 1
k

)
.

Equality holds for some k0 ≤ d

2 if and only if every non-face σ of � of dimension < k0 is

supported in ∂�.

(b) For d

2 < k ≤ d

hk(�, ∂�) ≤
(

m + n − 1 − k

d − k

)
.

Equality holds for some k0 > d

2 if and only if � has no non-face σ of dimension < d − k0.

Moreover, the bounds are tight: For every n ≥ d ≥ 0 and m ≥ 0, there is a (d − 1)-ball that attains the

upper bounds for every k simultaneously.

Proof. — For (a), notice that

hk(�, ∂�) = hk(�) − gk(∂�) ≤
(

m + n − d + k − 1
k

)
− gk(∂�)

by Lemma 3.1. The Generalized Lower Bound Conjecture for ∂� yields the claim.
For part (b), notice that by the Dehn–Sommerville relations (Lemma 1.3), we have

hk(�, ∂�) = hd−k(�) for all 0 ≤ k ≤ d and we can again appeal to Lemma 3.1.
For tightness, let us consider any cyclic (d − 1)-sphere N on m + n vertices. Now,

using the method of Billera–Lee [BL80], we may find a stacked (d − 1)-ball B ⊆ N on n

vertices. With this, we can set � as the subcomplex of N induced by the facets not in B.
Then, � is neighborly, and ∂� is stacked. Therefore, all inequalities above are attained
with equality. �
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3.3. Combinatorial isoperimetry II: full complexes. — One of the key features of relative
Stanley–Reisner Theory is that we can impose restrictions on the ‘position’ of � in �. A
profitable way to encode such a positional restriction of � is the notion of full subcom-
plexes:

Definition 3.6. — A subcomplex � ⊆ � is full if every face of � whose vertices are contained

in � is also a face of �. We call the relative complex � = (�,�) full if � is full in �.

The notion of full subcomplex generalizes the idea of vertex-induced subgraphs.
This is a very natural notion that makes prominent appearances in PL topology
[Zee66, RS72], algebraic topology [Geo08, JMR83], graph theory, commutative alge-
bra [Hoc77] and geometric group theory [CD95, Dav08].

While it may seem quite restrictive to consider only full subcomplexes, we shall
later see that the notion can be refined effectively using the more flexible notion of “full
arrangements”, compare Section 4.1.

Proposition 3.7. — Let � denote any simplicial complex, and let � denote any subcomplex.

The following are equivalent:

(i) � is full in �;

(ii) For every face F ∈ � with ∂F ∈ �, we have F ∈ �;

(iii) � = � ∩ �V(�).

Notice that fullness is not a topological invariant; it is preserved under subdivisions,
but not under PL homeomorphisms. The notion of fullness is, for instance, useful when
identifying two simplicial complexes along a common subcomplex. Fullness then guar-
antees that the result is again a simplicial complex. Hence, the notion of fullness can in
particular be used to bound the complexity of PL handlebodies.

Theorem 3.8 (Combinatorial isoperimetry for manifolds). — Let M denote a simplicial

(d − 1)-manifold on m + n vertices, and let B denote a (d − 2)-dimensional submanifold on n vertices

of ∂M such that B is full in M. Then

hk(M,B) ≤
(

m + n − d + k − 1
k

)
−

(
n − d + k − 1

k

)

+
(

d

k

) k−1∑

i=0

(−1)k−iβ̃i−1(M,B)

for all 0 ≤ k ≤ d.

By Theorem 1.11, � = (M,B) is a relative Buchsbaum complex and we can use
Theorem 2.5 to upper bound hk(�). We postpone the estimation on the algebraic compo-
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nent to Section 4 where the necessary tools are developed. In the case when M is a d-ball
and B is the bounding (d − 1)-sphere, we can add the equality case to Theorem 3.8.

Theorem 3.9 (Combinatorial isoperimetry of balls II). — Let � be a simplicial (d − 1)-ball

on m + n vertices with n vertices in the boundary and assume that ∂� ⊆ � is a full subcomplex. Then

the following inequalities hold:

(a) For every 0 ≤ k ≤ d

2

hk(�, ∂�) ≤
(

m + n − d + k − 1
k

)
−

(
n − d + k − 1

k

)

Equality holds for some k0 ≤ d

2 if and only if every non-face σ of � of dimension < k0 is

supported in ∂�.

(b) For every d

2 < k ≤ d

hk(�, ∂�) ≤
(

m + n − 1 − k

d − k

)
.

Equality holds for some k0 > d

2 if and only if � has no non-face σ of dimension < d − k0.

The bounds are tight: For every n ≥ d ≥ 0 and m ≥ 0, there is a d-ball that attains the upper bounds

for all k simultaneously.

Proof of Tightness. — We borrow a construction that we will see again in Section 5
and apply it to two well-chosen cyclic (d − 1)-polytopes C1,C2 used by Matschke, Pfei-
fle and Pilaud [MPP11, Theorem 2.6] (compare Theorem 5.2) with f0(C1) = n and
f0(C2) = m. Let

C = conv
(
C1 × {0} ∪ C2 × {1}) ⊂ Rd × R

be the Cayley polytope of C1 and C2. Using Theorem 2.6 of [MPP11] the Cayley poly-
tope over C1 and C2 may be chosen in such a way that it has no non-face of dimension
< d

2 − 1, and such that every non-face of dimension d

2 −1 is supported in either C1 or C2.
By construction, C1 and C2 are the only non-simplex faces of C. Let us triangulate C2

without new vertices, and such that there are no non-faces of dimension ≤ d

2 − 1, and let
� be the simplicial complex obtained from ∂C by deleting C1. Then � is a triangulated
d-ball with full boundary ∂� = ∂C1, and the conditions in (a) and (b) are met and hence
yields an example that attains the upper bounds. �

4. Estimating the algebraic contribution

We discuss three techniques for bounding the h-vector entries hk(�,�) based on
bounds on the algebraic contribution halg(�,�).
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The first method is based on the idea of a change of presentation: We consider pre-
sentations of M[�,�] as quotients of monomial ideals I/J where I is simpler in structure
than I� . A particularly important candidate is the nerve ideal IN that arises from coverings
of � by full subcomplexes. The nerve ideal can be analyzed in terms of nerve complex
of that covering. This in particular allows us to interpolate between full and general sub-
complexes �. As a special case, we recover Lemma 3.1.

The second method is based on a more delicate trick. It uses a formula that in-
tegrates over the h-numbers of subcomplexes to the h-vector of the total complex. We
then employ a lemma of Kalai–Stanley for an upper bound on the local contributions to
obtain the desired bounds. The second method has an interesting refinement that we de-
scribe in Section 4.4. In particular, we find an interesting reverse isoperimetric inequality
that considerably improves on, and is substantially different from, all known bounds in
the area.

Finally, we discuss the role of relative shellability, a combinatorial/geometric
method that can be used to give bounds on h-numbers in our setting.

4.1. Estimates via change of presentation. — The idea of this section is that if M[�,�]
has a “nice” presentation as a quotient, then this presentation can be used to estimate
the algebraic contribution of � = (�,�). We will see an interesting connection to poset
topology when attempting to characterize the case of equality and an application of Bor-
suk’s Nerve Lemma (in its filtered version due to Björner).

Let M be a module over k[x]. We write M ∝ I for a monomial ideal I ⊆ k[x] if
there is a monomial ideal J ⊆ I such that M ∼= I/J as finely graded modules.

Lemma 4.1. — Let M ∼= I/J be a module over k[x] for some monomial ideals J ⊆ I in k[x].
For a sequence 
 = (θ1, . . . , θ�) of linear forms we then have

dimk(M/
M)k ≤ dimk(I/
I)k

for all k ≥ 0. Moreover, if tensoring with k[x]/
 preserves exactness of 0 → J ↪→ I � M → 0, then

equality holds for some k0 if and only if Mk
∼= Ik for all k ≤ k0.

Proof. — By assumption, we have a short exact sequence

0 −→ J −→ I −→ M −→ 0.

The first claim follows from the fact that tensoring with k[x]/
k[x] is a right-exact
functor and thus I/
I � M/
M is a (graded) surjection. Assume now that

0 −→ J/
J −→ I/
I −→ M/
M −→ 0

is exact. In all nontrivial cases 
 is at best a partial l.s.o.p. for J. Hence, if (J/
J)k0 = 0,
then J has no generators in degrees ≤ k0. �
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This result subsumes Lemma 3.1: If M = k[�] is the Stanley–Reisner ring of a
(d − 1)-dimensional Cohen–Macaulay simplicial complex on n vertices, then M ∝ I for
I = k[x1, . . . , xn]. For a regular l.s.o.p. 
, we infer from Lemma 4.1 that

hk(�) = dimk(M/
M)k ≤ dimk(I/
I)k

= dimk k[y1, . . . , yn−d]k =
(

n − d + k − 1
k

)
.

To conclude tightness in Lemma 4.1, we need to decide whether a sequence is
regular for all modules in a given exact sequence. To this end, we can use the following
well-known observation. Recall that 
m is the restriction of the sequence 
 to the first m

elements.

Proposition 4.2. — Let R be any ring. Let

D → C → B
ϕ−→ A → 0

denote a exact sequence of R-modules, and let 
 = (θ1, . . . , θ�) denote a family of elements of R.

Assume that for every 1 ≤ m ≤ �, ϕ induces a surjection

(
m−1B : θm)/
m−1B −� (
m−1A : θm)/
m−1A.

Then we have an exact sequence

D/
D → C/
C → B/
B
ϕ−→ A/
A → 0.

In the situation of Proposition 4.2, we also say that ϕ is a 
-surjection; if the
maps between the annihilator modules are even isomorphisms, then we call the map a

-isomorphism.

Lemma 3.1 compares enumerative properties of � to those of the much simpler
complex �n. This is possible because both are Cohen–Macaulay. For simplicial com-
plexes, this approach suffices. In order to use a reasoning similar to Lemma 3.1 for rela-
tive complexes, we will use a cover of the subcomplex � by full subcomplexes.

Definition 4.3. — Let � be a simplicial complex. An arrangement of full complexes, full ar-

rangement for short, is a finite collection G of full subcomplexes of �.

For an arrangement G of complexes, the collection

P(G ) :=
{⋂

S : S ⊆ G
}

∪ {�}
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together with the partial order given by reverse inclusion is the intersection poset of G. This
is a poset with minimal element 0̂ := � and maximal element 1̂ := ⋂

G. Note that any
� ∈P(G ) is a full subcomplex of �. The support of G is the subcomplex

G :=
⋃

�∈G

� ⊆ �.

This covering of G by full subcomplexes can be used to obtain a simple presentation of
M[�,G ].

Definition 4.4. — For an arrangement G of complexes of � we define the nerve ideal as the

monomial ideal

IN[�,G ] := 〈
xτ : τ �⊆ V(�) for all � ∈ G

〉 ⊆ k[x].
For � ∈ G, the smallest simplex containing � is given by �V(�). The coarse nerve of

G is the simplicial complex

N[�,G ] :=
⋃

{�V(�) : � ∈ G }.
The nerve ideal IN[�,G ] then is the Stanley–Reisner ideal of the coarse nerve. The
connection to (�,G ) is the following.

Proposition 4.5. — Let G be a full arrangement of �. Then

M[�,G ] ∼= (
IN[�,G ] + I�

)
/I�

∼= IN[�,G ]/(I� ∩ IN[�,G ]).

Proof. — Let xα be a monomial and σ = supp(xα). Then xα = 0 in both M[�,G ]
and (IN[�,G ] + I�)/I� if σ �∈ �. Thus, let us assume that σ ∈ �. Now M[�,G ]α �= 0
iff σ �∈ G, which is the case if and only if σ �∈ � for all � ∈ G. Since all subcomplexes
in G are full, this is equivalent to σ �⊆ V(�) for all � ∈ G. This, in turn, is equivalent to
((IN[�,G ] + I�)/I�)α �= 0. �

For an arrangement of full subcomplexes a good relative complex to compare
� = (�,�) to is (�n,N[�,G ]). Proposition 4.5 and Lemma 4.1 then imply immedi-
ately:

Theorem 4.6. — Let � be a simplicial complex, and let G be a full arrangement of subcom-

plexes. Then M = M[�,G ]∝ IN = IN[�,G ] and for every collection of linear forms 


dimk(M/
M)k ≤ dimk(IN/
IN)k

for all k. If 
 is a l.s.o.p. for M, and the surjection IN � M is a 
-surjection, then the following are

equivalent:
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(i) equality holds for some k0;

(ii) Mk
∼= (IN)k for all k ≤ k0;

(iii) I� ∩ IN is generated in degrees > k0;

(iv) every non-face of � of dimension < k0 is supported on V(�) for some � ∈ G.

To help decide whether IN � M is a 
-surjection, it is useful to keep
some simple tricks in mind. For instance, if 
 is a regular sequence for M, then

m−1M : θm/
m−1M ≡ 0, so that IN � M is trivially a 
-surjection. This is in partic-
ular applicable if M is Cohen–Macaulay.

Proposition 4.7. — A l.s.o.p. 
 of length � induces a 
-surjection IN � M[�] if the

(� − 1)-skeleton �(�) is Cohen–Macaulay.

Proof. — This follows since every l.s.o.p. 
 of length ≤ � is regular if the
(� − 1)-skeleton is Cohen–Macaulay by a result of Hibi, cf. [Hib91, Corollary 2.6]. �

For a more general criterion, we consider complexes whose skeleta are Buchsbaum.

Theorem 4.8. — Assume that the (� − 1)-skeleta (�V(�),N[�,G ])(�) and (�,G )(�) are

Buchsbaum, and let 
 be any l.s.o.p. of length �. Then we have a 
-surjection resp. 
-isomorphism if

for every face σ of �, the embedding

(3) lk
(
σ, (�,G )

)
↪−→ lk

(
σ,

(
�V(�),N[�,G ]))

induces a surjection (resp. isomorphism) of cohomology groups up to degree � − dimσ − 2.

Proof. — The basic idea is that the modules 
m−1IN : θm/
m−1IN can be written as
cokernels in short exact sequences of cohomology groups of Koszul complexes: We have

0 → Hm−2(
m−1;M) → Hm−1(
m;M) → 
m−1M : θm/
m−1M → 0

for k[x]-modules M as in Corollary 2.4. For Buchsbaum complexes, these homology
modules are determined in terms of local cohomology of IN and M, and by the connec-
tion between the Zn-graded Čech complex and homology of links (exploited in Hochster’s
formula), we conclude that if for all σ ∈ �, the embedding (3) induces a surjection of co-
homology groups up to degree � − dimσ − 2, then we also have a surjection on the level
of local cohomology modules of IN and M up to dimension �.

Let now m ≤ �. Observe that the key to Lemma 2.2 is a quasi-isomorphism of
chain complexes

τ �
(
K•(
m;M) ⊗k[x] C•(M)

) ∼−→ τ �K•(
m;M)
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in the derived category D(k[x]), cf. [Sch81, Sch82]. Here the former chain complex is a
chain complex with trivial differentials, with

Ci(M) =
{

Hi(M) if i ∈ {0, . . . ,dim M − 1} and
0 otherwise

so that the complex C•(M) is the exact chain complex of local cohomology modules
of M, and τ � denotes the truncation of a chain complex in degree �. Analogously, we
have a quasiisomorphism

τ �
(
K•(
m; IN) ⊗k[x] C•(IN)

) ∼−→ τ �K•(
m; IN).

It follows that a surjection on the level of local cohomology modules of IN and M induces
a surjection on the level of Koszul cohomology.

To conclude the desired surjection of modules (
m−1IN : θm)/
m−1IN −�
(
m−1M : θm)/
m−1M, consider

0 Hm−2(
m−1; IN) Hm−1(
m; IN) 
m−1IN : θm/
m−1IN 0

0 Hm−2(
m−1;M) Hm−1(
m;M) 
m−1M : θm/
m−1M 0

and the Snake lemma. The claim for the isomorphism follows analogously. �

This motivates us to notice a beautiful relation to Borsuk’s Nerve Lemma [Bor48]:
Not all full arrangements are created equal.

Let us call a full arrangement G in � an �-good cover if, for every subset {�1, . . . ,�t}
of t elements of G, the relative complex (�,� ∩ ⋂t

i=1 �i) is (� − t)-acyclic, that is, its
homology vanishes up to dimension � − t. We call G �-magnificent (w.r.t. (�,G )) if, for
every face σ of �, the restriction of G to lk(σ,�) is (� − dimσ − 1)-good. We have
the following application of the Nerve Lemma (in its generalization due to Björner, cf.
[Bjö03, BWW05]).

Theorem 4.9. — Assume that G is an �-magnificent cover, and that (�V(�),N[�,G ])(�)

and (�,G )(�) are Buchsbaum. Then for every face σ of �, the embedding

lk
(
σ, (�,G )

)
↪−→ lk

(
σ,

(
�V(�),N[�,G ]))

induces an isomorphism of relative homology up to dimension � − dimσ − 2, and a surjection in degree

� − dimσ − 1. In particular, IN � M is a 
-isomorphism for every l.s.o.p. 
 of length �, and a


-surjection for every l.s.o.p. 
 of length � + 1.

Example 4.10. — If � is Cohen–Macaulay, and G is a collection of disjoint
Cohen–Macaulay subcomplexes of � of the same dimension as �, then the cover is
d-magnificent.
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We will see some more interesting examples and an application when investigating
Minkowski sums of polytopes, compare also Theorem 5.5. We finally record a simple
trick to compute dimk(I/
I)k for Lemma 4.1 using a dual form of Schenzel’s Formula.

Theorem 4.11. — Let � ⊆ �n be a simplicial complex with Stanley–Reisner ideal I� . For

m ≥ � assume that the relative complex of (m − 1)- and (� − 1)-skeleta (�(m)
n ,�(�)) is Buchsbaum

and let M = M[�(m)
n ,�(�)] be the corresponding face module. If 
 is a l.s.o.p. for M then for all

0 ≤ j ≤ �

dimk(I�/
I�)j =
[
(1 − t)mF(I�, t)

]
j
−

(
m

j

) j−1∑

i=0

(−1)j−iβ̃i−2

(
�(�)

)
,

where [(1 − t)mF(I�, t)]j denotes the coefficient of tj in (1 − t)mF(I�, t).

If (�(m)
n ,�(�)) is Buchsbaum and hence locally Cohen–Macaulay, we necessarily

have � ≤ m ≤ � + 1 by Corollary 1.10.

Proof. — Notice that �(m)
n is Cohen–Macaulay and by the long exact sequence in

relative homology

H̃i−2

(
�(�)

) ∼= H̃i−1

(
�(m)

n ,�(�)
)

for all i − 1 < � − 1.

Hence, by Theorem 2.5, we obtain

[
(1 − t)mF(M, t)

]
j
= [

F(M/
M, t)
]

j
+

(
m

j

) j−1∑

i=0

(−1)j−iβ̃i−2

(
�(�)

)
.

Passing to the (� − 1)-skeleton changes the ideal I� in degrees > �, so that (I�)≤�
∼= M≤�.

The formula follows. �

Corollary 4.12. — Let � ⊆ �n be any simplicial complex. Assume that for m ≥ � the rela-

tive complex (�(m)
n ,�(�)) is Cohen–Macaulay. If 
 is a full l.s.o.p. for M[�(m)

n ,�(�)], then for all

0 ≤ j ≤ �

dimk(I�/
I�)j =
[
(1 − t)mF(I�, t)

]
j
.

To summarize, we reduced the problem of bounding the h-numbers, or equiva-
lently the problem of bounding [(1 − t)dF(M[�,�], t)]j , to the problem of bounding
[(1 − t)�F(I, t)]j for some Stanley–Reisner ideal with M[�,�]∝ I. The full power of this
approach is seen in combination with Theorem 4.6. Let us close with a simple observa-
tion that will close the cycle by computing [F(I, t)]j as a straightforward application of
the inclusion-exclusion principle on the involved non-face ideals of cliques.
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Proposition 4.13. — Let � be a pure (d − 1)-dimensional simplicial complex, and let G be a

full arrangement. Then

dimk IN[�,G ]k =
∑

p∈P(G )

μP(G )(�, p)

(
f0(p) + k − 1

k

)

where μP(G ) is the Möbius function of the intersection poset.

4.2. Arrangements of Cohen–Macaulay complexes. — The estimates via change of pre-
sentation enable us to extend the results from full CM complexes to full arrangements of
CM complexes.

Theorem 4.14. — Let � be a (d − 1)-dimensional Cohen–Macaulay complex and

G = {�1, . . . ,�m} a full arrangement of m pairwise disjoint codimension one Cohen–Macaulay sub-

complexes of �. Then for 0 ≤ k ≤ d

hk(�,G ) ≤
(

f0(�) − d + k − 1
k

)
−

m∑

i=1

(
f0(�i) − d + k − 1

k

)

+ (m − 1)

(−d + k − 1
k

)

Equality holds for some k0 if and only if every non-face of � of dimension < k0 is supported on some �i .

Let us write

1k≥a =
{

1 if k ≥ a and
0 otherwise.

Proof. — Set � := G = �1 ∪ · · · ∪ �m. To begin with, we observe that for a ver-
tex v ∈ �i, we have lk(v, (�,�)) = lk(v, (�,�i)). We conclude from Corollary 1.10
that lk(�,�,v) is Cohen–Macaulay for all vertices v ∈ �. Hence, by Theorem 1.11,
� = (�,�) is Buchsbaum and M = M[�] a Buchsbaum module. We can therefore use
the relative Schenzel formula (Theorem 2.5) to bound hk(�) in terms of the topological
contribution h

top
i (�) and the algebraic contribution h

alg
i (�).

The topological contribution. — From the Cohen–Macaulayness of the complexes �i it
follows that

β̃0(�) = m − 1 and β̃d−2(�) =
∑

i

β̃d−2(�i)

and β̃i(�) = 0 for all other i. The long exact sequence in relative homology

· · · −→ H̃i+1(�,�) −→ H̃i(�) −→ H̃i(�) −→ H̃i(�,�) −→ · · ·
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splits into short sequences and we deduce

β̃1(�) = m − 1 and β̃d−1(�) = β̃d−1(�) +
∑

i

β̃d−2(�i)

and β̃i(�) = 0 otherwise. Hence, for k ≤ d , the topological contribution in Theorem 2.5
is

h
top
k (�) = (−1)k−2(m − 1)1k≥3

(
d

k

)
.

The algebraic contribution. — The nerve ideal IN = IN[�,�] is the Stanley–Reisner
ideal of the coarse nerve N = ⋃m

i=1 �V(�i) ⊆ �n. Since each �i is of dimension d − 2,
N is the disjoint union of simplices of dimension ≥ d − 2. Hence, the relative complex
(�(d)

n ,N(d)) is Cohen–Macaulay by Corollary 1.10. The homology of N is concentrated
in degree 0 with β̃0(N) = m − 1. Therefore, we obtain for a l.s.o.p. 
 for M

h
alg
k (�) = dimk[M/
M]k

≤ dimk(IN/
IN)k (by Theorem 4.6)

= [
(1 − t)dF(IN, t)

]
k
−

(
d

k

) k−1∑

i=0

(−1)k−iβ̃i−2(N)

(by Theorem 4.11)

=
∑

p∈P(G )

μP(�, p)

(
f0(p) − d + k − 1

k

)

− (−1)k−2(m − 1)1k≥3

(
d

k

)
. (by Proposition 4.13)

The intersection poset is P= G ∪ {�,∅} and hence the Möbius function is given by

μP(G )(�, p) =

⎧
⎪⎨

⎪⎩

1 if p = �,

−1 if p = �i and
m − 1 if p = ∅.

Putting the computation of htop(�) and the bound on halg(�) together yields the bound
on hk(�).

Case of equality. — Equality can hold for some k0 if and only if it holds for the alge-
braic contributions. The equality is then this of Theorem 4.6. �

The following result interpolates between the two extreme situations of Theo-
rem 4.14 and the case that G is itself full.
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Theorem 4.15. — Let � be a (d − 1)-dimensional Cohen–Macaulay complex and

G = {�1, . . . ,�m} an arrangement of m pairwise disjoint, codimension one CM subcomplexes. As-

sume that for every subset S of [m] with |S| ≤ �, � > 1, the complex
⋃

i∈S �i is full in �. Then we

have, for all k ∈ [d],

hk(�,
⋃

�i) ≤
∑

p∈P(G )

μp

(
f0(p) − d + k − 1

k

)
+ (−1)k−2(m − 1)1k≥3

(
d

k

)

+ (−1)k+�+1

(
m − 1

�

)
1k≥�+2

(
d

k

)

for G = {⋃i∈S �i : S ⊆ [m], |S| ≤ �} ∪ {�0} and

μp = μP(G )(�, p) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if p = �,

(−1)|S| if p = ⋃
i∈S �i and

−∑�

j=0(−1)j
(

m

j

)
if p = ∅.

Proof. — The proof is analogous to the proof of Theorem 4.14; the topological part
is unchanged, and it remains only to estimate β̃i−2(N). But N is homotopy equivalent to
the (� − 1)-skeleton of a simplex on m vertices, so that the claim follows. �

We conclude with the proofs of Theorems 3.8 and 3.9.

Proof of Theorem 3.9. — By Reisner’s Theorem 1.9, � and (�, ∂�) are Cohen–
Macaulay. Therefore, Claim (a) is a special case of Theorem 4.14 with G = {∂�}. To
see Claim (b), notice that by the Dehn–Sommerville relations 1.3, we have hk(�, ∂�) =
hd−k(�) for all 0 ≤ k ≤ d , and to � we can apply the standard upper bound theorem.
Therefore, the claim follows with characterization of equality in Theorem 4.14 and
Lemma 3.1. �

We close with the proof for the combinatorial isoperimetric problem for manifolds.

Proof of Theorem 3.8. — By Theorem 1.11, � = (M,B) is a Buchsbaum complex
and M = M[�] a Buchsbaum module. To apply Theorem 2.5, it remains for us to bound
hk(�) in terms of the topological contribution h

top
k (�) and the algebraic contribution

h
alg
k (�). The topological contribution depends only on the relative Betti numbers (M,B)

and hence is

h
top
k (�) =

(
d

k

) k−1∑

i=0

(−1)k−iβ̃i−1(�).

As for the algebraic contribution: The nerve ideal IN = IN[M,B] is the Stanley–Reisner
ideal of the simplicial complex �n, n ≥ d − 1. Hence, the relative complex (�

(d)
m+n,�

(d)
n )
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is Buchsbaum by Corollary 1.10 and Theorem 1.11, and in fact Cohen–Macaulay since
the homology is concentrated in degree d − 1. Therefore, by Theorems 4.6 and 4.11 and
Proposition 4.13,

h
alg
k (�) ≤

(
m + n − d + k − 1

k

)
−

(
n − d + k − 1

k

)
. �

4.3. Local-to-global estimates. — The purpose of this section is to provide iterative
inequalities of the type given in Proposition 3.2. We will provide the desired bounds for
hk(�) by combining an integration formula for multivariate formal power series with an
observation of Stanley and Kalai and a careful use of the fullness property.

Lemma 4.16 (Formula for local h-vectors, cf. [McM70], [Swa05, Lemma 2.3]). — For a

pure relative simplicial complex � = (�,�) of dimension d − 1 on [n]
n∑

i=1

hk

(
lk(i,�)

) = (k + 1)hk+1(�) + (d − k)hk(�)

for all 0 ≤ k ≤ d.

Proof. — For α = (α1, . . . , αn) ∈ Zn and 1 ≤ i ≤ n let us write α\i = (α1, . . . , αi−1,

0, αi+1, . . . , αn). Let us abbreviate ∂

∂t := ∂

∂ t1
+ · · · + ∂

∂ tn
. For the fine graded Hilbert series

of the face module M = M[�,�] we compute

∂

∂t
F(M, t) :=

∑

supp(α)∈�

∂

∂t
tα =

n∑

i=1

∑

supp(α)∈�

∂

∂ ti
tα

=
n∑

i=1

∑

supp(α)∈st(i,�)

αi t
αi−1
i tα\i =

n∑

i=1

1
(1 − ti)2

∑

supp(α)∈lk(i,�)

tα\i.

If we now specialize t1 = · · · = tn = t, we obtain

d
dt

F(M, t) = 1
(1 − t)2

n∑

i=1

F
(
M

[
lk(i,�)

]
, t

) =
n∑

i=1

∑d−1
k=0 hk(lk(i,�))tk

(1 − t)d+1

where F(M, t) is the coarse Hilbert series. On the other hand we can directly compute
the derivative of F(M, t) as

d
dt

F(M, t) = d
dt

∑d

k=0 hk(�))tk

(1 − t)d
=

∑d

k=0 khk(�))tk−1

(1 − t)d
+

∑d

k=0 d hk(�))tk

(1 − t)d+1

=
∑d−1

k=0((k + 1)hk+1(�) + (d − k)hk(�))tk

(1 − t)d+1
. �
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To bound hk(st(v,�)), we need a relative version of a simple lemma of Stan-
ley [Sta93] and Kalai [Kal91].

Lemma 4.17. — Let � = (�,�) be a relative complex of dimension d − 1 on vertex set [n].
Let �′ ⊆ � be any subcomplex of �, and set �′ = �′ ∩ � and � ′ = (�′,�′). Then, for every k,

dimk

(
M

[
� ′]/
M

[
� ′])

k
≤ dimk

(
M[�]/
M[�])

k
.

Proof. — This follows immediately if we consider M[� ′] as an k[x]-module:
By right-exactness of the tensor product, we have a degree preserving surjection
M[�]/
M[�] −� M[� ′]/
M[� ′]. �

The last ingredient is a property for vertex stars of full subcomplexes.

Lemma 4.18. — Let � ⊆ � be a pair of simplicial complexes. Then � is full in � if and

only if st(v,�) = st(v,�) ∩ � for all v ∈ V(�). �

For a relative complex � = (�,�) and a vertex v ∈ �, let us write s̃t(v,�) :=
(st(v,�), st(v,�) ∩ �).

Example 4.19. — Let � = (�,�) be a relative complex such that both � and �

are Cohen–Macaulay of the same dimension and � is full in �. By Lemmas 4.16 and 1.2
∑

v∈�

hk

(
st(v,�)

) = (k + 1)hk+1(�) + (d − k)hk(�).

Since � is full, Lemma 4.18 yields st(v,�) = s̃t(v,�) for all vertices v ∈ �. Therefore,
for a l.s.o.p. 
 and for every vertex v ∈ �

hk

(
st(v,�)

) = hk

(
s̃t(v,�)

)

= dimk

(
M

[
s̃t(v,�)

]
/
M

[
s̃t(v,�)

])
k

(by Cohen–Macaulayness)

≤ dimk

(
M[�]/
M[�])

k
(by Lemma 4.17)

= hk(�) (by Cohen–Macaulayness).

If v /∈ �, the reasoning becomes a little more difficult as st(v,�) not necessarily coincides
with s̃t(v,�) any more. However, we can simply estimate

hk

(
st(v,�)

) = hk

(
st(v,�)

)

= dimk

(
M

[
st(v,�)

]
/
M

[
st(v,�)

])
k

(by Cohen–Macaulayness)
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≤ dimk

(
M[�]/
M[�])

k
(by Lemma 4.17)

= hk(�) (by Cohen–Macaulayness)

= hk(�) + hk(�) (by linearity of the h-vector).

These inequalities, for the special case of simplicial polytopes were the key to McMullen’s
proof of the UBT for polytopes. Integrating these inequalities over all vertices and using
Lemma 4.16, we obtain

(4) (k + 1) hk+1(�) ≤ (
f0(�) − d + k

)
hk(�) + f0(�) hk(�).

To handle situations with dim� < dim�, let us define for � ≥ 0

h
〈�〉
i (�) := [

(1 − t)�F
(
M[�], t

)]
i
=

i∑

k=0

(−1)i−k

(
� − k

� − i

)
fk−1(�).

Comparing this with the definition of h-vectors in Section 1, we see that h
〈d〉
i (�) = hi(�)

for d = dim� +1. Also, for an arrangement G and a vertex v ∈ � we set G(v) := {� ∈ G :
v ∈ �} and consequently G(v) := ⋃

�∈G(v) �. We call the pair (�,G ) universally Buchsbaum

of dimension d − 1 if for every vertex v of the (d − 1)-complex �, the relative complex
(�,G(v)) is Buchsbaum of dimension (d − 1).

Lemma 4.20. — Let (�,G ) be universally Buchsbaum of dimension d − 1, where G is some

full arrangement of subcomplexes of �. Let v be any vertex of �. Then

(5) hk

(
lk(v,�), lk(v,G )

) ≤ hk

(
�,G(v)

) − h
top
k

(
�,G(v)

)
.

Proof. — Let v ∈ � be a vertex and let us write �(v) = (�,G(v)). With a l.s.o.p.

 we deduce

hk

(
lk(v,�), lk(v,G )

) = hk

(
lk

(
v,�(v)

))

= hk

(
st
(
v,�(v)

))
(Lemma 1.2)

= hk

(
s̃t
(
v,�(v)

))
(using fullness)

= dimk

(
M

[
s̃t
(
v,�(v)

)]
/
M

[
s̃t
(
v,�(v)

)])
k

(since s̃t(v,�(v)) is CM)

≤ dimk

(
M

[
�(v)

]
/
M

[
�(v)

])
k

(by Lemma 4.17)

By Theorem 2.5, the last expression equals hk(�,G(v)) − h
top
k (�,G(v)). �

Summing equation (5) over all vertices of � and using Lemma 4.16 as in Exam-
ple 4.19, we obtain the following result.
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Theorem 4.21. — Let � = (�,G ) be a relative complex of dimension d − 1 where G is a

full arrangement. If (�,G ) is universally Buchsbaum, then

(k + 1) hk+1(�) ≤ (
f0(�) − d + k

)
hk(�)

+
∑

v∈�

(
h
〈d〉
k

(
G,G(v)

) − h
top
k

(
�,G(v)

))
.

The results are somewhat simpler if the pair (�,G ) is universally Cohen–Macaulay of
dimension d − 1, i.e., (�,G(v)) is Cohen–Macaulay of dimension d − 1 for every vertex
v ∈ �. This also means that the topological terms in Theorem 4.21 vanish.

Corollary 4.22. — Let (�,G ) be universally Cohen–Macaulay of dimension d − 1 where G
is a full arrangement of �.

(1) For every vertex v ∈ �

hk

(
lk(v,�), lk(v,G )

) ≤ hk

(
�,G(v)

) = hk(�,G ) + h
〈d〉
k

(
G,G(v)

)
.

Equality holds up to some k0 if and only if for every σ of (�,G(v)) of dimension < k0,

the simplex σ ∗ v is a face of �.

(2) Moreover, we have

(k + 1) hk+1(�) ≤ (
f0(�) − d + k

)
hk(�) +

∑

v∈�

h
〈d〉
k

(
G,G(v)

)
.

Equality holds if and only if it holds for all v in (1).

Proof. — (1) and (2) are Lemma 4.20 and Theorem 4.21 for universally CM pairs.
It remains to characterize the equality cases. Recall that the inclusion

st(v,�) ∩ G(v) ⊆ G(v)

induces a degree-preserving surjection

ϕv : M
[
�(v)

] = IG(v)/I� −� IG(v)/Ist(v,�) = M
[
s̃t
(
v,�(v)

)]
.

Since M[̃st(v,�(v))] is CM, for a l.s.o.p. 
 for M[�(v)] we get a short exact sequence

0 −→ ker(ϕv)/
 ker(ϕv) −→ M
[
�(v)

]
/
M

[
�(v)

]

−→ M
[
s̃t
(
v,�(v)

)]
/
M

[
s̃t
(
v,�(v)

)] −→ 0.

Therefore, equality holds if and only if the surjection ϕv is an isomorphism if and only if
(
ker(ϕv)/
 ker(ϕv)

)
≤k0

= (
M

[
�,G(v) ∪ st(v,�)

]
/
M

[
�,G(v) ∪ st(v,�)

])
≤k0

= 0
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which is only the case if the face module M[�,G(v) ∪ st(v,�)] is generated in de-
gree > k0. �

Remark 4.23. — The equality cases in Theorem 4.21 are a bit harder to character-
ize; one can use Proposition 4.2 and Theorem 4.8.

4.4. A reverse isoperimetric inequality. — We can use the philosophy of Lemma 4.17
in yet another way to provide upper bounds on algebraic h-numbers by replacing
Lemma 4.17 with a stronger inequality. The results, even though they require more work,
yield inequalities stronger than the ones provided in Section 4.3. For simplicity, we focus
on the Cohen–Macaulay case and leave the general case to the interested reader.

Let � = (�,�) be a relative complex. A relative subcomplex of � is a relative com-
plex � ′ = (�′,�′) with �′ ⊆ � and �′ ⊆ �. The pair (�,� ′) is again a relative complex
with face module

M
[
�,� ′] := ker

(
M[�]� M

[
� ′]) ∼= M

[
�,� ∪ �′].

We say that � ′ is a full relative subcomplex if �′ ⊆ � is full.

Theorem 4.24. — Let � be a (d − 1)-dimensional Cohen–Macaulay relative complex and

� ′ a codimension one Cohen–Macaulay full relative subcomplex. Then

hk

(
�,� ′) ≥ hk−1

(
� ′)

for all k.

Proof. — Let θ1, . . . , θd be a l.s.o.p. for M = M[�] such that 
 = (θ1, . . . , θd−1) is
a l.s.o.p. for M′ = M[� ′] and θd is a linear form θd ∈ k-span{xv : v �∈ V(�′)}; this can be
done as �′ is full in � and of codimension one, so that every facet of � contains at least
one vertex not in �′, compare also [Sta96, Section III.9].

Consider the injective map ϕ̃ : M/
M → M/
M given by multiplication by
θd . Now θdM ⊆ M[�,� ′] by choice of θd and hence, we get a homogeneous map
ϕ : M/
M → M[�,� ′]/(
, θd)M[�,� ′] of degree one induced by the multiplication
with θd . Again by the regularity of θd and using the fullness property, the kernel of ϕ is
given by kerϕ = M[�,� ′]/
M[�,� ′]. Factoring out the kernel we get an injection

ϕ : M′/
M′ ↪−→ M
[
�,� ′]/(
, θd)M

[
�,� ′].

Since ϕ is homogeneous of degree one, we obtain

hk−1

(
� ′) = dimk

(
M′/
M′)

k−1
≤ dimk

(
M

[
�,� ′]/(
, θd)M

[
�,� ′])

k

= hk

(
�,� ′). �

A simple application of this inequality yields a reverse isoperimetric inequality.
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Corollary 4.25. — Let � be a simplicial ball and assume that ∂� is full in �, then

hk(�, ∂�) ≥ hk−1(∂�)

for all k.

In the same situation, Lemma 4.17 only yields hk(�, ∂�) ≥ 0 which also follows
easily since (�, ∂�) is Cohen–Macaulay. This almost is a Lefschetz-type result that char-
acterizes primitive Betti numbers, compare also [Sta96]. We refer to [Adi15] for related
applications towards a quantitative lower bound theorem, and also Remark 5.18 for a
small application.

4.5. Relations to relative shellability. — The estimates of Section 4.3 are reminiscent
of McMullen’s approach to h-vectors and the Upper Bound Theorem via shellings. In
this section we want to put our techniques into perspective via the notion of relative
shellability. The results presented here are not essential for the following sections, but
provide a combinatorial viewpoint.

Let � = (�,�) be a pure relative complex of dimension d −1 and let F ∈ �\� be
a facet. The deletion � ′ = � −F := (�−F,�) is a step in a relative shelling if � ′ ∩F is pure
of codimension one. A relative complex is shellable if there is sequence of shelling steps
to the relative complex (�,�). If � = ∅, then this is the classical notion of shelling of
simplicial complexes. Relative shellings where introduced by Stanley [Sta87] and further
developed in [AB12]. Shellability has proven to be an invaluable tool in topological com-
binatorics. The basis for our situation is the following result due to Kind–Kleinschmidt
[KK79] and Stanley [Sta96].

Proposition 4.26. — A shellable relative complex is Cohen–Macaulay over any ground field.

In particular, the h-vector of a relative complex can be read off a shelling.

Proposition 4.27. — Let � ′ = � − F be a shelling step and let σ be the unique minimal face

in 2F \ � ′. Then hk(�) = hk(�
′) + 1 for k = |σ | and hk(�) = hk(�

′) otherwise.

Let us revisit the situation of Example 4.19 from the perspective of relative
shellings: We call � = (�,�) universally shellable if for every vertex v of � there is a
shelling of � that removes st(v,�) first. For a universally shellable complex � such that
� is full, the arguments of [McM70] (see also [Zie95, Section 8.4]) yield once again

(k + 1) hk+1(�) ≤ (
f0(�) − d + k

)
hk(�) + f0(�) hk(�).

This is sufficient to provide a solution to the upper bound problem for universally
shellable relative complexes in the sense of Lemma 3.1; see also Theorem 3.9. The chal-
lenge, of course, is to show that a given relative complex is shellable, that is, to exhibit
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an actual shelling. For this, one can use a variety of methods from poset theory [Bjö80],
geometry [BM71], and tools such as Alexander duality and gluing theorems for relative
shellings, cf. [AB12].

5. The upper bound theorem for Minkowski sums

We now come to our main application of relative Stanley–Reisner theory: A tight
upper bound theorem for Minkowski sums of polytopes. In analogy to the classical UBT,
the class of polytopes that maximize the number of k-faces is rather special and we devote
the first section to their definition and the statement of results. The proofs are rather intri-
cate and we illustrate the main ideas in the case of two summands P1 + P2 in Section 5.2
which recovers the results of [KT11] with a simple argument.

The transition from Minkowski sums to relative simplicial complexes is via the Cay-

ley polytope and the (relative) Cayley complex, whose definition and properties are presented
in Section 5.3. In particular, the Cayley complex allows us to introduce the notion of an
h-vector for special families of simplicial polytopes and reduce the upper bound problem
to one on h-vectors. The general scheme for the proof is then similar to that of the UBT
for polytopes: We will prove sharp upper bounds for the ‘first half ’ of the h-vector (Sec-
tion 5.4). For the ‘second half ’ of the h-vector we prove Dehn–Sommerville-type relations
in Section 5.5. Unfortunately, this formula does not express hk of the second half as posi-
tive linear combinations of such from the first half, so that we need a further strengthening
of the bounds provided in Section 5.6. We finally conclude the Upper Bound Theorem
for Minkowski sums (Theorem 5.19).

While some statements in this section are general, we focus in this section on
Minkowski sums of pure collections, i.e., Minkowski sums of polytopes in Rd with at least
d + 1 vertices each. We discuss the nonpure case in Section 6.

5.1. Minkowski-neighborly polytopes and main results. — Let us recall the setup for the
Minkowski upper bound problem. For given m, d ≥ 1 and n = (n1, . . . , nm) ∈ Zm

≥d+1, we
seek to find tight upper bounds on

fk(P1 + P2 + · · · + Pm)

for polytopes P1, . . . ,Pm such that f0(Pi) = ni for all i = 1, . . . ,m. We shall focus here
on pure families, that is, families where each of the summands has at least d + 1 ver-
tices. To ease the notational burden, let us write P[m] := (P1, . . . ,Pm) and fk(P[m]) =
( fk(P1), . . . , fk(Pm)). We also abbreviate |P[m]| := P1 + P2 + · · · + Pm for the Minkowski
sum of a family. We extend these notions to subfamilies PS = (Pi : i ∈ S) for S ⊆ [m].

As for the UBT, we can make certain genericity assumptions. Recall that every
face F of |P[m]| can be written as F = F1 + · · · + Fm = |F[m]| where Fi ⊆ Pi are unique
nonempty faces. It follows that

(6) dim F ≤ dim F1 + · · · + dim Fm.
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We call the polytopes P[m] in relatively general position if equality holds in (6) for all
proper faces F � |P[m]|. Similar to the situation of the UBT for polytopes and spheres,
it is possible to reduce the UBPM to simplicial polytopes in relatively general position
by a simple perturbation; compare [FW10, Theorem 1]. We need a notion similar to
neighborliness of polytopes that will describe the polytopes attaining the upper bound.

Definition 5.1. — Let P[m] = (P1, . . . ,Pm) be a collection of polytopes in Rd . Then P[m] is

Minkowski (k, �)-neighborly for k ≥ 0 if for every subset J ⊆ [m] of cardinality �, and for any choice

of vertices ∅ �= Sj ⊆ V(Pj) with j ∈ J such that

∑

j∈J

|Sj| ≤ k + |J| − 1,

the polytope
∑

j∈J conv(Sj) is a simplex of |PJ|.
For � = 1, this recovers the definition of k-neighborly polytopes. For � = m, the

number of k-faces in a Minkowski (k,m)-neighborly family, if it exists, satisfies

fk
(|P[m]|

) =
∑

α∈Zm≥1|α|=m+k

m∏

i=1

(
f0(Pi)

αi

)

which is the trivial upper bound for face numbers of Minkowski sums. The following the-
orem characterizes Minkowski neighborly polytopes and generalizes the standard prop-
erties of neighborly polytopes.

Theorem 5.2. — Let m, d ≥ 1 be fixed.

(i) There is no pure Minkowski (k, �)-neighborly family P[m] in Rd for k + � − 1 > d+�−1
2 .

(ii) For all n ∈ Zm
≥d+1 there is a family P[m] in Rd with f0(P[m]) = n that is Minkowski

(k, �)-neighborly for all � ≤ m and � − 1 ≤ k + � − 1 ≤ � d+�−1
2 �.

The first claim is a straightforward consequence of Radon’s Theorem once we
phrase the UBPM in the language of Cayley polytopes; cf. Proposition 5.6. It suffices
to prove the assertion for � = m, the general case of the assertion is a straightforward
corollary.

As for Theorem 5.2(ii), the construction is provided by Theorem 2.6 in [MPP11].
The constructions are based on cyclic polytopes and generalize those of [KT11, KKT15].

Theorem 5.2 suggests the following notion: A family P[m] of polytopes is called
Minkowski neighborly if P[m] is Minkowski (k, �)-neighborly for all � ≤ m and � − 1 ≤ k +
� − 1 < � d+�−1

2 �. As in the case of the UBT for spheres, the face numbers of Minkowski
neighborly polytopes only depend on m, d and f0(P[m]).
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Proposition 5.3. — If P[m],P′
[m] are two Minkowski neighborly families of m simplicial d-

polytopes with f0(P[m]) = f0(P′
[m]), then fk(|P[m]|) = fk(|P′

[m]|) for all 0 ≤ k ≤ d.

This result will be a simple consequence of the Dehn–Sommerville relations for
Cayley complexes developed in Section 5.5; cf. Corollary 5.15. Unless

∑
i f0(Pi) ≤ d + m,

it is not true that Minkowski neighborly families of simplicial polytopes in relative gen-
eral position have combinatorially equivalent Minkowski sums, so that the combinatorial
types of such Minkowski sums remain to be understood; instead, Proposition 5.3 allows
us to study the face numbers.

With the help of Proposition 5.3, we define nbk(d,m,n) := fk(|Nb[m]|) for m, d ≥ 1
and n ∈ Zm

≥d+1, where Nb[m] is any Minkowski neighborly family of m simplicial d-
polytopes in Rd with n = f0(Nb[m]).

Theorem 5.4 (Upper Bound Theorem for Minkowski sums). — Let m, d ≥ 1 and n ∈ Zm
≥d+1.

If P[m] = (P1, . . . ,Pm) is a pure family of m polytopes in Rd with f0(P[m]) = n, then

fk
(|P[m]|

) ≤ nbk(d,m,n)

for all k = 0, . . . , d − 1. Moreover, the family P[m] is Minkowski neighborly if and only if equality

holds for some k0, k0 + 1 ≥ d+2m−2
2 .

Unfortunately, closed formulas for nbk(d,m,n) are rather involved, even for
small k. As in the case of the UBT for polytopes/spheres, upper bounds are best expressed
in terms of h-numbers. We introduce h-numbers for simplicial families in relatively gen-
eral position in the next section and give a rigorous treatment in Section 5.3.

5.2. Minkowski sums of two polytopes. — In this section we illustrate the general
proof strategy along the case of two summands. Let P[2] = (P1,P2) be two simplicial
d-dimensional polytopes in Rd in relatively general position with f0(P[2]) = (n1, n2). We
seek to find the maximum possible fk(|P[2]|) = fk(P1 + P2) for any fixed choice of k. Let us
define the Cayley polytope of P[2] as the (d + 1)-dimensional polytope

C = Cay(P1,P2) := conv
(
P1 × {0} ∪ P2 × {1}) ⊆ Rd × R

as sketched in Figure 1.
The Cayley polytope has the favorable property that for L = Rd × { 1

2}
C ∩ L ∼= P1 + P2

where the isomorphism is affine. As the intersection of L with faces of C is transverse, we
infer

fk(P1 + P2) = fk(C ∩ L) = fk+1(C) − fk+1(P1) − fk+1(P2)
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FIG. 1. — Cayley polytope of two triangles and the middle section

for k = 0, . . . , d − 1. By assumption on P[2], the only proper faces of C which are possibly
not simplices are P1 and P2 and we define � := ∂C\{P1,P2} as the simplicial complex
spanned by all proper faces different from P1 and P2. Observe that the boundary com-
plexes ∂P1, ∂P2 are disjoint subcomplexes of � and we define � := ∂P1 ∪ ∂P2. For the
relative simplicial complex � = (�,�), we record

fk(P1 + P2) = fk+1(�) = fk+1(�) − fk+1(�)

for all k = 0, . . . , d − 1. For later perspective, � is called the Cayley complex, and (�,�) is
the relative Cayley complex.

We can now appeal to Observation 1.1 to reduce the task to bounding hk(�) in-
stead. Hence, we define hk(P[2]) := hk(�,�) for i = 0, . . . , d . This setup now fits into
the scheme of a relative upper bound problem. Using the developed techniques of rela-
tive Stanley–Reisner theory we can resolve this upper bound problem which recovers the
main theorem of Karavelas and Tzanaki [KT11, Theorem 18].

Theorem 5.5 (UBT for two summands). — Let P[2] = (P1,P2) be two simplicial d-polytopes

in relatively general position with n1 and n2 vertices, respectively. Then

hk+1(P[2]) ≤
(

n1 + n2 − d + k − 1
k + 1

)
−

(
n1 − d + k − 1

k + 1

)

−
(

n2 − d + k − 1
k + 1

)
+ (−1)k+1

(
d + 1
k + 1

)

for k + 1 ≤ � d+1
2 � and

hk+1(P[2]) ≤
(

n1 + n2 − k − 2
d − k

)
+ (−1)k+1

(
d + 1
k + 1

)

for k + 1 > � d+1
2 �. Equality holds for all k simultaneously if and only if P[2] is Minkowski neighborly.
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Proof. — The polyhedral complex �′ := � ∪ P1 ∪ P2 is a d-sphere and hence
Cohen–Macaulay. In particular G = {∂P1, ∂P2} is, up to excision, a full arrangement
of disjoint codimension one CM subcomplexes of �′. The first inequality is provided by
Theorem 4.14.

For the second inequality, we use the Dehn–Sommerville relations for relative com-
plexes (Lemma 1.3) together with the fact that (�,G ) is weakly Eulerian. Finally, we
observe that the full arrangement G is d-magnificent in the sense of Theorem 4.9 (see Ex-
ample 4.10). It now follows with Theorems 4.6 and 4.9 that tightness in the inequalities
implies the desired neighborliness. �

5.3. Cayley polytopes and Cayley complexes. — The geometric construction of the pre-
vious section is easily generalized to higher dimensions. For a family P[m] = (P1, . . . ,Pm)

of m polytopes in Rd , we define the Cayley polytope as

Cay(P[m]) := conv
( m⋃

i=1

Pi × ei

)
⊆ Rd × Rm.

The coordinate projection Rd × Rm → Rm restricts to a linear projection

(7) π : Cay(P[m]) −→ �m−1 = conv{e1, . . . , em}
of the Cayley polytope to the (geometric) standard (m − 1)-simplex. It is easy to see that
for λ = (λ1, . . . , λm) ∈ �m−1, we have

(8) π−1(λ) ∼= λ1P1 + · · · + λmPm.

In particular, for any λ ∈ relint�m−1, π−1(λ) is combinatorially equivalent (and even
normally equivalent, cf. [Zie95, Section 7]) to P1 + · · · + Pm. Let us denote by �J =
conv{ei : i ∈ J} the faces of �m−1 for the various subsets J ⊆ [m]. Cayley polytopes are
an indispensable tool in the study of Minkowski sums, cf. [dLRS10]. For nonempty faces
Fi ⊆ Pi for i = 1, . . . ,m

F1 + · · · + Fm ⊆ |P[m]| is a face

⇐⇒ Cay(F1, . . . ,Fm) ⊆ Cay(P1, . . . ,Pm) is a face;
see [dLRS10, Observation 9.2.1]. Together with the next result, this correspondence
yields a simple proof of Theorem 5.2(i).

Proposition 5.6. — Let P[m] be a family of m polytopes in Rd . If
∑m

i=1 f0(Pi) > d + m, then

there exist a choice of vertices ∅ �= Si ⊆ V(Pi) for i = 1, . . . ,m with

m∑

i=1

|Si| ≤
⌊

d + m + 1
2

⌋

such that Cay(conv(S1), . . . , conv(Sm)) is not a face of Cay(P[m]).
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FIG. 2. — An illustration of the Cayley polytope for P[3] = (P1,P2,P3) including the projection to the simplex

Proof. — Let M be any choice of d + m + 1 vertices of the (d + m − 1)-dimensional
Cayley polytope in Rd+m−1. By Radon’s theorem, M may be partitioned into two sets
M1, M2, whose convex hulls intersect. Without loss of generality, we may assume that
M1 is the smaller of the two, so that |M1| ≤ � d+m+1

2 �. Hence conv(M1) is the desired
non-face of Cay(P[m]). �

The following simple proposition summarizes the most important properties of the
Cayley polytope. For proofs and more information see [dLRS10]. An illustration of the
Cayley polytope for three summands is given in Figure 2.

Proposition 5.7. — Let Cay(P[m]) be the Cayley polytope associated to P[m] = (P1, . . . ,Pm),

and let π : Cay(P[m]) → �m−1 denote the projection of Cayley polytopes (7).

(i) For λ ∈ relint�J, π−1(λ) is combinatorially equivalent to
∑

i∈J Pi .

(ii) For any J ⊆ [m]
π−1(�J) ∼= Cay(PJ).

(iii) If all polytopes Pi are of the same dimension d, i.e., if P[m] is pure, then

dim Cay(PJ) = d + |J| − 1

for all J ⊆ [m].
(iv) If P[m] is a family of simplicial polytopes in relatively general position, then the only non-

simplex faces of Cay(P[m]) are Cay(PJ) for all ∅ �= J ⊆ [m].
The proposition suggests that the boundary of the Cayley polytope Cay(P[m]) is

stratified along the facial structure of the (m − 1)-simplex. We define the Cayley complex

T[m] = T(P[m]) as the closure of π−1(relint�m−1) ∩ ∂Cay(P[m]).
Then a family P[m] of simplicial polytopes is in relatively general position if and

only if T[m] is a simplicial complex. For a subset S ⊆ [m], let us write TS := T(PS), and
T∅ = �0. It is easy to see that the boundary of T[m] is covered by the Cayley complexes
TJ for J � [m] and we define the Cayley arrangement as T := {T[m]\j : j ∈ [m]}.
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FIG. 3. — Boundary of the Cayley complex for P[3] = (P1,P2,P3) being three general position pentagons in R2. The Cayley
complex T[3] is a solid torus in the three-sphere ∂Cay(T[3])

Example 5.8. — Consider P[3] = (P1,P2,P3) a family of three distinct pentagons.
Then T is a two-dimensional torus, cf. Figure 3, which is glued from the Cayley com-
plexes for Cay(Pi,Pj), 1 ≤ i < j ≤ 3, and T[3] is the complementary three-dimensional
torus in the Cayley polytope Cay(T[3]).

Finally, we define the relative Cayley complex as

T◦
[m] :=

(
T[m],T =

⋃

i

T[m]\i

)

and consequently T◦
∅

= ∅. For S ⊆ [m], we define the restrictions TS,TS, and T◦
S analo-

gously.
To apply our techniques, it remains to see that the topological properties of the

Cayley complex are well-behaved.

Proposition 5.9. — Let P[m] = (P1, . . . ,Pm) be a family of simplicial d-polytopes in rela-

tively general position. Let T[m] = T(P[m]) be the corresponding Cayley complex and T the Cayley

arrangement.

(i) For 0 ≤ k ≤ d − 1

fk+m−1

(
T◦

[m]
) = fk

(|P[m]|
)
.

(ii) T is an arrangement of full subcomplexes of T[m].
(iii) T◦

[m] = (T[m],T ) is relative Buchsbaum. In fact, T[m] is a manifold, and T is its bound-

ary.

(iv) (T[m],T ) is universally Cohen–Macaulay.

(v) We have βi(T◦
[m]) = 1i=m−1 + 1i=d+m−2.
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Proof. — The relative complex T◦
[m] is exactly the set of faces of Cay(P[m]) for which

the intersection with π−1(λ) is nonempty for any λ ∈ relint�m−1. For any such λ the
intersection of π−1(λ) is normally equivalent to |P[m]| (i.e., their normal fans coincide).
Hence, the f -vector of T◦

[m] is the shifted f -vector of |P[m]| which proves (i).
For (ii) note that TS is the subcomplex of T[m] induced by the vertices V(Pi), i ∈ S.
Let W = π−1(∂�m−1) � ∂Cay(P[m]) be the shadow boundary, which can be seen

as a subset of Rd × ∂�m−1. The fibers π−1(x), x ∈ ∂�m−1 are convex and of dimension d ;
hence W is a full-dimensional submanifold of Rd ×∂�m−1 that collapses to ∂�m−1

∼= Sm−1.
It follows in particular that W is in fact homeomorphic to Bd × Sm−1 where Bd is a d-ball.

For (v), we can use excision to compute H̃•(T[m],T ) ∼= H̃•(∂Cay(P[m]),W). The
same argument applied to (relative) links then shows (iii) and (iv). �

So, for a proof of Theorem 5.4 it is sufficient to find tight upper bounds on the
h-vector of the Cayley complex. To emphasize the relation to P[m], we define the h-vector

of a simplicial family in relatively general position as

h∗(P[m]) := h∗
(
T◦

[m]
)
.

In particular, T{i} = ∂Pi. For two summands, the relative Cayley complex is a cylinder
over a sphere relative to its boundary; cf. Section 5.2.

5.4. Initial terms of the h-vector. — In the proof of the UBT, it is only necessary to find
tight upper bounds on hk for k ≤ � d

2� and let the Dehn–Sommerville equations take care
of the rest. In this section we find bounds for hk for k ≤ d−m+1

2 . For higher k, we will also
employ suitably generalized versions of the Dehn–Sommerville equations which we treat
in the next section. In contrast to the case of spheres, we will need bounds on g-vectors
(and more).

Theorem 5.10. — Let P[m] = (P1, . . . ,Pm) be a family of simplicial d-polytopes in Rd with

Cayley complex T[m] = T(P[m]). Then we have

(k + m)gk+m

(
T◦

[m]
) ≤ (

f0(T[m]) − d − m
)
hk+m−1

(
T◦

[m]
)

+
m∑

i=1

f0(T{i})gk+m−1

(
T◦

[m]\{i}
)
.

We have
(
i + |S|)gi+|S|

(
T◦

S

) = (
f0(TS) − d − |S|)hi+|S|−1

(
T◦

S

)

+
∑

i∈S

f0(T{i})gi+|S|−1

(
T◦

S\{i}
)

for all i ≤ k0 and S ⊆ [m] if and only if all non-faces of TS of dimension < k0 + |S| are supported in

some V(TR), R � S.
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Proof. — By Proposition 5.9(iv), the pair (T[m],T ) is universally Cohen–Macaulay.
By Corollary 4.22(2), we conclude at once that

(k + m)hk+m

(
T◦

[m]
) ≤ (

f0(T[m]) − d + k
)
hk+m−1

(
T◦

[m]
)

+
m∑

i=1

f0(T{i})gk+m−1

(
T◦

[m]\{i}
)
.

The desired inequality follows by subtracting (k + m)hk+m−1(T◦
[m]) on both sides. The

characterization for the case of equality follows with iterative application of the charac-
terization in Corollary 4.22(2). �

Theorem 5.10 is the key to the UBTM. An alternative, geometric proof can
be given rather elegantly using relative shellability: It is a consequence of the work of
Bruggesser–Mani [BM71], Proposition 4.27 and Alexander duality of shellings provided
in [AB12]. This program has been implemented to some extent in [KT15].

The theorem directly enables us to give (tight) upper bounds on small h-entries.
The following corollary is a direct consequence of Theorem 5.10. We present an alterna-
tive, direct proof by change of presentation (see Section 4.1).

Corollary 5.11. — Let P[m] = (P1, . . . ,Pm) be a family of m simplicial d-polytopes in

relatively general position and let T◦
[m] be the corresponding relative Cayley complex. Then for all

−m + 1 ≤ k ≤ d

hk+m−1

(
T◦

[m]
) ≤

∑

S⊆[m]
(−1)m−|S|

(
f0(TS) − d + k − 1

k + m − 1

)
.

Equality holds for some k0 + m − 1 if and only if all non-faces of T[m] of dimension < k0 + m − 1 are

supported in some V(TS), S � [m].
Proof. — By Proposition 5.9(iii), the relative complex T◦

[m] = (T[m],T ) is Buchs-
baum and thus we can apply Theorem 2.5.

For the topological contribution, we use Proposition 5.9(v) to infer that all Betti
numbers are zero except for β̃m−1(T◦

[m]) = 1 and β̃d+m−2(T◦
[m]) = 1. Hence, for k ≥ 2

h
top
k+m−1

(
T◦

[m]
) =

(
d + m − 1

d − k

) k+m−2∑

i=0

(−1)k+m−1−iβ̃i−1

(
T◦

[m]
)

= 1k≥2(−1)k−1

(
d + m − 1

d − k

)
.

For the algebraic component h
alg
k+m−1(T

◦
[m]), recall from Proposition 5.9(ii) that T is an

arrangement of full subcomplexes of T[m]. Hence, for M = M[T◦
[m],T ], nerve ideal IN =
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IN[T[m],T ], and a l.s.o.p. 
 of length � = d + m − 1 we obtain for −m + 1 ≤ k ≤ d

h
alg
k+m−1(T[m],T ) = dimk(M/
M)k+m−1 ≤ dimk(IN/
IN)k+m−1

by Theorem 4.6. Now, upon closer examination, we notice that IN is generated by square-
free monomials corresponding to subsets τ ⊆ ⋃

i V(Pi × ei) such that τ ∩ V(Pi × ei) �= ∅

for all i. Hence, IN is generated in degree m by
∏

i f0(Pi) minimal generators. That is, the
coarse nerve N with Stanley–Reisner ideal IN is

N=
⋃

S�[m]
∗
i∈S

�V(Pi×ei).

While N is in general not Buchsbaum, its (d + m − 2)-skeleton is. In particular
N(d+m−1) has homology only in dimensions d + m − 2 and m − 2 and β̃m−2(N

(d+m−2)) = 1.
By Corollary 1.10 and Theorem 1.11, the relative complex (�

(d+m−1)

[n] ,N(d+m−1)) is Buchs-
baum. Moreover, the intersection poset P=P(T ) of the arrangement coincides with the
dual to the face poset of �[m] and hence

μP(T[m],TS) = (−1)m−|S|

for all S ⊆ [m]. We can now use Theorem 4.11 and Proposition 4.13 to evaluate

dimk(IN/
IN)k+m−1 =
∑

S⊆[m]
(−1)m−|S|

(
f0(TS) − d + k − 1

k + m − 1

)

− (−1)k−11k≥2

(
d + m − 1

d − k

)
.

Consider the cover the cover T̂ := {Ti := T[m]\{i} : i ∈ [m]} of ∂T[m] = T. For tight-

ness, notice that for every strict subset R � [m] of T̂, (T[m],T[m] ∩⋂
i∈R Ti) is acyclic, that

is, its Betti numbers are trivial. On the other hand,
(

T[m],T[m] ∩
⋂

i∈[m]
Ti

)
= (

T[m], {∅})

has only one nontrivial homology group, that in dimension d − 1. Hence, T̂ is (d +
m − 2)-magnificent w.r.t. (T[m],T ) in the sense of Theorem 4.9. Tightness follows with
Theorem 4.6 and Theorem 4.8. �

5.5. The Dehn–Sommerville formula and other linear relations. — Let us give some lin-
ear relations among the h-vectors of our particular simplicial complexes. To give Dehn–
Sommerville-type relations among the entries of the h-vector of the relative Cayley com-
plex, it will prove useful to renormalize the h-vector to

h̃k+m−1

(
T◦

[m]
) := hk+m−1

(
T◦

[m]
) + (−1)k

(
d + m − 1
k + m − 1

)
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and

g̃k+m−1

(
T◦

[m]
) := h̃k+m−1

(
T◦

[m]
) − h̃k+m−2

(
T◦

[m]
)
.

On a purely enumerative level, this corresponds to setting the number of empty faces of
T◦

[m] to

f̃−1

(
T◦

[m]
) = h̃0

(
T◦

[m]
) = (−1)m−1 = −μP(T[m])(T[m],∅).

With this, we can compute h̃ from ( f̃−1, f0, . . .) as usual and rewrite Corollary 5.11 as

h̃k+m−1

(
T◦

[m]
) ≤

∑

∅ �=S⊆[m]
(−1)m−|S|

(
f0(TS) − d + k − 1

k + m − 1

)
.

An important ingredient to our approach is, once again, Dehn–Sommerville duality.

Lemma 5.12. — Let P[m] be a pure collection of m polytopes in Rd , d ≥ 1, such that the Cayley

complex T(P1, . . . ,Pm) is simplicial. Then, for all −m + 1 ≤ k ≤ d, we have

hd−k(T[m]) = h̃k+m−1

(
T◦

[m]
) = hk+m−1

(
T◦

[m]
) + (−1)k

(
d + m − 1

d − k

)
.

Proof. — By Proposition 5.9, the complexes T◦
[m] and T[m] are homology manifolds.

Moreover, β̃m−1(T◦
[m]) = 1 and β̃d+m−2(T◦

[m]) = 1, but β̃i(T◦
[m]) ≡ 0 otherwise. The asser-

tion now follows by Lemma 1.3. �

This allows us to translate from bounds on h∗(T[m]) to bounds on h∗(T◦
[m]), and vice

versa. Let us define

g̃
〈�〉
k+m−1(·) :=

�∑

i=0

(−1)i

(
�

i

)
h̃k+m−1−i(·) and

g
〈�〉
k+m−1(·) :=

�∑

i=0

(−1)i

(
�

i

)
hk+m−1−i(·).

With this, we have the following elementary relations.

Proposition 5.13. — For T[m] as above, any � ≥ 0, and any 1 ≤ s ≤ m, we have

hk+m−1(T[m]) =
∑

S⊆[m]
g̃
〈m−|S|〉
k+m−1

(
T◦

S

)
.
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TABLE 1. — Visualization of Proposition 5.13, recording the coefficients for h-numbers

|S| = m m − 1 m − 2 m − 3 m − 4 · · ·
k + m − 1 1 1 1 1 1 · · ·
k + m − 2 0 −1 −2 −3 −4 · · ·
k + m − 3 0 0 1 3 6 · · ·
k + m − 4 0 0 0 −1 −4 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Proof. — From the stratification of the Cayley complex T[m] into the open Cayley
complexes T◦

S, S ⊆ [m], it follows by linearity of h-vector that

(9) hk+m−1(T[m]) =
∑

S⊆[m]
g
〈m−|S|〉
k+m−1

(
T◦

S

)
.

Now, observe that the binomial correction terms, when passing from g∗ to g̃∗, cancel out
in the sum (9) since

∑
S⊆[m] −1S = 0, so that

∑

S⊆[m]
g
〈m−|S|〉
k+m−1

(
T◦

S

) =
∑

S⊆[m]
g̃
〈m−|S|〉
k+m−1

(
T◦

S

)
.

�

To visualize Proposition 5.13, note that every g-vector entry g̃
〈m−|S|〉
k+m−1 (T◦

S) can be
written as a sum of h-numbers h̃

〈m−|S|〉
i (T◦

S). Hence, we can encode the formula of Propo-
sition 5.13 by recording the coefficients of these h-numbers in Table 1.

For k,m, d ∈ Z, let us now define c : Z3 → Z by

c′(k,m, d) := 2k + 2m − 1 − d ⇐⇒ k + m − 1 = d + c′(k,m, d) − 1
2

,

and

c(k,m, d) := min
{
m,max

{
c(k,m, d),1

}}
.

Let us furthermore denote the covering relation by ≺, i.e., for R,S ⊆ [m] with R ⊆ S we
write R ≺ S to denote the fact that there is no set Q with R � Q � S.

Lemma 5.14. — For T[m] as above, any 1 ≤ s ≤ m, and k + m − 1 ≤ d+m−1
2 , and with

c = c(k,m, d) we have

hk+m−1(T[m])

=
�m/2�∑

j=0

m−2j∑

s=c−2j+1

∑

S⊆[m]|S|=s

(
m − s

2j

)(
h̃k+m−1−2j

(
T◦

S

)

− 1
2j + 1

∑

R≺S

h̃k+m−2−2j

(
T◦

R

)
)

(A)
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TABLE 2. — Example of the splitting into two subsums for k + m − 1 = d+m−3
2 . Summands of (β) highlighted

+
�m/2�∑

j=0

∑

S⊆[m]|S|=c−2j

(
m − |S| − 1

2j

)(
h̃k+m−1−2j

(
T◦

S

)

− m − S
(m − |S| + 1)(2j + 1)

∑

R≺S

h̃k+m−2−2j

(
T◦

R

)
)

.(B)

Proof. — We use induction on m, the case m = 1 being trivial as the only term in
the sums (A) and (B) is h̃k(T◦

[1]) = hk(T◦
[1]) + (−1)k

(
d

k

) = hk(T[1]). For m > 1, note that by

Proposition 5.13 and the definition of g̃, we have

hk+m−1(T[m]) =
∑

S⊆[m]
g̃
〈m−|S|〉
k+m−1

(
T◦

S

) =
∑

S⊆[m]

m−|S|∑

i=0

(−1)i

(
m − |S|

i

)
h̃k+m−1−i

(
T◦

S

)
.

The coefficients of h̃∗(T◦
S) are summarized in Table 1. We split this last sum into two

subsums, cf. Table 2, and obtain

∑

S⊆[m]

m−|S|∑

i=c−|S|+1

(−1)i

(
m − |S|

i

)
h̃k+m−1−i

(
T◦

S

)
.(α)

+
∑

S⊆[m]

c−|S|∑

i=0

(−1)i

(
m − |S|

i

)
h̃k+m−1−i

(
T◦

S

)
(β)

Notice now that in the sum (β), whenever h̃k′(T◦
S) is evaluated, then k′ ≥ d+|S|−1

2 .
Therefore, we may use the Dehn–Sommerville equations to substitute (β) by

∑

S⊆[m]

c−|S|∑

i=0

(−1)i

(
m − |S|

i

)
hd+|S|−k−m(TS)

with d + |S| − k − m ≤ d+|S|−1
2 . We may now evaluate h|S|−m+i(TS) using the induction

assumption, as illustrated in Table 3. We obtain, after also rewriting (α) to (A′), a decom-
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TABLE 3. — Applying the Dehn–Sommerville relations and induction simplifies the array

TABLE 4. — Pairing positive and negative terms of the sums (A′) and (B′), corresponding to sets S ⊆ [m] and R ≺ S

position

hk+m−1(T[m])

=
∑

S⊆[m]

m−|S|∑

i=c−|S|+1

(−1)i

(
m − |S|

i

)
h̃k+m−1−i

(
T◦

S

)

+
m∑

j=0

∑

S⊆[m]
|S|=c−j

(−1)j

(
m − |S| − 1

j

)
h̃k+m−1−j

(
T◦

S

)

=
m∑

j=0

m−j∑

s=c−j+1

∑

S⊆[m]
|S|=s

(−1)j

(
m − s

j

)
h̃k+m−1−j

(
T◦

S

)
(A′)

+
m∑

j=0

∑

S⊆[m]
|S|=c−j

(−1)j

(
m − |S| − 1

j

)
h̃k+m−1−j

(
T◦

S

)
.(B′)

We now pair summands with positive coefficient (specifically summands of
h̃k+m−1−j(T◦

S), j even) with summands h̃k+m−2−j(T◦
R), where R ≺ S (see also Table 4).

We see that the sum (A′) is equal to

�m/2�∑

j=0

m−2j∑

s=c−2j+1

∑

S⊆[m]
|S|=s

(
m − s

2j

)(
h̃k+m−1−2j

(
T◦

S

) − 1
2j + 1

∑

R≺S

h̃k+m−2−2j

(
T◦

R

)
)
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and the sum (B′) equals

�m/2�∑

j=0

∑

S⊆[m]
|S|=c−2j

(
m − |S| − 1

2j

)(
h̃k+m−1−2j

(
T◦

S

)

− m − |S|
(m − |S| + 1)(2j + 1)

∑

R≺S

h̃k+m−2−2j

(
T◦

R

))
.

�

We conclude in particular that it is sufficient to know the various initial h-vector
entries.

Corollary 5.15. — The h-vector entries hk+m−1(T◦
[m]) for k + m − 1 > � d+m−1

2 � are deter-

mined by h̃k′+m−1(T◦
S) for k′ + m − 1 ≤ � d+m−1

2 � and S ⊆ [m].
Passing from h-vectors to f -vectors and noting that Minkowski neighborly families

maximize the ‘small’ h-entries in the sense of Corollary 5.11, we immediately conclude
Proposition 5.3.

5.6. The upper bound theorem for Minkowski sums. — We can finally give sharp and
explicit bounds for hk(T◦

[m]). Let us define the functions

ω̃〈�〉 : Z[m] × Z × Z −→ Z, m ≥ 0, � ≥ 0

(where we abbreviate ω̃ := ω̃〈0〉), and

ω : Z[m] × Z × Z −→ Z, m ≥ 0

by the following conditions:

(a) Basic relation: For all k, d ≥ 0

ω̃〈�〉(·, ·, k) = ω̃〈�−1〉(·, ·, k) − ω̃〈�−1〉(·, ·, k − 1);
(b) Linearity: For all −m + 1 ≤ k ≤ d

ω(α, d, k + m − 1) =
∑

S⊆[m]
ω̃〈m−|S|〉(αS, d, k + m − 1),

where αS ∈ ZS is the restriction of α ∈ Z[m] to the index set S ⊆ [m];
(c) Dehn–Sommerville relation: For all −m + 1 ≤ k ≤ d

ω(α, d, d − k) = ω̃(α, d, k + m − 1);
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(d) Initial terms: For k + m − 1 ≤ d+m−1
2 ,

ω̃(α, d, k + m − 1) =
∑

∅ �=S⊆[m]
(−1)m−|S|

(|αS| − d + k − 1
k + m − 1

)
.

Using the fact that ω and ω̃ encode the h-vector for Minkowski neighborly families, whose
h-vectors satisfy relations (a)–(d) and which exist by Theorem 5.2, we conclude consis-
tency of these relations. By linearity (a) and the definition of the initial terms (d), we see
that:

Lemma 5.16. — For all k + m ≤ d+m−1
2

(k + m)ω̃(α, d, k + m)

= (
f0(T[m]) − d + k

)
ω̃(α, d, k + m)

(
T◦

[m]
)

+
∑

i∈[m]
f0(T{i})ω̃〈1〉(α, d, k + m − 1).

The next lemma holds all the missing ingredients necessary for resolving the Upper
Bound Conjecture for Minkowski sums.

Lemma 5.17. — Let P[m] = (P1, . . . ,Pm) be a family of simplicial d-polytopes in relatively

general position in Rd with Cayley complex T[m] = T(P1, . . . ,Pm). Let −m + 1 ≤ k ≤ d such that

k + m − 1 ≤ � d+m−1
2 � and let 0 ≤ δ ≤ d+1

d−1 be any real parameter. Then

g̃k+m−1

(
T◦

[m]
) − δ

∑

S≺[m]
g̃k+m−2

(
T◦

S

)
(10)

≤ ω̃〈1〉( f0(P[m]), d, k + m − 1
) − δ

∑

S≺[m]
ω̃〈1〉( f0(PS), d, k + m − 2

)

If δ < d+1
d−1 , then equality holds if and only if it holds for each summand separately.

Remark 5.18. — Alternatively, and as an application of Theorem 4.24, one can
prove a result that can be used just as well to prove the Upper Bound Theorem on
Minkowski sums: For a family P[m] in Rd of polytopes in relative general position, and
a monotone increasing family of nonnegative real parameters (δs), 0 ≤ s ≤ m, we have

∑

S⊆[m]
(−1)m−#Sδ|S|gk+|S|−1

(
T◦

S

)

≤
∑

S⊆[m]
(−1)m−#Sδ|S|ω̃〈1〉( f0(PS), d, k + |S| − 1

)
,
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with equality if and only if it holds for each summand. For the proof, notice that following
Theorem 4.24, we have for v ∈ Pi an inequality

∑

i∈S⊆[m]
(−1)m−#Shk+|S|−1

(
lk

(
v,T◦

S

))

≤
∑

i∈S⊆[m]
(−1)m−#S

(
hk+|S|−1

(
T◦

S

) − gk+|S|−1

(
T◦

S\{i}
))

,

sum over all v in T[m] and argue as in the proof of Lemma 5.17 below.

Proof of Lemma 5.17. — Using Theorem 5.10, we obtain

g̃k+m−1

(
T◦

[m]
) − δ

∑

S≺[m]
g̃k+m−2

(
T◦

S

)

≤
(

f0(T[m]) − d − m

k + m − 1

)
g̃k+m−2

(
T◦

[m]
)

+
∑

S≺[m]

(
f0(T[m]\S)

k + m − 1
− δ

)
g̃k+m−2

(
T◦

S

)

As the equality is only nontrivial if k ≥ 1 and therefore

m ≤ d + m − 1
2

⇐⇒ m ≤ d − 1,

we may assume that k + m − 1 ≤ d − 1. Hence, as f0(Pi) ≥ d + 1 and k ≤ d , we have
f0(T[m]\S)

k+m−1 − δ ≥ 0, and the latter sum is bounded from above by ω:
(

f0(T[m]) − d − m

k + m − 1

)
ω̃〈1〉( f0(P[m]), d, k + m − 2

)

+
∑

S≺[m]

(
f0(T[m]\S)

k + m − 1
− δ

)
ω̃〈1〉( f0(PS), d, k + m − 2

)

= ω̃〈1〉( f0(P[m]), d, k + m − 1
) − δ

∑

S≺[m]
ω̃〈1〉( f0(PS), d, k + m − 2

)

where the last equality follows from Lemma 5.16. The equality case follows directly from
Theorem 5.10. �

We summarize the upper bounds in the following theorem.

Theorem 5.19. — Let P[m] = (P1, . . . ,Pm) be a family of simplicial d-polytopes in relatively

general position in Rd with n = f0(P[m]). For the corresponding Cayley complex T[m] = T(P[m]) the

following holds
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(1) ω is an upper bound:
(a) for any −m + 1 ≤ k ≤ d with k + m − 1 ≤ d+m−1

2

h̃k+m−1

(
T◦

[m]
) ≤ ω̃(n, d, k + m − 1),

(b) for any −m + 1 ≤ k ≤ d with k + m − 1 < d+m−1
2 , we have

hk+m−1(T[m]) ≤ ω(n, d, k + m − 1).

(2) Equality cases:
(a) equality holds up to some k0 + m − 1 in (1a) if and only if, for all S ⊆ [m], all

non-faces of TS of dimension < k0 + |S| − 1 are supported in some V(TR), R � S,

(b) equality holds up to some k0 + m − 1 in (1b) if and only if, for all S ⊆ [m], all non-

faces of TS of cardinality ≤ min{k0 + m − 1, d+m−1
2 } are supported in some V(TR),

R � S.

(3) Tightness: there is a pure collection of m polytopes Qi in Rd with f0(Q[m]) = f0(P[m])
such that for all −m + 1 ≤ k ≤ d with k + m − 1 ≤ d+m−1

2

h̃k+m−1

(
T◦

[m](Qi)
) = ω̃

(
f0(Q[m]), d, k + m − 1

)
, and

hk+m−1

(
T[m](Qi)

) = ω
(

f0(Q[m]), d, k + m − 1
)
.

Proof. — Notice first that claims (1a) and (2a) are verbatim special cases of The-
orem 5.11. Therefore, the proof of the stated claims splits into two parts: We first prove
(1b) and (2b), and then we address the question of tightness.

Claims (1b) and (2b). — By Lemma 5.14, we have

hk+m−1(T[m])

=
� m

2 �∑

j=0

m−2j∑

s=c−2j+1

∑

S⊆[m]
|S|=s

(
m − s

2j

)(
h̃k+m−1−2j

(
T◦

S

)

− 1
2j + 1

∑

R≺S

h̃k+m−2−2j

(
T◦

R

))
(A)

+
� m

2 �∑

j=0

∑

S⊆[m]
|S|=c−2j

(
m − |S| − 1

2j

)(
h̃k+m−1−2j

(
T◦

S

)

− m − |S|
(m − |S| + 1)(2j + 1)

∑

R≺S

h̃k+m−2−2j

(
T◦

R

)
)

.(B)
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Now, clearly, 1
2j+1 ≤ 1 < d+1

d−1 , so that we can estimate the sums (A) and (B) using
Lemma 5.17, obtaining

h̃k+m−1(T[m])

≤
� m

2 �∑

j=0

m−2j∑

s=c−2j+1

∑

S⊆[m]
|S|=s

(
m − s

2j

)(
ω̃

(
f0(PS), d, k′

j

)

− 1
2j + 1

∑

R≺S

ω̃
(

f0(P[m])R, d, k′
j − 1

))

+
� m

2 �∑

j=0

∑

S⊆[m]
|S|=c−2j

(
m − |S| − 1

2j

)(
ω̃

(
f0(PS), d, k′

j

)

− m − |S|
(m − |S| + 1)(2j + 1)

∑

R≺S

ω̃
(

f0(P[m])R, d, k′
j − 1

))

where we abbreviate k′
j := k + m − 1 − 2j. Since ω̃ satisfies linearity and the Dehn–

Sommerville symmetries as well, we can reverse the logic of Lemma 5.14, the latter sums
equals ω( f0(P[m]), d, k + m − 1) of (1b). Equality only holds if it holds in the application
of Lemma 5.17, therefore also concluding the proof of claim (2b).

Claim (3). — By Theorem 5.19(2a) and (2b), it suffices to show that there is a
Minkowski neighborly family Q[m] of simplicial d-polytopes in Rd with f0(Q[m]) = n. Such
a family is provided by Theorem 5.2(ii). �

6. Minkowski sums of nonpure collections

In Section 5, a basic assumption on the collection P[m] = (P1, . . . ,Pm) of polytopes
in Rd was that f0(Pi) ≥ d + 1 for all i = 1, . . . ,m. Minkowski sums of nonpure collections,
i.e., collections P[m] such that f0(Pi) < d + 1 for some i, are however of importance. The
simplest case is when all summands have exactly two vertices. In this case the resulting
Minkowski sum is a zonotope and the corresponding Upper Bound Theorem is well-
known [Buc43] (and in essence goes back to Steiner [Ste26]). In this section we will give
an extension of the Upper Bound Theorem for Minkowski sums to nonpure collections.
This is a nontrivial step and the reader will observe the increase in complexity of the
arguments and especially notation. For this reason we devote a separate section for the
nonpure situation. Nevertheless, the basic line of reasoning remains the same and we only
sketch the main amendments.
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Let us notice that if |P[m]| maximize the number of k-faces, then the polytopes Pi

are simplicial and in relatively general position. In particular, if Pi has fewer than d + 1
vertices then genericity implies that Pi is a ( f0(Pi) − 1)-simplex. For the nonpure UBPM,
we need to introduce an additional parameter: For a family P[m] of m polytopes in Rd with
n = f0(P[m]), let us abbreviate the dimension of the Minkowski sum of the subfamily PS

by ξ(PS). Note that this quantity is determined purely in terms of the vector n of vertex
numbers:

ξ(PS) = ξ(nS) := min
(
d, |nS| − |S|).

We start with an analogue of Theorem 5.2 that applies to nonpure collections.

Theorem 6.1. — Let m, d ≥ 1 be fixed.

(i) There is no Minkowski (k, �)-neighborly family P[m] in Rd for k +�−1 > � ξ(P[m])+�−1
2 �.

(ii) For all n ∈ Zm
≥0 there is a family P[m] in Rd with f0(N[m]) = n that is Minkowski (k, �)-

neighborly for all � ≤ m and � − 1 ≤ k + � − 1 ≤ � ξ(P[m])+�−1
2 �.

The first claim follows from an analogues statement to Proposition 5.6. The sec-
ond statement follows again from the work of Matschke–Pfeifle–Pilaud [MPP11]. We
continue to call the collections of Theorem 6.1(ii) Minkowski neighborly. Similar to the case
of the UBT for spheres, we can use Minkowski neighborly polytopes to abbreviate the
UBTM, because their f -vectors depend on m, d and f0(P[m]) only.

Proposition 6.2. — If P[m],P′
[m] are two Minkowski neighborly families of m simplicial poly-

topes with f0(P[m]) = f0(P′
[m]), then fk(|P[m]|) = fk(|P′

[m]|) for all 0 ≤ k ≤ d.

At this point, let us remark two curious properties that make our life simpler.

Observation 6.3. — Let P[m] be nonpure collection of relative general position polytopes in Rd .

(1) If the Minkowski sum of polytopes in relatively general position is not full-dimensional, then

|P[m]| ∼= P1 × P2 × · · · × Pm. In this case we say that P[m] is deficient.

(2) If dim Pi = 0 for some i ∈ [m], then |P[m]| is a translate of |P[m]\i|.

We recover Buck’s Theorem on zonotopes [Buc43].

Corollary 6.4. — Any family P[m] of m segments in relatively general position in Rd is

Minkowski neighborly. In particular, the f -vector of the zonotope |P[m]| only depend on m and d.

Proof. — Use Proposition 6.2 and the fact that all families of at most d edges in Rd

is deficient. �



RELATIVE STANLEY–REISNER THEORY AND UPPER BOUND THEOREMS. . . 153

For the UBT for Minkowski sums, we define for m, d ≥ 1 and n ∈ Zm
≥0

nbi(d,m,n) := fi
(|P[m]|

)

where P[m] is any Minkowski neighborly family of m simplicial polytopes in Rd with n =
f0(P[m]).

Theorem 6.5 (Upper Bound Theorem for Minkowski sums of general families). — Let m, d ≥ 1
and n ∈ Zm

≥0. If P[m] = (P1, . . . ,Pm) is a family of m polytopes in Rd with P[m] = n, then

fk
(|P[m]|

) ≤ nbk(d,m,n)

for all k = 0, . . . , d − 1. Moreover, the family P[m] is Minkowski neighborly if and only if equality

holds for the number of facets.

The remainder of this section will provide the proof of Theorem 6.5. We only
sketch the line of reasoning for the main points.

6.1. Initial terms of the h-vector. — We start with a replacement for Theorem 5.10
that applies to nonpure collections.

Theorem 6.6. — Let P[m] = (P1, . . . ,Pm) be a family of simplicial polytopes in relatively

general position in Rd . Let T[m] be the corresponding Cayley complex and e = ξ(P[m]). Then, for

every k,

(a) and for every i ∈ [m] and v vertex of Pi

hk

(
lk

(
v,T◦

[m]
)) ≤ hk

(
T◦

[m]
) + h

〈e+m−1〉
k

(
T◦

[m]\{i}
)
, and

(b)

(k + m)gk+m

(
T◦

[m]
) ≤ (

f0(T[m]) − e − m
)
hk+m−1

(
T◦

[m]
)

+
∑

i∈[m]
f0(T{i})h

〈e+m−1〉
k+m−1

(
T◦

[m]\{i}
)
.

(c) We have

(
i + |S|)hi+|S|

(
T◦

S

) = (
f0(TS) − d + i

)
hi+|S|−1

(
T◦

S

)

+
∑

i∈S

f0(T{i})h
〈ξ(PS)〉
i+|S|−1

(
T◦

S\{i}
)

for all i ≤ k0 and S ⊆ [m] if and only if all non-faces of TS of dimension < k0 + |S| are

supported in some V(TR), R � S.
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Proof. — It suffices to prove (a) and characterize equality in this case; the other
inequalities are obtained by simply summing over all vertices. To prove the inequality,
notice that by Lemma 1.2, hk+m−1(lk(v,T◦

[m])) = hk+m−1(st(v,T◦
[m])) and

hk+m−1

(
T◦

[m]
) + h

〈e+m−1〉
k+m−1

(
T◦

[m]\{i}
) = hk+m−1

(
T◦

[m](i)
)

where we define

T◦
[m](i) :=

(
T[m],

⋃

i∈S�[m]
TS

)
.

Hence it suffices to prove that hk+m−1(st(v,T◦
[m])) ≤ hk+m−1(T◦

[m](i)). For this, let

C = Cay(P1, . . . ,Pm),

together with the faces

CS := conv
(⋃

i∈S

Pi + ei

)
for S � [m].

The complex C(i) = ⋃
i∈S�[m] CS is a PL ball and st(v, ∂C) is a PL ball of the same

dimension contained in it, so that (∂C, st(v, ∂C)) is Cohen–Macaulay by Theorem 1.9.
Hence

(
C(i), st(v, ∂C)

) ∼=
(

C(i), st(v,T[m]) ∪
⋃

i∈S�[m]
TS

)
∼= (

T◦
[m](i), st

(
v,T◦

[m]
))

where the last complex is the complement of st(v,T◦
[m]) in T◦

[m](i). Hence

hk+m−1

(
st
(
v,T◦

[m]
)) + hk+m−1(T◦

[m](i), st
(
v,T◦

[m]
) = hk+m−1

(
T◦

[m](i)
)

by linearity of the h-vector and hk+m−1(T◦
[m](i), st(v,T◦

[m]) ≥ 0 by Cohen–Macaulayness.
Equality, i.e. hk+m−1(T◦

[m](i), st(v,T◦
[m]) = 0, holds up to some k0 +m−1 if M[T◦

[m](i), st(v,

T◦
[m])] is generated in degree > k0 + m − 1. We conclude by iteratively applying the same

argument to all subsets S ⊆ [m]. �

We conclude as in Section 5.4:

Corollary 6.7. — Let P[m] = (P1, . . . ,Pm) be a family of m simplicial in relatively general

position and let T◦
[m] be the corresponding relative Cayley complex, and let e = ξ(P[m]). Then for all

−m + 1 ≤ k ≤ d

hk+m−1

(
T◦

[m]
) ≤

∑

S⊆[m]
(−1)m−|S|

(
f0(TS) − e + k − 1

k + m − 1

)
.

Equality holds for some k0 + m − 1 if and only if all non-faces of T[m] of dimension < k0 + m − 1 are

supported in some V(TS), S � [m].
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6.2. The Dehn–Sommerville formula and other linear relations. — The most challenging
part of the Upper Bound Problem for Minkowski sums are the Dehn–Sommerville rela-
tions. Recall that we can assume that dim |P[m]| = d . The following is a simple corollary
of Proposition 1.4.

Lemma 6.8. — Let T = T(P[m]) be the Cayley complex for P[m]. Then, for all −m +
1 ≤ k ≤ d

hd−k(T[m]) = h̃k+m−1

(
T◦

[m]
) +

∑

S⊆[m]
ξ(PS)<d

(−1)k

(
d + m − 1

m + k + ξ(PS)

)
.

The important point to note here is that the correction term
∑

S⊆[m]
ξ(PS)<d

(−1)k ×
(

d+m−1
m+k+ξ(PS)

)
only depends on k, d,m and f0(P[m]) but not on the combinatorial type of the

Cayley polytope. Now, we note that by linearity of the g-vector:

Proposition 6.9. — For T[m] as above, any � ≥ 0, and any 1 ≤ s ≤ m, we have

hk+m−1(T[m]) =
∑

S⊆[m]
g̃
〈m−|S|+ξ(P[m])−ξ(PS)〉
k+m−1

(
T◦

S

)
.

Recall that by Observation 6.3(i), the combinatorial type of T◦
S is determined by

f0(PS) (and d ) if ξ(PS) < d . Note furthermore that if ξ(PS) < d , then ξ(PR) < d for all
R ⊆ S. We obtain, with arguments analogous to Lemma 5.14.

Lemma 6.10. — For T[m], ξ(P[m]) = d as above, any 1 ≤ s ≤ m, any k + m − 1 ≤ d+m−1
2 ,

and with c = c(k,m, d) we have

hk+m−1(T[m])

=
�m/2�∑

j=0

m−2j∑

s=c−2j+1

∑

S⊆[m]
|S|=s

ξ(PS)=d

(
m − s

2j

)(
h̃k+m−1−2j

(
T◦

S

)

− 1
2j + 1

∑

R≺S
ξ(PR)=d

h̃k+m−2−2j

(
T◦

R

)
)

+
�m/2�∑

j=0

∑

S⊆[m]
|S|=c−2j
ξ(PS)=d

(
m − |S| − 1

2j

)(
h̃k+m−1−2j

(
T◦

S

)
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− m − |S|
(m − |S| + 1)(2j + 1)

∑

R≺S
ξ(PR)=d

h̃k+m−2−2j

(
T◦

R

)
)

+ γ
(

f0(P[m]),m, d, k
)
,

where the correction term γ only depends on f0(P[m]), m, d and k, but not on the combinatorial type of

Cay(P1, . . . ,Pm).

6.3. The upper bound theorem for nonpure Minkowski sums. — We finally conclude the
Upper Bound Theorem for pure Minkowski sums: We define

ν̃〈�〉 : Z[m] × Z × Z −→ Z, m ≥ 0, � ≥ 0

and

ν : Z[m] × Z × Z −→ Z, m ≥ 0

by the following conditions:

(a) Basic relation: For all k, � ≥ 0

ν̃〈�〉(·, ·, k) = ν̃〈�−1〉(·, ·, k) − ν̃〈�−1〉(·, ·, k − 1).

(b) Linearity: For all −m + 1 ≤ k ≤ d

ν(α, d, k + m − 1) =
∑

S⊆[m]
ν̃〈m−|S|+ξ(α)−ξ(αS)〉(αS, d, k + m − 1).

(c) Dehn–Sommerville relation: For all −m + 1 ≤ k ≤ d

ν(α, d, d − k) = ν̃(α, d, k + m − 1)+
∑

S⊆[m]
ξ(αS)<d

(−1)k

(
d + m − 1

m + k + ξ(αS)

)
.

(d) Initial terms: For k + m − 1 ≤ ξ(α[m])+m−1
2 , we have

ν̃(α, d, k + m − 1) =
∑

∅ �=S⊆[m]
(−1)m−|S|

(|αS| − ξ(αS) + k − 1
k + m − 1

)
.

With this we obtain the desired UBT for Minkowski sums of nonpure collections.

Theorem 6.11. — Let P[m] = (P1, . . . ,Pm) be a family of simplicial polytopes in relatively

general position in Rd with n = f0(P[m]) and dim |P[m]| = d. For the corresponding Cayley complex

T[m] = T(P[m]) the following holds
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(1) ν is an upper bound:
(a) for any −m + 1 ≤ k ≤ d with k + m − 1 ≤ d+m−1

2

h̃k+m−1

(
T◦

[m]
) ≤ ν̃(n, d, k + m − 1),

(b) for any −m + 1 ≤ k ≤ d with k + m − 1 ≤ d+m−1
2

hk+m−1(T[m]) ≤ ν(n, d, k + m − 1).

(2) Equality cases:
(a) equality holds up to some k0 + m − 1 in (1a) if and only if, for all S ⊆ [m], all

non-faces of TS of dimension < k0 + |S| − 1 are supported in some V(TR), R � S,

(b) equality holds up to some k0 + m − 1 in (1b) if and only if, for all S ⊆ [m], all non-

faces of TS of cardinality ≤ min{k0 + m − 1, d+m−1
2 } are supported in some V(TR),

R � S.

(3) Tightness: there is a collection of m polytopes Qi in Rd with f0(Q[m]) = f0(P[m]) for

which, for any −m + 1 ≤ k ≤ d with k + m − 1 ≤ d+m−1
2 , we have

h̃k+m−1

(
T◦

[m](Qi)
) = ν̃

(
f0(Q[m]), d, k + m − 1

)
, and

hk+m−1

(
T[m](Qi)

) = ν
(

f0(Q[m]), d, k + m − 1
)
.

Proof. — The proof is analogous to Theorem 5.19: The crucial cases to verify
are (1b) and (2b). For this, one can disregard deficient subfamilies of P[m] (those with
ξ(PS) < d ), as their contribution is purely combinatorial. For the remaining subfamilies,
one can use Lemma 6.10 as in Theorem 5.19. �

7. Mixed faces of Minkowski sums

Let P[m] = (P1, . . . ,Pm) be a pure collection of m polytopes in Rd in relatively gen-
eral position. Every proper face F � |P[m]| has a unique decomposition F = F1 + · · · + Fm

where Fi ⊆ Pi is a face. A face F is called mixed if dim Fi > 0 for all i = 1, . . . ,m. In this
section, we will study the mixed f -vector f mix(P[m]) giving the number of mixed faces of
|P[m]|. Mixed faces and in particular mixed facets are related to the better known mixed
cells in mixed subdivisions via liftings; see [dLRS10]. In this section, we prove an upper
bound theorem for the number of mixed faces.

Notice, that by definition f mix
−1 (P[m]) = f mix

0 (P[m]) = 0. Moreover, the ‘relatively gen-
eral position’ assumption forces f mix

k (P[m]) = 0 for all k < m, which also limits the number
of summands to m < d . One can drop the assumption on general position but this is less
natural. Let us start with a simple observation. A face F � |P[m]| is mixed if and only if it
is not a face of a subsum in the following sense: For a linear function � let us denote by
P�

S the face of PS maximizing �. Then F is mixed if for all � such that P�
[m] = F, P�

S �= F
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for all S � [m]. We may now evaluate the mixed faces as the difference of all faces of the
relative Cayley complex, minus the non-mixed faces. Following this basic equation gives
an inclusion-exclusion, and we obtain that

f mix
k (P[m]) ≤

∑

S⊆[m]
(−1)m−|S|fk

(|PS|
)
,

with equality for the number of mixed facets. Let us define the mixed h-vector of P[m] by

(11) hmix
i+m−1(P[m]) :=

∑

S⊆[m]
(−1)m−|S|g〈m−|S|〉

i+|S|−1

(
T◦

S

)

for all −m + 1 ≤ i ≤ d . Using (1) and Proposition 5.9 proves the following.

Lemma 7.1. — Let P[m] be a collection of polytopes in relatively general position. Then

f mix
k (P[m]) ≤

d∑

i=−m+1

(
d − i

k − i

)
hmix

i+m−1(P[m])

for all k ≥ 0.

Thus, in analogy to the UBT for Minkowski sums, it suffices to prove upper bounds
on the mixed h-vector of P[m].

Theorem 7.2. — Let P[m] be a pure collection of m simplicial polytopes in relatively general

position in Rd with n = f0(P[m]). Let T[m] = T(P[m]) be the corresponding Cayley complex. Then for

−m + 1 ≤ k ≤ d − m + 1

hmix
k+m−1(P[m])

=
∑

S⊆[m]
(−1)m−|S| g〈m−|S|〉

i+|S|−1

(
T◦

S

)

≤
∑

S⊆[m]
(−1)m−|S| ω̃〈m−|S|〉(nS, d, k + |S| − 1),

with equality for some k0 + m − 1 if and only if it holds for all summands.

For mixed facets, this results in the following tight upper bound.

Theorem 7.3. — Let 0 < m < d and P[m] a collection of m simplicial d-polytopes in relatively

general position in Rd . Then for any Minkowski neighborly family Nb[m] of d-polytopes with f0(P[m]) =
f0(Nb[m]) we have

f mix
d−1 (P[m]) ≤ f mix

d−1 (Nb[m])

with equality if and only if P[m] is Minkowski neighborly.
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This is an immediate consequence of Theorem 7.2.

Proof of Theorem 7.2. — We first show the bounds on the initial terms of the mixed
h-vector, i.e. bounds on hmix

k+m−1(P[m]) for k + m − 1 ≤ d+m−1
2 .

We have

hmix
k+m−1(P[m]) =

∑

S⊆[m]
(−1)m−|S|g〈m−|S|〉

k+|S|−1

(
T◦

S

)
.

The second sum may be written as

(12)
∑

S⊆[m]

∑

j∈[0,m−|S|]
j+m−|S| even

(
m − |S|

j

)(
hk+|S|−1−j

(
T◦

S

)− 1
m − |S| − j + 1

∑

R≺S

hk+|R|−1−j

(
T◦

R

)
)

where we recall that ≺ denotes the covering relation. Using Lemma 5.17 we can therefore
estimate

∑

S⊆[m]
(−1)m−|S|g〈m−|S|〉

k+|S|−1

(
T◦

S

) ≤
∑

S⊆[m]
(−1)m−|S|ω̃〈m−|S|〉( f0(PS), d, k + |S| − 1

)
.

The second bound can be derived in a similar manner as the first: Combining the Dehn–
Sommerville relations and Lemma 5.14, we rewrite hmix

k+m−1(P[m]) = ∑
S⊆[m](−1)m−|S| ×

g
〈m−|S|〉
i+|S|−1(T

◦
S) as a sum of hj(T◦

S), j ≤ d+|S|−1
2 . We can now pair h- and g-numbers of T◦

S and
T◦

R, R ≺ S and use Lemma 5.17 to bound each term by the corresponding term of ω̃

and ω̃〈1〉. In details: Recall that as in Lemma 5.14, we may think of the coefficients of
hi+m+S(T◦

S) Equation (11) as elements in an array with sides recording i and |S|.
The interplay with the Dehn–Sommerville relations for Cayley complexes now

becomes relevant if, in a summand hk+|S|−1−j(T◦
S) − 1

m−|S|−j+1

∑
R≺S hk+|R|−1−j(T◦

R) in the

Sum (12), k + |S| − 1 − j > d+|S|−1
2 . To understand this, we rewrite Sum (12) as

m∑

j=0

∑

S⊆[m]
|S|=m−j

∑

R⊆S

(−1)|S\R| 1
|S \ R|!hk+|R|−1−j

(
T◦

R

)

For any S � m, we can now apply the Dehn–Sommerville relations and Lemma 5.14 to
rewrite, for S � [m] and j = m − |S|,

∑

R⊆S

(−1)|S\R| 1
|S \ R|!hk+|R|−1−j

(
T◦

R

)

=
∑

R⊆S
|S\R| even

|R|≥d−2k+2m−2|S|+1

1
|S \ R|!

∑

T⊆R

(−1)|T|−|R|hd−k+m−|S|+|T|−|R|
(
T◦

T

)
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and secondly rewrite, for R ⊆ S, and |S \ R| even, the summands of the identity as
∑

T⊆R

(−1)|T|−|R|hd−k+m−|S|+|T|−|R|
(
T◦

T

)

=
∑

T⊆R
|R\T| even

(
hd−k+m−|S|+|T|−|R|

(
T◦

T

)

− 1
|S| − |T| + 1

∑

U≺T

hd−k+m−|S|+|U|−|R|
(
T◦

U

)
)

.

The claim now follows by application of Lemma 5.17. �
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