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ABSTRACT

This paper is about the Fukaya category of a Fano hypersurface X ⊂ CPn. Because these symplectic manifolds
are monotone, both the analysis and the algebra involved in the definition of the Fukaya category simplify considerably.
The first part of the paper is devoted to establishing the main structures of the Fukaya category in the monotone case: the
closed–open string maps, weak proper Calabi–Yau structure, Abouzaid’s split-generation criterion, and their analogues
when weak bounding cochains are included. We then turn to computations of the Fukaya category of the hypersurface X:
we construct a configuration of monotone Lagrangian spheres in X, and compute the associated disc potential. The result
coincides with the Hori–Vafa superpotential for the mirror of X (up to a constant shift in the Fano index 1 case). As a
consequence, we give a proof of Kontsevich’s homological mirror symmetry conjecture for X. We also explain how to
extract non-trivial information about Gromov–Witten invariants of X from its Fukaya category.
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1. Introduction

This paper computes the Fukaya category of a Fano hypersurface in projective
space, by applying techniques which were developed in [67] to compute the Fukaya cate-
gory of a Calabi–Yau hypersurface in projective space. This enables us to prove a version
of Kontsevich’s homological mirror symmetry conjecture [39, 40]. One main challenge
of this work was to understand the ‘right’ way to turn our computations into a proof
of homological mirror symmetry: i.e., the way that is most likely to generalize to other
monotone symplectic manifolds.

To start with, one has to understand the nature of the Fukaya category (and
Gromov–Witten invariants) of a monotone symplectic manifold. We draw on the results
of many authors to give a reasonably complete survey of the construction of these invari-
ants, and the main results about them. The main results are summarized in Section 1.1
of this introduction.

Then, one has to understand what homological mirror symmetry means for Fano
hypersurfaces. We give our version in Section 1.4 of the introduction, where we state our
main results precisely, then discuss the implications of our results for the interpretation of
homological mirror symmetry for more general monotone symplectic manifolds. In this
introduction, the results stated as ‘theorems’ and so on are given precisely, but some of
the explanatory text glosses over technical details to explain the important ideas.

This work was partially supported by the IAS and the National Science Foundation under agreement number
DMS-1128155, and by the National Science Foundation through Grant number DMS-1310604. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the
views of the National Science Foundation.
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1.1. The monotone Fukaya category. — When X is a monotone symplectic manifold,
one can use ‘classical’ pseudoholomorphic curve theory to define Gromov–Witten invari-
ants (see [47, 54]) and Lagrangian Floer theory (see [48, 49]), without appealing to the
heavy analytic machinery required for the fully general definitions [24]. Furthermore,
the algebra involved in studying the Fukaya category simplifies considerably. We give a
survey of the construction of the Fukaya category of a monotone symplectic manifold
in Section 2, together with the associated algebraic structures. Much of the material is
not original, nor is it as general as possible: a more general treatment will appear in [2].
Nevertheless, we feel it is useful to collect these results in a unified way in this simple case:
it displays many of the crucial features of the general theory, with many fewer technical
details, and furthermore some of the features (e.g., the decomposition into eigenvalues
of c1�) are specific to the monotone case. We also note that our proof that the closed–
open and open–closed string maps are dual (Proposition 2.6) is original: it avoids the
need to construct a strictly cyclic structure on the Fukaya category, and uses instead the
notion of a weak proper Calabi–Yau structure.

In this section, we summarize the main results of Section 2.

Remark 1.1. — First, a remark about coefficients. Our algebraic structures (alge-
bras, categories and so on) will be C-linear. In particular, we do not use a Novikov ring.
This is possible by monotonicity: the infinite sums which the Novikov ring is supposed
to deal with are in fact finite in this setting. We could also have chosen to work over a
Novikov polynomial ring:

(1.1.1)
{ N∑

j=0

cj r
λj : cj ∈ C, λj ∈ R≥0

}

(by weighting each count of holomorphic maps by rsymp. area), or over its completion with
respect to the energy filtration (the Novikov ring �0), or over the field of fractions thereof
(the Novikov field �). All of the results in this paper have variations which hold over these
various coefficient rings. We have chosen to work over C to make things as conceptually
simple as possible.

We recall the quantum cohomology ring [47, 54]. We define QH∗(X) := H∗(X;C),
and equip it with the quantum cup product, which we denote by �. It is a graded, super-
commutative, unital C-algebra, and furthermore a Frobenius algebra with respect to the
intersection pairing:

(1.1.2) 〈α � β,γ 〉 = 〈α,β � γ 〉
(we caution that the grading group is not Z, but we won’t go into details about the grading
in this introduction). We denote the unit by e ∈ QH0(X), and recall it coincides with the
unit e ∈ H0(X).
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In Section 2.3, we define the monotone Fukaya category F(X), following [60],
with minor modifications (compare [8]). The objects of F(X) are monotone Lagrangian
submanifolds L ⊂ X equipped with a brane structure (grading, spin structure, C∗-local
system), such that the image of π1(L) is trivial in π1(X). Such Lagrangians are always
orientable, so their minimal Maslov number is ≥ 2. For each such L, the signed count of
Maslov index 2 discs passing through a generic point on L, weighted by the monodromy
of the local system around the boundary, defines a number w(L) ∈ C.

For any two objects L0,L1, one defines the morphism space CF∗(L0,L1) to be the
graded C-vector space generated by intersection points between L0 and L1 (perturbing
by a Hamiltonian flow to make the intersections transverse). One defines A∞ structure
maps

(1.1.3) μs : CF∗(Ls−1,Ls)⊗ · · · ⊗ CF∗(L0,L1)→ CF∗(L0,Ls)

for s ≥ 1 by counting pseudoholomorphic discs with boundary conditions on the Lj ,
weighted by the holonomy of the local systems around the boundary.

These structure maps μs satisfy the A∞ relations, with the sole exception that the
differential

(1.1.4) μ1 : CF∗(L0,L1)→ CF∗(L0,L1)

does not square to zero:

(1.1.5) μ1
(
μ1(x)

)= (
w(L0)−w(L1)

)
x.

Definition 1.1. — For each w ∈ C, we define F(X)w to be the full subcategory whose objects

are those L with w(L)=w. Then each F(X)w is individually a graded A∞ category.

In particular, for any two objects K,L of F(X)w, the Floer cohomology group is
well defined:

(1.1.6) HF∗(K,L) := H∗(CF∗(K,L),μ1
)
.

Furthermore, each F(X)w is cohomologically unital: we denote the cohomological unit
by

(1.1.7) eL ∈ HF∗(L,L)

Proposition 1.1 (see [4], and our Section 2.5). — For any object L of F(X)w, there is a unital

C-algebra homomorphism

(1.1.8) CO0 : QH∗(X)→ HF∗(L,L).
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Proposition 1.2 (see [4], and our Lemma 2.7). — The map CO0 satisfies

(1.1.9) CO0
(c1)=w · eL,

where c1 is the first Chern class.

Now, let

(1.1.10) QH∗(X)∼=
⊕
w

QH∗(X)w,

where QH∗(X)w is the generalized eigenspace of the endomorphism

(1.1.11) c1� : QH∗(X)→ QH∗(X)

corresponding to the eigenvalue w ∈ C. If e ∈ QH∗(X) denotes the identity element, then
we denote by ew the projection of e to QH∗(X)w. Because QH∗(X) is a Frobenius algebra,
(1.1.10) is a decomposition as algebras, and QH∗(X)w is a unital subalgebra with unit ew.

Proposition 1.3 (see [24, Section 13], [56], and our Section 2.5). — For each w ∈ C, there is

a unital algebra homomorphism

(1.1.12) CO : QH∗(X)→ HH∗(F(X)w
)
,

extending CO0, called the closed–open string map. Here ‘HH∗’ denotes Hochschild cohomology: it

carries an associative product called the Yoneda product.

It is an observation going back to [4] that Proposition 1.2 implies that the Fukaya
category, as well as the various closed–open and open–closed maps, split up into com-
ponents indexed by the eigenvalues of c1�. The following results make this idea precise:
our formulations and proofs of these results are heavily based on work of Ritter and
Smith [53].

Proposition 1.4 (see [53, Theorem 9.6] and our Proposition 2.9). — The restriction of the

closed–open string map

(1.1.13) CO : QH∗(X)w′ → HH∗(F(X)w
)

vanishes if w′ =w, and is a unital algebra homomorphism if w′ =w.

Corollary 1.5. — F(X)w is trivial unless w is an eigenvalue of c1�.

Proposition 1.6 (see [24, Section 13], [1, 28, 53], and our Section 2.6). — For each w ∈ C,

there is a homomorphism of QH∗(X)-modules

(1.1.14) OC : HH∗
(
F(X)w

)→ QH∗+n(X),
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called the open–closed string map. Here ‘HH∗’ denotes Hochschild homology: it acquires its

QH∗(X)-module structure via CO (recalling that Hochschild homology is naturally a module over

Hochschild cohomology).

Proposition 1.7 (see [53, Theorem 9.4] and our Corollary 2.11). — The open–closed string

map

(1.1.15) OC : HH∗
(
F(X)w

)→ QH∗+n(X)

lands in the w-generalized eigenspace QH∗+n(X)w ⊂ QH∗+n(X).

In particular, both of the maps CO and OC decompose into components indexed
by eigenvalues of c1�:

COw : QH∗(X)w → HH∗(F(X)w
)

(1.1.16)

OCw : HH∗
(
F(X)w

)→ QH∗+n(X)w,(1.1.17)

and all other components of the maps vanish.
The next piece of structure that we consider on the monotone Fukaya category is

a weak version of a Calabi–Yau structure.

Proposition 1.8 (see Section 2.8). — For each w ∈ C, the element

(1.1.18) [φ] ∈ HHn

(
F(X)w

)∨
,

defined by

(1.1.19) [φ](b) := 〈
OC(b), e

〉
,

is an n-dimensional weak proper Calabi–Yau structure in the sense of Definition A.2.

Proposition 1.8 is a reflection of the Poincaré duality isomorphisms

(1.1.20) HF∗(K,L)∼= HFn−∗(L,K)∨

in the Donaldson–Fukaya category. Combining Propositions 1.6 and 1.8, we obtain

Proposition 1.9 (see Corollary 2.12). — For each w ∈ C, there is a commutative diagram

(1.1.21) QH∗(X)w
α �→〈α,−〉

∼=
COw

QH∗(X)∨w[−2n]
OC∨

w

HH∗(F(X)w)
−∩[φ]

∼=
HH∗(F(X)w)

∨[−n]

(for the bottom isomorphism, see Lemma A.2). In particular, the maps COw and OCw are dual, up to

natural identifications of their respective domains and targets.
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Remark 1.2. — In [2, 24], the duality of CO and OC holds because the corre-
sponding moduli spaces are identified, so the maps are dual on the chain level. This is
impossible to arrange with our analytic setup, but Proposition 1.9 gives a cohomology-
level analogue which suffices for our purposes.

The next result is a version of Abouzaid’s split-generation criterion [1], adapted to
the monotone setup:

Proposition 1.10 (see [1, 2], and our Corollary 2.17). — If Gw ⊂ F(X)w is a full subcate-

gory such that ew is contained in the image of the map

(1.1.22) OCw : HH∗(Gw)→ QH∗(X)w,

then Gw split-generates F(X)w.

Remark 1.3. — The hypothesis of Abouzaid’s split-generation criterion for the
wrapped Fukaya category of an exact symplectic manifold [1, Theorem 1.1] is that the
unit e lies in the image of OC. However, in order to prove that Gw split-generates an
object K, it suffices to prove that CO0 ◦OC contains the unit eK ∈ HF∗(K,K) in its im-
age. Thus, in view of Proposition 1.4, it suffices to check that ew lies in the image of OC:
and more importantly, in light of Proposition 1.7, OC could not possibly contain the unit
e in its image unless c1� had only a single eigenvalue. So Proposition 1.10 is the ‘right’
split-generation criterion.

Combining Propositions 1.9 and 1.10, we obtain:

Corollary 1.11 (see [2], and our Corollary 2.18). — If Gw ⊂ F(X)w is a full subcategory

such that

(1.1.23) COw : QH∗(X)w → HH∗(Gw)

is injective, then Gw split-generates F(X)w.

We draw attention to one special case of this result:

Corollary 1.12 (see [2], and our Corollary 2.19). — If QH∗(X)w has rank 1, then any

non-trivial object of F(X)w split-generates it.

1.2. The relative Fukaya category. — In Section 3, we recall the construction of the
Fukaya category of X relative to a divisor D which is Poincaré dual to a multiple of
the symplectic form, denoted F(X,D) [67]. We recall that it is defined over the ring
R := C[r1, . . . , rn] (no formal power series ring is necessary by monotonicity). Its objects
are exact Lagrangians in X \ D, and the A∞ structure maps count pseudoholomorphic
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discs u, weighted by r
u·D1
1 . . . ru·Dn

n ∈ R, where Di are the irreducible components of the
smooth normal-crossings divisor D.

We expect there to exist an embedding

(1.2.1) F(X,D)⊗R C ↪→F(X),

obtained by setting all rj = 1 in R. Unfortunately, the relationship between F(X,D)

and F(X) is not quite so straightforward for technical reasons: in particular, because
J-holomorphic discs are treated differently in the definitions of the two categories. Nev-
ertheless, we show that the analogy between the two is close enough that computations
in the relative Fukaya category can be transferred to the monotone Fukaya category.

We also expect that

(1.2.2) CO(Dj)=
[

rj

∂μ∗

∂rj

]
⊗R 1,

as proposed in [67, Lemma 8.5], where the proof was only sketched. Again, the incompat-
ibility of the conventions in the definition of the relative and monotone Fukaya categories
make the true relationship slightly more involved, but we prove a version that is sufficient
for our purposes.

1.3. Weak bounding cochains and the disc potential. — In Section 4 (algebra) and Sec-
tion 5 (geometry), we explain how to formally enlarge the monotone Fukaya category
by including weak bounding cochains, closely following [24]. The first technical issue
to confront is that, in order for weak bounding cochains to make sense, we need strict

units; but the Fukaya category need only have cohomological units as we have defined
it. Following [24] (although our technical setup is closer to [28]), we circumvent the issue
by constructing a homotopy unit structure on the Fukaya category. For the purposes of the
rest of this introduction, we will brush the issue under the rug and pretend the Fukaya
category has strict units eL ∈ CF∗(L,L).

We construct a curved A∞ category F(X) by putting all of the categories F(X)w
together and setting μ0 =w(L) · eL ∈ CF∗(L,L) for all L. It follows from (1.1.5) and strict
unitality that the A∞ relations are satisfied. We then enlarge this category by allowing
formal direct sums of objects: the resulting curved, strictly unital A∞ category is called
F(X)⊕. We then enlarge the category again, by allowing objects (L, α), where L is an
object of F(X)⊕, and α is a solution of the Maurer–Cartan equation,

(1.3.1) μ0 +μ1(α)+μ2(α,α)+ · · · = P(α) · eL.

Such a solution α is called a weak bounding cochain, and the space of all weak bounding
cochains for a given L is denoted M̂weak(L) (its quotient by gauge equivalence is called
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the Maurer–Cartan moduli space Mweak(L), but we will not use this notion), and P defines a
function

(1.3.2) P : M̂weak(L)→ C,

called the disc potential. The A∞ structure maps of this category are defined by ‘inserting
the weak bounding cochains in all possible ways’ into the previous A∞ structure maps:

μs
Fwbc(ps, . . . , p1)(1.3.3)

:=
∑

is,...,i0

μ∗
F⊕(αs, . . . , αs︸ ︷︷ ︸

is

, ps, αs−1, . . . , αs−1︸ ︷︷ ︸
is−1

, ps−1, . . . , p1, α0, . . . , α0︸ ︷︷ ︸
i0

).

This defines a new curved, strictly unital A∞ category, which we call Fwbc(X). The cur-
vature of the object (L, α) is P(α) · eL.

Remark 1.4. — The Maurer–Cartan equation (1.3.1) and the definition of the A∞
structure maps (1.3.3) do not make sense as written, because they are infinite sums which
may not, a priori, converge. To make sense of them, extra conditions must be imposed
on α:

• The category of twisted complexes [60, Section 3l] is formally analogous to the
construction of Fwbc(X). There, α is required to be strictly lower-triangular with
respect to some filtration (the curvature μ0

L and disc potential P(α) are required
to vanish also). This ensures convergence of (1.3.1) and (1.3.3). However, we will
want to consider weak bounding cochains which are not lower-triangular with
respect to any filtration.

• In [24], weak bounding cochains are required to have positive energy:

(1.3.4) α ∈ C∗(L;�+)

where �+ is the maximal ideal in the Novikov ring �0. This ensures conver-
gence in (1.3.1) and (1.3.3), because the Novikov ring is complete with respect
to the energy filtration. However, we have chosen to define the Fukaya category
over C, rather than with Novikov coefficients, so there is no analogue of the
energy filtration on our coefficient ring (compare Remark 1.1).

• We give a different reason for convergence: we place a geometric restriction
on our weak bounding cochains called monotonicity (see Section 5.2), which is
specific to the geometric context of the monotone Fukaya category, and which
ensures that (1.3.1) and (1.3.3) are finite sums, for degree reasons. To motivate
this terminology, observe that if we allowed non-monotone Lagrangians as ob-
jects of our Fukaya category, we would be forced to use a Novikov coefficient
ring to achieve convergence of the disc counts defining the A∞ structure maps.
Informally, a weak bounding cochain α on L corresponds to a deformation of
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the object L, which may in principle correspond to a geometric deformation of
the Lagrangians L (e.g., by Lagrange surgery, compare [5, Section 3.3.2] and
[25]). It makes sense that only certain special types of weak bounding cochains
can correspond to monotone deformations, so that their Floer theory can be
defined over C: these are the monotone weak bounding cochains.

We go on to establish some useful results for working with weak bounding cochains.
In Lemma 4.1, we establish sufficient conditions under which an entire subspace V ⊂
CF∗(L,L) is contained in the space of weak bounding cochains: V ⊂ M̂weak(L). This is
an analogue of [26, Proposition 4.3], which says that if L is a torus fibre in a symplectic
toric manifold, then there is an embedding

(1.3.5) H1(L)⊂ M̂weak(L).

One of the main differences between the two results is that the weak bounding cochains
of [26, Proposition 4.3] can never be monotone. The associated disc potential always con-
tains infinitely many terms, because constraining a disc by a codimension-1 cycle on the
boundary does not change its index, as with the divisor axiom in Gromov–Witten theory.
Indeed, the associated disc potential often turns out to be polynomial in the exponentials
of the generators, which are infinite power series. Thus, in [26], it is crucial that the coef-
ficient ring be a Novikov ring, to deal with these infinite sums. In contrast, in the setting
of our Lemma 4.1, the disc potential

(1.3.6) P : V → C

will always be a polynomial.
We also prove a version of the well-known result that critical points v ∈ V ⊂

CF∗(L,L) of the disc potential P correspond to weak bounding cochains with non-
vanishing Floer cohomology (compare [15]), and that under some additional assump-
tions, the endomorphism algebra of the object (L, v) is the Clifford algebra associated to
the Hessian of P at v (compare [12, 35, 37]).

Finally, we establish analogues of the basic structures of the monotone Fukaya cat-
egory (i.e., those presented in Section 2: closed–open string maps, the split-generation
criterion, etc.), when weak bounding cochains are included. In order to obtain an ana-
logue of the split-generation criterion (Proposition 1.10 and its dual Corollary 1.11), we
are forced to impose an additional condition on our weak bounding cochains α, which
is not satisfied in general: namely, we restrict to those α such that the algebra homomor-
phism

(1.3.7) CO0 : QH∗(X)w → HF∗((L, α), (L, α))
is unital when P(α) = w, and vanishes when P(α) = w. We call the resulting sub-
categories Fwbc,u(X)w. Because monotone Lagrangians with vanishing weak bounding
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cochain have this property by Proposition 1.4, we have

(1.3.8) F(X)w ⊂Fwbc,u(X)w ⊂Fwbc(X)w.

1.4. Homological mirror symmetry. — Following [40], one expects the mirror to the
monotone symplectic manifold X to be a Landau–Ginzburg model (Y,W), where Y is a
complex algebraic variety and W : Y → C a regular function. The A-model on X (i.e., the
monotone Fukaya category) should be mirror to the B-model on (Y,W), which is Orlov’s
triangulated category of singularities of the fibres of W, DbSing(W−1(w)) (see [51]). The
triangulated category of singularities is trivial if the fibre W−1(w) is non-singular. If Y =
Spec(S) is affine, with W ∈ S, then we can also introduce the Z/2Z-graded DG category
of matrix factorizations MF(S,W−w). There is an equivalence of triangulated categories

(1.4.1) DbSing
(
W−1(w)

)∼= H∗(MF(S,W −w)
)

for all w (see [51]).
The eigenvalues of c1�, which index non-trivial components of the Fukaya cate-

gory, should correspond to singular values of the superpotential W, which index fibres
with non-trivial triangulated category of singularities (compare [4, Theorem 6.1]). Ho-
mological mirror symmetry then predicts quasi-equivalences of C-linear, Z/2Z-graded,
split-closed, triangulated A∞ categories

(1.4.2) Dπ
(
F(X)w

)∼= DπSing
(
W−1(w)

)
for all w ∈ C (the superscript ‘π ’ denotes the idempotent or Karoubi closure). A proof of
this version of homological mirror symmetry for Fano toric varieties has been announced
by Abouzaid, Fukaya, Oh, Ohta and Ono (in fact, their results go well beyond the Fano
case).

Let Xn
a be a smooth degree-a hypersurface in CPn−1 (we apologize for the awk-

ward notation, which makes Xn
a an (n − 2)-dimensional manifold, but it really makes the

formulae less complicated). It is monotone if a ≤ n − 1. Let P ∈ QH∗(Xn
a) be the class

Poincaré dual to a hyperplane. The relation satisfied by P in QH∗(Xn
a) is computed by

Givental [32] (extending the results of Beauville [6] and Jinzenji [36] in lower degrees):

Proposition 1.13 ([32, Corollaries 9.3 and 10.9]). — Define

(1.4.3) qn
a(x) := xn−1 − aaxa−1,

and

(1.4.4) wn
a :=

{
0 if a ≤ n − 2
−a! if a = n − 1.

Then the subalgebra of QH∗(Xn
a) generated by P is isomorphic to

(1.4.5) C[P]/qn
a

(
P + wn

a

)
.
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We will re-prove Proposition 1.13, via our computations in the Fukaya category, in
Proposition 7.8 (see Section 1.5).

Now, because c1(TXn
a)= (n − a)c1(O(1))= (n − a)P, we have

Corollary 1.14. — The eigenvalues of c1� : QH∗(Xn
a)→ QH∗(Xn

a) are equal to the roots of

qn
a, shifted by wn

a, and multiplied by (n − a). Explicitly, the eigenvalues are:

• 0 (which we call the big eigenvalue) and the n − a numbers

(1.4.6) (n − a)ξ

where ξ n−a = aa (which we call the small eigenvalues), if a ≤ n − 2;

• −a! (which we call the big eigenvalue) and aa − a! (which we call the small eigenvalue), if

a = n − 1.

This tells us where the non-trivial Fukaya categories are. We correspondingly call
the component of the Fukaya category corresponding to the big eigenvalue, the big com-
ponent of the Fukaya category, and the other components the small components. We
prove (using our Fukaya category computations) that if w is a small eigenvalue, then
QH∗(X)w has rank 1. QH∗(X)w is expected to be isomorphic to HH∗(F(X)w), so it
gives a measure of how ‘complicated’ the corresponding Fukaya category is: so we expect
the small components of the Fukaya category to be rather simple, and the big components
to be more complicated. For example, Corollary 1.12 shows that any non-trivial object
in a small component of the Fukaya category necessarily split-generates that component,
and as a corollary any two non-trivial objects intersect, and so on.

Now we consider the mirror.

Definition 1.2. — We define the polynomials

(1.4.7) Zn
a := −u1 . . . un +

n∑
j=1

ua
j ∈ C[u1, . . . , un]

and

(1.4.8) Wn
a := Zn

a + wn
a

(where the constant wn
a is as in Proposition 1.13). We define

(1.4.9) n
a := (Z/aZ)n/(Z/aZ),

the quotient of (Z/aZ)n by the diagonal subgroup. Its character group is

(1.4.10)
(
n

a

)∗ ∼= {
(ζ1, . . . , ζn) ∈ (Z/aZ)n : ζ1 + · · · + ζn = 0

}
.

There is an obvious action of (n
a)

∗ on Cn by multiplying coordinates by ath roots of unity, and Zn
a and

Wn
a are (n

a)
∗-invariant.
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For the rest of this section, we will fix n and a, and write ‘X’ instead of ‘Xn
a’, and so

on, to avoid notational clutter.

Definition 1.3. — The mirror to X is the Landau–Ginzburg model

(1.4.11) (Y,W) := (
Cn/∗,W

)
.

The B-model category associated to w ∈ C is the split-closure of the ∗-equivariant triangulated category

of singularities of the corresponding fibre of W:

(1.4.12) DπSing
∗(

W−1(w)
)
.

It is a Z/2Z-graded, C-linear, triangulated category. It is equivalent to the cohomology of the corre-

sponding ∗-equivariant category of matrix factorizations

(1.4.13) H∗(DπMF∗
(W −w)

)
.

Remark 1.5. — There is a natural DG enhancement of Orlov’s triangulated cate-
gory of singularities, but the author does not know if the equivalence with the category of
matrix factorizations (1.4.1) lifts to a quasi-equivalence of the underlying DG categories
([51] only proves equivalence of triangulated categories, on the level of cohomology). Our
proof of homological mirror symmetry (Theorems 1.16 and 1.17) is formulated as a quasi-
equivalence of A∞ categories; we always take the DG enhancement of DπSing(W−1(w))

given by the DG category of matrix factorizations MF∗
(W−w), rather than the natural

one (of course, one hopes they are the same).

Lemma 1.15. — There are two types of critical points of the mirror superpotential W. First,

we have the origin, which we call the big critical point. It is a fixed point of the action of ∗. The

corresponding critical value is the big eigenvalue of c1� on X.

The remaining critical points are called small critical points. The critical values associated to the

small critical points are equal to the small eigenvalues of c1� on X (in particular, there are n− a of them).

For each of the small critical values, the action of ∗ on the critical points with that critical value is free

and transitive. Furthermore, the Hessian of W at the small critical points is non-degenerate.

Proof. — At a critical point of Zn
a, we have

(1.4.14)
u1 . . . un

uj

= aua−1
j

for each j. Taking the product of these relations, we obtain the relation

(1.4.15) qn
a(U)= 0,

where

(1.4.16) U := u1 . . . un

a
= ua

j for all j.
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Therefore, either U = 0, in which case u1 = · · · = un = 0 (the big critical point), or U = ξ

is an (n − a)th root of aa, in which case we get a small critical point. In the latter case, one
easily verifies that (n

a)
∗ acts freely and transitively on the critical points corresponding to

a fixed ξ . For each such critical point, the corresponding critical value is

(1.4.17) −u1 . . . un +
∑

j

ua
j = (n − a)ξ.

Finally, it is straightforward to check that the Hessian of Zn
a at a small critical point

has the form

(1.4.18) ωa
n−2
n−a

⎡
⎢⎢⎢⎣

a − 1 −1 . . . −1
−1 a − 1 . . . −1
...

...
. . .

...

−1 −1 . . . a − 1

⎤
⎥⎥⎥⎦ ,

where ω is some root of unity. In particular, as a ≤ n − 1, it is invertible. �

Therefore, the critical values of W match up with the eigenvalues of c1� on X, so
the non-trivial categories lie in the same places on the two sides of homological mirror
symmetry. Our first main result is that the categories over the big eigenvalue/critical
value are quasi-equivalent:

Theorem 1.16. — If 2 ≤ a ≤ n − 1, then there is a quasi-equivalence of C-linear, Z/2Z-

graded, triangulated, split-closed A∞ categories

(1.4.19) DπF(X)w ∼= DπSing
∗(

W−1(w)
)
,

where w is the big eigenvalue of c1� (= the big critical value of W).

Remark 1.6. — The case a = 2 of Theorem 1.16 was proven by Smith in [68]. The
quadric hypersurface Xn

2 can be regarded as a compactification of T∗Sn−2; Smith proved
that the zero-section Sn−2 split-generates F(Xn

2)0, and that its endomorphism algebra is
a Clifford algebra.

To prove Theorem 1.16, we consider the action of

(1.4.20)  = (Z/aZ)n/(Z/aZ)

on the Fermat hypersurface

(1.4.21) X =
{∑

j

za
j = 0

}
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by multiplication of the coordinates by ath roots of unity. In Section 7, we consider the
immersed Lagrangian sphere L in X/, constructed in [66], and let {Lγ }γ∈ be its lifts
to X. Although L is immersed, its lifts Lγ are embedded (Lemma 7.1), and all satisfy
w(Lγ )= wn

a (the big eigenvalue). We consider their direct sum L = ⊕γLγ , and prove that
L split-generates the big component of the Fukaya category, and that its endomorphism
algebra is A∞ quasi-isomorphic to the endomorphism algebra of the sum of equivariant
twists of the skyscraper sheaf at the origin in the category of singularities. As the latter
split-generates the category of singularities, this completes the proof.

Our computations in the Fukaya category are drawn straight from the computa-
tions in the relative Fukaya category of [67], transferred to the monotone Fukaya cate-
gory via the results of Section 3. Also as in [67], our proof of split-generation relies on
the dual version of the split-generation criterion, Corollary 1.11. Namely, we consider the
map

(1.4.22) CO : QH∗(X)w → HH∗(CF∗(L,L)
)
.

We know CO(P) from (1.2.2), and that CO is an algebra homomorphism; by explicitly
computing the Hochschild cohomology, this allows us to prove that CO is injective on the
subalgebra generated by P. There is more to QH∗(X)w than the subalgebra generated
by P; but we observe that there is a natural action of  on X and on the objects con-
stituting L, and that P does generate the -invariant part QH∗(X)w, so we can apply a
-equivariant version of Corollary 1.11 to prove that L split-generates.

Note that the Fukaya category appearing in Theorem 1.16 does not involve weak
bounding cochains: the Lagrangians Lγ satisfy the hypothesis of the split-generation cri-
terion, with no weak bounding cochains required. In particular, none of the machin-
ery developed in Section 4 and Section 5 is necessary to study the big component of
the Fukaya category. Furthermore, because these Lagrangians satisfy the hypothesis of
the split-generation criterion, they also split-generate Fwbc,u(X)w. It follows that Theo-
rem 1.16 also holds if we replaced DπF(X)w by DπFwbc,u(X)w: adding weak bounding
cochains would not add any new information.

However, in order to address the remaining small components of the Fukaya cate-
gory, we do need weak bounding cochains. We prove:

Theorem 1.17. — If 2 ≤ a ≤ n − 1, then there is a quasi-equivalence of C-linear, Z/2Z-

graded, triangulated, split-closed A∞ categories

(1.4.23) DπFwbc,u(X)w ∼= DπSing
∗(

W−1(w)
)
,

where w is any of the small eigenvalues of c1�.

In fact, both categories are quasi-equivalent to Db(C) (if n is even), and Dπ(C�1) (if n is odd),

where C�1 denotes the Z/2Z-graded Clifford algebra C[θ ]/θ 2 = 1, with θ in odd degree.



180 NICK SHERIDAN

Remark 1.7. — The ambiguity of DG enhancements mentioned in Remark 1.5 is
irrelevant for the small categories, as they are intrinsically formal.

Let us start by explaining the category of singularities. For each of the small critical
values of W, the corresponding critical points are non-degenerate, and ∗ acts freely
and transitively on them: so when we quotient by ∗, they all get identified to a single
non-degenerate critical point. We recall that the triangulated category of singularities
associated to a non-degenerate singular point is particularly simple: it is equivalent to a
category of finitely-generated modules over a Clifford algebra (see [19, Section 4.4], [11]
and [71, Chapter 14]).

We recall that Clifford algebras are intrinsically formal. Hence, to prove Theo-
rem 1.17, it suffices to find a single object of the Fukaya category whose endomorphism
algebra is a Clifford algebra: such an object will automatically split-generate by (the weak
bounding cochain analogue of) Corollary 1.12.

To find this object, we consider the same direct sum of Lagrangian spheres L as in
the proof of Theorem 1.16. We prove that there is an embedding of Cn into the Maurer–
Cartan moduli space M̂weak(L) of L in F(X/), and that the resulting disc potential

(1.4.24) P : Cn → C

is given precisely by the superpotential W of the mirror.
We then observe that there is an embedding of M̂weak(L) (which lives in F(X/))

into M̂weak(L) (which lives in F(X)), which respects the disc potentials: essentially, we
take α ∈ CF∗(L,L) to the sum of all its lifts to CF∗(L,L). Therefore, we have an em-
bedding of Cn into M̂weak(L), such that the resulting disc potential is given by W. This
is a partial analogue of the result proven in the case of toric varieties by Cho and Oh
[15] (see also [23, 26, 27]): the mirror is equal to the Maurer–Cartan moduli space, with
the superpotential given by the disc potential. However, there is a proviso: the mirror is
actually equal to the quotient of Cn by the action of ∗ (see Definition 1.2).

We show that, for any χ ∈ ∗ and v ∈ Cn, the objects (L, v) and (L, χ · v) are
quasi-isomorphic in the Fukaya category of X (we remark that (L, v) and (L, χ · v) are
not always quasi-isomorphic objects in the Fukaya category of X/). The reader may
imagine that this quotient is simply the quotient by gauge equivalence, but that is not the
case: although we have not given a definition of gauge equivalence in our setup, any sen-
sible definition should have the property that gauge equivalent weak bounding cochains
are connected by a continuous family of such, with the same value of the disc potential P.
But the disc potential P that we have computed does not admit any continuous automor-
phisms, so the gauge equivalence relation on M̂weak(L) (whatever the abstract definition)
must be trivial. The moral is that, in order to obtain the true mirror, we need to further
quotient our ‘moduli space of objects’ in the Fukaya category by an equivalence relation
which identifies quasi-isomorphic objects, not only gauge equivalent ones. However, this
has a further proviso: the majority of the points in our moduli space represent objects
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quasi-isomorphic to the zero object, so the equivalence relation we want is not simply
quasi-isomorphism of objects (probably it is related to quasi-isomorphism of objects in
some different version of the Fukaya category involving the Novikov ring).

Remark 1.8. — The preprint [14] also considered the situation that Cn embeds
into M̂weak(L), so that the disc potential P|Cn is given by a polynomial W. The authors
explained how this already implies the existence of an A∞ functor from F(X/)w to
MF(W −w), using a version of the Yoneda embedding. They also considered the case of
a finite group action: the results of [14, Section 5] show furthermore that there exists an
A∞ functor from F(X)w to MF∗

(W − w). In the present setting, we expect that these
functors are quasi-equivalences, and give natural realizations of the functors appearing
in Theorems 1.16 and 1.17: this ought to follow from our result that the objects (L, v)
split-generate the corresponding components of the Fukaya category.

Aside from these philosophical remarks, these computations provide us with the
non-trivial objects of the associated component of the Fukaya category which are re-
quired to complete the proof of Theorem 1.17. Namely, the weak bounding cochain
corresponding to a small critical point of W is a non-trivial object of the Fukaya category,
and its endomorphism algebra is the Clifford algebra associated to the Hessian of W,
which is non-degenerate by Lemma 1.15.

Remark 1.9. — It would be interesting to find monotone Lagrangians living in
the small components of the Fukaya category, and having non-trivial Floer cohomology,
so that we could remove the need for weak bounding cochains in Theorem 1.17. We
construct such a monotone Lagrangian in Appendix B, in the Fano index 1 case a = n−1,
and give a heuristic argument that it has the right w(L) and non-trivial Floer cohomology
in the case of the cubic surface (a = 3, n = 4), using tropical curve counting. The exact
Lagrangian tori in the affine cubic surface constructed in [38], with appropriate local
systems, also appear to be natural candidates.

Notwithstanding Remark 1.9, the fact that we can split-generate the small com-
ponents of the Fukaya category by putting weak bounding cochains on our collection of
Lagrangian spheres L has interesting consequences:

Corollary 1.18. — If 2 ≤ a ≤ n − 1 and K ⊂ Xn
a is a monotone Lagrangian submani-

fold equipped with a grading, spin structure and C∗-local system such that HF∗(K,K) = 0, then K
intersects at least one of the Lagrangian spheres Lγ described above.

Proof. — As HF∗(K,K) = 0, K must lie in one of the components of the Fukaya
category, and hence be split-generated by L, or L with a weak bounding cochain. In
particular, CF∗(K,L) = 0, so K and L must intersect. �
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Let us briefly remark on possible extensions of Theorems 1.16 and 1.17 that could
be proved using the results in this paper.

Remark 1.10. — Firstly, we could use different coefficient rings. We need to work
over a field for the homological algebra associated with the split-generation arguments
to go through. We could, for example, work over the Novikov field �, in which case the
mirror would be �n with superpotential

(1.4.25) Wn
a = −u1 . . . un + r

n∑
j=1

ua
j + wn

ar
n.

This would allow us to include non-monotone weak bounding cochains in our definition
of the Fukaya category, as convergence of various infinite sums would hold by complete-
ness of the energy filtration. It would require some other changes of perspective, see in
particular Remark 5.4.

Alternatively, we could keep the monotone weak bounding cochains, and work
over the ring of Novikov polynomials, without completing with respect to the energy filtra-
tion; then, in order to obtain split-generation results, we would need to base change to a
field.

Remark 1.11. — The Fukaya category F(Xn
a) can be equipped with a Z/2(n − a)-

grading (if all Lagrangians are assumed graded), because n − a is the minimal Chern
number of spheres in Xn

a. In Theorem 1.16, we simply work with the Z/2Z-graded
version of the Fukaya category, as the triangulated category of singularities is naturally
Z/2Z-graded. One could also define a category of matrix factorizations (again with cer-
tain restrictions on the objects, cf. [67, Section 7.3]) with a Z/2(n − a)-grading, and
prove a Z/2(n − a)-graded version of Theorem 1.16. However, it appears that our meth-
ods do not extend to prove a Z/2(n − a)-graded analogue of Theorem 1.17: the weak
bounding cochains we use cannot be chosen to have degree 1 modulo 2(n − a) (compare
Remark 4.1), unless of course a = n − 1. In light of this, we might add a followup to Re-
mark 1.9: if indeed there do exist monotone Lagrangians sitting in the small components
of the Fukaya category, it would be interesting to know if they are graded.

1.5. Quantum cohomology of Fano hypersurfaces from the Fukaya category. — An interest-
ing feature of our calculations in the Fukaya category is that they allow us to compute
non-trivial information about Gromov–Witten invariants. Namely, we prove (in Propo-
sition 7.8) that Proposition 1.13 is implied by our computation of the endomorphism
algebra of L in the relative Fukaya category F(X,D), with the exception that in the
Fano index 1 case (i.e., when a = n − 1), we are only able to prove that the subalgebra
generated by the hyperplane class P is C[P]/qn

a(P +w), where w =w(Lγ ) is equal to the
count of J-holomorphic discs with boundary on one of the monotone Lagrangian spheres
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Lγ ⊂ Xn
a constructed in the proof of Theorem 1.16. Note that this number is the same

for all γ ∈ , by symmetry.
In fact, in order to determine the value w = wn

a, we are forced to use Givental’s
proof of Proposition 1.13 (see Corollary 7.9). We remark that, in Givental’s work on
closed string mirror symmetry for Fano hypersurfaces in toric varieties [32, Section 10],
the extra factor wn

a that appears in Proposition 1.13 in the case a = n − 1 corresponds to
an additional term e−a!Q which has to multiply the correlators in this case, which did not
appear for a ≤ n − 2. So in the course of our alternative proof of Proposition 1.13, we
equate this additional term with the open Gromov–Witten invariant w mentioned above
(even though we are not able to re-compute its value).

Our re-proof of Proposition 1.13 uses a version of the closed–open string map
from quantum cohomology to Hochschild cohomology (in fact, the G-graded Hochschild
cohomology of the relative Fukaya category). These relations are well-known and have
been computed multiple times by other methods, but nevertheless it is interesting that
this information can be extracted from the Fukaya category.

Remark 1.12. — We confess that there are two undetermined signs in our com-
putations; these are irrelevant for the proofs of Theorems 1.16 and 1.17, but become
necessary when computing relations in quantum cohomology, so our re-proof of Propo-
sition 1.13 is not complete. Nevertheless, we feel it is interesting as a proof of the concept
that non-trivial information about Gromov–Witten invariants can be extracted from the
Fukaya category.

It is well-known, but interesting to remark, that information about genus-zero
Gromov–Witten invariants can be extracted from these relations in quantum cohomol-
ogy. For example, one can show that the number of genus-zero, degree-one curves on a
cubic hypersurface Xn

3 ⊂ CPn−1 (with n ≥ 5), which send n + 1 fixed marked points to n

hyperplanes and one 2-dimensional linear subspace, is equal to 81. When n = 4, X4
3 is the

cubic surface, and one can show that the number of lines on the cubic surface is equal to
27 if and only if the open Gromov–Witten invariant w mentioned above is equal to −6.
We collect some other interesting facts about the case of the cubic surface in Appendix B.

Remark 1.13. — Our re-proof of Proposition 1.13 relies on computations in the
relative Fukaya category, F(X,D); it does not work for the monotone Fukaya category
F(X). The reason is that the closed–open map for the relative Fukaya category (see
Section 3.2)

(1.5.1) COX,D : QH∗(X,D)→ HH∗(CF∗(L,L)
)

is injective, hence relations in QH∗(X,D) can be deduced from those in HH∗, but

(1.5.2) CO : QH∗(X)→ HH∗(CF∗(L,L)
)
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is only injective when restricted to QH∗(X)w; it vanishes when restricted to QH∗(X)w if
w is a small eigenvalue.

This can be understood via mirror symmetry as follows: the big singular fibre
W−1(w) is disjoint from the small singular fibres W−1(w). Since L is mirror to a sheaf
supported at the big critical point, one cannot expect it to ‘know’ anything about sheaves
supported on the small singular fibres. On the other hand, when one incorporates a
Novikov parameter r as in the relative Fukaya category, the situation changes: the mirror
superpotential now depends on the parameter r, and as r → 0, the small critical points
converge to the big critical point. So as long as one does not invert r in one’s coefficient
ring, we can expect the mirror to L to ‘know’ about objects supported in the small singular
fibres. This observation was the inspiration for the idea that L could be ‘pushed’ into the
small eigenvalues by putting a weak bounding cochain on it, which is how Theorem 1.17
is proved.

1.6. Organization of the paper. — In Section 2, we prove the basic results about the
monotone Fukaya category, as already discussed in Section 1.1. In Section 3, we establish
the relationship between the relative Fukaya category and the monotone Fukaya category,
as already discussed in Section 1.2. In Section 4 and Section 5, we give the framework
for including monotone weak bounding cochains in the monotone Fukaya category, as
already discussed in Section 1.3. In Section 6, we collect the algebraic computations
that are necessary for the proof of homological mirror symmetry: classifications of A∞
structures and computations of various versions of Hochschild cohomology. In Section 7
(Fukaya category) and Section 8 (matrix factorizations), we give the proof of homological
mirror symmetry for Xn

a, as summarized in Section 1.4.
We also include two appendices. Appendix A summarizes the basic algebraic re-

sults about A∞ categories and bimodules (and in particular, weak proper Calabi–Yau
structures) that we use. Finally, Appendix B collects a few results which are specific to the
interesting special case of the cubic surface in CP3.

2. The monotone Fukaya category

This section gives a survey of the construction of the (small) quantum cohomology
ring (following [47, 54]), the monotone Fukaya category (following [48, 49] and [60]), and
the split-generation result of Abouzaid, Fukaya, Oh, Ohta and Ono [2] in the monotone
setting. By restricting ourselves to the monotone setting, we are able to give a reason-
ably complete account using only ‘classical’ pseudoholomorphic curve techniques. Most
of the results in this section are not essentially new: they have appeared in the literature
in slightly different settings (e.g., under the assumption of exactness rather than mono-
tonicity), using an identical analytic setup for pseudoholomorphic curve theory. For that
reason, we do not repeat the foundational material, but rather focus on the new issues
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that arise when extending results to the monotone case (for example, we do not discuss
signs).

We should also note that many of the results in this section are known to hold in
vastly more general settings (see [24] and [2]), where one must use Kuranishi structures
to deal with the analytic issues. However, there are some structures on the Fukaya cate-
gory of a monotone symplectic manifold (for example, the decomposition according to
eigenvalues of c1) which do not hold in more general settings, so we feel that it is useful
to give a unified account in the monotone case, with an emphasis on the aspects that are
peculiar to it. Furthermore, despite the limitations of classical pseudoholomorphic curve
theory, it is useful to give the simplest construction possible, because it makes it easier to
build new results on top of it. For example, we will prove several new structural results
about the monotone Fukaya category in Section 3 and Section 5.

2.1. Monotonicity. — Let us start by making our notion of monotonicity precise.

Definition 2.1. — We say that X is a (positively) monotone symplectic manifold if

(2.1.1) [ω] = 2τ c1

for some τ > 0 (the factor of 2 allows us to avoid a factor of 1/2 in Definition 2.2). We will always

assume that X is compact.

Definition 2.2. — We say that a closed Lagrangian submanifold L ⊂ X is monotone if

• The image of π1(L) in π1(X) is trivial;

• The homomorphisms given by symplectic area and Maslov class

(2.1.2) [ω] : H2(X,L)→ R, μ : H2(X,L)→ Z

are proportional: [ω] = τμ.

We remark that Definitions 2.1 and 2.2 are stronger than the usual ones; we hope
this does not cause confusion.

Let GX be the Grassmannian of Lagrangian subspaces of TX, and let G̃X be its
universal abelian cover, with covering group H1(GX). There is an associated grading
datum G(X), given by the map

(2.1.3) Z ∼= H1(GxX)→ H1(GX)

(compare [67, Section 3]). For the purposes of this section, we will abbreviate G := G(X).
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2.2. Quantum cohomology, QH∗(X). — Let X be a compact real 2n-dimensional
monotone symplectic manifold. One can define the (small) quantum cohomology ring
QH∗(X) as in [47, Chapter 11] (to which we refer for all technical details). We very
briefly summarize the definition.

We set

(2.2.1) QH∗(X) := H∗(X;C)

as a G-graded complex vector space (classes are equipped with the image of their coho-
mological degree in G). We equip it with the intersection pairing

(2.2.2) 〈−,−〉 : QH∗(X)⊗ QH2n−∗(X)→ C.

To define the quantum cup product, one first defines the three-point Gromov–
Witten invariant

(2.2.3) GWX
3 : QH∗(X)⊗3 → C,

as follows. Consider the moduli space of Jz-holomorphic spheres in homology class β ∈
H2(X;Z), with three marked points, where Jz is a domain-dependent ω-tame almost-
complex structure. For generic ω-compatible Jz, it is a smooth manifold of dimension
d(β)= 2n + 2c1(β).

Let αi ∈ Hdi(X) be cohomology classes, for i = 1,2,3, and suppose that they are
Poincaré dual to pseudocycles fi : Ai → X. For generic choice of Jz and the pseudocycles fi ,
the moduli space of Jz-holomorphic spheres with marked points constrained to lie on the
pseudocycles f1, f2, f3 respectively, is an oriented smooth manifold of dimension

(2.2.4) d := d(β)− d1 − d2 − d3.

If d = 0, then for generic Jz and fi , this manifold is also compact, and we define
GWX

3,β(α1, α2, α3) to be the signed count of its points (if d = 0 we define it to be 0). It
is independent of Jz and the choice of pseudocycles representing the αi , by a cobordism
argument. We then define

(2.2.5) GWX
3 :=

∑
β

GWX
3,β;

the sum converges by the monotonicity assumption.
We now define the (small) quantum cup product

� : QH∗(X)⊗ QH∗(X)→ QH∗(X).(2.2.6)

α ⊗ β �→ α � β,(2.2.7)

by the formula

(2.2.8) 〈α � β,γ 〉 := GWX
3 (α,β, γ ).
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Remark 2.1. — Another way to define the quantum cup product is to consider the
moduli space of holomorphic spheres with three marked points, where two of the marked
points are constrained to lie on pseudocycles f1, f2, representing PD(α),PD(β) respec-
tively. There is an evaluation map at the third marked point; and it can be arranged (in
the monotone case) that this evaluation map is a pseudocycle, which represents PD(α�β).

We refer to [47, Proposition 11.1.9] for the proof that the quantum cup product is
associative, supercommutative, the unit e ∈ H0(X;C) is also a unit for the quantum cup
product, and the quantum cohomology algebra is also a Frobenius algebra:

(2.2.9) 〈α � β,γ 〉 = 〈α,β � γ 〉.
Standard index theory of Cauchy–Riemann operators shows that QH∗(X) is a G-graded
C-algebra (compare [67, Section 4.4]).

2.3. The monotone Fukaya category. — It has been known since the work of Oh [48,
49] that the definition of Lagrangian Floer cohomology for monotone Lagrangian sub-
manifolds with minimal Maslov number ≥ 2 is significantly simpler than the fully general
version. In this section we outline the construction of the monotone Fukaya category, fol-
lowing [60] (see [8] for a treatment very similar to that given in this section, as well
as [53]).

To each w ∈ C, we will associate a C-linear, G-graded (non-curved) A∞ category
F(X)w. Objects of the categories F(X)w are oriented monotone Lagrangian submani-
folds L ⊂ X together with a spin structure, a lift of L to G̃(X) (called a grading, see [55])
and a flat C∗-local system. Because our Lagrangians are orientable, they have minimal
Maslov number ≥ 2. For simplicity, we will choose a finite set L of such Lagrangians, and
define the subcategory of the monotone Fukaya category with those objects.

Remark 2.2. — For any abelian cover G̃ ′(X) of GX, we can define a G′(X)-graded
monotone Fukaya category, where G′X is given by the composition

(2.3.1) Z ∼= H1(GxX)→ H1(GX)→ Y,

where Y is the covering group. Objects of this category are Lagrangian submanifolds of
X equipped with a lift to G̃ ′X. For the purposes of this paper, we will always consider the
universal abelian cover.

We define H := C∞(X,R), the space of Hamiltonian functions on X. For each
pair of objects L0,L1 ∈L, we choose a one-parameter family of Hamiltonians:

(2.3.2) H ∈ C∞([0;1],H)
such that the time-1 flow of the Hamiltonian vector field associated to H makes L0 trans-
verse to L1 (this is one half of a Floer datum, in the terminology of [60, Section 8e]).
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We then define the morphism space CF∗(L0,L1) to be the C-vector space generated by
length-1 Hamiltonian chords from L0 to L1 (or, if the local system is non-trivial, the direct
sum of hom-spaces between the fibres of the local systems at the start- and end-points of
the chords).

Now let J denote the space of almost-complex structures on X compatible with ω.
For every object L, we choose an almost-complex structure JL ∈ J, and consider the mod-
uli space M(L) of Maslov index 2 JL-holomorphic discs with boundary on L, with a
single marked boundary point. For generic JL, the moduli space of somewhere-injective
JL-holomorphic discs of Maslov index 2 is regular, by standard transversality results à la
[47, Section 3]. It follows from [45, 50] that any JL-holomorphic disc u with boundary on
L contains a somewhere-injective JL-holomorphic disc v with boundary on L in its im-
age. In particular, if u has Maslov index 2, then v has Maslov index ≤ 2 by monotonicity.
Because L has minimal Maslov number ≥ 2, this means we must have u = v, and u is
somewhere-injective. Therefore, M(L) is regular for generic JL.

Standard index theory of Cauchy–Riemann operators shows that the moduli space
M(L) is an n-dimensional manifold (recall n is half the dimension of X), and it is compact
by Gromov compactness (because the homology class of a Maslov index 2 disc cannot be
expressed as a sum of two homology classes in H2(X,L) with positive energy). There is
an evaluation map at the boundary marked point:

(2.3.3) ev :M(L)→ L.

If the C∗-local system on L is trivial, then we define w(L) ∈ Z by

(2.3.4) ev∗
[
M(L)

] :=w(L)[L] ∈ Hn(L;Z).

If it is non-trivial, we weight ev∗ by the monodromy of the local system around the bound-
ary of the disc, so in general w(L) ∈ C. The complex number w(L) is independent of the
choice of JL. We furthermore require that the evaluation map is transverse to the finite
set of start-points and end-points of time-1 Hamiltonian chords between L and the other
Lagrangians L′ ∈L.

Now for each pair of objects L0,L1 ∈ L, we choose a one-parameter family of
almost-complex structures:

(2.3.5) J ∈ C∞([0;1],J)
such that J(i) = JLi

for i = 0,1. We consider the moduli space M0(L0,L1) of spheres
of Chern number 1 which are Jt-holomorphic for some t ∈ [0;1], and are equipped
with a marked point. Any Jt-holomorphic sphere is necessarily a branched cover of a
somewhere-injective one by [47, Section 2.5], and hence any Jt-holomorphic sphere of
Chern number 1 must be somewhere-injective, so this moduli space is regular for generic
choice of Jt . Standard index theory of Cauchy–Riemann operators shows it has dimen-
sion 2d − 1.
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Note that the parameter t can be thought of as a map

(2.3.6) t :M0(L0,L1)→ [0;1].
We also have the evaluation map at the marked point,

(2.3.7) ev :M0(L0,L1)→ X.

For any time-1 Hamiltonian chord γ : [0;1] → X which starts on L0 and ends on L1, we
consider the map

(2.3.8) (γ ◦ t, ev) :M0(L0,L1)→ X × X.

We require that, for any such γ (there are finitely many, by assumption), the image of this
map avoids the diagonal in X × X. This is true for generic Jt , because the domain has
dimension 2d − 1 and the diagonal has codimension 2d .

Now, the pairs (H, J) constitute Floer data for the pairs of objects in our cate-
gory. For any generators x, y of CF∗(L0,L1), we can define the corresponding moduli
space M(x, y) of pseudoholomorphic strips (following [60, Section 8f]), with translation-
invariant perturbation data given by the Floer data. For a generic choice of Jt , these
moduli spaces are regular by [21]. In particular, all moduli spaces of negative virtual di-
mension are empty. Furthermore, the moduli spaces admit an R-action, by translation of
the domain. It follows that the R-action on a moduli space of virtual dimension 0 must be
trivial. That means the only moduli spaces of virtual dimension 0 which are non-empty,
are those in M(x, x) which are constant along their length.

We now define the differential μ1 : CF∗(L0,L1) → CF∗(L0,L1), by counting ele-
ments of the moduli spaces M(x, y)/R, where M(x, y) has dimension 1 (we weight the
count by the monodromy of the local systems around the boundary). Using monotonicity
of the Li , one can show that these moduli spaces have fixed energy, since they have fixed
index, and hence are compact. We omit the argument here, and refer to the more so-
phisticated version of the argument which is required in Section 5.2. By considering the
Gromov compactification of the moduli spaces M(x, z)/R, where M(x, z) has dimen-
sion 2, the argument of [49] shows that

(2.3.9) μ1
(
μ1(x)

)= (
w(L0)−w(L1)

)
x.

To see why, suppose we have a nodal strip u1#u2 in the compactification of this moduli
space. If u1 and u2 are Maslov-index 1 strips, we have a broken strip contributing to
the left-hand side. If u1 is a holomorphic disc of Maslov index > 2 or a holomorphic
sphere of Chern number > 1, then u2 is a strip of virtual dimension < 0, hence can’t
exist by regularity. If u1 is a holomorphic sphere of Chern number 1, then u2 is a strip
of virtual dimension 0, hence must be a strip which is constant along its length. Our
regularity assumptions for Jt-holomorphic spheres of Chern number 1 ensure that they
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cannot bubble off a constant holomorphic strip. If u1 is a holomorphic disc of Maslov
index 2, then u2 is a strip of virtual dimension 0, hence is constant along its length. The
signed count of such configurations with u1 a disc on L0 is w(L0), and the signed count
with u1 a disc on L1 is −w(L1). These are regular boundary points, by our regularity
assumptions on the almost-complex structures JL and a gluing theorem. The signed count
of boundary points of this compact 1-manifold is 0, which gives the result.

In particular, if w(L0) = w(L1), then (μ1)2 = 0 on CF∗(L0,L1), so we can define
HF∗(L0,L1) to be the cohomology of the differential μ1.

Now we define the A∞ structure on F . We define hom∗
F(L0,L1) := CF∗(L0,L1),

and we use the convenient abbreviation

(2.3.10) F(Ls, . . . ,L0) := hom∗
F(Ls−1,Ls)[1] ⊗ · · · ⊗ hom∗

F(L0,L1)[1],
from Section A.1 (note that F(Ls,L0) := CF∗(L0,Ls)[1]). Now we make a consistent
choice of strip-like ends and a consistent choice of perturbation data for all moduli spaces
of holomorphic discs with s ≥ 2 incoming and 1 outgoing boundary punctures, pre-
cisely as in [60, Section 9i]. We recall that this entails a choice of (K, J) for each disc
S, where K ∈ �1(S,H) is a domain-dependent Hamiltonian function and J ∈ C∞(S,J)
is a domain-dependent almost-complex structure. We require that J = JL over boundary
components labeled by L, and that (K, J) coincides with the already-chosen Floer data
(Ht ⊗ dt, Jt) over the strip-like ends.

We then consider the moduli spaces of smooth maps u : S → X, with Lagrangian
boundary conditions, satisfying the pseudoholomorphic curve equation (du − YK)

0,1
J = 0

given by our choice of perturbation data (K, J). For a generic choice of perturbation data
these moduli spaces are regular: the argument in [60, Section 9k] goes through unaltered.
In particular, moduli spaces of negative virtual dimension are empty. As before, these
moduli spaces have fixed energy, hence are compact, and we can define the A∞ structure
maps μ∗ ∈ CC2(F) by signed counts of the zero-dimensional components (weighted by
monodromy of the local systems around the boundary). More explicitly, they are maps

(2.3.11) μs :F(Ls, . . . ,L0)→F(Ls,L0)[1].
By considering the boundary of one-dimensional moduli spaces as usual, we find

that the A∞ relations (μ∗ ◦ μ∗)s = 0 are satisfied for all s ≥ 2. In particular, if a nodal
pseudoholomorphic disc u1#u2 appears, and u1 is a disc of Maslov index ≥ 2 or a sphere
of Chern number ≥ 1, then u2 is a disc of negative virtual dimension, hence does not
exist for generic choice of perturbation data.

Therefore, the A∞ relations are satisfied, with the sole exception that the differen-
tial does not square to zero, but rather satisfies (2.3.9). The result is that, for each w ∈ C,
we have a G-graded, C-linear, non-curved A∞ category F(X)w, whose objects are ex-
actly those L such that w(L)=w ∈ C.
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FIG. 1. — Our conventions for diagrams of moduli spaces of pseudoholomorphic discs are as follows: We will use a solid
round dot to denote a marked point (interior or boundary) with some constraint, a solid square dot to denote a marked point
(interior or boundary) without constraint, and an open round dot to denote a boundary puncture

2.4. The cohomological unit. — We recall the Lagrangian version [3] of the
Piunikhin–Salamon–Schwarz morphism [52]. It is a morphism of chain complexes be-
tween C∗(L) and CF∗(L,L), defined in degrees up to and including the minimal Maslov
number of L minus two. We will only be interested in the degree-zero part of this map,
and in particular the element eL ∈ CF0(L,L) which is the image of the identity. To
define it, we consider the moduli space of pseudoholomorphic discs illustrated in Fig-
ure 1(a). There is a single outgoing boundary puncture, a single internal marked point
which is unconstrained, and a single boundary marked point which is unconstrained
(unconstrained marked points serve to stabilize the moduli space). Counting the zero-
dimensional component of this moduli space defines eL. Counting the boundary points
of the one-dimensional component shows that μ1(eL)= 0.

To see that eL is a unit, consider the one-parameter family of holomorphic discs in
Figure 1(b), parametrized by t ∈ [0,1]. We make a consistent choice of perturbation data
on this family, so that at t = 0 the perturbation datum is invariant under R-translation,
just given by the Floer data on the strip, and as t → 1 the perturbation datum converges
to that defining μ2, glued to that defining the unit. Counting the zero-dimensional com-
ponent of the corresponding moduli space of pseudoholomorphic discs defines a map

(2.4.1) H : CF∗(L,L)→ CF∗−1(L,L).

Counting the boundary points of the one-dimensional component of the moduli space
shows that

(2.4.2) μ2(x, eL)= x +μ1
(
H(x)

)+ H
(
μ1(x)

)
.

The boundary points at t = 1 contribute the left-hand side, the boundary points at t = 0
contribute the first term on the right-hand side (because the perturbation data are in-
variant under translation, the moduli space admits an R-action, but the moduli space
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is zero-dimensional so the R-action must be trivial, hence the strip must be constant
along its length), and the remaining terms correspond to strip breaking. Unstable disc
and sphere bubbling are ruled out exactly as in the definition of the Fukaya category.

It follows that right-multiplication with eL is homotopic to the identity. It follows
similarly that left multiplication with eL is homotopic to the identity, and therefore that eL

is a cohomological unit in F(X)w.

2.5. The closed–open string map, CO. — In this section, we consider the closed–open
string map, which relates quantum cohomology of X to Hochschild cohomology of the
Fukaya category of X (compare, e.g., [24, Section 3.8.4], [26, Section 6], or in the case
of open manifolds, [28, Section 5.4]).

Let us fix w ∈ C, and denote F := F(X)w to avoid notational clutter. The closed–

open string map is a G-graded C-algebra homomorphism

(2.5.1) CO : QH∗(X)→ HH∗(F).

To define CO, we consider moduli spaces of holomorphic discs with s ≥ 0 incom-
ing boundary punctures, 1 outgoing boundary puncture, and a single internal marked
point. We choose strip-like ends and perturbation data for these moduli spaces, and re-
quire them to be consistent with the Deligne–Mumford compactification. Boundary con-
ditions correspond to generators of the Hochschild cochain complex of F ; if ϕ is such
a generator, and β a homology class of discs, we denote the resulting moduli space by
M(ϕ,β). It has a Gromov compactification, which we denote by M(ϕ,β), and a con-
tinuous evaluation map at the internal marked point:

(2.5.2) ev :M(ϕ,β)→ X.

We define M0 :=M, and M1 to be the stratum of the Gromov compactification
of virtual codimension 1. Its elements are pairs of discs breaking along a strip-like end,
one of which contains the interior marked point. For a generic choice of perturbation
data, the Gromov compactification admits a decomposition

(2.5.3) M=
∞⊔

i=0

Mi,

where (if we denote evi := ev|Mi )

• M0 is regular, hence a smooth, oriented manifold of dimension d(ϕ,β), and ev0

is smooth;
• M1 is regular, hence a smooth, oriented manifold of dimension d(ϕ,β)−1, and

ev1 is smooth;
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• For all i ≥ 2, the evaluation map evi factors through a smooth map from a
smooth manifold of dimension d(ϕ,β)− i,

(2.5.4) ẽvi : M̃i → X.

Explicitly, M̃i is the union of all moduli spaces of nodal discs which have no disc or
sphere components with a single special point (a special marked point is a node or a
marked point), and such that any sphere with only two marked points is simple. The
map Mi → M̃i is defined by forgetting trees of unstable discs and spheres, and replacing
multiply-covered spheres with two marked points (which may appear in a chain con-
necting the disc component to a sphere containing the internal marked point) by the
sphere they cover. This process can only decrease the virtual dimension, by monotonic-
ity. Furthermore, M̃i is regular for generic choice of perturbation data, because all of its
components are simple spheres or discs.

Now let f : A → X be a pseudocycle, representing a homology class which is
Poincaré dual to α ∈ Hd(X). We denote the moduli space of discs, with the marked point
constrained to lie on the pseudocycle f , by M0(ϕ,β, f ). Similarly, we define M1(ϕ,β, f )

and M̃i(ϕ,β, f ). For generic choice of perturbation data, these moduli spaces are regu-
lar, of dimension d(ϕ,β)− d − i.

If d(ϕ,β) = d , then for generic choice of perturbation data, the moduli space
M0(ϕ,β, f ) is regular, hence an oriented 0-manifold; and furthermore, the images
of ev1, ẽv2

, . . . are disjoint from the closure of the image of f , and the images of
ev0, ev1, ẽv2

, . . . are disjoint from �f , the limit set of f (see [47, Definition 6.5.1]). It
follows that

(2.5.5) �ev0 ∩ im(f )=�f ∩ im
(
ev0
)= ∅,

and hence that M0(ϕ,β, f ) is compact (compare [47, p. 161]). We define the coefficient
of ϕ in CO(α; f ) to be the signed count of its points, summed over homology classes β
such that d(ϕ,β)= d (this sum converges by our monotonicity assumptions).

Now consider a moduli space such that d(ϕ,β)= d + 1. By a similar argument to
above, for generic perturbation data, M0(ϕ,β, f ) is an oriented 1-manifold, M1(ϕ,β, f )

is an oriented 0-manifold, and their union is compact. By a gluing theorem, their union
has the structure of a compact oriented 1-manifold with boundary points M1(ϕ,β, f ),
so the signed count of points in the latter is 0; it follows that δ(CO(α; f ))= 0, where δ is
the Hochschild differential. Hence, CO(α; f ) defines a class in HH∗(F).

If the pseudocycle f is bordant to another pseudocycle g, we choose a bordism
h between them, and consider the zero-dimensional component of the moduli space
M0(ϕ,β, h): as before, it is a compact, oriented 0-manifold, and counting its points de-
fines an element H(h) ∈ CC∗(F). Next we consider the one-dimensional component of
M0(ϕ,β, h): as before, it is an oriented, compact 1-manifold with boundary, and count-
ing its boundary points shows that

(2.5.6) CO(α; f )− CO(α; g)= δ
(
H(h)

)
.
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FIG. 2. — Proving the closed–open string map is an algebra homomorphism

Therefore, the class of CO(α; f ) in HH∗(F) does not depend on the choice of pseudo-
cycle f representing PD(α), so we have a well-defined map

(2.5.7) CO : QH∗(X)→ HH∗(F).

Standard index theory of Cauchy–Riemann operators shows that CO respects the G-
grading.

To show that CO is independent of the choice of perturbation data used to define
it, one uses a ‘double category’ trick as in [60, Section 10a]; we omit the details.

Proposition 2.1 (compare [28, Proposition 5.3]). — CO is a homomorphism of C-algebras.

Proof. — We consider a certain subset of the moduli space of discs with two internal
marked points, s ≥ 0 incoming boundary punctures, and one outgoing boundary punc-
ture. Namely, parametrizing our disc by the unit disc in C, we require that the outgoing
boundary puncture lies at −i, and the internal marked points lie at ±t, where t ∈ [0,1]
(see Figure 2(a)). We choose consistent perturbation data for these moduli spaces.

Given cohomology classes α,β ∈ QH∗(X) which are Poincaré dual to pseudocy-
cles f , g, we consider the corresponding moduli space of pseudoholomorphic discs with
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the internal marked points constrained to lie on the pseudocycles. Counting the zero-
dimensional component of the moduli space defines an element H(f , g) ∈ CC∗(F). Now
we consider the one-dimensional component of the moduli space; the count of its bound-
ary points is 0. Boundary points at t = 1 are illustrated in Figure 2(c), and correspond to
terms in CO(α; f )∪ CO(β; g), where ‘∪’ denotes the Yoneda product. Boundary points
for 0 < t < 1 corresponds to a disc bubbling off one of the discs defining H(f , g); they
correspond to terms in δ(H(f , g)). Boundary points at t = 0 are illustrated in Figure 2(b);
they correspond to terms in CO(α � β; ev), where ‘�’ denotes the quantum cup product
and ‘ev’ is the evaluation map of Remark 2.1.

Therefore, we have

(2.5.8) CO(α � β; ev)= CO(α; f )∪ CO(β; g)+ δ
(
H(f , g)

)
.

It follows that CO is an algebra homomorphism on the level of cohomology. �

Definition 2.3. — Given an object L of some F(X)w, we can consider the composition of the

closed–open map CO with the projection to the length-zero part of Hochschild cohomology,

(2.5.9) HH∗(CF∗(L,L)
)→ HF∗(L,L)

(see (A.4.3)). As this projection and CO are both algebra homomorphisms, their composition is an algebra

homomorphism, which we denote by

(2.5.10) CO0 : QH∗(X)→ HF∗(L,L).

Remark 2.3. — The homomorphism CO0 is obviously unital, because the moduli
spaces defining CO0

(e) and eL count the same objects.

2.6. The open–closed string map, OC. — In this section, we consider the open–closed
string map, which relates quantum cohomology to Hochschild homology (see e.g. [24,
Section 3.8.1], [1, Section 5.3]).

The open–closed string map is a map of G-graded C-vector spaces

(2.6.1) OC : HH∗(F)→ QH∗+n(X)

(where X has real dimension 2n). It is defined by considering moduli spaces of pseu-
doholomorphic discs with s ≥ 1 incoming boundary punctures, and an internal marked
point. We choose consistent strip-like ends and perturbation data for these moduli spaces.

Boundary conditions for these moduli spaces are given by generators of the
Hochschild chain complex. For a generator ϕ and a cohomology class α, whose Poincaré
dual is represented by a pseudocycle f , we consider the corresponding moduli space of
pseudoholomorphic discs, with the internal marked point constrained to lie on f . Count-
ing the zero-dimensional component of this moduli spaces gives a number, which we
define to be

(2.6.2)
〈
OC(ϕ),α; f

〉
.
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As in the definition of CO, counting the boundary points of the one-dimensional compo-
nent of the moduli space shows that

(2.6.3)
〈
OC

(
b(ϕ)

)
, α; f

〉= 0,

where b denotes the Hochschild differential, so this number depends only on the class of
ϕ in HH∗(F). Furthermore, the number is independent of the choice of pseudocycle f

representing PD(α), by an argument analogous to the one we gave for CO. Therefore,
we have a well-defined map

(2.6.4)
〈
OC(−),−〉 : HH∗(F)⊗ QH∗(X)→ C;

dualizing in the QH∗(X) factor gives OC. Standard index theory of Cauchy–Riemann
operators shows it is G-graded, of degree n.

Remark 2.4. — Explicitly, if {ei} is a basis for QH∗(X), with dual basis {ej}, in the
sense that 〈ei, ej〉 = δ

j

i , then

(2.6.5) OC(ϕ)=
∑

i

〈
OC(ϕ), ei

〉
ei.

Remark 2.5. — Note that, in contrast to the quantum cup product (see Re-
mark 2.1), we cannot represent OC(ϕ) as a pseudocycle by the evaluation map from
our moduli space, because the moduli space has codimension-1 boundary (of course the
codimension-1 boundary still ‘cancels’ if ϕ is a Hochschild cycle).

Now we recall that HH∗(F) is naturally a HH∗(F)-module (see Section A.4);
hence it is naturally a QH∗(X)-module, via the algebra map CO. The following result is
due to [53] in the monotone case, and [28] in the exact case.

Proposition 2.2. — OC is a homomorphism of QH∗(X)-modules.

Proof. — We consider the same moduli space of discs as in the proof of Lemma 2.1,
but with some boundary punctures oriented in the opposite direction, and corresponding
changes to the perturbation data to achieve consistency. A virtually identical argument to
the proof of Lemma 2.1 shows that given pseudocycles f , g, there exists a map K(−; f , g) :
CC∗(F)→ C such that

(2.6.6)
〈
OC(ϕ),α � β; ev

〉= K
(
b(ϕ); f , g

)+ 〈
OC

(
CO(α; f )∩ ϕ

)
, β; g

〉
(see the proof of [28, Proposition 5.4] for more details). It now follows from the fact that
QH∗(X) is a Frobenius algebra that

(2.6.7) α �OC(ϕ)=OC
(
CO(α)∩ ϕ

)
on the level of cohomology, and hence that OC is a homomorphism of QH∗(X)-
modules. �
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FIG. 3. — The two-pointed closed–open map

Definition 2.4. — If L is an object of F(X)w, we can consider the composition of the inclusion

(2.6.8) HF∗(L,L)→ HH∗
(
CF∗(L,L)

)
(see (A.4.7)) with the open–closed map OC. We denote the result by

(2.6.9) OC0 : HF∗(L,L)→ QH∗+n(X).

Because OC is a QH∗(X)-module homomorphism, OC0 is too.

2.7. Two-pointed closed–open and open–closed maps. — We now recall (from [28, Sec-
tion 5.6]) the construction of the two-pointed closed–open and open–closed maps, 2CO
and 2OC.

To define 2CO, we consider a subset of the moduli space of discs with k + l + 2
boundary punctures, and an internal marked point. We label the boundary punctures
pout, q1, . . . , qk, pin, qk+1, . . . , qk+l in order around the boundary, and consider the moduli
space of discs such that, if we parametrize the disc as the unit disc in C, then pin lies at −1,
pout lies at +1, and the internal marked point lies on the real axis (see Figure 3). We define
the boundary puncture pout to be outgoing, and all other punctures to be incoming. We
make a consistent choice of strip-like ends and perturbation data for this moduli space,
and consider the corresponding moduli space of pseudoholomorphic discs.

Boundary conditions for this moduli space correspond to generators of 2CC∗(A)

(see Section A.3). Counting rigid pseudoholomorphic discs in this moduli space, with the
marked point constrained to lie on a pseudocycle, defines a map

(2.7.1) 2CO : QH∗(X)→ HH∗(A).

The by-now-familiar arguments show that it is well-defined and independent of the
choices made in its construction. The argument of [28, Proposition 5.6], adapted to
the present setting, shows that it coincides with CO. More precisely, for any A∞ cate-
gory A there exists an explicit quasi-isomorphism � : CC∗(A) → 2CC∗(A) [28, Equa-
tion (2.200)], and in the case of the Fukaya category, there is an explicit homotopy be-
tween � ◦ CO and 2CO, given by counting a moduli space of pseudoholomorphic discs
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with boundary conditions analogous to those defining 2CO, but the marked point pin

is allowed to vary between −1 and +1 along the lower boundary of the disc (see [28,
Figure 8] for a picture).

One defines 2OC using the same moduli space of domains, but with pout now re-
garded as an incoming boundary puncture, and the perturbation data modified accord-
ingly. Similar arguments show that it is well-defined, independent of choices made in its
construction, and coincides with OC.

Remark 2.6. — To show that CO is an algebra homomorphism, and OC is a
QH∗(X)-module homomorphism, we consider the same moduli space, except with two
internal marked points, constrained to lie on the real axis in a prescribed order.

Lemma 2.3. — CO is a unital algebra homomorphism.

Proof. — We make a special choice of perturbation data for the moduli space defin-
ing 2CO: we require the perturbation data to be independent of the position of the inter-
nal marked point q. In other words, we require the perturbation data to be independent
of the R-action corresponding to moving q along the line connecting −1 and 1. In partic-
ular, when k = l = 0, we choose translation-invariant perturbation data coming from the
corresponding Floer datum: this is compatible with the strip-like ends at pin and pout , be-
cause one is incoming and one is outgoing. Consistency with this choice of perturbation
data for k = l = 0 requires us to impose an additional condition on the strip-like ends at
pin and pout : namely, the dotted line should go down the centre of these strip-like ends. It
is clear that we can always choose strip-like ends and consistent perturbation data in this
fashion. Furthermore, it remains possible to achieve transversality for perturbation data
chosen in this special class.

The unit e ∈ QH∗(X) is Poincaré dual to the fundamental cycle of the manifold; so
in the moduli space defining 2CO(e), there is no constraint on the internal marked point.
With our choice of R-invariant perturbation data, this means that there is an action of R
on the moduli space of pseudoholomorphic discs. If one of k, l is non-zero, this action is
free, so the moduli space can’t be 0-dimensional, hence can’t contribute to 2CO(e); when
k = l = 0, the action is free unless the strip is constant along its length. Therefore, the
only contribution to 2CO(e) is the identity endomorphism of the diagonal bimodule in
F -mod-F . �

2.8. Weak proper Calabi–Yau structures. — We now explain how the monotone
Fukaya category of X can be equipped with an n-dimensional weak proper Calabi–Yau
structure, in the sense of Definition A.2. The idea was outlined in [60, Section 12j] and
[61, Proof of Proposition 5.1].
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Lemma 2.4. — The class [φ] ∈ HHn(F)∨ given by

(2.8.1) [φ](b) := 〈
OC(b), e

〉
is an n-dimensional weak proper Calabi–Yau structure on F , in the sense of Definition A.2.

Proof. — The class [φ] is clearly n-dimensional, because OC has degree n. To prove
that it is homologically non-degenerate, we must show that the pairing

HF∗(K,L)⊗ HFn−∗(L,K)→ C(2.8.2)

p ⊗ q �→ 〈
OC0(

μ2(p, q)
)
, e
〉

(2.8.3)

is perfect (see Definition A.1). Equivalently, we must show that the corresponding map

(2.8.4) HF∗(K,L)→ HFn−∗(L,K)∨

is an isomorphism.
The ‘reason’ this map is an isomorphism is as follows: the pairing is homotopic to

the pairing 〈2OC(− ⊗ −), e〉, via the homotopy between OC and 2OC. The correspond-
ing map can be regarded as a continuation map from CF∗(K,L) (defined using Floer da-
tum (H, J)) to CF∗(L,K)∨ ∼= CF∗(K,L) (defined using Floer datum (−H, J)); so one can
apply the standard argument to prove that continuation maps are quasi-isomorphisms.

For the purpose of generalizing this result later (see Lemma 5.7), we give a more
abstract formulation of the proof. Firstly, for any α ∈ QH∗(X), we can consider the map〈

OC0(
μ2(−,−)

)
, α
〉 ∈ (HF∗(K,L)⊗ HF∗(L,K)

)∨
(2.8.5)

∼= Hom
(
HF∗(K,L),HF∗(L,K)∨

)
.(2.8.6)

Now we define the coproduct

(2.8.7) � : HF∗(L,L)→ HF∗(K,L)⊗ HF∗(L,K)[n]
by counting pseudoholomorphic discs with one incoming and two outgoing boundary
punctures. For any β ∈ QH∗(X), we can consider the element

�
(
CO0

(β)
) ∈ HF∗(K,L)⊗ HF∗(L,K)(2.8.8)

∼= Hom
(
HF∗(L,K)∨,HF∗(K,L)

)
.(2.8.9)

We claim that the composition of the homomorphisms (2.8.6), (2.8.9) is equal to the map

HF∗(K,L)→ HF∗(K,L)(2.8.10)

p �→ μ2
(
CO0

(α � β), p
)
.(2.8.11)

The proof that the two maps are homotopic follows familiar lines, and we omit it.
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In particular, if α = β = e, then the composition is equal to μ2(CO0
(e),−), and

hence is the identity, because CO0 is unital by Remark 2.3. A similar argument shows
that the composition in the other order is also equal to the identity. Therefore, the map
(2.8.6) is an isomorphism, so the pairing (2.8.3) is perfect, as required. �

Remark 2.7. — The weak proper Calabi–Yau structure introduced in Lemma 2.4
coincides with that outlined in [60, Section 12j] and [61, proof of Proposition 5.1], via
the identification of OC with 2OC. It can be thought of as an expression of Poincaré
duality for the Donaldson–Fukaya category.

It follows by Lemma A.2 that:

Corollary 2.5. — The map

(2.8.12) − ∩ [φ] : HH∗(F)→ HH∗(F)∨[−n]
is an isomorphism of HH∗(F)-modules. Here ‘∩’ denotes the HH∗(F)-module structure on

HH∗(F)∨ which is dual to the cap product on HH∗(F), by slight abuse of notation.

Proposition 2.6. — The following diagram commutes:

(2.8.13) QH∗(X)
α �→〈α,−〉

∼=
CO

QH∗(X)∨[−2n]
OC∨

HH∗(F)
−∩[φ]

∼=
HH∗(F)∨[−n].

Thus, CO and OC are dual, up to natural identifications of the respective domains and targets.

Proof. — For any α ∈ QH∗(X) and ψ ∈ HH∗(F), we have

(
CO(α)∩ [φ])(ψ)= 〈

OC
(
CO(α)∩ψ

)
, e
〉

(2.8.14)

= 〈
α �OC(ψ), e

〉
(2.8.15)

= 〈
α,OC(ψ)

〉
(2.8.16)

=OC∨(〈α,−〉)(ψ).(2.8.17)

The first line is the definition of [φ]. The second line follows because OC is a QH∗(X)-
module homomorphism by Proposition 2.2. The third line follows because QH∗(X) is a
Frobenius algebra. Hence, the diagram commutes. �
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2.9. Eigenvalues of c1�.

Lemma 2.7 (due to Auroux, Kontsevich and Seidel, see [4, Section 6]). — If c1 ∈ QH∗(X) is

the first Chern class of TX, then we have

(2.9.1) CO0
(c1)=w(L) · eL ∈ HF∗(L,L).

Proof. — Consider a pseudocycle f : A → X \ L which represents a homology class
Poincaré dual to the Maslov class μ ∈ H2(X,L). Because the diagram

(2.9.2) H2(X,L)
∼=

H2n−2(X \ L)

H2(X)
∼=

H2n−2(X)

commutes, and the left vertical arrow sends μ to 2c1, the pseudocycle f is Poincaré dual
to 2c1 in X.

Then CO0
(2c1) is obtained by counting pseudoholomorphic discs as in Figure 4(a),

with the internal marked point constrained to lie on f . We now consider a one-parameter
family of holomorphic discs as in Figure 4(b), parametrized by t ∈ [0,1]. We choose per-
turbation data on this family which coincide with those used to define CO0 at t = 0,
and which coincide with those used to define eL (with the constant almost-complex struc-
ture J = JL on the disc bubble) at t = 1. We consider the corresponding moduli space of
pseudoholomorphic discs.

Counting the zero-dimensional component defines an element

(2.9.3) H ∈ CF∗(L,L).

Counting the boundary points of the one-dimensional component shows that

(2.9.4) CO0
(2c1)= 2w(L) · e +μ1(H).

The boundary points at t = 0 contribute the left-hand side (Figure 4(a)). The boundary
points at 0 < t < 1 correspond to breaking off a strip on the strip-like end, and contribute
the last term on the right-hand side. The remaining boundary points at t = 1 contribute
the first term on the right-hand side (Figure 4(c)). To see why, observe that these boundary
points consist of a JL-holomorphic disc bubble u1, together with an internal marked point
of u1 constrained to lie on f , together with a pseudoholomorphic disc u2 which is an
element of the moduli space used to define eL.

Now u1 cannot be a constant bubble, because im(f ) does not intersect L. Therefore
it must have Maslov index ≥ 2. If it has Maslov index > 2 then u2 would generically not
exist, so u1 must have Maslov index 2. It follows that u2 is rigid, with output eL, and
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FIG. 4. — Proving Lemma 2.7

we must count the number of JL-holomorphic Maslov index 2 discs u1 with an internal
marked point lying on f , whose boundary marked point coincides with the boundary
marked point of the disc u2. By definition, there are w(L) such discs u1, and for each we
have a signed count of u1 · f = μ(u1)= 2 choices of internal marked point lying on f . So
the contribution of the boundary points at t = 1 is exactly 2w(L) · eL. Equation (2.9.4)
implies the result. �

Now let us consider the map

(2.9.5) c1� : QH∗(X)→ QH∗(X)

given by quantum cup product with c1 := c1(TX). Denote the set of eigenvalues of c1�

by �. Let

(2.9.6) QH∗(X)∼=
⊕
w∈�

QH∗(X)w

be the decomposition of QH∗(X) into generalized eigenspaces of c1�, and let

(2.9.7) e =
∑
w∈�

ew



ON THE FUKAYA CATEGORY OF A FANO HYPERSURFACE IN PROJECTIVE SPACE 203

be the corresponding decomposition of the identity. Observe that (2.9.6) is a direct sum as
algebras, i.e., that elements in different components QH∗(X)w multiply to zero. Observe
also that ew ∈ QH∗(X)w is the identity element, and that

(2.9.8) ew� : QH∗(X)→ QH∗(X)

is the projection map onto the generalized eigenspace QH∗(X)w.
We now explain that the Fukaya category and the closed–open map split up into

components indexed by the eigenvalues w ∈ �: compare [4, Section 6]. The following
results are heavily based on the work of Alex Ritter and Ivan Smith [53], whom I thank
for many explanations on these points.

The first step is an elementary lemma:

Lemma 2.8. — Suppose that F is an A∞ category, ϕ ∈ HH∗(F), and ϕ0
L = c · eL ∈

Hom0(L,L) for a fixed c = 0, for all objects L of F (here ϕ0
L is the projection of ϕ to its length-zero

component, see Equation (A.4.3)). Then

(2.9.9) ϕ ∪ − : HH∗(F)→ HH∗(F)

is an isomorphism.

Proof. — We equip the Hochschild cochain complex CC∗(F) with the length fil-
tration, and consider the map

(2.9.10) ϕ ∪ − : CC∗(F)→ CC∗(F),

where ϕ is now a cochain-level representative by abuse of notation. This clearly preserves
the length filtration (as one sees from the cochain-level formula for the Yoneda product,
Equation (A.4.1)). The E1 page of the associated spectral sequence is CC∗(H∗(F)), the
Hochschild cochain complex of the cohomological category of F . The endomorphism
of E1 induced by ϕ ∪ − is simply multiplication by c, by the hypothesis: hence it is an
isomorphism. The conclusion now follows by the Eilenberg–Moore comparison theorem
[70, Theorem 5.5.11], as the length filtration is complete and exhaustive. �

Proposition 2.9. — The map

(2.9.11) CO : QH∗(X)w′ → HH∗(F(X)w
)

vanishes if w′ =w, and is a unital homomorphism of C-algebras if w′ =w.

Proof. — Suppose w′ =w. We apply Lemma 2.8, with

(2.9.12) F :=F(X)w, and ϕ := CO
(
c1 −w′ · e

)∪k
.
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We have ϕ0
L = (w −w′)k · eL for all objects L of F , by Lemma 2.7: so the hypothesis of

Lemma 2.8 holds, with c = (w −w′)k . Hence the endomorphism

(2.9.13) CO
(
c1 −w′ · e

)∪k ∪ − : HH∗(F(X)w
)→ HH∗(F(X)w

)

is an isomorphism.
In particular, if α ∈ QH∗(X)w′ , then (c1 −w′ · e)�k � α = 0 for some k; so by Propo-

sition 2.1,

(2.9.14) CO
(
c1 −w′ · e

)∪k ∪ CO(α)= 0,

from which it follows by the preceding argument that CO(α) = 0. This proves the first
part of the statement: the map (2.9.11) vanishes if w′ =w.

For the second part, we observe that the map CO : QH∗(X) → HH∗(F(X)w)

is unital by Lemma 2.3, and kills all ew′ for w′ = w: it follows that the restriction to
QH∗(X)w is unital. �

Corollary 2.10. — F(X)w is trivial unless w is an eigenvalue of c1�.

Proof. — Suppose L is an object of F(X)w. It follows from Proposition 2.9 that
CO0 : QH∗(X)w → HF∗(L,L) is a unital algebra homomorphism. If w is not an eigen-
value of c1�, then QH∗(X)w ∼= 0, hence HF∗(L,L) ∼= 0 (by unitality), so L is quasi-
isomorphic to the zero object. �

2.10. Eigenvalues and duality. — We now prove a result that is dual to Proposi-
tion 2.9. The proof of this result was explained to the author by Alex Ritter.

Corollary 2.11. — The image of the map

(2.10.1) OC : HH∗(Fw)→ QH∗+n(X)

lands in QH∗+n(X)w.

Proof. — Because QH∗(X) is a Frobenius algebra, and c1 an even element in it,

(2.10.2) 〈c1 � α,β〉 = 〈α, c1 � β〉,
so c1� is symmetric with respect to 〈−,−〉. Therefore, the decomposition into generalized
eigenspaces,

(2.10.3) QH∗(X)=
⊕
w

QH∗(X)w
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is orthogonal with respect to the pairing 〈−,−〉. It follows that the top map in the com-
mutative diagram of Proposition 2.6:

QH∗(X)→ QH∗(X)∨(2.10.4)

α �→ 〈α,−〉(2.10.5)

decomposes as a direct sum of maps

QH∗(X)w → QH∗(X)∨w(2.10.6)

α �→ 〈α,−〉.(2.10.7)

The result now follows by combining Proposition 2.6 with Proposition 2.9. �

According to Proposition 2.9 and Corollary 2.11, the only non-zero components
of CO and OC are

COw : QH∗(X)w → HH∗(F(X)w
)
, and(2.10.8)

OCw : HH∗
(
F(X)w

)→ QH∗+n(X)w.(2.10.9)

Furthermore, it is immediately apparent from the proof of Corollary 2.11 that COw and
OCw are dual:

Corollary 2.12. — The maps

(2.10.10) COw : QH∗(X)w → HH∗(F(X)w
)

and

(2.10.11) OC∨
w : QH∗(X)∨w → HH∗

(
F(X)w

)∨
coincide, under the natural identification of their respective domains and targets.

The next two results will be crucial to the proof of Proposition 7.11. I thank Cedric
Membrez for drawing my attention to [9, Proposition 2.4.A], of which they are a weaker
version.

Corollary 2.13. — For any monotone Lagrangian L, OC0
(eL) is a generalized eigenvector of

c1� with eigenvalue w(L).

Proof. — This is immediate from Corollary 2.11: we remark that one can easily
show that OC0

(eL) is in fact an eigenvector, but we will not need that. �

Lemma 2.14. — We have

(2.10.12) OC0
(eL)= PD(L)+ lower-degree terms.
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Proof. — This follows by deforming the perturbation data defining OC0
(CO0

(e))

to a Jz-holomorphic disc with boundary on L, and an internal marked point (compare
the dual argument in [58, Section 5a]). The discs of Maslov index 0 are constant, so
the evaluation map at the internal marked point sweeps out a copy of L: this gives the
term PD(L) in (2.10.12). All other discs have Maslov index > 0 by monotonicity, hence
contribute lower-degree terms. �

Remark 2.8. — One ought to be able to apply results similar to those of [45, 50] to
show that the terms of lower degree vanish. I.e., one should have

(2.10.13) OC0
(eL)= PD(L)

(see [7]). In combination with Corollary 2.13, this yields the useful result that PD(L) is
an eigenvector of c1� with eigenvalue w(L) (compare [9, Proposition 2.4.A]). We do not
need this result in the present work.

Indeed, suppose that the Jz-holomorphic discs in the proof of Lemma 2.14 can
be made regular with a domain-independent almost-complex structure J. Then the moduli
space admits an S1-action by rotation about the interior marked point, and therefore
factors through a moduli space of lower dimension (unless the disc is constant), hence its
contribution vanishes. However, we can only guarantee regularity for moduli spaces of
J-holomorphic discs of Maslov index ≤ the minimal Maslov number, using the theorem
of Lazzarini [45] and Kwon-Oh [50]: otherwise, we need to choose a domain-dependent
almost-complex structure J, which destroys the S1-action used to prove vanishing.

2.11. The split-generation criterion. — In this section, we give a criterion for split-
generating the Fukaya category, which is due to Abouzaid in the setting of the wrapped
Fukaya category [1], and Abouzaid, Fukaya, Oh, Ohta and Ono in the general case [2].
We follow [1] closely. We remark that the proof is particularly simple in the case of a
closed monotone symplectic manifold, because one does not have to deal with weights
on the strip-like ends (as in the wrapped Fukaya category), and it is easier to ensure
transversality of our moduli spaces in the monotone setting.

For any object K of F , we define a map of F -F bimodules

(2.11.1) � :F� → Y l
K ⊗Y r

K[n]
of degree n. To define �, we consider moduli spaces of holomorphic discs with k + l + 3
boundary punctures, labelled pin, q1, . . . , qk, pl

out, pr
out, qk+1, . . . , qk+l as in Figure 5(a). We

make a consistent choice of perturbation data and consider the corresponding moduli
spaces of pseudoholomorphic discs (the boundary component between pl

out and pr
out is

labelled K).
Counting the zero-dimensional component of the moduli space defines the map

(2.11.2) �k|1|l :F(Kk, . . . ,K0)⊗F(K0,L0)⊗F(L0, . . . ,Ll)→F(K,Ll)⊗F(Kk,K).
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FIG. 5. — The proof of Lemma 2.15

Counting the boundary points of the one-dimensional component of the moduli space
shows that � is an A∞ bimodule homomorphism.

Remark 2.9. — The component �0|1|0 coincides with the coproduct introduced in
the proof of Lemma 2.4.

By functoriality of Hochschild homology (see Section A.3), � defines a map

(2.11.3) HH∗(�) : HH∗(F ,F�)→ HH∗
(
F ,Y l

K ⊗Y r
K

)[n].
Lemma 2.15. — The following diagram commutes up to a sign (−1)

n(n+1)
2 :

(2.11.4) HH∗(F)[−n] OC

HH∗(�)

QH∗(X)

CO0

HH∗(F ,Y l
K ⊗Y r

K)
H∗(μ)

HF∗(K,K).

Proof. — We consider a moduli space of holomorphic annuli which can be param-
etrized as the region between the unit circle and the circle of radius r ∈ [1,∞) in C, with
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s + 1 ≥ 1 incoming boundary punctures p0, . . . , ps on the outer boundary component,
with p0 sitting at −r, and one outgoing boundary puncture on the inner boundary com-
ponent, sitting at 1 (see Figure 5(b)). We make a consistent choice of perturbation data,
and consider the corresponding moduli space of pseudoholomorphic annuli. As r → ∞,
the annulus degenerates to two discs connected at a node (see Figure 5(d))

We would like to say that these configurations correspond to the map CO0 ◦ OC,
but a little care is required: recall (Remark 2.5) that there is no natural choice of pseu-
docycle representing the image of OC, because the moduli space of pseudoholomor-
phic discs can have codimension-1 boundary. Instead, we choose dual bases {ei} and {ei}
for QH∗(X), as in Remark 2.4, and a bordism between

∑
i ei × ei and the diagonal �

in X × X. Then counting configurations of two discs with internal marked points con-
strained to lie on this bordism defines a homotopy between

(2.11.5) CO0 ◦OC(−)=
∑

i

〈
OC(−), ei

〉 · CO0(ei
)

and the count of configurations of discs with the nodes connected. So indeed, codimen-
sion-1 boundary components of the moduli space at r = ∞ contribute a term homotopic
to CO0 ◦OC.

Now, counting the zero-dimensional component of the moduli space defines a map

(2.11.6) H : CC∗(F)→F(K,K).

Counting boundary points of the one-dimensional component of the moduli space shows
that

(2.11.7) CO0 ◦OC = (−1)
n(n+1)

2 μ ◦ CC∗(�)+ H ◦ δ + (−1)nμ1 ◦ H.

By the preceding argument, the boundary points at r = ∞ contribute the left-hand side,
up to a homotopy which can be incorporated into H (see Figure 5(d)). The boundary
points at r = 1 contribute the first term of the right-hand side (see Figure 5(c)). The re-
maining terms on the right-hand side correspond to disc bubbling in the moduli space.
This equation shows that the diagram commutes (up to the sign) on the level of cohomol-
ogy. �

Corollary 2.16 ([2]). — If Gw ⊂F(X)w is a full subcategory, K is another object of F(X)w,

and if the map

(2.11.8) CO0
w ◦OCw : HH∗(Gw)→ HF∗+n(K,K)

contains the identity eK in its image, then K is split-generated by Gw.

Proof. — Follows immediately from Lemmas A.3 and 2.15. �
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Corollary 2.17 ([2]). — If Gw ⊂F(X)w is a full subcategory, and if the map

(2.11.9) OCw : HH∗(Gw)→ QH∗+n(X)w

contains the identity ew in its image, then Gw split-generates F(X)w.

Proof. — Follows from Corollary 2.16 and Proposition 2.9. �

Corollary 2.18 ([2]). — If Gw ⊂F(X)w is a full subcategory, and if the map

(2.11.10) COw : QH∗(X)w → HH∗(Gw)

is injective, then Gw split-generates F(X)w.

Proof. — By Corollary 2.17, it suffices to prove that the map

(2.11.11) OCw : HH∗(Gw)→ QH∗+n(X)w

is surjective. This is equivalent to injectivity of the dual map, which is identified with
(2.11.10) by Corollary 2.12. �

Corollary 2.19. — Suppose that QH∗(X)w is one-dimensional. Then any object L of F(X)w
with HF∗(L,L) = 0 split-generates it.

Proof. — The algebra homomorphism

(2.11.12) CO0
w : QH∗(X)w → HF∗(L,L)

is unital by Proposition 2.9, hence CO0
w(ew) = eL = 0 by the hypothesis that

HF∗(L,L) = 0. Let Gw be the full subcategory with object L; by definition, the map
CO0

w factors through

(2.11.13) COw : QH∗(X)w → HH∗(Gw)

via the projection to the length-zero component (see (A.4.3)), hence COw(ew) = 0.
Because QH∗(X)w is one-dimensional by hypothesis, it is spanned by ew, so the

map (2.11.13) is injective. It follows by Corollary 2.18 that Gw split-generates F(X)w. �

3. The relative Fukaya category

We recall (from [67, Section 5]) the definition of F(X,D), the Fukaya category
of a monotone Kähler manifold X relative to a smooth normal-crossings divisor D, each
irreducible component of which is Poincaré dual to some multiple of the symplectic form.
In this section, we explain the relationship between the monotone Fukaya category and
the relative Fukaya category. We use the relationship to prove a result about the closed–
open string map, analogous to the divisor axiom for Gromov–Witten invariants.
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3.1. Relating the monotone and relative Fukaya categories. — Let X be monotone, and
suppose that D ⊂ X is a simple normal-crossings divisor that makes (X,D) into a Kähler

pair, in the sense of [67, Section 3.5]. We recall that this means there exists a cohomology
class c ∈ H2(X), so that each component Dj of D is Poincaré dual to djc for some dj > 0,
there exists a Liouville form α on X \ D (i.e., a one-form such that dα = ω) which has
‘linking number’ �j > 0 with component Dj of D. This has the consequence that the
cohomology class of ω is

(3.1.1) [ω] =
k∑

j=1

dj�j c.

Recall that we associate a grading datum to the Kähler pair: G(X,D) := {Z →
H1(G(X \ D))} is the same as the grading datum associated to the non-compact sym-
plectic manifold X \ D (see Section 2.1).

We recall that the coefficient ring R of F(X,D) is the completion of a polynomial
ring

(3.1.2) R̃ := C[r1, . . . , rk]

in the category of G(X,D)-graded algebras.

Lemma 3.1. — If X is monotone, then the completion is unnecessary: R ∼= R̃.

Proof. — Taking the completion in the category of graded algebras is equivalent
to taking the completion separately in each graded piece, so it suffices to show that each
graded piece of R̃ is finite-dimensional. In fact we will prove that each graded piece has
dimension ≤ 1: i.e., no two monomials rc1, rc2 of R̃ can have the same degree in G(X,D).

It is natural to regard the multi-indices ci as living in H2(X,X \ D), via the iso-
morphism

(3.1.3) H2(X,X \ D)→ Zk

given by taking intersection numbers with the divisors. We recall (from [67, Defini-
tion 5.1]) that the grading of the generator rj corresponding to divisor Dj is defined by
choosing a disc

(3.1.4) u : (D2, ∂D2
)→ (X,X \ D)

with intersection number +1 with Dj and 0 with all other divisors, then choosing a lift ũ

of u to GX; the grading of rj is then ũ|∂D2 ∈ H1(G(X \ D)).
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Now consider the commutative diagram

(3.1.5) H2(GX) H2(GX,G(X \ D)) H1(G(X \ D))

H2(X) H2(X,X \ D) H1(X \ D),

where both top and bottom rows are part of the long exact sequence for a pair in ho-
mology. Suppose now that the degree of c1 − c2 ∈ H2(X,X \ D) is 0 ∈ H1(G(X \ D)).
By definition, that means that the class c1 − c2 ∈ H2(X,X \ D) lifts to a class c̃ ∈
H2(GX,G(X \ D)), whose image under the boundary map to H1(G(X \ D)) vanishes.
By exactness of the top row, that means c̃ lies in the image of H2(GX), and hence that
c1 − c2 lies in the image of the composition

(3.1.6) H2(GX)→ H2(X)→ H2(X,X \ D).

Now we observe that the composition

(3.1.7) H2(GX)→ H2(X)
c1−→ C

vanishes: if π : GX → X denotes the projection, then the map (3.1.7) is given by
π∗c1(TX) = c1(π

∗TX), but π∗TX has an obvious canonical totally real (in fact, La-
grangian) subbundle, hence is the complexification of a real bundle, so its first Chern
class vanishes. By monotonicity, if we replace c1 by the symplectic class [ω] in (3.1.7), the
composition also vanishes; hence, since the components of the divisor D are Poincaré
dual to a multiple of the symplectic form (by the definition of a Kähler pair), the in-
tersection number of the class c1 − c2 with each component of the divisor D vanishes.
But the intersection numbers with components of D are precisely the components of the
isomorphism (3.1.3), so it follows that c1 − c2 = 0 and the proof is complete. �

Now we examine the relationship between the gradings of the relative Fukaya
category and the monotone Fukaya category. The relative Fukaya category F(X,D) is
G(X,D)-graded, where we recall that G(X,D) is the grading datum

(3.1.8) Z ∼= H1

(
Gx(X \ D)

)→ H1

(
G(X \ D)

)
.

The monotone Fukaya category is G(X)-graded, where G(X) is the grading datum

(3.1.9) Z ∼= H1(GxX)→ H1(GX).

Definition 3.1. — Let (X,D) be a Kähler pair. There is an obvious inclusion of fibrations

(3.1.10) G(X \ D) ↪→ GX.
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We denote the resulting morphism of grading data by

(3.1.11) qX,D : G(X,D)→ G(X).

We will write q when no confusion is possible.

Lemma 3.2. — If R is the coefficient ring of the relative Fukaya category, then q∗R is concen-

trated in degree 0.

Proof. — As we saw in the proof of Lemma 3.1, the grading of class rj is a boundary
in GX, by definition. �

We would now like to relate the relative Fukaya category, F(X,D), to the mono-
tone Fukaya category F(X)w. First we relate the objects.

Lemma 3.3 (see [4, Lemma 3.1] and comments immediately after). — Let (X,D) be a mono-

tone Kähler pair, with [ω] = 2τ c1. If L ⊂ X \ D is an exact, anchored Lagrangian brane, then for any

[u] ∈ H2(X,L),

τμ(u)= ω(u)(3.1.12)

=
∑

i di�i

dj

u · Dj,(3.1.13)

where μ denotes the Maslov class.

Proof. — Recall that an anchored Lagrangian brane L is equipped with a lift to the
universal abelian cover of the Lagrangian Grassmannian G(X\D). Hence, the boundary
of u admits a lift to the universal abelian cover: so there is a surface u′ ⊂ X \ D with the
same boundary as u, which lifts to G(X \ D). Then the closed surface ũ = u ∪ u′ in X
satisfies

2c1(ũ)= μ(u),(3.1.14)

ω(ũ)= ω(u), and(3.1.15)

ũ · Dj = u · Dj.(3.1.16)

(3.1.14) follows because u′ lifts to the Lagrangian Grassmannian, hence has vanishing
Maslov class. (3.1.15) follows by exactness of L in X \ D, which implies that ω(u′) = 0
by Stokes’ theorem. (3.1.16) follows because u′ lies in the complement of D. The result
follows, because

(3.1.17) 2τ c1(ũ)= ω(ũ)=
∑

i di�i

dj

ũ · Dj

by monotonicity and (3.1.1). �
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It follows, in particular, that objects of F(X,D) are monotone Lagrangians in X.
Let F(X,D)w denote the full subcategory of F(X,D) whose objects are Lagrangians L
with w(L)=w.

Corollary 3.4. — If w = 0, then F(X,D)w has an empty set of objects unless 2τdj is an

integer multiple of
∑

i di�i , for all j.

Proof. — If L is an object of F(X,D)w and w = 0, then L must bound a Maslov
index 2 disc u. It follows by Lemma 3.3 that

(3.1.18) 2τdj =
(∑

i

di�i

)
(u · Dj)

for all j. �

Corollary 3.5. — Assume that X is simply-connected. Then a choice of map ĩ that makes the

diagram

(3.1.19) G̃(X \ D)
ĩ

G̃X

G(X \ D)
i

GX

commute induces a natural map from objects of F(X,D)w to objects of F(X)w.

Proof. — The assumption that X is simply-connected ensures that the image
of π1(L) in π1(X) is always trivial; the condition on ω and μ then follows from
Lemma 3.3. �

We would like to extend this to an A∞ functor. We do this by first introducing a
new category.

Definition 3.2. — For each w ∈ C, we define the monotone relative Fukaya category
Fm(X,D)w. It is a G(X,D)-graded, R-linear A∞ category. Its objects are the anchored Lagrangian

branes L ⊂ X \ D such that w(L)=w. The morphism spaces and A∞ structure maps are defined as

for F(X)w, except that:

• All Floer and perturbation data are chosen so that the almost-complex structure makes each

divisor Dj into an almost-complex submanifold, and the Hamiltonian part vanishes with its

first derivative along each divisor; then intersection numbers of pseudoholomorphic discs with

divisors are non-negative.

• Each pseudoholomorphic disc is counted with a coefficient ru·D ∈ R.

This category is G(X,D)-graded, for the same reason that the relative Fukaya category is.
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Remark 3.1. — It is still possible to achieve transversality with this restricted set of
Floer and perturbation data: moduli spaces of discs and spheres transverse to the divisors
are still generically regular, but moduli spaces of holomorphic spheres inside the divisor
may not be. However, the only place where we needed regularity of a moduli space of
holomorphic spheres in the construction of the monotone Fukaya category was when
we ruled out spheres bubbling off a pseudoholomorphic strip that is constant along its
length, its image coinciding with a Hamiltonian chord between two Lagrangians. The
Hamiltonian chords lie in the complement of the divisors, so this type of sphere bubbling
is still ruled out, without the need for regularity of moduli spaces of holomorphic spheres
inside the divisors.

Lemma 3.6. — The map on objects defined in Corollary 3.5 extends to a strict full embedding

of G(X)-graded, C-linear A∞ categories

(3.1.20) q∗Fm(X,D)w ⊗R C ↪→F(X)w,

where q is the morphism of grading data of Definition 3.1, and we regard C as an R-algebra via the map

R → C sending each rj �→ 1: this map is well-defined by Lemma 3.1 and respects the G(X)-grading

by Lemma 3.2.

Proof. — The embedding is tautologous: the A∞ structure maps on both sides count
the same moduli spaces of pseudoholomorphic discs. The coefficient ru·D with which discs
contribute to an A∞ structure map in Fm(X,D)w reduces to 1 after tensoring with C. �

Now we would like to compare Fm(X,D)w with F(X,D)w. The fact that F(X,D)

may be curved makes it a bit complicated to prove the categories are quasi-equivalent,
because we would first need to construct a non-curved model for F(X,D)w. Anyway
this turns out to be unnecessary for our purposes. Namely, it turns out to be sufficient
to prove this result to first order, so we need only a first-order quasi-equivalence (in the
sense of [67, Definition 2.110]) of R/m2-linear A∞ categories, where m ⊂ R denotes the
maximal ideal generated by r1, . . . , rn. For this purpose, we need only consider moduli
spaces of pseudoholomorphic discs with ≤ 1 intersection points with the divisors. As long
as D has ≥ 2 irreducible components, the problem of curvature does not arise, because
any non-constant pseudoholomorphic disc with boundary on a single Lagrangian L must
necessarily intersect all of the divisors Dj (by Lemma 3.3).

Proposition 3.7. — Suppose that D has ≥ 2 irreducible components. Then there is a first-order

quasi-equivalence of G(X,D)-graded, R/m2-linear A∞ categories

(3.1.21) Fm(X,D)w/m
2 ∼=F(X,D)w/m

2.
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Proof. — The two categories clearly have the same set of objects. We use the usual
trick of ‘doubling’ the category [60, Section 10a]: consider a category F tot which con-
tains two copies of each object, and so that there are strict G(X,D)-graded, R/m2-linear
embeddings

(3.1.22) Fm(X,D)w/m
2 ↪→F tot ←↩F(X,D)w/m

2.

The A∞ structure maps on the left are defined by choosing perturbation data on moduli
spaces of discs with ≤ 1 marked point which are pulled back via the forgetful map for-
getting the marked point. The A∞ structure maps on the right are defined by choosing
perturbation data which are consistent with respect to the Deligne–Mumford compactifi-
cation, including when the internal marked point bubbles off at the boundary. We extend
these to choices of perturbation data for all other moduli spaces of pseudoholomorphic
discs with ≤ 1 marked points and boundary conditions on the objects of our category.
We require consistency of these perturbation data with respect to the Deligne–Mumford
compactification, except when the marked point bubbles off in a disc on its own, with
boundary labelled by a Lagrangian coming from the left-hand side of (3.1.21). This type
of degeneration cannot happen in the corresponding moduli spaces of pseudoholomor-
phic discs, because any pseudoholomorphic disc with boundary on a single Lagrangian
has to intersect each divisor Dj at least once (by Lemma 3.3), and in particular has ≥ 2
internal marked points.

We use the corresponding moduli spaces of pseudoholomorphic discs to define an
A∞ structure on F tot . It follows as in [60, Section 10a] that the order-zero components
of these categories are quasi-equivalent, and by [67, Lemma 2.111] that the R/m2-linear
categories are first-order quasi-equivalent. �

3.2. The relative Fukaya category and the closed–open string map. — If (X,D) is a Käh-
ler pair, then we can define a G(X,D)-graded R-algebra QH∗(X,D), by analogy with
QH∗(X). The underlying G(X,D)-graded R-module is the cohomology H∗(X;C)⊗ R.
Each holomorphic sphere u contributes to the quantum cup product with a coefficient
ru·D ∈ R.

Furthermore, there is a G(X,D)-graded homomorphism of R-algebras,

(3.2.1) COX,D : QH∗(X,D)→ HH∗
G(X,D)

(
Fm(X,D)w

)
,

for every w ∈ C. It is defined by counting the same pseudoholomorphic discs as are used
to define CO, but every pseudoholomorphic disc u is counted with a coefficient ru·D ∈ R.
Thus, we have

(3.2.2) COX,D ⊗R C = CO.

COX,D is a G(X,D)-graded map by standard index theory of Cauchy–Riemann opera-
tors.
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Proposition 3.8. — Let (X,D) be a Kähler pair. Denote by [Dj] the cohomology class Poincaré

dual to Dj . For a given w ∈ C, we have

(3.2.3) COX,D

([Dj]
)=

[
rj

∂μ∗

∂rj

]
+ rj

∂(w · T)
∂rj

· e ∈ HH∗
G

(
Fm(X,D)w

)

where e ∈ HH∗
G(Fm(X,D)w) is the unit of Hochschild cohomology, and

T := r
ad1
1 . . . r

adk

k ∈ R, where(3.2.4)

a := 2τ∑
i di�i

.(3.2.5)

We remark that the exponents 2τdj/
∑

i di�i are not always integral, so T does not always lie in R;

however, when that happens, F(X,D)w has an empty set of objects unless w = 0 by Corollary 3.4, in

which case the term involving T vanishes.

Remark 3.2. — The length-0 component of this equation was proven in the course
of the proof of Lemma 2.7.

Remark 3.3. — If we had instead followed [24] and defined the Fukaya category
as a curved A∞ category, then the term involving e could be absorbed into the first term,
where it would correspond to the curvature term μ0. However we have chosen to use a
different definition of the Fukaya category (taking advantage of the monotonicity of our
manifolds), in which μ0 is set equal to zero.

Proof. — The left-hand side is given by the count of pseudoholomorphic discs with
a single internal marked point constrained to lie on Dj (taking Dj as the pseudocycle
representing its homology class). On the other hand, the first term of the right-hand
side is given by the count of pseudoholomorphic discs defining the A∞ structure map,
multiplied by their intersection number with Dj . For generic choice of perturbation data,
all such pseudoholomorphic discs intersect Dj transversely. Then this term is given by the
signed count of pseudoholomorphic discs together with a choice of internal marked point
which lies on divisor Dj .

So we have two moduli spaces of pseudoholomorphic discs with an internal
marked point: on the first, the perturbation data are chosen to be consistent with the
Deligne–Mumford compactification, whereas on the second, the perturbation data are
pulled back from the perturbation data used to define the A∞ structure maps, via the
map forgetting the internal marked point. We observe that the latter choice is not consis-
tent with the Deligne–Mumford compactification: consistency would require that, when
the marked point approaches the boundary, a ‘thin’ region modeled on a strip would
develop separating the marked point from the rest of the disc, and the perturbation data
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along the thin region should coincide with the Floer data. In the pulled-back perturba-
tion data, when the marked point approaches the boundary, a holomorphic disc bubbles
off on which the perturbation data has vanishing Hamiltonian part and constant almost-
complex structure part J = JL.

To compare the two choices, we consider the same moduli space of holomorphic
discs used in the proof that CO is a homomorphism of C-algebras (see Section 2.5, in
particular Figure 2). However, we define a new choice of perturbation data on this moduli
space: the perturbation data are pulled back from the moduli space used to define CO,
via the map which forgets the left-hand marked point.

Now we consider the moduli space of pseudoholomorphic discs with these pertur-
bation data, where the left-hand marked point is constrained to lie on Dj and the right-
hand marked point is unconstrained. For generic choice of perturbation data defining
CO, this moduli space is regular. Counting the boundary points of the one-dimensional
component shows that

(3.2.6) COX,D

([Dj]
)= COX,D(e)∪

(
rj

∂μ∗

∂rj

)
+ rj

∂(w · T)
∂rj

· COX,D(e)+ δ(H),

where H is defined by counting the zero-dimensional components of the moduli space.
The left-hand side of (3.2.6) corresponds to the boundary component at t = 0:

compare Figure 2(b) (the holomorphic sphere that bubbles off is necessarily constant, so
it is equivalent to constraining the centre marked point to lie on Dj ).

The first term on the right-hand side of (3.2.6) corresponds to the boundary com-
ponent at t = 1, when the disc that bubbles off on the left has ≥ 1 incoming marked
boundary points (see Figure 6(a)). By the argument given at the start of the proof, the
count of such discs contributes exactly rj∂μ

∗/∂rj . The right-hand disc corresponds to
COX,D(e), and the middle disc gives the Yoneda product.

The second term on the right-hand side of (3.2.6) corresponds to the boundary
component at t = 1, when the disc that bubbles off on the left has no incoming marked
boundary points (see Figure 6(b)). Because the perturbation data on this disc are pulled
back via the forgetful map, the disc must have constant perturbation data given by the
almost-complex structure J = JL. The count of such discs is w by definition. We must
also choose an internal marked point lying on Dj ; the disc has intersection number adj

with divisor Dj by Lemma 3.3, and hence there are adj possible choices for the internal
marked point lying on divisor Dj . Each such disc contributes with a coefficient ru·D = T,
so the total count of these discs is rj∂(w · T)/∂rj .

The central disc in such a configuration has a boundary marked point where it
meets the JL-holomorphic disc; the perturbation data are independent of the position of
this boundary marked point, so it can be varied freely. It follows that the moduli space
factors through a moduli space of lower (hence negative) dimension, and is therefore
empty, unless the central disc is actually a constant strip meeting the JL-holomorphic disc
on one boundary component (i.e., there are no open dots on the central disc in Figure 6(b)
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FIG. 6. — The first and second terms on the right-hand side of (3.2.6)

except for those at −i and +1, and the strip is constant along its length). The disc on the
right is precisely an element of the moduli space used to define COX,D(e). It follows that
this boundary component contributes the second term on the right-hand side.

Finally, disc bubbling for t ∈ (0,1) contributes the final term of (3.2.6) (compare
Figure 2(a)). The result now follows from (3.2.6), as COX,D is a unital algebra homomor-
phism by Lemma 2.3. �

4. Weak bounding cochains: algebra

4.1. Weak bounding cochains. — Let A be a curved, strictly unital, G-graded A∞ cate-
gory, defined over some coefficient ring R. In [24] a procedure for formally enlarging A
is described, by introducing weak bounding cochains. We will denote the result by Awbc.
The construction of Awbc is formally analogous to the construction of the category of
twisted complexes of an A∞ category [60, Section 3l].
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Let A⊕ denote the additive enlargement of A by introducing arbitrary finite direct
sums of objects (this was denoted �A in [60, Section 3k]). A⊕ is also a curved, strictly
unital A∞ category.

An object of Awbc is a pair (L, α), where L is an object of A⊕, and

(4.1.1) α ∈ hom∗
A⊕(L,L)

is an element of odd degree (not necessarily degree 1) which is a weak bounding cochain, i.e.,
a solution of the Maurer–Cartan equation:

(4.1.2) μ0
L +μ1(α)+μ2(α,α)+ · · · = P(α) · eL

for some P(α) ∈ R (the ‘disc potential’).
We remark that the Maurer–Cartan equation (4.1.2) does not make sense as writ-

ten, because it is an infinite sum which has no reason to converge. There are various ways
of dealing with this, which we have summarized in Remark 1.4. In the next section we
will show that, for a specific class of weak bounding cochains on the monotone Fukaya
category (which we call monotone weak bounding cochains), the Maurer–Cartan equation
(4.1.2) has only finitely many terms for degree reasons.

Let us continue recalling the construction of Awbc, with the understanding that
certain restrictions have been imposed on our weak bounding cochains α to ensure con-
vergence of (4.1.2), but without specifying their nature.

The hom-spaces of Awbc coincide with those in A⊕:

(4.1.3) hom∗
Awbc

(
(L0, α0), (L1, α1)

) := hom∗
A⊕(L0,L1).

The A∞ structure maps of Awbc are defined by inserting the weak bounding cochains in
all possible ways into the A∞ structure maps of A⊕: if

(4.1.4) ai ∈ hom∗((Li−1, αi−1), (Li, αi)
)

for i = 1, . . . , s,

then we define

μs
Awbc(as, . . . , a1)(4.1.5)

:=
∑

i0,...,is

μ∗
A⊕(αs, . . .︸ ︷︷ ︸

is

, as, αs−1, . . .︸ ︷︷ ︸
is−1

, as−1, . . . , a1, α0, . . .︸ ︷︷ ︸
i0

).

Once again, convergence of (4.1.5) is an issue to be dealt with, which we set aside for the
purposes of this section.

These structure maps satisfy the A∞ associativity relations, making Awbc a curved,
strictly unital A∞ category, where (L, α) has curvature

(4.1.6) μ0 = P(α) · eL.
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It follows that for all w ∈ R, there is a non-curved, strictly unital A∞ category

(4.1.7) Awbc
w ⊂Awbc,

whose objects are those (L, α) with

(4.1.8) P(α)=w

(compare Section A.7).

Remark 4.1. — If A is G-graded, and all weak bounding cochains are chosen to
have degree 1, then Awbc is also G-graded. On the other hand, if the weak bounding
cochains have degree 1 + y, for y in some subgroup U of the grading datum G, then Awbc

need only be G/U-graded.

4.2. Hochschild invariants. — See Appendix A for our conventions on Hochschild
homology and cohomology of A∞ categories. Because A sits inside Awbc as a full subcat-
egory (the subcategory whose objects are those with weak bounding cochains equal to 0),
there are obvious morphisms of chain complexes

(4.2.1) φ : CC∗(A) ↪→ CC∗
(
Awbc

)
(given by inclusion) and

(4.2.2) ψ : CC∗(Awbc
)→ CC∗(A)

(given by restriction).
There are also morphisms of chain complexes in the respective opposite directions,

but once again they are only defined if there is a reason for them to converge. The formula
for Hochschild cohomology is:

� : CC∗(A)→ CC∗(Awbc
)

(4.2.3)

�(η)(as, . . . , a1)(4.2.4)

:=
∑

i0,...,is

η(αs, . . . , αs︸ ︷︷ ︸
is

, as, αs−1, . . . , αs−1︸ ︷︷ ︸
is−1

, as−1, . . . , a1, α0, . . . , α0︸ ︷︷ ︸
i0

),

which is easily verified to be a chain map, and to respect the Yoneda product (A.4.1) on
the cochain level. It obviously satisfies ψ ◦� = Id.

The formula for Hochschild homology is:

� : CC∗
(
Awbc

)→ CC∗(A)(4.2.5)

�(as ⊗ · · · ⊗ a0)(4.2.6)

:=
∑

i0,...,is

as ⊗ αs ⊗ · · · ⊗ αs︸ ︷︷ ︸
is

⊗as−1 ⊗ · · · ⊗ a0 ⊗ α0 ⊗ · · · ⊗ α0︸ ︷︷ ︸
i0

,
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which is easily verified to be a chain map, and to respect the cap product (A.4.5) on the
cochain level. It obviously satisfies � ◦ φ = Id.

When α is lower-triangular, as in the definition of twisted complexes, convergence
holds, and these morphisms can be used to show the Morita invariance of Hochschild
homology and cohomology (taking twisted complexes does not change the Hochschild
invariants).

When α is required to have positive energy, a modification in the definition of the
Hochschild homology and cohomology chain complexes is required to make convergence
hold: namely, one has to take ‘completed’ tensor products in the definition of Hochschild
chains, and ‘filtered’ Hochschild cochains (see [24, Section 3.8]).

In our intended application (which is to define the closed–open and open–closed
string maps in the presence of weak bounding cochains, see Section 5.4), we will not
actually prove that these maps are well-defined: we will cook up the closed–open and
open–closed maps using the formulae for � and � in a formal way, then show that the
resulting maps are well-defined, i.e., that convergence holds for geometric reasons.

4.3. Homotopy units. — We recall that there are several notions of unitality for an
A∞ category (see, e.g., [60, Section 2a]). We will need to work with homotopy unital A∞
categories, so we recall the definition here for reference, and to clarify conventions.

Let A be a cohomologically unital, R-linear A∞ category, with cochain-level (co-
homological) units

(4.3.1) eL ∈A(L,L).

A homotopy unit structure (see [24, Section 3.3]) on A is an A∞ structure on A+, where

A+(L,L) :=A(L,L)⊕ R · fL[1] ⊕ R · e+L ,(4.3.2)

A+(K,L) :=A(K,L) for K = L(4.3.3)

so that the A∞ structure coincides with the A∞ structure on A, and furthermore satisfies:

μ1(fL)= e+L − eL;(4.3.4)

μ1
(
e+L
)= 0;(4.3.5)

(−1)σ(a)μ2
(
e+L , a

)= μ2
(
a, e+L

)= a;(4.3.6)

μs
(
. . . , e+L , . . .

)= 0 for s ≥ 3.(4.3.7)

In particular, A+ is a strictly unital A∞ category, with cochain level units e+L .
If A is equipped with homotopy units, then we will denote

(4.3.8) Awbc := (
A+)wbc

for brevity.
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4.4. The disc potential. — Following [24, Section 3.6.3], we make the following:

Definition 4.1. — Suppose that L is an object of A⊕. We define M̂weak(L) to be the set of

solutions α to (4.1.2).

Remark 4.2. — There is a natural equivalence relation on M̂weak(L), called ‘gauge
equivalence’. Gauge equivalent weak bounding cochains give rise to quasi-isomorphic
objects of the Fukaya category. The quotient of M̂weak(L) by gauge equivalence is called
the ‘Maurer–Cartan moduli space’ or ‘Maurer–Cartan scheme’ Mweak(L) [24, Sec-
tion 4.3.1]. In this paper we will be concerned with a certain subspace of a certain
M̂weak(L), on which the gauge equivalence relation turns out to be trivial. For that rea-
son, and because the technical machinery is a bit involved, we will bypass the notion of
gauge equivalence and work directly with M̂weak(L).

The ‘disc potential’ defines a function

(4.4.1) P : M̂weak(L)→ R

(compare (4.1.2)).

Remark 4.3. — It is natural with respect to change of coefficients, in the following
sense: if

(4.4.2) � : R → S

is an algebra homomorphism, and A an R-linear A∞ category, we can form the S-linear
A∞ category A⊗R S. Then there is a commutative diagram

(4.4.3) M̂weak(L;A)
v �→v⊗R1

P

M̂weak(L;A⊗R S)

P

R
�

S.

In [26, Proposition 4.3], it is proven that for any Lagrangian torus fibre L of a
symplectic toric manifold, there is an embedding

(4.4.4) H1(L;�+) ↪→ M̂weak(L).

We will now prove an analogue of that result. For the purposes of the following results,
the reader should have in mind the case that A = CF∗(L,L) is the exterior algebra on
the vector space V, e.g., L is a Lagrangian torus and V = H1(L)⊂ A.
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Lemma 4.1. — Let A be a cohomologically unital A∞ category over R, with cochain-level

cohomological units eL ∈ hom0
A(L,L). Let L be an object of A, and denote

(4.4.5) A := hom∗
A(L,L).

Suppose that

(4.4.6) V ⊂ A

is a subspace, concentrated in odd degree, such that

(1) For any v ∈ V, μs(v, v, . . . , v) is a multiple of eL;

(2) The sum

(4.4.7)
∞∑

s=1

μs(v, . . . , v)=: P′(v) · eL

converges, for all v ∈ V (cf. Remark 1.4; observe that each term in this sum is a multiple

of eL, by the preceding assumption);

(3) CC≤0(V,A)∼= C · eL (as a C-vector space).

We call the resulting map

(4.4.8) P
′ : V → R

the pre-disc potential. Now suppose A is equipped with homotopy units, so that A+ is a strictly unital

A∞ category with cochain-level strict units e+L , and define

(4.4.9) M̂weak(L),

the space of weak bounding cochains for L, computed in A+. Then there is an embedding

(4.4.10) ι : V ↪→ M̂weak(L),

which makes the following diagram commute:

(4.4.11) V
ι

P′

M̂weak(L)

P

R

Proof. — The embedding ι is defined by

(4.4.12) ι(v) := v +P
′(v)fL.
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To prove that ι(v) does lie in M̂weak(L), and does make the diagram commute, we first
observe that whenever

(4.4.13) s =
k∑

j=0

ij,

the expression

(4.4.14) μ∗(−, . . . ,−︸ ︷︷ ︸
ik

, f ,−, . . . ,−︸ ︷︷ ︸
ik−1

, f , . . . , f ,−, . . . ,−︸ ︷︷ ︸
i0

) : V⊗s → A+

defines an element of CC2−2k(V,A+). By hypothesis (3), CC2−2k(V,A) vanishes for k ≥ 2,
and is generated by the single element eL if k = 1. It follows that

• If k ≥ 2, then the expression (4.4.14) vanishes;
• If k = 1, it vanishes except for the map

(4.4.15) μ1(fL)= e+L − eL;
• If k = 0, it coincides with μs.

Hence,

P
(
ι(v)

)=
∞∑

s=1

μs
(
v +P

′(v) · fL, . . . , v +P
′(v) · fL

)
(4.4.16)

=
∞∑

s=1

μs(v, . . . , v)+P
′(v)μ1(fL)(4.4.17)

= P
′(v)eL +P

′(v)
(
e+L − eL

)
(4.4.18)

= P
′(v)e+L ,(4.4.19)

from which the result follows. �

Remark 4.4. — In [24, Section 3.6.3], the authors explicitly caution that one should
work with P, rather than with P′. However, Lemma 4.1 shows that, under certain hy-
potheses, the two can be related.

We now prove an analogue, in the setting of Lemma 4.1, of the well-known theo-
rem that critical points of P correspond to objects with vanishing differential, and there-
fore non-trivial cohomology (compare [15]). Suppose that V is a free R-module with basis
{θ1, . . . , θk}. So if

(4.4.20) v =
k∑

j=1

vjθj ∈ V,
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then

(4.4.21) P ◦ ι(v)= P
′(v)=

∞∑
s=1

μs(v1θ1 + · · · + vkθk, . . . , v1θ1 + · · · + vkθk).

We observe that P ◦ ι is a power series in the vi (in fact, in our application, it will be a
polynomial).

Proposition 4.2. — Consider the setup of Lemma 4.1. Suppose furthermore that there is a

decomposition as free R-modules

(4.4.22) A ∼=
N⊕

k=0

Ak,

and that

(4.4.23) μ∗ = μ∗
0 +μ∗

1,

such that:

(1) A0 = R · eL;

(2) A1 = V;

(3) μ∗
0 has length 2 and sends

(4.4.24) μ2
0 : Ak ⊗ Al → Ak+l;

(4) μ∗
1 sends

(4.4.25) μ∗
1 : V⊗b ⊗ Ak ⊗ V⊗c ⊗ Al ⊗ V⊗d →

⊕
m<k+l

Am.

(5) It follows that μ2
0 defines an associative algebra structure on A; we suppose that V generates

A as an associative algebra, with respect to μ2
0, and that eL is an identity element for this

algebra.

Then, if v ∈ V is a critical point of P′, and α = ι(v) is the corresponding Maurer–Cartan element,

then the differential μ1
α vanishes on the endomorphism algebra of (L, α) in Awbc, with the exception that

μ1
α(fL)= e+L − eL. In particular, the cohomology is

(4.4.26) Hom∗((L, α), (L, α))∼= A,

as an R-module.
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Proof. — The proof is a modification of that of [26, Lemma 13.1]. We extend the
decomposition of A to be defined on

(4.4.27) A+ = A ⊕ R · fL ⊕ R · e+L ,

by putting fL in A+
−1 and e+L in A+

0 . It follows as in the proof of Lemma 4.1 that

(4.4.28) μ1
α(fL)= e+L − eL.

Because μ1
α(μ

1
α(fL))= 0, it follows that

(4.4.29) μ1
α(eL)= μ1

α

(
e+L
)= 0,

by strict unitality. This proves that μ1
α has the stated form when applied to fL, e+L , eL.

Next, we observe that, for any generator θi of V, we have

μ1
α(θi) :=

∑
i0,i1

μ∗(α, . . . , α︸ ︷︷ ︸
i0

, θi, α, . . . , α︸ ︷︷ ︸
i1

)(4.4.30)

=
∑
i0,i1

μ∗(v, . . . , v︸ ︷︷ ︸
i0

, θi, v, . . . , v︸ ︷︷ ︸
i1

)(4.4.31)

= ∂

∂vi

P
′(v)(4.4.32)

= 0,(4.4.33)

by assumption (in the passage from (4.4.30) to (4.4.31), we must check that other terms
vanish, cf. proof of Lemma 4.1). Hence, μ1

α(V)= 0.
We now prove that μ1

α vanishes on A+
k for all k ≥ 0, by induction on k. Above,

we have proven the result for all k ≤ 1. Now suppose that we have proven the result for
all k ≤ l − 1. Let x be a generator of Al . By assumption (5), we can choose y ∈ V and
z ∈ Al−1, so that

(4.4.34) μ2
0(y, z)= x.

We then apply the second A∞ relation for μ∗
α :

μ1
α

(
μ2
α(y, z)

)= −μ2
α

(
y,μ1

α(z)
)+ (−1)σ(z)μ2

α

(
μ1
α(y), z

)
(4.4.35)

= 0,(4.4.36)

by the inductive assumption. We now have

(4.4.37) μ2
α(y, z)= μ2

0(y, z)+
∑

s

μs
1(α, . . . , α, y, α, . . . , α, z, α, . . . , α)
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By hypothesis, the second term is a sum of elements of Ak for k < l. Hence, μ1
α vanishes

on it, by the inductive assumption. It follows that

(4.4.38) μ1
α(x)= μ1

α

(
μ2

0(y, z)
)= 0,

which completes the inductive step. �

Remark 4.5. — It may be that the function P has no critical points over R, but
that if we change coefficients from R to S, then the function P ⊗R S does have critical
points. Proposition 4.2 applies equally in that case. Namely, to each v ∈ V ⊗R S, there
corresponds a weak bounding cochain α in the category A⊗R S (compare Remark 4.3).
Moreover, if v is a critical point of P⊗R S, then the differential μ1

α on the endomorphism
algebra of (L, α) in (A⊗R S)wbc vanishes, except for μ1

α(fL)= e+L − eL: the argument goes
through unchanged.

The following is an analogue of Cho’s result [12, Theorem 5.6] (see also [35, 37]).

Proposition 4.3. — In the setting of Proposition 4.2, suppose that v ∈ V is a critical point

of P′, and α = ι(v) is the corresponding Maurer–Cartan element, so that (L, α) is a non-zero object

of Awbc. Then there is a surjective map of R-algebras

(4.4.39) C�
(−Hessv

(
P

′))� Hom∗((L, α), (L, α))
sending V to V. Here, the left-hand side denotes the Clifford algebra on the free R-module V, with the

quadratic form −Hessv(P
′), which has matrix

(4.4.40) −(Hessv
(
P

′))
ij
:= − ∂2P′

∂vi∂vj

(v)

with respect to the basis {θ1, . . . , θk} (see Section 6.1 for reminders on Clifford algebras).

Proof. — By Proposition 4.2, we have

(4.4.41) Hom∗((L, α), (L, α))∼= A

as an R-module; it remains to identify the algebra structure μ2
α . By the proof of

Lemma 4.1, we have

μ2
α(θi, θj)+μ2

α(θj, θi)=
∑

μ∗(α, . . . , θi, α, . . . , θj, α, . . .)(4.4.42)

+
∑

μ∗(α, . . . , θj, α, . . . , θi, α, . . .)(4.4.43)

=
∑

μ∗(v, . . . , θi, v, . . . , θj, v, . . .)(4.4.44)

+
∑

μ∗(v, . . . , θj, v, . . . , θi, v, . . .)(4.4.45)
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= ∂2

∂vi∂vj

∑
μ∗(v, . . . , v)(4.4.46)

= ∂2P′

∂vi∂vj

(v) · eL.(4.4.47)

It follows that, for any u ∈ V,

(4.4.48) μ2
α(u, u)= Hessv

(
P

′)(u, u) · eL.

Hence, in the cohomology category we have (see (A.1.8))

(4.4.49) u · u = −Hessv
(
P

′)(u, u) · eL,

as all u ∈ V are odd by definition of a weak bounding cochain. Now V generates A as an
algebra with respect to the product μ2

0, by assumption (cf. Proposition 4.2); because μ2
0 is

the leading term of μ2
α , it follows that V also generates A as an algebra with respect to

the product μ2
α . This completes the proof. �

Now let us consider the setting of Proposition 4.2 further. Observe that
μ2

0(V,V) ⊂ A2, but μ2
0(v, v) must be a multiple of eL ∈ A0; hence μ2

0(v, v) = 0 for any
v ∈ V. It follows that, for any v1, v2 ∈ V, there is a differential

dv1,v2 : A → A;(4.4.50)

dv1,v2(x) := μ2
0(v2, x)+μ2

0(x, v1).(4.4.51)

Proposition 4.4. — In the setting of Proposition 4.2, suppose that v1, v2 ∈ V are distinct

critical points of P′, but with the same critical value w := P′(v1) = P′(v2); and suppose that the

differential dv1,v2 admits a contracting homotopy, i.e., there exists a map

(4.4.52) h : A∗ → A∗−1

so that

(4.4.53) [dv1,v2, h] = Id.

Now let αi = ι(vi) for i = 1,2 be the corresponding weak bounding cochains, giving objects

(L, α1) and (L, α2) of Awbc
w . Consider the chain complex

(4.4.54) hom∗((L, α1), (L, α2)
)

in Awbc
w ; denote the differential by

μ1
α1,α2

: A+ → A+,(4.4.55)

μ1
α1,α2

(x) :=
∑

μ∗(α2, . . . , α2, x, α1, . . . , α1).(4.4.56)
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Then the differential μ1
α1,α2

also admits a contracting homotopy: i.e., there exists a map

(4.4.57) H : A+ → A+

(of odd degree, but no longer necessarily Z-graded), such that

(4.4.58)
[
μ1
α1,α2

,H
]= Id.

In particular, the differential μ1
α1,α2

is acyclic:

(4.4.59) Hom∗((L, α1), (L, α2)
)∼= 0.

Proof. — Consider the Z-grading on End(A) induced by the Z-grading on A. Write

(4.4.60) μ1
α1,α2

=: d =
∑
i≥0

d1−2i,

where dj has degree j. We can do this because d = μ1
α1,α2

has odd degree, and furthermore
has degree ≤ 1 by the hypotheses of Proposition 4.2. Furthermore, we can identify d1 as
the part of μ1

α1,α2
coming from μ2

0:

d1(x)= dv1,v2(x) for x ∈ A(4.4.61)

d1(fL)= e+L − eL(4.4.62)

d1

(
e+L
)= v2 − v1.(4.4.63)

We construct H order-by-order, as

(4.4.64) H =
∑
i≥0

H−1−2i.

The first step is to define H−1: we set

H−1(x)= h(x) for x ∈ A(4.4.65)

H−1(fL)= 0(4.4.66)

H−1

(
e+L
)= fL.(4.4.67)

One easily checks that [d1,H−1] = Id (one must use the fact that eL is a unit for the
associative product μ2

0, which was part of hypothesis (5) of Proposition 4.2).
Now define

(4.4.68) F := [d,H] − Id ∈ End(A);
we prove inductively that it is possible to choose H−1, . . . ,H−1−2i so that F≥−2i = 0. The
only terms which can contribute to F≥0 are [d1,H−1] − Id, which we have shown to be
zero; so the base case i = 0 of the induction is established.



230 NICK SHERIDAN

Now suppose that the hypothesis has been established to order i − 1. To establish
it to order i, we must show it is possible to choose H−1−2i so that F−2i vanishes. Note that

(4.4.69) F−2i =
([d≥1−2i,H≥1−2i]

)
−2i

+ [d1,H−1−2i].
Now we have

(4.4.70)
[
d, [d,H≥1−2i]

]= 0;
combining this with [d,H≥1−2i]≥−2(i−1) = Id (the inductive hypothesis), we have

(4.4.71)
[
d1, [d,H≥1−2i]−2i

]= 0,

so [d,H≥1−2i]−2i is a chain map from (A+, d1) to itself. But the latter chain complex
admits a contracting homotopy, by hypothesis, so the endomorphism [d,H≥1−2i]−2i is
nullhomotopic. It now suffices to set H−1−2i equal to the nullhomotopy. This completes
the inductive step and hence the proof. �

4.5. Finite abelian group actions. — In this section, we describe how the disc potential
behaves under finite covers (compare [14, Section 5]). We use the terminology of [57,
Section 4] and [67, Section 2].

Let Gi = {Z → Yi} be grading data, for i = 1,2, and suppose that

(4.5.1) p : G1 ↪→ G2

is an injective morphism of grading data, with finite cokernel  ∼= Y2/Y1. Suppose that
R is a G1-graded C-algebra, and that A is a G2-graded, p∗R-linear A∞ category. Recall
that we can then form the G1-graded, R-linear A∞ category p∗A.

There is an action of the character group of ,

(4.5.2) ∗ := Hom
(
,C∗),

on the morphism spaces of A: namely, if a ∈ hom∗(K,L) has pure degree y ∈ Y2, then χ

acts on a by

(4.5.3) χ · a := χ
([y])a.

Because A is G2-graded, this action strictly commutes with the A∞ maps μ∗.
Let L be an object of A, and A := hom∗(L,L) its endomorphism algebra. Then

∗ acts (strictly) on A, and we can form the semidirect product

(4.5.4) A � ∗ := A ⊗ C
[
∗],
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with the A∞ structure maps

μs(as ⊗ χs, . . . , a1 ⊗ χ1)(4.5.5)

:= μs(as, χs · as−1, χsχs−1 · as−2, . . . , χs . . . χ2 · a1)⊗ χs . . . χ1

(see [57, Formula (4.8)]). The semidirect product is also sometimes denoted ‘#’ rather
than ‘�’.

The semidirect product is related to p∗A by a Fourier transform. To see this, we
choose a set-theoretic splitting θ of the following short exact sequence of abelian groups:

(4.5.6) 0 → Y1 → Y2

θ���→  → 0.

We suppose, furthermore, that σ ◦ θ = 0, where σ : Y2 → Z/2Z is the sign morphism
of G2 (one can always choose such a splitting). We now consider the object

(4.5.7) Lθ :=
⊕
γ∈

L
[
θ(γ )

]

(it can be regarded as an object of A or p∗A), and we denote

(4.5.8) Aθ := hom∗
p∗A
(
Lθ ,Lθ

)
.

The objects making up Lθ are indexed by elements of , and there is an action of
 on hom∗

A(L
θ ,Lθ ) by permuting the objects: explicitly, γ ∈  takes

(4.5.9) γ : hom∗(L[θ(γ1)
]
,L
[
θ(γ2)

])→ hom∗(L[θ(γ1 + γ )
]
,L
[
θ(γ2 + γ )

])
by a shift isomorphism. This action lifts to an action of  on Aθ (using the fact that θ is a
splitting).

Lemma 4.5. — There is a strict isomorphism of Z/2Z-graded A∞ algebras,

(4.5.10) A � ∗ ∼= Aθ .

Proof. — We first define a map of vector spaces

(4.5.11) f : A → Aθ

by sending an element a of pure degree y ∈ Y2 to the unique element

(4.5.12) f (a) ∈ hom∗(L[θ(0)],L
[
θ(y)

])
which corresponds to a under a shift isomorphism (this map respects the Z/2Z-grading,
by the condition that σ ◦ θ = 0). We then define the isomorphism

(4.5.13) F : A � ∗ → Aθ
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by

(4.5.14) F(a ⊗ χ) :=
∑
γ∈

χ(γ )γ · f (a)

(it is easy to check that F is an isomorphism of vector spaces).
We now prove that F is a strict isomorphism of A∞ algebras: suppose that

as, . . . , a1 ∈ A are elements of pure degree ys, . . . , y1 respectively, then

μs
(
F(as ⊗ χs), . . . ,F(a1 ⊗ χ1)

)
(4.5.15)

=
∑

γs,...,γ1

μs
(
χs(γs)γs · f (as), . . . , χ1(γ1)γ1 · f (a1)

)
.

Now the A∞ product on the right-hand side vanishes unless the morphisms are compos-
able in p∗A, which means we have

γ2 = γ1 + y1(4.5.16)

...
...(4.5.17)

γs = γs−1 + ys−1.(4.5.18)

Using these to write the γi ’s in terms of γ := γ1 and the yi ’s, the right-hand side of (4.5.15)
becomes:

∑
γ

μs

(
χs

(
γ +

s−1∑
i=1

yi

)(
γ +

s−1∑
i=1

yi

)
· f (as), . . . , χ1(γ )γ · f (a1)

)
(4.5.19)

=
∑
γ

γ · f
(
μs(as, . . . , a1)

) s∏
j=1

χj

(
γ +

j−1∑
i=1

yi

)
(4.5.20)

=
∑
γ

γ · f
(
μs(as, . . . , a1)

) s∏
j=1

χj(γ )

s−1∏
i=1

χs . . . χi+1(yi)(4.5.21)

= F
(
μs(as, χs · as−1, . . . , χs . . . χ2 · a1)⊗ χs . . . χ1

)
(4.5.22)

= F
(
μs(as ⊗ χs, . . . , a1 ⊗ χ1)

)
.(4.5.23)

This completes the proof that F is a strict isomorphism of A∞ algebras. �

Remark 4.6. — Lemma 4.5 only holds if  is finite. If  is infinite, then one should
regard the -grading of A as a -coaction, and replace A � ∗ by the smash product
A#C[]∗, in the notation of [16].
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Another way of saying things is that the action of  on Aθ gives rise to a Fourier
decomposition:

(4.5.24) Aθ ∼=
⊕
χ∈∗

Aθ
χ ,

where

(4.5.25) Aθ
χ := {

a ∈ Aθ : γ · a = χ(γ )a
}
.

The isomorphism of Lemma 4.5 sends

(4.5.26) A ⊗ χ
∼=→ Aθ

χ−1 .

In particular, we have an isomorphism of A with the -invariant part of Aθ :

(4.5.27) A ∼= Aθ
1
∼= (

Aθ
) ⊂ Aθ .

We denote the resulting inclusion by

j : A ↪→ Aθ ,(4.5.28)

j(a) := a ⊗ 1.(4.5.29)

If A is strictly unital, then j induces an inclusion

(4.5.30) j : M̂weak(L;A) ↪→ M̂weak

(
Lθ ;p∗A

)
,

such that P ◦ j = P. Furthermore, we have an action of ∗ on M̂weak(L), coming from
the action of ∗ on A, and P(χ · α)= P(α).

Proposition 4.6. — The objects (Lθ , j(α)) and (Lθ , j(χ · α)) of (p∗A)wbc
P(α) are quasi-

isomorphic. So ∗ acts by quasi-isomorphisms on the image of j in M̂weak(Lθ ).

Proof. — Let e ∈ A be the strict unit, and e⊗χ be the corresponding endomorphism
of Lθ under Lemma 4.5. Consider the morphism

(4.5.31) e ⊗ χ ∈ hom∗((Lθ , j(α)
)
,
(
Lθ , j(χ · α))).

Then e ⊗ χ is closed: its differential is equal to
∑

μ∗(χ · α ⊗ 1, . . . , χ · α ⊗ 1, e ⊗ χ,α ⊗ 1, . . . , α ⊗ 1)(4.5.32)

=
∑

μ∗(χ · α, . . . , χ · α, e, χ · α, . . . , χ · α)⊗ χ(4.5.33)

= (χ · α − χ · α)⊗ χ(4.5.34)

= 0,(4.5.35)



234 NICK SHERIDAN

using (4.5.5) and strict unitality. Similarly, e ⊗ χ−1 is a closed morphism in the opposite
direction.

Furthermore, their composition μ2(e ⊗ χ, e ⊗ χ−1) is equal to
∑

μ∗(χ · α ⊗ 1, . . . , e ⊗ χ,α ⊗ 1, . . . , e ⊗ χ−1, χ · α ⊗ 1, . . .
)

(4.5.36)

=
∑

μ∗(χ · α, . . . , e, χ · α, . . . , e, χχ−1χ · α, . . .)⊗ χχ−1(4.5.37)

= e ⊗ 1,(4.5.38)

which is the (strict) unit. Similarly, their composition in the other direction is the unit:
therefore, the objects are quasi-isomorphic. �

Proposition 4.7. — Suppose that A is equipped with homotopy units to give the strictly unital

G2-graded A∞ category A+. Suppose that L is an object of A, and

(4.5.39) V ⊂ A := hom∗
A(L,L)

satisfies the hypotheses of Proposition 4.2, and is invariant under the action of ∗. Now suppose that

v ∈ V is a critical point of P′, α = ι(v) is the corresponding weak bounding cochain in A+, and

j(α) the corresponding weak bounding cochain in p∗A+. Suppose furthermore that the differential dv,χ ·v
admits a contracting homotopy (as in Proposition 4.4), for all χ ∈ ∗ \ {1}. Then there is a quasi-

isomorphism of A∞ algebras:

(4.5.40) hom∗
p∗Awbc

((
Lθ , j(α)

)
,
(
Lθ , j(α)

))∼= hom∗
Awbc

(
(L, α), (L, α)

)
.

Proof. — The inclusion j : A ↪→ Aθ is a strict homomorphism of A∞ algebras, and
sends α to j(α); it follows that it induces a strict embedding of A∞ algebras,

(4.5.41) j : hom∗((L, α), (L, α)) ↪→ hom∗((Lθ , j(α)
)
,
(
Lθ , j(α)

))
.

We will show that this embedding is in fact a quasi-isomorphism.
Because j(α) is -invariant, and the A∞ structure is strictly -equivariant, the

differential μ1
j(α) is -equivariant. Hence, it preserves the Fourier decomposition (4.5.24).

Furthermore, for any element a ⊗ χ ∈ Aθ
χ (under the isomorphism (4.5.26)), we have

μ1
j(α)(a ⊗ χ)=

∑
μ∗(α ⊗ 1, . . . , α ⊗ 1, a ⊗ χ,α ⊗ 1, . . . , α ⊗ 1)(4.5.42)

= μ∗(α, . . . , α, a, χ · α, . . . , χ · α)⊗ χ(4.5.43)

= μ1
α,χ ·α(a)⊗ χ,(4.5.44)

where (4.5.43) follows from (4.5.5).
Now, by Proposition 4.4, using the hypothesis that dv,χ ·v admits a contracting ho-

motopy, the differential μ1
α,χ ·α admits a contracting homotopy, for all χ = 1. Therefore,
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the cohomology of the direct summand cochain complex Aθ
χ is zero, for all χ = 1. On

the other hand, for χ = 1, the differential on the remaining direct summand Aθ
1 is given

by μ1
α , whose comology is A, by Proposition 4.2. It follows that j is a quasi-isomorphism

of A∞ algebras, as required. �

5. Weak bounding cochains in the monotone Fukaya category

In this section, we sketch the procedure for including weak bounding cochains in
our definition of the monotone and monotone relative Fukaya categories. Our formula-
tion is slightly more general than that which has appeared in the literature before: we con-
sider weak bounding cochains on multiple Lagrangians, and we continue to work over C
(for the monotone Fukaya category), and over R (for the monotone relative Fukaya cat-
egory), rather than over a Novikov ring. In particular, we do not require our coefficient
ring to be complete with respect to the energy filtration; in the various places where con-
vergence of some Maurer–Cartan equation is required for the theory to make sense, the
convergence will occur for geometric reasons to do with monotonicity.

5.1. Homotopy units. — Following [28, Section 10] (which is based on [24, Sec-
tion 7.3], but whose formalism is more closely aligned with our own), we briefly recall
how to define a homotopy unit structure on the monotone Fukaya category F(X).

The A∞ structure maps which have e+L as an entry are completely prescribed
(see Section 4.3). Thus, to give a homotopy unit structure on F(X), we need to define
μ∗(. . . , f , . . . , f , . . .) which satisfy the A∞ relations (when combined with μ1(f )= e+ − e).
These structure maps are defined by counting pseudoholomorphic discs, but where some
boundary marked points are now labelled by f , rather than a Hamiltonian chord. The
boundary marked points labelled by f are treated in a different way from the others.
Namely, they are not punctured, and rather than a strip-like end, they come equipped
with an embedding of the upper half-disc, sending boundary components to boundary
components, and 0 to the corresponding boundary marked point. They furthermore
come equipped with an additional parameter ρ ∈ (0,1], corresponding to the position of
an unconstrained marked point lying on the line connecting 0 to i in the upper half-disc.
Perturbation data are chosen so that:

• As ρ → 0, the perturbation data converge to a strip-like end with the cohomo-
logical unit moduli space glued on.

• At ρ = 1, the perturbation data are pulled back via the forgetful map which
forgets the unconstrained marked point.

Remark 5.1. — There is one technical point to be aware of: perturbation data
can only be defined in this way if, after one forgets all points labelled f , the resulting
moduli space is semistable (otherwise, the perturbation data cannot be pulled back via
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the forgetful map after one forgets all of the f ’s). These are called ‘f-semistable’ domains,
in the language of [28, Section 10]. As a result, we are forced to define μs to equal zero
if all inputs are e+ or f , with the exceptions

(5.1.1) μ1(f )= e+ − e

and

(5.1.2) μ2
(
e+, a

)= (−1)σ(a)μ2
(
a, e+

)= a for a = e+, f ,

then prove that this is compatible with the proof of the A∞ associativity equations for
F+(X) (see [28, Remark 10.3]). I.e., we must prove that no disc can bubble off a one-
dimensional moduli space, carrying only forgotten points and homotopy units and noth-
ing else with it, except for those corresponding to Equations (5.1.1), (5.1.2). This is true
by the monotonicity assumption: indeed, since f has degree −1 and e+ has degree 0, the
output of μs with k inputs equal to f and s − k inputs equal to e+, must lie in degree
2 − s − k −μ≤ 2 − s − k, where μ is the Maslov index of the corresponding disc (which
is ≥ 0 by monotonicity). Because CF∗(L,L)∼= C∗(L) is concentrated in degrees ≥ 0 (for
appropriately chosen Floer data), there is no degree for the output to live in, unless we
have one of the situations enumerated in (5.1.1), (5.1.2). It follows that for generic Floer
and perturbation data, such a disc cannot bubble off in a one-dimensional family.

Counting the resulting moduli spaces of pseudoholomorphic discs defines the A∞
structure maps. Note that e+ and f never appear as the output, by definition. Consider-
ing the boundary points of the one-dimensional moduli spaces proves that the resulting
structure maps satisfy the A∞ relations (cf. [28, Section 10]). In particular, we have new
kinds of boundary components, where ρ → 0 or ρ → 1 for the parameter ρ associated
to a marked point labelled by f . When ρ → 0, the disc bubbles off a cohomological
unit e. The boundary component at ρ = 1 is generically empty, because the moduli space
factors through a moduli space of lower dimension (by forgetting the boundary marked
point labelled f ), unless forgetting f yields a strip, in which case the strip is necessarily
constant and corresponds to the identity map μ2(e+,−) or μ2(−, e+).

We denote the resulting strictly unital A∞ category by F+(X). One can similarly
define a homotopy unit structure on the monotone relative Fukaya category, and we
denote the resulting strictly unital category by F+

m (X,D).
We recall that the A∞ structure maps of the monotone Fukaya category do not

quite satisfy the A∞ associativity equations:

(5.1.3) μ1 : CF∗(L0,L1)→ CF∗(L0,L1)

satisfies

(5.1.4) μ1
(
μ1(x)

)= (
w(L0)−w(L1)

)
x.
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Introducing ‘curvature’ terms

(5.1.5) μ0
L :=w(L) · e+L

into the category F+(X) by hand, one obtains a curved, strictly-unital A∞ category
F c(X) (respectively F c

m(X,D)). Here c stands for ‘curved’.
For each w ∈ C, there is an embedding

(5.1.6) F(X)w ↪→F c(X),

respectively

(5.1.7) Fm(X,D)w ↪→F c
m(X,D),

whose image consists of all objects L with curvature w · e+L .

5.2. Convergence. — Because F c(X) (respectively F c
m(X,D)) is a curved, strictly

unital A∞ category, we can define the formal enlargement Fwbc(X) (respectively
Fwbc

m (X,D)), in accordance with the procedure outlined in Section 4.1. However, we
must explain the geometric restrictions we place on the weak bounding cochains in the
monotone Fukaya category, and how they ensure convergence in the equations (4.1.2),
(4.1.5). Recall that our symplectic manifold X is monotone, and the objects of the mono-
tone Fukaya category are required to be monotone Lagrangian submanifolds L ⊂ X, in
the sense of Definition 2.2.

We recall the Lagrangian Grassmannian of X, π : GX → X, and that any La-
grangian immersion ι : L → X comes equipped with a canonical lift

(5.2.1) ι∗ : L → GX.

We also recall that, for any map of a surface with boundary into X,

(5.2.2) u :� → X,

together with a lift of u|∂� to GX,

(5.2.3) ũ : ∂� → GX,

we can define the boundary Maslov index μ(u, ũ) ∈ Z (see [47, Appendix C.3]).
Let L be a set of smooth manifolds L, together with Lagrangian immersions ιL :

L → X, having lifts ιL,∗. Let P be a set of paths

(5.2.4) γ : [0,1] → GX,

connecting the lifts of the L ∈ L, in the sense that to each γ ∈ P , there are associated
points p0 ∈ L0, p1 ∈ L1, for some L0,L1 ∈L, such that

(5.2.5) γ (i)= ιLi,∗(pi)

for i = 0,1.
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FIG. 7. — Monotonicity. In this case, k = 3, l = 2. The path associated to p1 goes from the lift of L1 to the lift of L2; the
path associated to q1 goes from the lift of L1 to the lift of L5

Let D be a disc, with disjoint intervals labelled p1, . . . , pk, ql, . . . , q1 in clockwise or-
der on the boundary, and the boundary components between the intervals labelled by
elements L ∈ L. Now label the intervals by elements γ ∈ P , where γ is a path between
the Lagrangians labelling the boundary components on either side of the interval, ori-
ented clockwise for boundary components corresponding to pi , and anti-clockwise for
boundary components corresponding to qi (see Figure 7). Now let

(5.2.6) ũ : ∂D → GX

be a map, coinciding with the paths γ on boundary components corresponding to bound-
ary marked points, and mapping to the lift of L on boundary components labelled by L
(in the case that L is immersed, we do not allow ũ to change ‘sheets’ of L, unless along a
path γ ).

Definition 5.1. — We say that the collection (L,P) is monotone if

• Each L ∈L is monotone;

• For any such ũ, the map π ◦ ũ : ∂D → X extends to a continuous map u : D → X;

• If we fix k, then there exists τk < τ such that, for sufficiently large l, any such extension u

satisfies

(5.2.7) ω(u)≤ τμ(u, ũ)+ τkl.

The numbers τk may depend on k and on (L,P), but should not depend on ũ or u.

We can make a parallel definition, which applies to the monotone relative Fukaya
category.

Definition 5.2. — If (X,D) is a Kähler pair, we say that the collection (L,P) is relatively
monotone if
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• Each L ∈L is exact in X \ D;

• Each path in P is contained inside G(X \ D)⊂ GX;

• For any ũ : ∂D → G(X \ D) as in Definition 5.2, the map π ◦ ũ : ∂D → X \ D extends

to a continuous map u : D → X;

• If we fix k, then there exists τk < τ such that, for sufficiently large l, any such extension u

satisfies

(5.2.8)
∑

j

�j(u · Dj)≤ τμ(u, ũ)+ τkl,

where �j is the linking number of α with component Dj of D (see [67, Definition 3.11]).

Now observe that, for any objects L0,L1 of F(X), a generator p of CF∗(L0,L1)

is a Hamiltonian chord from L0 to L1. Furthermore, this chord comes with a canonical
homotopy class of lifts to GX, with endpoints on the respective lifts of L0 and L1, and such
that the corresponding orientation operator has Maslov index 0 (see [60, Section 11l]).
We choose a lift in this homotopy class and denote it by γp.

Definition 5.3. — Let L be a set of objects of F c(X), and consider the object

(5.2.9) L :=
⊕
L∈L

L

of F c(X)⊕. Let

(5.2.10) α ∈ hom∗(L,L)

be an element of odd degree, and let P be the set of classes γp, for all generators p which appear in α with

a non-zero coefficient. We say that α is monotone if the pair (L,P) is monotone. We similarly define

the notion of a relatively monotone element α ∈ hom∗(L,L), where L is an object of F c
m(X,D)⊕.

Lemma 5.1. — Let us abbreviate A :=F c(X)⊕ (respectively, F c
m(X,D)⊕). If Li are objects

of A for i = 0, . . . , s, and

(5.2.11) αi ∈ hom∗(Li,Li)

are monotone in the sense of Definition 5.3 (respectively, relatively monotone), and

(5.2.12) ai ∈ hom∗(Li−1,Li),

then

(5.2.13) μ∗(αs, . . . , αs︸ ︷︷ ︸
is

, as, αs−1, . . . , αs−1︸ ︷︷ ︸
is−1

, as−1, . . . , a1, α0, . . . , α0︸ ︷︷ ︸
i0

)= 0

for i0, . . . , is sufficiently large; in particular, Equations (4.1.2) and (4.1.5) converge.
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Proof. — We give the proof in the monotone case; the relatively monotone case is
analogous. Suppose that v1 and v2 are two pseudoholomorphic discs which contribute to
the coefficient of a0 in (5.2.13), with values of ij given by kj for disc v1, and lj for disc v2.
Define lifts ṽ1, ṽ2 of the boundaries to GX, by gluing the index-0 orientation operators
onto the strip-like ends of v1, v2. Because these v1 and v2 contribute to A∞ products, they
are rigid, which implies that

(5.2.14) μ(v1, ṽ1)= 2 − s −
s∑

j=0

kj

and

(5.2.15) μ(v2, ṽ2)= 2 − s −
s∑

j=0

lj.

Now the disc v2 can be glued to v1 along the Hamiltonian chords a0, . . . , as; the
result is a genus-0 surface in X, with s + 1 holes. The boundary of the jth hole has the
form ũj described in Definition 5.2, with k = kj and l = lj . Therefore, by the monotonicity
condition, the jth hole can be filled in by a disc uj . Filling in the holes gives us a closed
surface

(5.2.16) v = v1 ∪ v2 ∪ u1 ∪ · · · ∪ uj.

We now have

ω(v)= 2τ c1(v)(5.2.17)

⇒ ω(v1)−ω(v2)+
s∑

j=0

ω(uj)= τ

(
μ(v1, ṽ1)−μ(v2, ṽ2)+

s∑
j=0

μ(uj)

)
,(5.2.18)

where the right-hand side follows by the ‘Composition’ property of the Maslov index [47,
Theorem C.3.5]. Substituting in (5.2.14) and (5.2.15) and rearranging, we obtain

ω(v2)= ω(v1)+
s∑

j=0

ω(uj)− τ
(
μ(uj)+ lj − kj

)
(5.2.19)

≤ ω(v1)+ τ

( s∑
j=0

kj

)
+

s∑
j=0

(τkj
− τ)lj(5.2.20)

by the monotonicity property (5.2.7).
In particular, if we fix disc v1, then the first two terms of (5.2.20) are fixed, and

τkj
− τ < 0 by definition, so for sufficiently large lj , ω(v2) is arbitrarily negative. This

contradicts the fact that pseudoholomorphic discs have positive energy (the necessary
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estimate relating symplectic area to energy is proven in [8, Lemma 3.3.3]—note that the
curvature term, which accounts for the difference between symplectic area and energy,
is compactly supported and hence bounded). It follows that for each a0, the coefficient of
a0 in (5.2.13) vanishes for sufficiently large i0, . . . , is; since the hom-spaces have a finite
number of generators, the result follows. �

Definition 5.4. — We can now define the generalization of the monotone Fukaya category,

Fwbc(X), which includes weak bounding cochains. The objects are pairs (L, α), where L is an ob-

ject of F c(X)⊕ and

(5.2.21) α ∈ CF∗(L,L)

is monotone, and is a weak bounding cochain, i.e., has odd degree and satisfies the Maurer–Cartan

equation (4.1.2) (which converges by Lemma 5.1, because α is monotone). Fwbc(X) becomes a strictly

unital, curved A∞ category, with A∞ structure maps given by Equation (4.1.5) (which again converges

by Lemma 5.1). In particular, for each w ∈ C, Fwbc(X)w is a strictly unital, non-curved A∞ category,

whose objects are those (L, α) with P(α)= w. If (L0, α0) and (L1, α1) are objects of Fwbc(X)w,

then we denote by

(5.2.22) HF∗((L0, α0), (L1, α1)
) := Hom∗((L0, α0), (L1, α1)

)
the corresponding Floer cohomology group.

We similarly define Fwbc
m (X,D), requiring our weak bounding cochains to be relatively monotone.

Remark 5.2. — We would like to relate Fwbc(X) to Fwbc
m (X,D). Firstly, following

Lemma 3.6 (enhanced to include homotopy units), there is a strict embedding

(5.2.23) F c
m(X,D)⊗R C ↪→F c(X).

This would induce a map from weak bounding cochains on F c
m(X,D) to weak bounding

cochains on F c(X), given by

(5.2.24) α �→ α ⊗R 1,

except for the fact that

(5.2.25) α relatively monotone � α ⊗R 1 monotone.

Nevertheless, we have the following:

Lemma 5.2. — Let (X,D) be a Kähler pair, and suppose that X is simply-connected. Let

ϕt : X \ D → X \ D denote the time-t reverse Liouville flow. It is defined for all t ≥ 0. Now suppose

that L is a collection of exact Lagrangians in X \ D, and P a finite set of paths in G(X \ D), as in

Definition 5.2, so that (L,P) is relatively monotone. Then, for sufficiently large t, (ϕt(L), ϕt(P)) is

monotone. Furthermore, ϕt(L) is Hamiltonian isotopic to L, for all L ∈L.
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Proof. — First, observe that all L ∈L are monotone, by Corollary 3.5.
Let α = dch be the Liouville form on X \ D, following the notation of [67, Defini-

tion 3.11]. For each L ∈L, fix fL ∈ C∞(L;R) so that

(5.2.26) α|L = dfL.

We define the symplectic action of a path γ ∈P to be

(5.2.27) A(γ ) := fL1

(
π ◦ γ (1))− fL0

(
π ◦ γ (0))−

∫
π◦γ

α

where π : G(X \ D)→ X \ D is the obvious projection.
The reverse Liouville flow ϕt is, by definition, the time-t flow of the negative Liou-

ville vector field −Z, where

(5.2.28) ιZω = α.

By Cartan’s magic formula,

(5.2.29) LZα = dιZα + ιZdα = α

(using ω = dα and ω(Z,Z)= 0). It follows that

(5.2.30) ϕ∗
t α = e−tα.

Hence, for each L ∈L, we have

(5.2.31) α|ϕt(L) = d
(
e−t fL

)
,

so ϕt(L) is exact Lagrangian isotopic to L, and hence Hamiltonian isotopic to L. It also
follows that

(5.2.32) A
(
ϕt(γ )

)= e−tA(γ ).

In particular, as P is finite, for any ε > 0 we may choose t � 0 sufficiently large that

(5.2.33) |A(ϕt(γ )
)|< ε for all γ ∈P .

Now let ũ : ∂D → G(X \ D) be a map of the type considered in Defini-
tion 5.2, changing between elements of ϕt(L) along generators ϕt(γp1), . . . , ϕt(γpk

),
ϕt(γql

), . . . , ϕt(γq1) as in Figure 7, with extension u : D → X as in Definition 5.2. Ap-
plying Stokes’ theorem to the surface u, with small balls surrounding the points u−1(D)

removed, yields the following formula for the symplectic area of u:

(5.2.34) ω(u)=
k∑

j=1

A
(
ϕt(γpj

)
)−

l∑
j=1

A
(
ϕt(γqj

)
)+

∑
j

�j(u · Dj),
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where �j is the linking number of α with component Dj of D (compare [67, Lemma 3.12]).
Applying (5.2.33), then the definition of relative monotonicity, we obtain

ω(u)≤ ε(k + l)+
∑

j

�ju · Dj(5.2.35)

≤ εk + τμ(ũ)+ (τk + ε)l,(5.2.36)

where τk < τ . It now suffices to choose ε > 0 small enough that τk + ε < τ , then choose
t large enough that |A(ϕt(γ ))| < ε for all γ ∈ P (the term εk is dominated by ε ′l as
l → ∞, for any ε ′ > 0). �

Remark 5.3. — Because L and ϕt(L) are Hamiltonian isotopic, their moduli spaces
of weak bounding cochains ought to be isomorphic by [24]; however, for our purposes in
this paper, it suffices simply to know that L and ϕt(L) are quasi-isomorphic objects in the
exact Fukaya category F(X \ D) (which is true by [60]), essentially by [67, Lemma 5.3].

Remark 5.4. — Lemma 5.2 would also be important if we wanted to relate the
relative Fukaya category to the Fukaya category, and define the latter over a Novikov
ring, with weak bounding cochains required to have positive energy (as we must do if our
symplectic manifold is not monotone). That is because the natural embedding

(5.2.37) F(X,D)⊗R � ↪→F(X)

is defined by mapping

CF∗
F(X,D)(L0,L1)⊗R �→ CF∗

F(X,D)(L0,L1)(5.2.38)

p �→ rA(p)p(5.2.39)

(see [67, Section 8.1]). This map does not send positive-energy weak bounding cochains
to positive-energy weak bounding cochains, because A(p) may be negative. Nevertheless,
Lemma 5.2 shows that the reverse Liouville flow makes A(p) arbitrarily small; so if we
flow a weak bounding cochain in F(X,D) sufficiently far, then its image in F(X) will
have positive energy (of course the objections of Remark 5.3 must also be dealt with).

5.3. The disc potential.

Definition 5.5. — If L is an object of F c(X)⊕, we will write M̂weak(L) for the space defined

in Definition 4.1, and

(5.3.1) P : M̂weak(L)→ C

for the disc potential. If L is instead an object of F c
m(X,D)⊕, we will write M̂weak,rel(L) for this space,

and

(5.3.2) Prel : M̂weak,rel(L)→ R

for the disc potential.
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Lemma 5.3. — Let (X,D) be a Kähler pair, L an object of Fm(X,D)w, and P be a set of

generators of CF∗(L,L), such that ({L},P) is relatively monotone. Denote

(5.3.3) A := CF∗
Fm(X,D)w

(L,L),

and V ⊂ A the subspace spanned by the generators in P . Suppose that the conditions of Lemma 4.1 are

satisfied, for V ⊂ A, so that we can define the pre-disc potential

(5.3.4) P
′
rel : V → R

in Fm(X,D)w.

Then there is an embedding ιrel : V ↪→ M̂weak,rel(L), so that the diagram

(5.3.5) V
ιrel

P′
rel+w·T

M̂weak,rel(L)

Prel

R

commutes, where T is as in Proposition 3.8.

Proof. — This is immediate from Lemma 4.1; the only remark to make is that, when
we pass from Fm(X,D)w to Fwbc

m (X,D), we introduce a curvature term μ0 =w · T · e+,
so

(5.3.6) Prel = P
′
rel +w · T. �

Now let us relate this result about Fwbc
m (X,D) to Fwbc(X), following Remark 5.2.

Recall that monotonicity is not a consequence of relative monotonicity, so we impose it
as an additional assumption.

Corollary 5.4. — Let (X,D) be a Kähler pair, L an object of Fm(X,D)w, and P be a set of

generators of CF∗(L,L), such that ({L},P) is both relatively monotone and monotone. Denote

(5.3.7) A := CF∗
Fm(X,D)w

(L,L),

and V ⊂ A the subspace spanned by the generators in P . Suppose that the conditions of Lemma 4.1 are

satisfied, for V ⊂ A.

Now consider L as an object of F c(X): this is possible because P is monotone (cf. Remark 5.2).

Denote AC := A ⊗R C and VC := V ⊗R C. Then there is an embedding ι : VC ↪→ M̂weak(L), so

that the diagram

(5.3.8) VC
ι

P′+w

M̂weak(L)

P

C .

commutes (and P′ and P converge, i.e., the diagram makes sense).
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Proof. — Follows from Lemma 5.3, by setting ι := ιrel ⊗R C. Note that

P
′ = P

′
rel ⊗R 1 and(5.3.9)

P = Prel ⊗R 1.(5.3.10) �

Remark 5.5. — The only reason that Corollary 5.4 makes any reference to the
relative Fukaya category is that, in our intended application, the grading hypothesis of
Lemma 4.1 is not satisfied in the monotone Fukaya category, which is only Z/2NZ-
graded. So we need to use the stronger grading on the relative Fukaya category to prove
the existence of ιrel , then tensor with C to obtain ι.

Remark 5.6. — Let us remark on the relationship between Lemma 5.3 and [26,
Proposition 4.3]. One could apply Lemma 5.3 to V = C1(L)⊂ C∗(L)= A, where L is a
Lagrangian torus fibre inside a symplectic toric manifold, which we consider relative to
the boundary toric divisor. Then the output of μs : V⊗s → A has degree 2 − μ, where
μ is the Maslov index of the homotopy class of the holomorphic disc. The holomorphic
discs with μ= 0 correspond to the standard Morse A∞ structure on C∗(L) [22]; μ2(v, v)

vanishes by antisymmetry, and the higher products can be made to vanish by applying a
formal diffeomorphism, because the cohomology of the torus is formal. The holomorphic
discs with μ= 2 contribute an output in degree 2 − 2 = 0, which must be a multiple of eL

(because CF0(L,L) is generated by eL). One easily checks that CC≤0(V,A)= C · eL. The
only hypothesis of Lemma 5.3 which is not satisfied is that V ⊂ A is not monotone: in
fact, if we tried to prove monotonicity, we would be forced to choose τk > τ for (5.2.7)
to be satisfied. In some sense, V ⊂ A only ‘just’ fails to be monotone. This forces us to
work over a Novikov ring, so that convergence of the Maurer–Cartan equation follows
from Gromov compactness. If we do that, then all of the hypotheses of Lemma 5.3 are
satisfied, and we obtain the analogue of [26, Proposition 4.3] (albeit under significantly
more restrictive technical hypotheses).

5.4. Closed–open and open–closed string maps. — The closed–open map extends to the
homotopy-unital version of the monotone Fukaya category: namely, we have a homo-
morphism of C-algebras

(5.4.1) CO : QH∗(X)→ HH∗(F c(X)
)
.

It is defined by counting the same kind of pseudoholomorphic discs as before, but mod-
ifying to allow f and e+ to be inputs as in Section 5.1. Here, HH∗(F c(X)) is defined via
the one-pointed Hochschild cochain complex (see Section A.7).

Furthermore, the usual argument using forgetful maps (as in Section 5.1) shows
that

(5.4.2) CO(β)
(
. . . , e+L , . . .

)= 0,
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so in fact CO factors through the normalized Hochschild cochain complex HH
∗
(F c(X))

(see Section A.7).
It follows that there is a homomorphism

(5.4.3) COwbc :=� ◦ CO : QH∗(X)→ HH
∗(Fwbc(X)

)
,

where � is defined as in Section 4.2. This composition converges by monotonicity of the
weak bounding cochain, by the same argument as in Lemma 5.1 (even though the map
� need not converge). COwbc is also a homomorphism of C-algebras, as both CO and �

are (the argument for CO in the presence of homotopy units is a minor extension of that
given in the proof of Proposition 2.1).

It follows that, for every w ∈ C, we obtain a homomorphism of C-algebras

(5.4.4) COwbc,w : QH∗(X)→ HH∗(Fwbc(X)w
)
,

by composing COwbc with the restriction map

(5.4.5) HH
∗(Fwbc(X)

)→ HH
∗(Fwbc(X)w

)∼= HH∗(Fwbc(X)w
)

(see Lemma A.4). We will abbreviate COwbc,w by CO where we feel no confusion is possi-
ble, and we introduce the notation

(5.4.6) CO0 : QH∗(X)→ HF∗((L, α), (L, α))
for the algebra homomorphism given by the length-zero component of COwbc,w as in
Definition 2.3, for any object (L, α) of Fwbc(X)w.

Remark 5.7. — We have not checked that COwbc,w is a unital algebra homomor-
phism. The argument of Lemma 2.3 does not go through immediately in the presence of
homotopy units, because it requires making a choice of translation-invariant perturbation
data, which makes no sense when the input at pin is fL.

The fact that COwbc,w need not be unital leads to some inconveniences. We cir-
cumvent them by restricting to a certain class of objects:

Definition 5.6. — An object (L, α) of Fwbc(X)w will be called CO0-unital if the map

(5.4.7) CO0 : QH∗(X)w′ → HF∗((L, α), (L, α))
is a unital algebra homomorphism for w′ =w, and vanishes for w′ =w. We denote by Fwbc,u(X)w
the full subcategory of CO0-unital objects of Fwbc(X)w. Note that if L is a monotone Lagrangian, then

the object (L,0) is CO0-unital by Proposition 2.9: thus we have

(5.4.8) F(X)w ⊂Fwbc,u(X)w ⊂Fwbc(X)w.
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By similar arguments to those just given for the closed–open map, the open–closed
map extends to the homotopy-unital version of the monotone Fukaya category, and sat-
isfies

(5.4.9) OC
(
as ⊗ · · · ⊗ e+L ⊗ . . .

)= 0,

hence factors through the normalized Hochschild chain complex HH∗(F c(X)) (see Sec-
tion A.7).

Remark 5.8. — The incoming marked point corresponding to the first ‘slot’ in
the Hochschild chain is treated slightly differently from the others: when that input is
labelled f , the perturbation data at ρ = 1 need not be pulled back via a forgetful map,
and their count need not be zero. Indeed, counting the pseudoholomorphic discs at ρ = 1
gives the coefficient of OC(e+L ⊗ . . .).

It follows that we can define a homomorphism

(5.4.10) OCwbc :=OC ◦� : HH∗
(
Fwbc(X)

)→ QH∗+n(X).

This composition converges by the same argument as in Lemma 5.1 (even though the
map � need not converge). OCwbc is also a homomorphism of QH∗(X)-modules, using
the fact that OC is a homomorphism of QH∗(X)-modules (the argument in the presence
of homotopy units is a minor extension of that given in the proof of Proposition 2.2), and
that � is a homomorphism of HH

∗
(F c(X))-modules.

It follows that, for every w ∈ C, we obtain a homomorphism of QH∗(X)-modules,

(5.4.11) OCwbc,w : HH∗
(
Fwbc(X)w

)→ QH∗+n(X),

by composing OCwbc with the inclusion map

(5.4.12) HH∗
(
Fwbc(X)w

)∼= HH∗
(
Fwbc(X)w

)→ HH∗
(
Fwbc(X)

)

(see Lemma A.4). We will abbreviate OCwbc,w by OC where we feel no confusion is possi-
ble.

5.5. The split-generation criterion. — For the purposes of this section, we fix w ∈ C,
and abbreviate

(5.5.1) Fw :=Fwbc(X)w

and

(5.5.2) F u
w :=Fwbc,u(X)w
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(see Definition 5.6). We will also abbreviate the notation for objects of Fw, writing K :=
(K, α) and L := (L, β).

In this section, we prove analogues of the results in Section 2.11, incorporating
weak bounding cochains into the picture. The proofs are largely the same: first one in-
corporates homotopy units into all operations, then one incorporates weak bounding
cochains by inserting arbitrarily many copies of the appropriate weak bounding cochain
along every boundary component in every diagram in Section 2. We will draw attention
to the places where the proofs differ: in particular, we are only able to prove some of the
results for F u

w, and do not know how to prove them for Fw.
First we give an analogue of Lemma 2.15:

Lemma 5.5. — For any object K of Fw , there exists a (strictly unital) bimodule homomorphism

(5.5.3) � : (Fw)� → Y l
K ⊗Y r

K[n],

such that the following diagram commutes up to a sign (−1)
n(n+1)

2 :

(5.5.4) HH∗(Fw)[−n] OC

HH∗(�)

QH∗(X)

CO0

HH∗(Fw,Y l
K ⊗Y r

K)
H∗(μ)

HF∗(K,K).

Proof. — The proof is analogous to the proof of Lemma 2.15, modified to include
homotopy units and weak bounding cochains. �

Now we give an analogue of Corollary 2.17:

Corollary 5.6. — Suppose that Gw ⊂Fw is a full subcategory such that the composition

(5.5.5) HH∗(Gw)
OC−→ QH∗(X)

projw−−→ QH∗(X)w

contains ew in its image. Then any CO0-unital object K of F u
w is split-generated by Gw.

Now we give an analogue of Lemma 2.4:

Lemma 5.7. — The class [φ] ∈ HHn(F u
w)

∨ given by

(5.5.6) [φ](ψ)= 〈
OC(ψ), e

〉

is an n-dimensional weak proper Calabi–Yau structure on F u
w.
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Proof. — We must prove that [φ] is homologically non-degenerate. The proof fol-
lows that of Lemma 2.4 with slight modifications. In particular, the quasi-inverse to the
map

HF∗(K,L)→ HFn−∗(K,L)∨(5.5.7)

p �→ 〈
OC

(
μ2(p,−)

)
, e
〉

(5.5.8)

is given by contraction with the element

(5.5.9) �wbc
(
CO0

(ew)
) ∈ HF∗(K,L)⊗ HF∗(L,K).

The argument given in the proof of Lemma 2.4 shows that the composition of these two
maps is equal to the map

HF∗(K,L)→ HF∗(K,L)(5.5.10)

p �→ μ2
(
CO0

(e � ew), p
)
.(5.5.11)

In particular, as e � ew = ew, and L is CO0-unital by the definition of F u
w, the composition

of the two maps is the identity. Similarly, the composition in the opposite order is the
identity, so the map is an isomorphism, and [φ] is homologically non-degenerate. �

Now we give an analogue of Proposition 2.6 and Corollary 2.12:

Lemma 5.8. — The following diagrams commute:

(5.5.12) QH∗(X)
α �→〈α,−〉

∼=
CO

QH∗(X)∨[−2n]
OC∨

HH∗(F u
w)

−∩[φ]
∼=

HH∗(F u
w)

∨[−n].

and

(5.5.13) QH∗(X)w
α �→〈α,−〉

∼=
CO

QH∗(X)∨w[−2n]
(projw◦OC)∨

HH∗(F u
w)

−∩[φ]
∼=

HH∗(F u
w)

∨[−n].

Proof. — The proof of the first commutative diagram follows that of Proposition 2.6:
in particular, the only input to that proof was the fact that CO is an algebra homomor-
phism, OC is a QH∗(X)-module homomorphism, QH∗(X) is a Frobenius algebra, and
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that [φ] is homologically non-degenerate, all of which remain true in the present set-
ting. The second commutative diagram is immediate from the first, by restricting to the
subspace QH∗(X)w ⊂ QH∗(X) of the top left-hand element of the square. �

Now we give an analogue of Corollary 2.18:

Corollary 5.9. — If Gw ⊂F u
w is a full subcategory, and the map

(5.5.14) CO : QH∗(X)w → HH∗(Gw)

is injective, then Gw split-generates F u
w.

Proof. — Follows from Lemma 5.8 and Corollary 5.6, by the proof of Corol-
lary 2.18. �

Finally we give an analogue of Corollary 2.19:

Corollary 5.10. — Suppose that QH∗(X)w is one-dimensional, that L is an object of F u
w ,

and that HF∗(L,L) = 0. Then L split-generates F u
w.

Proof. — Follows from Corollary 5.9, by the proof of Corollary 2.19. �

5.6. Proving CO0-unitality. — In this section we establish the results needed to prove
that an object (L, α) of Fwbc(X)w is CO0-unital, in the sense of Definition 5.6.

Lemma 5.11. — Suppose that we are in the situation of Corollary 5.4, with v ∈ VC and

α = ι(v) ∈ M̂weak(L), such that P(α)=w. Then the length-0 part of the closed–open string map

(5.6.1) CO0 : QH∗(X)→ HF∗((L, α), (L, α))
is a unital algebra homomorphism.

Proof. — We first prove the corresponding result for the relative Fukaya category.
Suppose v = u ⊗R 1, with u ∈ V, and set

(5.6.2) αrel := ιrel(u) := u +P
′
rel(u) · fL

(compare the proof of Lemma 4.1), so that

(5.6.3) α = αrel ⊗R 1.

Then by definition,

(5.6.4) CO0
X,D(e) :=

∑
i≥0

COX,D(e)(αrel, . . . , αrel︸ ︷︷ ︸
i

).
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Now because COX,D is G(X,D)-graded, we have

(5.6.5) COX,D(e) ∈ CC0(A)

in the notation of Corollary 5.4. Now by the condition

(5.6.6) CC≤0(V,A)∼= C · eL

of Lemma 4.1, all of the terms in (5.6.4) vanish except for the i = 0 term, which is eL by
Remark 2.3. We also have

(5.6.7) μ1
α(fL)= e+L − eL,

again using the condition CC≤0(V,A)= C · eL (see the proof of Lemma 4.1). Therefore,
CO0

X,D(e) is cohomologous to e+L , so the map is unital. It follows that

(5.6.8) CO0 = CO0
X,D ⊗R 1

is too. �

Remark 5.9. — Note that Lemma 5.11 does not establish CO0-unitality of (L, α):
it establishes unitality of the map

(5.6.9) CO0 : QH∗(X)→ HF∗((L, α), (L, α)),
but not of the map from QH∗(X)w, nor does it prove vanishing of the map when restricted
to the other eigenspaces.

Next we will prove an analogue of Lemma 2.7. First we need a preliminary result,
which was explained to the author by Ivan Smith:

Lemma 5.12. — In the situation of Corollary 5.4, suppose furthermore that 2c1(X \ D)= 0
in H2(X \ D;Z). Then if v ∈ VC and α = ι(v) ∈ M̂weak(L) is the corresponding weak bounding

cochain, the map

(5.6.10) CO0 : QH∗(X)→ HF∗((L, α), (L, α))

satisfies

(5.6.11) CO0
(2c1)=

(∑
s≥0

(2 − s) ·Ps(α)

)
· e+L ,

where Ps denotes the length-s component of P (i.e., the part corresponding to μs).
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Proof. — The hypothesis that 2c1(X \ D)= 0 implies that X \ D admits a quadratic
complex volume form η (i.e., a nowhere-vanishing section of λtop

C (T(X \ D))⊗2, see [60,
Section 12a]). Such an η induces a map

G(X \ D)→ S1(5.6.12)

L �→ η(e1 ∧ · · · ∧ en ⊗ e1 ∧ · · · ∧ en),(5.6.13)

where {e1, . . . , en} is an R-basis for L. The induced map on H1 defines a morphism of
grading data

(5.6.14) qη : G(X,D)→ Z

(see [67, Definition 3.6]). Hence, we can define the Z-graded, curved, qη,∗R-linear A∞
category qη,∗F c

m(X,D).
We define pj ∈ Z to be the degree of the generator rj in qη,∗R (it can be thought of

as the ‘order of pole of η about divisor Dj ’). It follows from [67, Lemma 3.19] that

(5.6.15) 2c1 =
∑

j

pj[Dj].

As a consequence, CO0
X,D(2c1) is equal to

CO0
X,D

(∑
j

pj[Dj]
)

=
∑

j,i

pj · COX,D

([Dj]
)
(αrel, . . . , αrel︸ ︷︷ ︸

i

)(5.6.16)

=
∑

j,i

pj ·
(
COX,D(e)∪ rj

∂μ∗

∂rj

(5.6.17)

+ rj

∂(w · T)
∂rj

· COX,D(e)+ δ(H)

)
(αrel, . . .︸ ︷︷ ︸

i

).(5.6.18)

Here, (5.6.16) is the definition of CO0 in the presence of weak bounding cochains, and
(5.6.17) follows as in the proof of Proposition 3.8, modified to take into account the ho-
motopy units (compare Remark 5.7).

We observe that the final term of (5.6.17) (i.e., the term δ(H)(αrel, . . .)) is exact, so
we may ignore it. This follows from the fact that the map � defined in (4.2.3) is (formally)
a map of chain complexes, and that the moduli spaces in the proof of Proposition 3.8 can
be arranged so that H lies in the normalized Hochschild cochain complex CC

∗
(F u).

Now, consider a single pseudoholomorphic disc u, contributing a map

μu : A⊗s → A which sends(5.6.19)

ys ⊗ · · · ⊗ y1 �→ ±ru·Dy0,(5.6.20)
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so that the A∞ structure maps are given by a sum over all discs:

(5.6.21) μ∗ =
∑

u

μu.

By the definition of a Z-graded A∞ category, we now have

(5.6.22) d
(
ru·D)+ d(y0)= 2 − s +

s∑
i=1

d(yi),

where d denotes the Z-grading induced by qη.
It follows that the contribution of u to the first and second terms in (5.6.17) (before

inputting αrel ) is

∑
j

pj(u · Dj)μu = d
(
ru·D)μu(5.6.23)

=
(

2 − s − d(y0)+
s∑

i=1

d(yi)

)
μu(5.6.24)

by (5.6.22).
Now we consider the Euler element τ ∈ CC

∗
(A), which is the element of length 1

such that

(5.6.25) τ(a)= d(a)a

for a ∈ A pure of degree d(a) (note that e+L has degree 0, so this is a normalized Hochschild
cochain). We observe that the contribution of μu to δ(τ )= [μ∗, τ ] is precisely

(5.6.26)
(

−d(y0)+
s∑

i=1

d(yi)

)
μu

(compare [57, Equation (3.14)]). It follows by the same argument as we gave for δ(H)

that

(5.6.27) δ(τ )(αrel, . . . , αrel)

is exact in CF∗((L, αrel), (L, αrel)).
Now we substitute (5.6.24) into (5.6.17); cancelling the exact term δ(H)(. . .), and

the exact term δ(τ )(. . .) in (5.6.24), and substituting in e+L for COX,D(e)(αrel, . . .) by
Lemma 5.11, we obtain (5.6.11). �
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Corollary 5.13. — In the situation of Lemma 5.12, suppose furthermore that v ∈ VC is a

critical point of the disc potential P ◦ ι : VC → C, and α = ι(v) ∈ M̂weak(L) is the corresponding

weak bounding cochain, then the map

(5.6.28) CO0 : QH∗(X)→ HF∗((L, α), (L, α))
satisfies

(5.6.29) CO0
(c1)= P(α) · e+L ,

and (L, α) is CO0-unital.

Proof. — When v is a critical point of P ◦ ι, we have

∑
s

sPs ◦ ι(v)=
∑

i

vi

∂(P ◦ ι)
∂vi

(5.6.30)

= 0,(5.6.31)

so (5.6.11) follows immediately from Lemma 5.12.
Combining with Lemma 5.11, we have that CO0

(c1 −w′ · e)= (w−w′) · e(L,α) for
any w′. A simplified version of the proof of Proposition 2.9 now applies: if β ∈ QH∗(X)w′ ,
then (c1 −w′ · e)�k � β = 0 for some k, from which it follows that (w−w′)k · CO0

(β)= 0
in HF∗((L, α), (L, α)), so CO0

(β) = 0. It follows that CO0 vanishes when restricted to
QH∗(X)w′ for all w′ = w, and (combining with Lemma 5.11) that it is unital when re-
stricted to QH∗(X)w: so (L, α) is CO0-unital. �

Remark 5.10. — Note that we need both the relative and non-relative Fukaya cat-
egories to get the full strength of Corollary 5.13: P ◦ ι may have critical points when
Prel ◦ ιrel has none, whereas the grading arguments used to prove Lemma 5.12 only work
for the relative Fukaya category.

6. Deformation theory

In this section, we establish some of the algebraic results needed to prove homolog-
ical mirror symmetry. In Section 6.1, we recall some basic results about Clifford algebras
and modules over them; these are used to prove homological mirror symmetry over the
small eigenvalues (Theorem 1.17). Section 6.2 and Section 6.3 establish a ‘recognition
theorem’ for the A∞ algebra that appears on both sides of homological mirror symme-
try over the big eigenvalue (Theorem 1.16). Section 6.4 computes various versions of
Hochschild cohomology for the type of A∞ algebra that is ‘recognized’ by the results of
the preceding two sections: this is used to establish the generation criterion for the big
component of the Fukaya category, and also to extract relations in quantum cohomology
from the Hochschild cohomology of the relative Fukaya category.
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6.1. Clifford algebras. — The following material is standard, but we wish to make
some points clear.

Definition 6.1. — Let R be a ring, V a free R-module, Q : V⊗2 → R an R-linear quadratic

form on V. Define the corresponding Clifford algebra C�(Q) to be the quotient of the R-linear tensor

algebra T(V) by the two-sided ideal generated by the elements v ⊗ v − Q(v) · 1, for v ∈ V. We

will regard C�(Q) as a Z/2Z-graded R-algebra, where V has odd degree. When R = C, V is n-

dimensional, and the quadratic form Q is non-degenerate, we will write C�n for the isomorphism class of

C�(Q).

Lemma 6.1 (see, e.g., [44, Theorem 4.3]). — We introduce the Z/2Z-graded vector space

U := C[0] ⊕ C[1]. There are isomorphisms of Z/2Z-graded algebras

C�2k
∼= End

(
U⊗k

)
,(6.1.1)

C�2k+1
∼= End

(
U⊗k

)⊗ C�1(6.1.2)

(there is also an isomorphism C�1
∼= C ⊕ C, but it is not Z/2Z-graded).

Corollary 6.2. — C�2k is Morita-equivalent to C as a Z/2Z-graded algebra, and C�2k+1 is

Morita-equivalent to C�1 as a Z/2Z-graded algebra.

Corollary 6.3. — The Z/2Z-graded Hochschild cohomology of C�n is

(6.1.3) HHs+t(C�n)
s ∼=

⎧⎨
⎩

C if s = 0 and n is even (in degree t = 0)

C�t
1 if s = 0 and n is odd

0 if s > 0.

Proof. — By Corollary 6.2 and Morita-invariance of Hochschild cohomology for
Z/2Z-graded algebras (compare [46, 1.5.6]; the only difference is the signs), it suffices to
check the cases n = 0 and n = 1. n = 0 is trivial, as C�0

∼= C. When n = 1, we observe that
C�1 is projective as a Z/2Z-graded C�1-C�1 bimodule. This follows as the map

C�1 → C�1 ⊗ C�op

1(6.1.4)

1 �→ 1 ⊗ 1 + θ ⊗ θ(6.1.5)

is a Z/2Z-graded inclusion of C�1 as a direct summand of C�1 ⊗ C�op

1 . Therefore,

HHs+t(C�1)
s ∼= Exts

C�1-C�1

(
C�1,C�1[t]

)
(6.1.6)

∼=
{

Homt
C�1-C�1

(C�1,C�1) if s = 0,
0 if s > 0

(6.1.7)

∼=
{

Z(C�1)
t if s = 0,

0 if s > 0.
(6.1.8)

Because C�1 is commutative, the result follows. �
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We now recall some terminology (compare [65]):

Definition 6.2. — A Z/2Z-graded A∞ algebra A is called formal if it is A∞ quasi-

isomorphic to its cohomology algebra. A Z/2Z-graded associative algebra A is called intrinsically
formal if any Z/2Z-graded A∞ algebra with cohomology algebra A is formal.

Corollary 6.4. — C�n is intrinsically formal.

Proof. — By [60, Lemma 1.9], A is intrinsically formal if HH2(A)s = 0 for all s ≥ 3
(note that our grading conventions differ from [60]: our HHs+t(A)s is isomorphic to Sei-
del’s HHs+t(A)t ). Therefore, C�n is intrinsically formal by Corollary 6.3. �

Corollary 6.5. — If A is a C-linear, Z/2Z-graded A∞ category which is split-generated by

an object X, and there is a Z/2Z-graded isomorphism on the level of cohomology:

(6.1.9) Hom∗(X,X)∼= C�n,

then there is an A∞ quasi-equivalence

(6.1.10) DπA∼=
{

Db(C) if n is even

Dπ(C�1) if n is odd.

Proof. — By Lemma 6.1, X admits a (Z/2Z-graded) formal direct summand Y,
whose endomorphism algebra is

(6.1.11) Hom∗(Y,Y)∼=
{

C if n is even
C�1 if n is odd.

Furthermore, X is quasi-isomorphic to Y⊕n: so Y also split-generates A. The result fol-
lows, by [60, Corollary 4.9]. �

To clarify the notation: on the right-hand side of (6.1.10), ‘C’ and ‘C�1’ denote
the A∞ categories with a single object, with the indicated endomorphism algebra (which
has μs = 0 for s = 2). ‘Db(A)’ and ‘Dπ(A)’ denote the derived and split-closed derived
A∞ categories of a Z/2Z-graded A∞ category A, in the sense of [60] (in whose notation
they would be written ‘Tw(A)’ and ‘"(Tw(A))’ respectively). In particular, we note
that Db(C) is obviously split-closed (it is quasi-equivalent to the category of Z/2Z-graded
finite-dimensional complex vector spaces), so Dπ(C)∼= Db(C).

6.2. A classification result for A∞ algebras. — Let G be a grading datum, let

(6.2.1) R̃ ∼= C[r1, . . . , rn]
be a polynomial ring equipped with a G-grading, and let R be its G-graded completion
with respect to the order filtration. We denote by Rj the part of R of order j ∈ Z≥0.
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Let A = (A,μ0) be a G-graded minimal A∞ algebra over C. A G-graded minimal

deformation of A over R is a minimal G-graded R-linear A∞ algebra A = (A ⊗ R,μ) that
specialises to A when we set all rj = 0 (see [67, Definition 2.74]). In other words, it is an
element μ ∈ CC2(A,A⊗R) satisfying the A∞ relations μ◦μ= 0; minimality means that
its length-0 and length-1 components μ0 (the curvature) and μ1 (the differential) vanish;
and if we expand order-by-order in R, μ = μ0 + μ1 + · · · where μj ∈ CC2(A,A ⊗ Rj),
then μ0 coincides with the already-prescribed C-linear A∞ structure on A.

The 0th-order part of the A∞ relations says simply that μ0 satisfies the A∞ rela-
tions. The first-order part says that μ1 ∈ CC2(A,A ⊗ R1) is a Hochschild cocycle: the
corresponding class [μ1] ∈ HH2(A,A⊗ R1) is called the first-order deformation class of the
deformation (see [67, Definition 2.80]). In fact, because μ0 = μ1 = 0, the Hochschild
cochain μ lies in the truncated Hochschild cochain complex TrCC∗(A,A ⊗ R): this is
a Z-graded complex, with TrCCp(A) ⊂ CCp(A) equal to the subspace of Hochschild
cochains of length s ≥ p (see [67, Definition 2.31]). Thus, the first-order deformation
class defines a class

(6.2.2) [μ1] ∈ TrHH2
G

(
A,A⊗ R1

)
.

Now suppose that A1 and A2 are G-graded minimal deformations of A over R: we
recall that a formal diffeomorphism between the two is an A∞ homomorphism F : A1 ���A2

whose linear term F1 : A1 → A2 is an isomorphism. We can regard F as an element of
CC1(A,A ⊗ R): in fact, because the ‘curvature’ term F0 vanishes, we can regard F as an
element of TrCC1(A,A ⊗ R). We recall that formal diffeomorphisms have the following
convenient property: given A1 = (A ⊗ R,μ) and F ∈ TrCC1(A,A ⊗ R) such that F1

is an isomorphism, there is a unique A∞ structure F∗μ on A ⊗ R such that F is an A∞
homomorphism from (A ⊗ R,μ) to (A ⊗ R,F∗μ) (see [60, Section 1c]).

Proposition 6.6. — Suppose that

(6.2.3) TrHH2
G

(
A,A⊗ Rj

)∼= 0

for j ≥ 2. Then any two G-graded minimal deformations of A over R, whose first-order deformation

classes are equal, are related by a formal diffeomorphism.

Proof. — Let (A ⊗ R,μ) and (A ⊗ R, η) be two such deformations. We construct,
order-by-order, a G-graded formal diffeomorphism F ∈ TrCC1

G(A,A ⊗ R) so that μ =
F∗η (we call this the A∞ relation for the purposes of the proof). We set

(6.2.4) F = F0 + F1 + · · · ,
where Fj ∈ TrCC1

G(A,A⊗ Rj).
We start with F0 = id. The order-0 A∞ relation holds by definition. Now suppose,

inductively, that we have constructed Fj for all j ≤ k − 1, so that

(6.2.5) (μ− F∗η)j = 0 for all j ≤ k − 1.

We show it is possible to construct Fk so that (μ− F∗η)k = 0.
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First, note that

(6.2.6) [μ− F∗η,μ+ F∗η] = 0

by expanding brackets: cross-terms vanish by symmetry and the other terms vanish be-
cause μ and F∗η are A∞ structures. Now note that (μ + F∗η)0 = 2μ0 by definition, so
the order-k part of this equation says that (μ− F∗η)k is a Hochschild cochain.

Now we observe that

(6.2.7) (μ− F∗η)k = δ(Fk)+ Dk,

where Dk are the terms not involving Fk . Our previous argument says that Dk is a
Hochschild cochain; in fact the corresponding class

(6.2.8) [Dk] ∈ TrHH2
G

(
A,A⊗ Rk

)
vanishes. When k = 1, this is true by assumption (the first-order deformation classes of
μ and η coincide); when k ≥ 2, it is true because the Hochschild cohomology group
vanishes by assumption.

Therefore, Dk is a Hochschild coboundary, so we can choose Fk to make the order-
k A∞ relation hold. This completes the proof, by induction. �

6.3. A∞ algebras of type An
a. — For any a, n ∈ Z, we define a grading datum

Z → Y := (
Z ⊕ Z〈y1, . . . , yn〉

)
/
(
2(a − n), y1 + · · · + yn

)
,(6.3.1)

j �→ j ⊕ 0(6.3.2)

(the sign of j ⊕ y is the sign of j). We denote this grading datum by Gn
a, following [67,

Example 2.14]. In this section we will abbreviate G := Gn
1. We introduce the morphism

of grading data

p : Gn
a → G,(6.3.3)

p(yj)= 2(1 − a)⊕ ayj.(6.3.4)

We define a G-graded vector space

(6.3.5) U ∼= C〈u1, . . . , un〉,
where

(6.3.6) deg(uj)= (−1, yj)

(compare [67, Example 2.24]). We consider the G-graded exterior algebra

(6.3.7) A :=�∗U

(compare [67, Definition 2.27]).
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We consider the G-graded vector space

(6.3.8) Va := C〈r1, . . . , rn〉,
where

(6.3.9) deg(rj)= (2 − 2a, ayj)

(compare [67, Example 2.25]). We define the G-graded polynomial ring

(6.3.10) Ra := C[Va],
(compare [67, Definition 2.28]). We remark that the filtration of Ra by order is com-
plete in the category of G-graded algebras, essentially by Lemma 3.1 applied to (Xn

a,D).
Therefore there is no need for the completion referred to at the start of Section 6.2.

We define the polynomial ring

(6.3.11) Sa := Ra[U],
and set

(6.3.12) Z̃n
a := −u1 . . . un +

n∑
j=1

rju
a
j ∈ Sa.

We recall the Hochschild–Kostant–Rosenberg map [34], which gives an explicit
quasi-isomorphism

(6.3.13) � : CC∗(A ⊗ Ra|Ra)→ Sa ⊗ A.

To define it, let {ui} be a basis for U ⊂ A, and {vi} the dual basis for U∨ ⊂ C[U]; then

�(α) :=
∞∑

s=0

αs(u, . . . ,u), where(6.3.14)

u :=
n∑

i=1

viui,(6.3.15)

(see [67, Definition 2.89]).
We will denote monomials in Ra by rc, where c ∈ Zn

≥0, monomials in Sa by ub

where b ∈ Zn
≥0, and generators in A by θK, where K ⊂ {1, . . . , n}. Thus, we have a C-

basis for Sa ⊗ A consisting of elements of the form rcubθK. The results in this section
require a detailed understanding of the G-grading on Sa ⊗ A. This is afforded by [67,
Lemma 2.93], which we will not reproduce here.

Definition 6.3. — We say that a (non-curved) G-graded A∞ algebra A over Ra has type An
a

if it satisfies the following properties:
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• Its underlying Ra-module and order-0 cohomology algebra is

(6.3.16)
(
A,μ2

0

)∼= A ⊗ Ra;
• It satisfies

(6.3.17) �
(
μ∗)= Z̃n

a +O
(
r2
);

• μ0
0 = 0.

Now we will show that the differential μ1 vanishes, for any A∞ algebra of type An
a,

as long as n − 1 ≥ a ≥ 2 and n ≥ 4.

Lemma 6.7. — Suppose that n − 1 ≥ a ≥ 2 and n ≥ 4, and A = (A ⊗ R,μ∗) is an A∞
algebra of type An

a. Then for any

α ∈ CC2
c,G(A ⊗ R)1(6.3.18)

∼= Hom1
R(A ⊗ R,A ⊗ R),(6.3.19)

and any K = {1, . . . , n}, we have

(6.3.20) α
(
θK
)= 0.

Proof. — Suppose that α sends

(6.3.21) θK1 �→ rcθK0 .

By [67, Lemma 2.93], we have

(6.3.22) 1 = t = (n − 2)q + (2 − a)j.

If a = 2 then we have 1 = (n−2)q, which is impossible as n ≥ 4. So we may assume a ≥ 3.
Applying [67, Lemma 2.93] again yields

(6.3.23) ac + yK0 = yK1 + qy{1,...,n}.

Thus, for each k ∈ {1, . . . , n}, we have

(6.3.24) ack = q + (−1 or 0 or 1).

Because a ≥ 3, this implies that all ck are equal. Suppose they are all equal to c, so we
have c = cy{1,...,n} and j = nc. Therefore, we have

(6.3.25) yK0 − yK1 = (q − ac)y{1,...,n}.
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Now observe that we have

1 = t = (n − 2)q + (2 − a)cn(6.3.26)

= (n − 2)(q − ac)+ 2c(n − a).(6.3.27)

We saw earlier that q − ac is equal to −1, 0 or 1. If q − ac = 1, the right-hand side is
≥ 2, so we have a contradiction. If q − ac = 0, the right-hand side is even, so we have a
contradiction.

If q − ac = −1, then we have

(6.3.28) yK1 = yK0 + y{1,...,n},

so we must have K0 = φ and K1 = {1, . . . , n}; in particular, the only input generator on
which α can be non-zero is θ {1,...,n}, as required. �

Corollary 6.8. — Suppose that n − 1 ≥ a ≥ 2 and n ≥ 4, and A is a non-curved A∞ algebra

of type An
a. Then the differential μ1 vanishes.

Proof. — Note that

(6.3.29) μ1 ∈ CC2
c,G(A ⊗ R)1.

So, by Lemma 6.7, μ1(θK) = 0 for all K = {1, . . . , n}. Now choose some K ⊂ {1, . . . , n}
with K = φ, {1, . . . , n}, and apply the A∞ equation:

μ1
(
μ2
(
θK, θ K̄

))= μ2
(
μ1
(
θK
)
, θ K̄

)+μ2
(
θK,μ1

(
θ K̄
))

(6.3.30)

⇒ μ1
(
θ {1,...,n} +O(r)

)= 0(6.3.31)

⇒ μ1
((

1 +O(r)
)
θ {1,...,n})= 0

(
because μ1

(
θK
)= 0 for K = {1, . . . , n})(6.3.32)

⇒ μ1
(
θ {1,...,n})= 0.(6.3.33)

Therefore, μ1 vanishes. �

Corollary 6.9. — Suppose that A is an A∞ algebra of type An
a. If n − 1 ≥ a ≥ 3, then we

have an isomorphism of C-algebras

(6.3.34) H∗(A⊗R C)∼=�∗(Cn
)
.

If a = 2 and n ≥ 4, then we have an isomorphism of C-algebras

(6.3.35) H∗(A⊗R C)∼= C�n.
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Proof. — By Corollary 6.8, the differential μ1 vanishes, which implies the result on
the level of vector spaces. On the other hand, the length-2 part of (6.3.17) implies that,
for any

(6.3.36) v =
∑

i

viθi ∈A⊗R C,

we have

(6.3.37) μ2(v, v)=
{

0 if a ≥ 3
Q(v) if a = 2,

where Q is the quadratic form Q(θi, θj)= δij . The result follows. �

Theorem 6.10. — Suppose that A1 = (A⊗R,μ) and A2 = (A⊗R, η) are two A∞ alge-

bras of type An
a, where n − 1 ≥ a ≥ 2 and n ≥ 4. Then there exists a G-graded formal diffeomorphism

F such that

(6.3.38) A1 = F∗A2.

We will prove Theorem 6.10 by applying Proposition 6.6.

Lemma 6.11. — The 0th-order parts Aj ⊗R C (where the map R → C sends each rj to 0)

are necessarily minimal and related by a formal diffeomorphism.

Proof. — This is identical to [67, Corollary 2.97]. �

The next step is to determine the first-order deformation space.

Lemma 6.12. — If n ≥ 4, then the vector space

(6.3.39) HH2
G

(
A,A ⊗ R1

a

)
is generated by the elements

(6.3.40) rju
a
j ,

for j = 1, . . . , n.

Proof. — This is identical to [67, Lemma 2.101]. �

The next step is to show that the higher-order deformation spaces vanish.

Lemma 6.13. — Suppose that n − 1 ≥ a ≥ 2 and j ≥ 2. Then we have

(6.3.41) TrHH2
G

(
A,A ⊗ Rj

)∼= 0.
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Proof. — If rcubθK is a generator of TrHH2
G(A,A ⊗ Rj), and j = |c| ≥ 2, then we

have c ≥ y{1,...,n} (see [67, Lemma 102]), and hence j ≥ |y{1,...,n}| = n.
Now, applying [67, Lemma 2.94, Equation (2.8)], we have 2(1 + q − j)= |K| ≥ 0,

so q− j ≥ −1. We also have |b| = s = 2− t ≥ 2, because t ≤ 0 by definition for a truncated
Hochschild cochain. Applying [67, Lemma 2.94, Equation (2.6)], we have

yK + ac = qy{1,...,n} + b(6.3.42)

⇒ |K| + aj ≥ nq + 2(6.3.43)

⇒ |K| ≥ (n − a)j + n(q − j)+ 2.(6.3.44)

We split into two cases: if q − j = −1, then |K| = 0, so we obtain

0 ≥ (n − a)j − n + 2(6.3.45)

⇒ n ≥ (n − a)j + 2.(6.3.46)

If, on the other hand, q − j ≥ 0, then because |K| ≤ n, we obtain

(6.3.47) n ≥ |K| ≥ (n − a)j + n(q − j)+ 2 ≥ (n − a)j + 2.

In either case, we have

(6.3.48) n ≥ (n − a)j + 2 ≥ n + 2,

where the second inequality follows because n−a ≥ 1 by assumption, and we have shown
that j = |c| ≥ n. This is a contradiction, so the result follows.

We remark that HH2
G(A,A ⊗ Rj) has an extra generator ry{1,...,n} in the case a =

n − 1; but this does not correspond to a generator of truncated Hochschild cohomology
because it has degree t = 2 > 0. �

Proof of Theorem 6.10. — Suppose we are given A1 and A2 of type An
a, both non-

curved. First, by Lemma 6.11, we can apply a formal diffeomorphism F to A2 so that
F∗A2

∼= A1 to order 0. Thus, we may assume without loss of generality that A1 and A2

are both deformations of the same A∞ algebra A := A1 ⊗R C, over the ring R.
By Corollary 6.8, these deformations are minimal. Furthermore, by Lemma 6.13,

we have

(6.3.49) TrHH2
G

(
A,A ⊗ Rj

)∼= 0

for j ≥ 2. We recall that the spectral sequence induced by the length filtration converges:

(6.3.50) TrHH2
G(A,A ⊗ R)⇒ TrHH2

G(A,A⊗ R)

(see [67, Lemma 2.98]). Therefore,

(6.3.51) TrHH2
G

(
A,A⊗ Rj

)∼= 0
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for j ≥ 2. It follows by Proposition 6.6 that, if the first-order deformation classes of A1

and A2 coincide, then there is a formal diffeomorphism F such that A1
∼= F∗A2.

By Lemma 6.12,

(6.3.52) TrHH2
G

(
A,A ⊗ R1

)∼= C
〈
r1ua

1, . . . , rnu
a
n

〉
.

It follows from the convergence of the length spectral sequence as above, that
TrHH2

G(A,A⊗ R1) is generated by elements of the form

(6.3.53) rju
a
j + (lower-order in length filtration),

for j = 1, . . . , n. Because A1 and A2 are both of type An
a, by definition their first-order

deformation classes are both of the form

(6.3.54)
n∑

j=1

rju
a
j + (lower-order in length filtration).

Therefore, their first-order deformation classes coincide. The claim now follows from
Proposition 6.6. �

6.4. Computation of Hochschild cohomology. — For the purposes of this section, let A
be a non-curved A∞ algebra of type An

a, where n − 1 ≥ a ≥ 2 and n ≥ 4. We will compute
two versions of the Hochschild cohomology HH∗(A). Our strategy is suggested by [68,
Section 3.6] (compare also [63]). It relies on a slightly modified version of [18, Proposi-
tion 1].

Let us start by stating this modified version explicitly. Let G = {f : Z → Y} be a
grading datum. A G-graded L∞ algebra is a G-graded vector space g together with L∞
structure maps

(6.4.1) �k : g⊗k → g

for k ≥ 1, of degree f (2 − k), satisfying a system of relations (see [43]). In fact, we will
only consider differential graded Lie algebras, with �≥3 = 0; nevertheless, working with
L∞ algebras helps one see why the techniques we employ make sense.

If g and h are G-graded L∞ algebras, then a G-graded L∞ morphism � from g to
h consists of maps

(6.4.2) �k : g⊗k → h

for k ≥ 1, of degree f (1 − k) ∈ Y, satisfying a system of relations (see [41, Section 4]).
Now let G⊕Z denote the grading datum {f ⊕ id : Z → Y⊕Z}. Let g be a G⊕Z-

graded L∞ algebra, where the Z-grading is bounded below. The Z-grading on g then
induces a bounded-above, decreasing filtration:

(6.4.3) Frg :=
⊕

y⊕s∈Y⊕Z≥r

gy⊕s.
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Let ĝ denote the completion of g with respect to this filtration, in the category of G-
graded modules. It is a G-graded L∞ algebra. It has a filtration Fr ĝ, but this is not a
filtration by L∞ subalgebras: the L∞ products send

(6.4.4) �k : (Fr ĝ)
⊗k �→ F2+k(r−1)ĝ.

This means that the Maurer–Cartan equation for α ∈ ĝf (1):

(6.4.5)
∑
j≥1

1
j!�

j(α, . . . , α)= 0,

does not make sense because the infinite sum may not converge. However, if we assume
that α ∈ F2ĝf (1) then the sum does make sense, because the kth term in the Maurer–Cartan
equation lies in F2+kĝ, so the terms in the sum are of successively higher and higher orders
in the filtration.

If α ∈ F2ĝf (1) is a Maurer–Cartan element, we define the L∞ structure on ĝ twisted

by α:

�α : ĝ⊗k → ĝ(6.4.6)

�k
α(x1, . . . , xk) :=

∑
j≥0

1
j!�j+k(α, . . . , α︸ ︷︷ ︸

j

, x1, . . . , xk).(6.4.7)

This converges, and defines a new G-graded L∞ structure on ĝ (see [31, Proposition 4.4]).
Now suppose that g and h are G ⊕ Z-graded L∞ algebras, and � is a G ⊕ Z-

graded L∞ morphism from g to h. Then � induces a G-graded L∞ morphism �̂ from ĝ

to ĥ. If α ∈ F2ĝf (1) is a Maurer–Cartan element, then

(6.4.8) �̂∗α :=
∑
j≥1

1
j!�̂

j(α, . . . , α)

is also a Maurer–Cartan element in F2ĥf (1). Furthermore, there is a G-graded L∞ mor-
phism �̂α from (ĝ, �α) to (ĥ, ��̂∗α), defined by

�̂k
α : ĝ⊗k → ĥ(6.4.9)

�̂k
α(x1, . . . , xk) :=

∑
j≥0

1
j!�̂

j+k(α, . . . , α︸ ︷︷ ︸
j

, x1, . . . , xk).(6.4.10)

These last two claims are proven by the same argument as [18, Proposition 1]. There
are two differences in our case. Firstly, we are dealing with L∞ algebras rather than dg
Lie algebras: however the necessary alterations to the proofs are obvious. Secondly, we
have made different assumptions on the filtrations from those in [18] (we do not have a
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filtration by dg Lie subalgebras). Nevertheless, because we restrict ourselves to Maurer–
Cartan elements in F2ĝ, it is easy to check that all of the infinite sums we have written
down converge.

Finally, suppose that � is a quasi-isomorphism, i.e., the chain map

(6.4.11) �1 : (g, �1
)→ (

h, �1
)

induces an isomorphism on cohomology. Then we claim that �̂α is also a quasi-
isomorphism, i.e., the chain map

(6.4.12) �̂1
α : (ĝ, �1

α

)→ (
ĥ, �1

�̂∗α

)
induces an isomorphism on cohomology (again, compare [18, Proposition 1]).

To prove it, consider the spectral sequences induced by the filtrations on the com-
plexes (ĝ, �1

α) and (ĥ, �1
�̂∗α

), and the morphism between them induced by �̂1
α . The E1

pages of the induced spectral sequences are g and h respectively, with the differentials
given by �1 on both sides, and the chain map �1 between them. Therefore, the E2 pages
are the cohomologies H∗(g, �1) and H∗(h, �1), with the map between them induced
by �1. By assumption, this map is an isomorphism. Because these filtrations are com-
plete and bounded above, hence exhaustive, the Eilenberg–Moore comparison theorem
[70, Theorem 5.5.11] shows that �̂1

α is a quasi-isomorphism.
Now let us apply this to compute the Hochschild cohomology of an A∞ algebra A

of type An
a, in the case a ≥ 3 (the computation for a = 2 will be slightly different, see the

proof of Proposition 6.15). Let g be the G ⊕ Z-graded vector space CC∗
c,G(A ⊗ R)[1],

the compactly-supported G-graded Hochschild cohomology of A. The Gerstenhaber
bracket satisfies the graded Jacobi relation, and makes g into a G⊕Z-graded Lie algebra.
The completion ĝ is the G-graded Hochschild cohomology CC∗

G(A⊗R)[1]; the filtration
Fr ĝ is the length filtration (shifted by 1).

The A∞ structure maps define a Maurer–Cartan element μ∗ ∈ ĝf (1). For a general
A∞ structure, we only have μ∗ ∈ F0ĝf (1), so this does not fit into the setup outlined above;
however, because we are only dealing with a Lie algebra at the moment, there are no
higher products and the Maurer–Cartan equation makes sense.

In our case, by Corollary 6.8, A is minimal, so μ2 defines an associative product.
In particular, μ2 is itself a Maurer–Cartan element. Twisting our Lie algebra structure by
this element defines a new L∞ (in fact dg Lie) algebra with the differential �1 = [μ2,−]
and �2 given by the Gerstenhaber bracket. The cohomology of �1 is the Hochschild
cohomology of the associative algebra A ⊗ R. The remainder of the A∞ products define
a Maurer–Cartan element

(6.4.13) α := μ≥3 ∈ F2ĝf (1),

which fits into the previously-described setup. Twisting by this Maurer–Cartan ele-
ment defines a new L∞ (in fact dg Lie) algebra structure, with differential equal to the
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Hochschild differential:

�1
α(x)= �1(x)+ �2(α, x)(6.4.14)

= [
μ∗, x

]
.(6.4.15)

Therefore, the cohomology of �1
α is the Hochschild cohomology of the A∞ algebra A.

Now observe that, by Lemmas 6.12 and 6.13, TrHH2
c,G(A ⊗ R)2 ∼= 0 (here we use

the assumption a ≥ 2). It follows that one can construct an isomorphism of algebras

(6.4.16) F : (A ⊗ R,μ2
)∼= (

A ⊗ R,μ2
0

)
.

Pushing forward μ∗ by F gives us a quasi-isomorphic A∞ algebra of type An
a, where the

product μ2 is simply the exterior product μ2
0. So we may assume without loss of generality

that μ2 is the exterior product.
Now let h be the G ⊕ Z-graded dg Lie algebra R[u1, . . . , un] ⊗ A, with vanishing

differential and the Schouten–Nijenhuis bracket. The HKR isomorphism [34] defines a
G ⊕ Z-graded quasi-isomorphism

(6.4.17) �1 : g → h.

By the R-linear extension of Kontsevich’s formality theorem [41], this extends to a G⊕Z-
graded L∞ quasi-isomorphism from g to h. Kontsevich’s original paper actually consid-
ered the case of a polynomial algebra, but the case of an exterior algebra is parallel. It
also considered an L∞ morphism in the other direction, but this implies the existence of
such a � because L∞ quasi-isomorphisms can be inverted.

We should explain why Kontsevich’s L∞ morphism is G ⊕ Z-graded. The mor-
phism is Z-graded by construction, where the grading on g is by length (shifted by 1) and
the grading on h is by the degree of the polynomial in R[u1, . . . , un] (shifted by 1, where R
and A are equipped with the zero grading). So the Taylor coefficient �k of Kontsevich’s
L∞ morphism � has degree 1 − k. Furthermore, the morphism is GL(Cn)-equivariant,
and in particular (C∗)n-equivariant, where (C∗)n is the subgroup of invertible diagonal
n × n matrices. Equivalently, if we equip Cn with the natural Zn grading, then the maps
�k have degree 0 ∈ Zn. We define the G-grading of A ∼= �(Cn) by pushing forward the
grading coming from the obvious Zn-grading along a morphism from Zn to G. This de-
fines a G-grading on CCc,G(A) and hence on g := CCc,G(A ⊗ R) (where we recall that
R has its own G-grading), and similarly on h. The formality morphisms �k have degree
0 with respect to this grading.

However, we recall from [67, Definition 2.30] that, if a Hochschild cochain of
length s changes G-degree by y ∈ G, then we equip it with the grading y + f (s) ∈ G. It
follows that, after the shift by 1, the Taylor coefficient �k of the L∞ morphism � has
degree f (1 − k)⊕ (1 − k) ∈ G ⊕ Z, with respect to the standard grading. Therefore, � is
a G ⊕ Z-graded L∞ quasi-isomorphism.
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It follows from our preceding discussion that �̂1
α induces an isomorphism

HH∗
G(A)

∼= H∗(
ĝ, �1

α

)
(6.4.18)

∼= H∗(
ĥ, �1

�̂∗α

)
.(6.4.19)

We will now compute ĥ and the differential �1
�̂∗α

. The first step is to show that ĥ∼= h.

Lemma 6.14. — The filtration Frh is complete in the category of G-graded vector spaces; in

particular, ĥ∼= h.

Proof. — The filtration is complete if and only if it is complete on each graded
piece hy, in the category of vector spaces. To prove this is true, we prove that each
graded piece hy, for y = (y1, y2) ∈ Y, is finite-dimensional. Recalling the proof of [67,
Lemma 2.93], if rcubθK is a generator of R[U] ⊗ A of degree (y1, y2) ∈ Y, then we have

(6.4.20) (0, yK)− (0,b)+ (
(2 − a)|c|, ac

)+ (s,0)= (y1, y2)+ q
(
(2 − n), y{1,...,n}

)
for some q ∈ Z. Hence we have, setting |c| = j and |b| = s,

(2 − a)j + (n − 2)q + s = const and(6.4.21)

|K| − s + aj − nq = const.(6.4.22)

Eliminating q, and observing that |K| ≥ 0, gives an equation of the form

(6.4.23) s + (n − a)j ≤ const.

Observing that n > a by assumption, and both s and j are non-negative, shows that hy is
finite-dimensional. Hence, the length filtration on each graded piece of h is complete, so
the length filtration is complete in the category of G-graded vector spaces. �

Now we compute the Maurer–Cartan element �̂∗α. Because A is of type An
a, we

know the leading-order term

(6.4.24) �1(α)= Z̃n
a ∈ R[U] ⊂ R[U] ⊗ A.

We claim that the higher-order terms vanish for grading reasons. To see this, we introduce
the grading

(6.4.25) d := s + (n − a)j

on CCG(A ⊗ R) and R[U] ⊗ A. We denote by μ∗
d the part of μ∗ with s + (n − a)j = d .

Note that d ≥ s. It follows from [67, Lemma 2.93, Equation (2.3)], with s + t = 2, that if
μ∗

d = 0, then

(6.4.26) d = s + (n − a)j = 2 + (n − 2)(q − j).

In particular, d must be congruent to 2 modulo n − 2. In particular, μ≥3
d = 0 for d < n.
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Now we recall that �k has degree 1 − k, which after the shifts by 1 means it has
degree 2 − 2k with respect to the length grading s, and it clearly preserves j, the degree
in R, because �k is R-multilinear. It follows that the d-grading of the kth term in �̂∗α,

(6.4.27) �k(α, . . . , α),

is 2 + (n − 2)k. In particular, if k ≥ 2 then the d-grading is > n. But, by Lemmas 6.12
and 6.13, and [67, Lemma 2.96], HH2

G(A ⊗ R) is generated by monomials u1 . . . un (with
d = s + (n − a)j = n), rju

a
j (with d = s + (n − a)j = a + (n − a) = n), and (if a = n − 1),

r1 . . . rn, which has length 0 and therefore does not lie in F2ĥ. Therefore, the higher-order
terms of �̂∗α necessarily vanish for degree reasons, and we have

(6.4.28) �̂∗α =�1(α)= Z̃n
a.

The differential �1
�̂∗α

is therefore [Z̃n
a,−], the Schouten–Nijenhuis bracket with Z̃n

a.
This is exactly the Koszul differential associated with the sequence

(6.4.29)
∂Z̃n

a

∂uj

= −u1 . . . ûj . . . un + arju
a−1
j

for j = 1, . . . , n, in the ring

(6.4.30) R[U] ∼= C[r1, . . . , rn, u1, . . . , un].
Using an elimination order with respect to r1, . . . , rn, one easily verifies that the elements
(6.4.29) of the polynomial ring (6.4.30) form a Gröbner basis, whose initial terms arju

a−1
j

are coprime; Schreyer’s theorem (see, e.g., [20, Theorem 15.10]) then shows that the only
syzygies between them are the trivial ones, so they form a regular sequence. Therefore,
the cohomology of the Koszul complex is simply the Jacobian ring

(6.4.31)
R[U]

(
∂Z̃n

a

∂u1
, . . . ,

∂Z̃n
a

∂un
)
.

Proposition 6.15. — Let A be a non-curved A∞ algebra of type An
a, with n − 1 ≥ a ≥ 2 and

n ≥ 4. We introduce the element

(6.4.32) β :=
[

rj

∂

∂rj

μ∗
]

∈ HH∗
G(A|R)

(note that it is indeed a Hochschild cochain, as can be seen by applying rj∂/∂rj to the A∞ equation

μ∗ ◦μ∗ = 0). The R-subalgebra of HH∗
G(A|R) generated by β is isomorphic to

(6.4.33) R[β]/q̃n
a(β),
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where we define

(6.4.34) q̃n
a(β) := βn−1 − aaTβa−1,

where we recall

(6.4.35) T := r1 . . . rn.

Proof. — We first give the proof in the case a ≥ 3. We recall the quasi-isomorphism

(6.4.36) �̂1
α : (CC∗

G(A),
[
μ∗,−])→ (

R[U] ⊗ A,
[
Z̃n

a,−
])
,

and that

(6.4.37) �̂1
α

(
μ≥3

)= Z̃n
a.

It follows that

�̂1
α(β)= �̂1

α

(
rj

∂μ∗

∂rj

)
(6.4.38)

= rj

∂Z̃n
a

∂rj

(6.4.39)

= rju
a
j ,(6.4.40)

because we arranged that μ2 = μ2
0 is independent of rj . Because �̂1

α is a quasi-
isomorphism, it suffices for us to compute the R-subalgebra of the Jacobian ring gen-
erated by

(6.4.41) β̃ := rju
a
j .

We observe that, in the Jacobian ring, we have relations

(6.4.42) u1 . . . ûj . . . un = arju
a−1
j .

In particular, we have

(6.4.43) β̃ = 1
a

u1 . . . un.

Now if we take the product of the relations (6.4.42), we obtain

(6.4.44) (u1 . . . un)
n−1 = anr1 . . . rn(u1 . . . un)

a−1.

Plugging our expressing for β̃ into this gives the relation

(aβ̃)n−1 = anT(aβ̃)a−1(6.4.45)

⇒ β̃n−1 = aaTβ̃a−1.(6.4.46)



ON THE FUKAYA CATEGORY OF A FANO HYPERSURFACE IN PROJECTIVE SPACE 271

It remains to check that there are no R-linear relations between the elements
1, β̃, . . . , β̃n−2 in the Jacobian ring. To do this, we compute a Gröbner basis for the Ja-
cobian ideal, with respect to an elimination order with respect to u1, . . . , un, and which
is given by the homogeneous lexicographic order in the variables uj , such that ui > uj iff
i > j. If K ⊂ {1, . . . , n}, we denote

(6.4.47) uK :=
∏
k∈K

uk,

and similarly for rK. It is convenient to make a change of variables so that the Jacobian
ideal is generated by elements

(6.4.48) u{j} − ua−1
j .

Our Gröbner basis now consists of three kinds of elements:

u{1} − r1ua−1
1(6.4.49)

rju
a
j − r1ua

1 for j = 1(6.4.50)
(
r1ua

1

)|K|−1
uK − rKua−1

K
for all 1 ∈ K � {1, . . . , n}(6.4.51)

(the initial term is written first). It is a tedious exercise to check that this does indeed form
a Gröbner basis, by Buchberger’s criterion.

Now suppose that some R-linear polynomial in β̃ = r1ua
1 of degree n − 2 lay in the

Jacobian ideal. Then its initial term would have the form rc(r1ua
1)

n−2, and must lie in the
initial ideal of the Jacobian ideal; but one easily checks that this monomial is not divisible
by any of the initial terms of the Gröbner basis elements (6.4.49)–(6.4.51). Hence there
are no further relations, and the proof is complete in the case a ≥ 3.

In the case a = 2, one might be concerned that the terms rju
2
j in Z̃n

2 correspond to
deformations of the product μ2 on A, so this doesn’t fit into our framework (specifically,
the Maurer–Cartan element μ∗ − μ2

0 lies in F1ĝf (1), but not F2ĝf (1), so we have conver-
gence issues). In this case, instead of using the filtration by length s, we can use the filtra-
tion by d = s + (n − a)j. This filtration is still complete (by the proof of Lemma 6.14), the
leading-order term of μ∗ is the exterior algebra product μ2

0, and the Maurer–Cartan ele-
ment μ∗ −μ2

0 lies in Fnĝf (1) by the computations immediately preceding Proposition 6.15,
from which it follows that the expressions for �1

α and �̂1
α converge. The rest of the argu-

ment is identical to the case a ≥ 3. �

Now, let Gn
a be the grading datum of Equation (6.3.1), and

(6.4.52) p : Gn
a → Gn

1 =: G

the morphism of grading data of Equation (6.3.3).
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Let A be a non-curved A∞ algebra of type An
a, where n − 1 ≥ a ≥ 2 and n ≥ 4, and

A be its extension to a Gn
1-graded A∞ category. Consider the Gn

a-graded A∞ category

(6.4.53) Ã := p∗A.

It is R-linear, where R ∼= p∗R is now considered as a Gn
a-graded ring. In light of [67,

Remark 2.68], we have

Corollary 6.16. — Let

(6.4.54) γ :=
[

rj

∂μ∗

∂rj

]
∈ HH∗

Gn
a
(Ã|R).

Then the R-subalgebra generated by γ is isomorphic to

(6.4.55) R[γ ]/q̃n
a(γ ).

Now we define

(6.4.56) AC := (σ∗A)⊗R C,

where C is an R-algebra via the map

C[r1, . . . , rn] → C,(6.4.57)

rj �→ 1 for all j,(6.4.58)

and σ : Gn
1 → Gσ is the sign morphism (recall Gσ := {Z → Z/2Z}, so Gσ -graded algebra

is the same as Z/2Z-graded algebra).

Lemma 6.17. — When n − 1 ≥ a ≥ 3, there is an isomorphism of algebras,

(6.4.59) HH∗
Gσ
(AC)∼= C[[u1, . . . , un]]

(
∂Zn

a

∂u1
, . . . ,

∂W̃n
a

∂un
)
,

where

(6.4.60) Zn
a := −u1 . . . un +

n∑
j=1

ua
j ∈ C[[u1, . . . , un]]

as in (1.4.7).

Proof. — We use the same strategy as we did to make computations in
HH∗

G(p
∗A|R). Let

(6.4.61) g := CC∗
c,Gσ

(A)
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be the Gσ ⊕ Z-graded dg Lie algebra, where �1 = [μ2
C,−], where μ2

C is the exterior
product, and �2 is the Gerstenhaber bracket. We then have, by definition,

(6.4.62) ĝ := CC∗
Gσ
(A),

and the Maurer–Cartan element α := μ
≥3
C ∈ F2ĝ1. The twisted differential is, as before,

the Hochschild differential:

(6.4.63) HH∗
Gσ
(AC)∼= H∗(

ĝ, �1
α

)
.

Let h := C[U] ⊗ A be the Gσ ⊕ Z-graded dg Lie algebra of polyvector fields, with
zero differential and the Schouten–Nijenhuis bracket. Kontsevich’s formality theorem
gives a Gσ ⊕ Z-graded L∞ quasi-isomorphism

(6.4.64) � : g → h.

We now have

(6.4.65) ĥ := C[[U]] ⊗ A,

and the corresponding Gσ -graded L∞ quasi-isomorphism �̂ from ĝ to ĥ. The pushed-
forward Maurer–Cartan element is given by

(6.4.66) �̂∗α = Z̃n
a ⊗ 1 ∈ (R[U] ⊗ A

)⊗R C

by (6.4.28), because the A∞ structure on AC is given by μ∗
C := μ∗ ⊗ 1 by definition. It

follows that

(6.4.67) �̂∗α = Zn
a ∈ C[[U]].

It follows as before that there is an isomorphism

(6.4.68) �̂1
α : HH∗

Gσ
(AC)∼= H∗(

ĥ, �1
Zn

a

)
.

The right-hand side is given by the Koszul complex for the sequence ∂Zn
a/∂uj , for j =

1, . . . , n. This sequence is regular, because C[[U]] is a local ring, and the ideal generated
by the n derivatives of Zn

a contains powers of uj for all j, which form a regular sequence of
length n (see [20, Corollary 17.7]). To see this, we use the same arguments as in the proof
of Proposition 6.15 to show that the element

(6.4.69) (u1 . . . un)
a−1
(
(u1 . . . un)

n−a − aa
)

lies in the Jacobian ideal (see in particular (6.4.46)). The term (u1 . . . un)
n−a − aa is invert-

ible in the power series ring; it follows that (u1 . . . un)
a−1 lies in the ideal. Substituting in

u1 . . . un = aua
j , we obtain that

(6.4.70)
(
ua

j

)a−1 = 0,

and hence u
a(a−1)
j lies in the ideal generated by our sequence, for all j.
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It follows that the sequence is regular, and hence that its cohomology is exactly the
Jacobian ring, as required. �

We observe that the cokernel of the morphism p of grading data is the group n
a

introduced in Definition 1.2. The G-grading on A induces a n
a -grading, with respect to

which R has degree 0; therefore, AC comes with a n
a -grading. This equips HH∗

Gσ
(AC)

with a n
a -grading (because n

a is a finite group, the completion in the category of n
a -

graded modules coincides with the completion in the category of Gσ -graded modules).
A n

a -grading induces a (n
a)

∗-action. We will be particularly interested in computing the
(n

a)
∗-equivariant part of HH∗

Gσ
(AC), or equivalently the part of degree 0 ∈ n

a .
The isomorphism of Lemma 6.17 respects the n

a -grading, where the degree of the
variable uj in the Jacobian ring is yj , the image of the jth generator in (Z/aZ)n/(Z/aZ).
In order to make computations in the Jacobian ring of the formal power series ring, we
first need to understand the Jacobian ring of the polynomial ring:

Lemma 6.18. — Let

(6.4.71) β := β ⊗ 1 ∈ C[u1, . . . , un]
denote the image of β under the identification

(6.4.72) R[U] ⊗R C ∼= C[U].
Then we have an isomorphism of C-algebras,

(6.4.73)
(

C[u1, . . . , un]
∂Zn

a

∂u1
, . . . ,

∂Zn
a

∂un

)(n
a )

∗
∼= C[β]/qn

a(β),

where qn
a is as in (1.4.3).

Proof. — It is easy to check that the part of C[U] of degree 0 ∈ n
a is generated (as

an algebra) by the elements u1 . . . un and ua
j . Furthermore, these are all identified with a

multiple of β in the Jacobian ring; so the part of the Jacobian ring of degree 0 has the
form C[β]/p(β). By the same arguments as in the proof of Proposition 6.15, qn

a(β) = 0.
By setting all rj equal to 1, the Gröbner basis computed in Proposition 6.15 becomes a
Gröbner basis for the Jacobian ideal here, with respect to the homogeneous lexicographic
order; and it follows as in the proof of Proposition 6.15 that β satisfies no other polynomial
relations. �

Corollary 6.19. — Let us denote by β̂ the image of β ⊗ 1 in HH∗
Gσ
(AC), where β ∈

HH∗
G(A|R) is the element defined in Proposition 6.15. Then for n − 1 ≥ a ≥ 2, we have

(6.4.74) HH∗
Gσ
(AC)

(n
a )

∗ ∼= C[β̂]/β̂a−1.
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Proof. — First we give the proof in the case a = 2. In this case, H∗(AC) ∼= C�n by
Corollary 6.9, hence there is an A∞ quasi-isomorphism AC

∼= C�n by Corollary 6.4. It
follows that

(6.4.75) HH∗(AC)
(n

a )
∗ ∼= C ∼= C[β̂]/β̂a−1

by Corollary 6.3.
Now we give the proof for a ≥ 3. By Lemma 6.17, we can make computations

in the equivariant part of the power series Jacobian ring. As in Lemma 6.18, we can
show that β̂ generates the equivariant part. We showed in the proof of Lemma 6.17 that
β̂a−1 = 0 (see (6.4.70)). Suppose that a smaller power of β̂ vanished. Then we would have

(6.4.76) β̂a−2 =
n∑

j=1

fj
∂Zn

a

∂uj

,

where fj ∈ C[[u1, . . . , un]]. By removing all of the terms in each fj of length ≥ N, this shows
that βa−2 is equivalent to an element of length ≥ N in the polynomial Jacobian ring, for
arbitrarily large N; this contradicts Lemma 6.18. Therefore β̂a−2 = 0, and the proof is
complete. �

We now define the Gσ -graded A∞ category

(6.4.77) ÃC := σ∗p∗A⊗R C.

Corollary 6.20. — Let

(6.4.78) γ̂ := γ ⊗ 1 ∈ HH∗
Gσ
(ÃC),

where γ is as in Corollary 6.16. When n − 1 ≥ a ≥ 2, we have an isomorphism of Z/2Z-graded

C-algebras

(6.4.79) HH∗
Gσ
(ÃC)

n
a ∼= C[γ̂ ]/γ̂ a−1,

where γ̂ has degree 0 ∈ Z/2Z.

Proof. — We recall from [67, Remark 2.66] that there is an action of n
a on

CC∗
Gn

a
(p∗A) (by shifts on the objects), and we have

(6.4.80) CC∗
Gn

a

(
p∗A

)n
a ∼= CC∗

Gn
1
(A)(

n
a )

∗
.

Using the fact that taking invariants and taking direct products commute, it follows that

(6.4.81) CC∗
Gσ

(
σ∗p∗A⊗R C

)n
a ∼= CC∗

Gσ
(σ∗A⊗R C)(

n
a )

∗
.
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It follows that

HH∗
Gσ
(ÃC)

n
a ∼= HH∗

Gσ
(AC)

(n
a )

∗
(6.4.82)

∼= C[β̂]/β̂a−1(6.4.83)

by Corollary 6.19; β̂ corresponds to γ̂ under this isomorphism, so the proof is com-
plete. �

We remark that the Z/2Z-grading in Corollary 6.20 can be enhanced to a
Z/2(n − a)-grading. Let G2(n−a) denote the grading datum {Z → Z/2(n − a)}. Let

(6.4.84) q : Gn
a → G2(n−a)

be a morphism of grading data, sending all yj to 0. Because 2(a − n)⊕ y{1,...,n} maps to 0
in G2(n−a), this map is well-defined.

Then one can check that q∗p∗R is concentrated in degree 0; therefore it makes
sense to define the G2(n−a)-graded C-linear category

(6.4.85) Ã′
C := q∗p∗A⊗R C.

Then the result of Corollary 6.20 can be upgraded to:

Corollary 6.21. — When n − 1 ≥ a ≥ 2, there is an isomorphism of Z/2(n − a)-graded

C-algebras

(6.4.86) HH∗
G2(n−a)

(
Ã′

C

)n
a ∼= C[γ̂ ]/γ̂ a−1,

where γ̂ has degree 2.

7. Computations in the Fukaya category of a Fermat hypersurface

7.1. Fermat hypersurfaces. — We consider the Fermat hypersurfaces

(7.1.1) Xn
a :=

{ n∑
j=1

za
j = 0

}
⊂ CPn−1,

with the smooth normal-crossings divisor

D :=
n⋃

j=1

Dj, where(7.1.2)

Dj := {zj = 0}.(7.1.3)
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There is a branched cover

(7.1.4) φ : (Xn
a,D

)→ (
Xn

1,D
)
,

given by

φ :
{ n∑

j=1

za
j = 0

}
→
{ n∑

j=1

zj = 0
}
,(7.1.5)

[z1 : . . . : zn] �→ [
za

1 : . . . : za
n

]
.(7.1.6)

It has branching of order a about each component Dj of D.
A structure of Kähler pair on (Xn

a,D) was specified in [67, Example 3.14]: in
particular, the linking number of the Liouville one-form with divisor Dj is

(7.1.7) �j = a,

hence the cohomology class of the symplectic form is

(7.1.8) [ω] = nac1

(
O(1)

)
.

The first Chern class is

(7.1.9) c1 = (n − a)c1

(
O(1)

)
.

As a result, Xn
a is monotone in the sense of Definition 2.1, with

(7.1.10) τ = na

2(n − a)
.

7.2. The immersed Lagrangian sphere. — We recall the construction of an immersed
Lagrangian sphere L : Sn−2 → Xn

1 \ D from [66, Section 2.2]. To start, we observe that
Xn

1
∼= {z1 +· · ·+zn = 0} ⊂ CPn−1: so in fact Xn

1
∼= CPn−2. The immersion L is constructed

by starting with the immersion

(7.2.1) L′ : Sn−2 2:1−→ RPn−2 ↪→ CPn−2 ∼= Xn
1

(which intersects D), and pushing it off itself using a certain Morse function f : Sn−2 → R.
To describe the construction of the Morse function f , it is easiest to represent Sn−2

as

(7.2.2) Sn−2 =
{
(x1, . . . , xn) ∈ Rn :

n∑
j=1

xi = 0,
n∑

j=1

x2
i = 1

}
,
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so that the immersion L′ sends (x1, . . . , xn) �→ [x1 : . . . : xn]. We then define

(7.2.3) f (x1, . . . , xn)=
n∑

j=1

g(xj),

where g : R → R is a monotone, odd function with the property that g(x) = x inside a
(small) neighbourhood of 0, and g′(x) is small for x outside a (slightly larger) neighbour-
hood of 0. The construction ensures that ∇f is positively transverse to the hypersurfaces
{xj = 0}. A picture of the Morse flow of f in the 2-dimensional case can be found in [66,
Figure 5].

We use the Weinstein neighbourhood theorem to extend the immersion L′ to an
immersion from a sufficiently small cotangent disc bundle of Sn−2 to Xn

1. The immersion L
is then constructed as the graph of the one-form εdf , mapped into Xn

1 via this immersion
(for ε > 0 sufficiently small). The fact that ∇f is transverse to the hypersurfaces {xj = 0}
ensures that L avoids the divisors Dj : so indeed the image of L lies in Xn

1 \D. The fact that
f can be arranged to be a Morse function ensures that L has transverse self-intersections
at the critical points of f (where it intersects the other branch of the double cover).

The hypersurfaces {xj = 0} split Sn−2 into 2n − 2 regions, indexed by the subsets
K ⊂ {1, . . . , n} of coordinates xj that are positive in the region: all subsets K are realized
except for K = ∅, {1, . . . , n}, because we can’t have

∑
j xj = 0 if the coordinates xj are

either all positive or all negative. Each region contains a unique critical point pK of f .
The Floer endomorphism algebra of L can be defined, despite it being immersed, using
the fact that L admits an embedded lift to a cover of Xn

1 \ D (see [66, Section 3.1]). It is
generated by the self-intersection points of L (which are indexed by proper non-empty
sets K ⊂ {1, . . . , n}), together with the Morse cohomology of Sn (which we choose to have
generators pφ and p{1,...,n}, corresponding to the identity and top class respectively). Thus,
CF∗(L,L) has generators pK indexed by the subsets K ⊂ {1, . . . , n}.

Now recall the branched cover φ : (Xn
a,D) → (Xn

1,D) of (7.1.4). It restricts to an
unbranched cover φ : Xn

a \ D → Xn
1 \ D, and L admits a lift to Xn

a \ D by the homotopy
lifting criterion, because the image π1(L)→ π1(Xn

1 \ D) is trivial.

Lemma 7.1. — If a ≥ 2, then any lift of L to Xn
a is embedded.

Proof. — We have H1(Xn
1 \ D) ∼= Z〈e1, . . . , en〉/(e1 + · · · + en) ∼= H1(Xn

a \ D) (the
generators correspond to meridian loops about the components Dj of D). The map

(7.2.4) φ∗ : H1

(
Xn

a \ D
)→ H1

(
Xn

1 \ D
)

can be identified with multiplication by a (because φ has branching of degree a about
each Dj , compare [67, Corollary 3.30]).

To any self-intersection x of L, we can associate an element y ∈ H1(Xn
1 \D): it is the

image of the path in Sn−2 connecting the two antipodal points that intersect at x, under
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the immersion L. The self-intersection x in Xn
1 \ D lifts to a self-intersection in Xn

a \ D if
and only if y lies in the image of H1(Xn

a \ D): otherwise, x lifts to an intersection between
two different lifts of L.

These classes y were computed in [66, Proposition 3.3]: the class associated to pK

is
∑

j∈K ej . It is clear that none of these lie in the image of H1(Xn
a \ D), with the exception

of p∅ and p{1,...,n}, which do not correspond to self-intersections. �

7.3. Fukaya category computations. — The relative Fukaya category F(Xn
a,D) can be

computed using the branched cover φ : Xn
a → Xn

1, via techniques developed in [67]. We
recall the details.

We start by recalling the relationship between F(Xn
a \ D) and F(Xn

1 \ D). The
grading data for these two categories are denoted G(Xn

a,D) and G(Xn
1,D) respectively,

and the branched cover (7.1.4) determines a morphism of grading data,

(7.3.1) p : G
(
Xn

a,D
)→ G

(
Xn

1,D
)
,

whose cokernel is the covering group of φ. The relationship between F(Xn
a \ D) and

F(Xn
1 \D) is particularly simple, because pseudoholomorphic discs in Xn

1 \D lift to Xn
a \D

as they are contractible: so the difference between the two categories is essentially one of
‘bookkeeping’. This idea was exploited in [57, Section 8b]; we will use the language of
[67, Proposition 3.10], which says that a choice of identification between the universal
abelian covers of G(Xn

a \ D) and G(Xn
1 \ D) induces a fully faithful strict embedding

(7.3.2) p∗F
(
Xn

1 \ D
)
↪→F

(
Xn

a \ D
)

(recall that applying the operation ‘p∗’ to a category does not change the objects, but
changes the morphisms: it only keeps the morphisms whose grading lies in the image
of p, see [67, Definition 2.65]).

In our situation, the grading data associated to the Kähler pairs (Xn
a,D) are

(7.3.3) G
(
Xn

a,D
)∼= Gn

a,

where the definition of the right-hand side was recalled in Equation (6.3.1) (see [67,
Lemma 3.24]). The morphism of grading data p is given by Equation (6.3.3), by [67,
Lemma 3.29]. The cokernel of p (which we recall is isomorphic to the covering group
of φ) is naturally isomorphic to the group n

a of the introduction (see (1.4.9)).
On the other hand, the relationship between the relative Fukaya categories

F(Xn
a,D) and F(Xn

1,D) is more subtle, because pseudoholomorphic discs that pass
through D do not admit lifts under φ. Instead, we consider the a-orbifold relative Fukaya
category F(Xn

1,D,a), where a := (a, . . . , a). This is the Fukaya category whose structure
maps count pseudoholomorphic discs which are tangent to D to order a − 1 wherever
they meet. These discs do admit lifts under φ, so we should obtain an embedding

(7.3.4) p∗F
(
Xn

1,D,a
)
↪→F

(
Xn

a,D
)
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as above. The coefficient ring of F(Xn
1,D,a) is the ring Ra of (6.3.10) (see [67, Exam-

ple 5.2]). It follows that the coefficient ring of F(Xn
a,D) is p∗Ra, by [67, Remark 5.10].

Remark 7.1. — Actually there are some technical complications that prevent us
from proving (7.3.4) exactly: instead we prove it to first order in R. See the proof of
Proposition 7.2 for details.

Proposition 7.2. — Let Ã denote the full subcategory of the Gn
a-graded monotone relative Fukaya

category Fm(Xn
a,D)w whose objects are lifts of the immersed Lagrangian sphere L ⊂ Xn

1 under the

branched cover φ. Then there exists a non-curved A∞ algebra A of type An
a (in the sense of Defini-

tion 6.3), such that

(7.3.5) Ã ∼= p∗A

(where A denotes the unique extension of A to a Gn
1-graded A∞ category by formally adding all shifts,

as in [67, Definition 2.64]).

Proof. — Because n
a acts freely on the set of lifts of L, we can choose n

a -equivariant
perturbation data for Ã. It follows that

(7.3.6) Ã ∼= p∗A

for some Gn
1-graded, R-linear A∞ algebra A.

Now we come to the subtlety alluded to in Remark 7.1: instead of (7.3.4) holding,
we have [67, Proposition 5.11]. This proves the closely-related result that there is a Gn

1-
graded Ra-linear A∞ category F(φ), such that there is a strict R/m2-linear isomorphism

(7.3.7) F(φ)/m2 ∼=F
(
Xn

1,D,a
)
/m2,

where

(7.3.8) m := (r1, . . . , rn)⊂ Ra,

and there is also a fully faithful strict p∗Ra-linear embedding

(7.3.9) p∗F(φ) ↪→F
(
Xn

a,D
)
.

Modifying the proof of Proposition 3.7 to take into account the n
a -equivariance,

we obtain a first-order quasi-equivalence

(7.3.10) A/m2 ∼= CF∗
F(φ)(L,L)/m2,

and hence a first-order quasi-equivalence

(7.3.11) A/m2 ∼= A′/m2,
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where

(7.3.12) A′ := CF∗
F(Xn

1,D,a)(L,L)/m2.

Because being of type An
a only depends on the zeroth- and first-order coefficients of the

A∞ structure maps, it suffices to prove that A′ is of type An
a.

A′ is Gn
1-graded and Ra-linear by definition. We already saw that it has generators

pK corresponding to the subsets K ⊂ {1, . . . , n}. The Gn
1-grading on these generators is

computed in [66, Proposition 3.3] and [66, Proposition 3.7]: the result is that there is an
isomorphism

(7.3.13) CF∗(L,L)∼= A

as Gn
1-graded vector spaces, where A is the Gn

1-graded exterior algebra introduced in
Section 6.3 (see Equation (6.3.7)).

By [67, Proposition 6.2], the order-0 cohomology algebra of A′ is an exterior al-
gebra and

(7.3.14) �
(
μ∗)= ±u1 . . . un +m.

[67, Proposition 6.2] also shows that the first-order deformation class of the endomor-
phism algebra of L in the non-orbifold relative Fukaya category F(Xn

1,D) is

(7.3.15) ±
n∑

j=1

rjuj,

i.e., the first-order deformation classes are uj . The first-order deformation classes of the
orbifold relative Fukaya category F(Xn

1,D,a) are obtained from those of the relative
Fukaya category F(Xn

1,D) by taking the ath power with respect to Yoneda product, by
[67, Theorem 5.12]. Thus, the first-order deformation class of F(Xn

a,D,a) is

(7.3.16) ±
n∑

j=1

rju
a
j .

It follows that (after an appropriate change of variables to fix the signs)

(7.3.17) �
(
μ∗)= Z̃n

a +m
2,

where Z̃n
a is as in (6.3.12), and hence that A′ (and therefore A) is of type An

a, as required. �

Lemma 7.3. — If X is simply-connected, then

(7.3.18) G(X)∼= G2N,
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where N ∈ Z is the minimal Chern number on spherical classes, i.e., the generator of the image of the

map

(7.3.19) c1(TX) : π2(X)→ Z,

and we recall that G2N denotes the grading datum {Z → Z/2N}.

Proof. — Follows from the long exact sequence for the fibration GX:

(7.3.20) π2(X)→ π1(GxX)→ π1(GX)→ π1(X),

together with the observation that π1(GxX)∼= Z (given by the Maslov class), and the first
map in the exact sequence coincides with evaluation of 2c1(TX). �

The map

(7.3.21) q : G
(
Xn

a,D
)→ G

(
Xn

a

)

coincides with the map

(7.3.22) Gn
a → G2(n−a)

of (6.4.84).

Corollary 7.4. — If 2 ≤ a ≤ n − 1, then there is a fully faithful embedding of G2(n−a)-graded,

C-linear, non-curved A∞ categories

(7.3.23) q∗p∗A⊗R C ↪→F
(
Xn

a

)
w
,

where A is an A∞ algebra of type An
a. If a ≤ n − 2 then w = 0, but if a = n − 1 then w may be

non-zero.

Proof. — By Lemma 3.3, the Maslov index of a disc with boundary on a lift of L is
2(n− a)u ·D. Therefore, if a ≤ n−2 then all lifts of L cannot bound Maslov index 2 discs,
and therefore have w(L) = 0. If a = n − 1, then L may bound Maslov index 2 discs. All
lifts of L have the same value w of w(L), by symmetry.

The result then follows from Proposition 7.2 and Lemma 3.6. �

Remark 7.2. — We will prove (in Corollary 7.9) that, when a = n − 1, we have
w = −a!.
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7.4. The quantum cohomology of Xn
a. — In this section, we will study QH∗(Xn

a), using
the closed–open and open–closed string maps. First we would like to understand H∗(Xn

a)

better. We recall the Lefschetz decomposition of H∗(Xn
a):

(7.4.1) H∗(Xn
a

)∼= H∗
H

(
Xn

a

)⊕ H∗
P

(
Xn

a

)
,

where ‘H’ stands for ‘Hodge’ and ‘P’ stands for ‘primitive’. By the Lefschetz hyperplane
theorem, the primitive cohomology is concentrated in the middle degree d = n − 2. So
the Hodge part is generated by the hyperplane class P:

(7.4.2) H∗
H

(
Xn

a

)∼= C[P]/Pn−1,

and the primitive part is

(7.4.3) H∗
P

(
Xn

a

)∼= ker
(∧P : Hd

(
Xn

a

)→ Hd+2
(
Xn

a

))
.

Lemma 7.5. — The image of the map

(7.4.4) H∗
c

(
Xn

a \ D
)→ H∗(Xn

a

)
contains the primitive cohomology H∗

P(X
n
a).

Proof. — We observe that

(7.4.5) H∗
c

(
Xn

a \ D
)∼= H∗(Xn

a,D
)
,

and apply the long exact sequence in cohomology for the pair (Xn
a,D):

(7.4.6) . . .→ Hd
(
Xn

a,D
)→ Hd

(
Xn

a

)→ Hd(D)→ . . .

It suffices to prove that the image of the primitive cohomology in Hd(D) vanishes. To do
this, it is sufficient to show that the map

(7.4.7) ∧P : Hd(D)→ Hd+2(D)

is injective (where P is the restriction of the hyperplane class to D). In other words, D has
no ‘primitive cohomology’ in degree d .

To understand the cohomology of D, we apply the generalized Mayer–Vietoris
principle [10, Proposition 8.8] to the open cover by neighbourhoods of the compo-
nents Di . This yields a bounded double complex, hence a spectral sequence converging
to H∗(D), with E1 page

(7.4.8) Ep,q

1
∼=

⊕
K⊂[k],|K|=p−1

Hq(DK),

where DK denotes the intersection of all divisors indexed by i ∈ K. The map ∧P defines
a homomorphism from this spectral sequence to itself, of degree 2.
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Now observe that DK is a hypersurface in a projective space CPd+1−|K|, so only has
primitive cohomology in degree d − |K|. It follows that the map

(7.4.9) ∧P : Hq(DK)→ Hq+2(DK)

is injective unless q = d −|K| or q = 2(d −|K|). Note that neither of these conditions can
be satisfied when d = p + q = |K| + 1 + q. Therefore, the map

(7.4.10) ∧P : Ep,q

1 → Ep,q+2
1

is injective for all p + q = d . Since the spectral sequence converges, it follows that

(7.4.11) ∧P : Hd(D)→ Hd+2(D)

is injective. This completes the proof. �

Now let n
a denote the covering group of the branched cover

(7.4.12) φ : (Xn
a,D

)→ (
Xn

1,D
)
.

It clearly acts on Xn
a, and hence on the cohomology H∗(Xn

a).

Lemma 7.6. — The n
a -invariant part of H∗(Xn

a) is exactly the Hodge part of cohomology:

(7.4.13) H∗(Xn
a

)n
a ∼= H∗

H

(
Xn

a

)
.

Proof. — The action of n
a obviously fixes the Hodge part of the cohomology, and

preserves the primitive cohomology, so it suffices to prove that the n
a -fixed part of H∗

P(X
n
a)

is trivial. By Lemma 7.5, the map

(7.4.14) H∗
c

(
Xn

a \ D
)→ H∗

P

(
Xn

a

)

is surjective. This map is clearly n
a -equivariant, and it follows that the induced map

(7.4.15) H∗
c

(
Xn

a \ D
)n

a → H∗
P

(
Xn

a

)n
a

is surjective.
The restriction φ : Xn

a \ D → Xn
1 \ D is an unbranched cover, so we have

(7.4.16) H∗
c

(
Xn

a \ D
)n

a ∼= H∗
c

(
Xn

1 \ D
)

(using de Rham cohomology, this can be realized by averaging differential forms).
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Therefore, because the diagram

(7.4.17) H∗
c (X

n
a \ D)

n
a H∗(Xn

a)
n

a

H∗
c (X

n
1 \ D)

φ∗

H∗(Xn
1)

φ∗

commutes, the map

(7.4.18) φ∗ : H∗(Xn
1

)→ H∗(Xn
a

)n
a

contains the equivariant primitive cohomology classes in its image. However, Xn
1

∼=
CPn−2, so its cohomology is generated by the hyperplane class P; it follows that the only
equivariant primitive cohomology class is 0. �

Lemma 7.7. — The homology classes of the lifts of the Lagrangian sphere L to Xn
a span the

primitive homology of Xn
a.

Proof. — We regard Xn
a \ D as a submanifold of

(7.4.19) CPn−1 \ D ∼= (
C∗)n−1

.

We observe that the argument map

(7.4.20) Arg : Xn
a \ D → (

S1
)n−1

is a homotopy equivalence onto its image (the ‘coamoeba’). This follows from [66, Propo-
sition 2.2]. The coamoeba of Xn

a \ D is a n
a -cover of the coamoeba of the pair of pants

Xn
1 \ D, which is homotopy equivalent to (S1)n−1 with one point removed: so Xn

a \ D is
homotopy-equivalent to an (n−1)-torus with an−1 points removed. The homology classes
of the lifts of the Lagrangian L correspond to balls around each removed point by con-
struction (see [66, Proposition 2.6]).

Therefore the lifts of L, together with the n − 1 coordinate (n − 2)-tori, span the
middle-dimensional homology of Xn

a \D. The coordinate (n−2)-tori correspond to small
tori near the zero-dimensional strata of the boundary divisor D; when we compactify by
adding the divisor back in, their homology classes disappear because they are bounded
by polydiscs near D.

It follows that the homology classes of the Lagrangian spheres span the image of
the map

(7.4.21) Hn−2

(
Xn

a \ D
)→ Hn−2

(
Xn

a

)
.

It follows by Lemma 7.5, using Poincaré duality, that the homology classes of the La-
grangian spheres span the primitive homology. �
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Now we consider the quantum cohomology, QH∗(Xn
a,D). It also admits a n

a -
action, so we may talk about the invariant part. The closed–open string map intertwines
this n

a -action with the n
a -action on the relative Fukaya category, so we have a map

(7.4.22) CO : QH∗(Xn
a,D

)n
a → HH∗

G

(
Fm

(
Xn

a,D
))n

a

on the invariant parts.

Proposition 7.8. — Let Ã be the full subcategory of Fm(Xn
a,D) generated by lifts of L. If

2 ≤ a ≤ n − 1, then the map

(7.4.23) CO : QH∗(Xn
a,D

)n
a → HH∗

G(Ã)
n

a

is an isomorphism and, in the notation of Corollary 6.16, sends P �→ γ + w · T, where w ∈ Z is

the integer appearing in Corollary 7.4. In particular, the subalgebra of QH∗(Xn
a,D) generated by P is

isomorphic to

(7.4.24) C[P]/q̃n
a(P − w · T),

where q̃n
a is defined in (6.4.34).

Proof. — By Corollary 7.4, we have

(7.4.25) Ã ∼= p∗A,

where A is an A∞ algebra of type An
a. We therefore have

(7.4.26) HH∗
G(Ã)

n
a ∼= R[γ ]/qn

a(γ )

by Corollary 6.16. We have

(7.4.27) CO(P)=
[

rj

∂μ∗

∂rj

]
+ w · T = γ + w · T

by Proposition 3.8.
We know that CO is a unital algebra homomorphism, and the equivariant part

of the Hochschild cohomology is generated by γ . It follows that CO is surjective. By
Lemma 7.6, the equivariant part of the quantum cohomology is a free R-module of rank
n − 2, and by Corollary 6.16, so is the equivariant part of the Hochschild cohomology.
Since CO is surjective, it follows that it is an isomorphism. �

The computations of quantum cohomology from Proposition 7.8 agree with the
results of [32, Corollaries 9.3 and 10.9].

Corollary 7.9. — If 2 ≤ a ≤ n − 1, and L is a lift of the immersed Lagrangian sphere to Xn
a,

then w(L)= wn
a (in the notation of (1.4.4)).
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Proof. — If a ≤ n−2, the result follows as in Corollary 7.4. If a = n−1, the result fol-
lows by comparing the relation established in Proposition 7.8 with [32, Corollary 10.9]. �

We recall the eigenvalues of c1�, as computed in Corollary 1.14. We will denote
the big eigenvalue by w, and small eigenvalues by w.

Corollary 7.10. — If 2 ≤ a ≤ n − 1, then the Hodge part of the big generalized eigenspace has

rank a − 1:

(7.4.28) dim
(
QH∗(Xn

a

)
w

∩ H∗
H

(
Xn

a

))= a − 1,

with a basis consisting of the generalized eigenvectors

(7.4.29) (P − w)i
(
(P − w)(n−a) − aa

)
, for i = 0, . . . , a − 2.

The Hodge part of the n − a small generalized eigenspaces have rank 1:

(7.4.30) dim
(
QH∗(Xn

a

)
w

∩ H∗
H

(
Xn

a

))= 1,

each spanned by an eigenvector of the form

(7.4.31) (P − w)a−1 (P − w)n−a − aa

P −w
.

Proof. — First, one can check that these are indeed generalized eigenvectors, which
follows from the relation (P − w)a−1((P − w)n−a − aa) = 0. Note that any polynomial in
P is n

a -equivariant, hence lies in H∗
H(X

n
a) by Lemma 7.6, so the generalized eigenvectors

identified do lie in H∗
H(X

n
a). They also span H∗

H(X
n
a), as it has rank n − 1. �

Proposition 7.11. — If 2 ≤ a ≤ n − 1, and w is one of the small eigenvalues of c1� on

QH∗(Xn
a), then the generalized eigenspace QH∗(Xn

a)w has rank 1.

Proof. — By Corollary 2.13 and Lemma 2.14, the classes

(7.4.32) OC0
(eL)= PD(L)+ lower-degree terms

are eigenvectors of c1� with eigenvalue w, for each of the Lagrangian spheres L.
We now observe that the primitive cohomology H∗

P(X
n
a) is concentrated in the

middle degree n − 2; therefore the terms of degree < n − 2 lie in H∗
H(X

n
a). So for each

lift L, we obtain an eigenvector OC0
(eL) of c1� with eigenvalue w, whose primitive com-

ponent is PD(L). Because these classes span the primitive cohomology (by Lemma 7.7),
the composition

(7.4.33) QH∗(Xn
a

)
w
↪→ H∗(Xn

a

)→ H∗(Xn
a

)
/H∗

H

(
Xn

a

)∼= H∗
P

(
Xn

a

)
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is surjective. Therefore,

dim
(
QH∗(Xn

a

)
w

)= dim
(
QH∗(Xn

a

)
w

∩ H∗
H

(
Xn

a

))+ dim
(
H∗

P

(
Xn

a

))
(7.4.34)

= a − 1 + dim
(
H∗

P

(
Xn

a

))
,(7.4.35)

by Corollary 7.10.
It follows that the n − a remaining small generalized eigenspaces have a combined

rank of

dim
(
H∗(Xn

a

))− dim
(
QH∗(Xn

a

)
w

)= dim
(
H∗

H

(
Xn

a

))− (a − 1)(7.4.36)

= n − a.(7.4.37)

As each has rank at least 1, it follows that each has rank exactly 1. �

Corollary 7.12. — If L is any monotone Lagrangian with w(L) not equal to the big eigen-

value w, then L is nullhomologous.

Proof. — By Corollary 2.13 and Lemma 2.14, for any monotone Lagrangian L,

(7.4.38) OC0
(eL)= PD(L)+ lower-degree terms

lies in the eigenspace QH∗(X)w(L). If w(L) is not equal to an eigenvalue of c1�, then
(7.4.38) must vanish, so PD(L) vanishes. If w(L) is equal to a small eigenvalue, it follows
by Proposition 7.11 that (7.4.38) must be a multiple of (7.4.31). The latter has the form

(7.4.39) PD(pt)+ lower-degree terms,

so (7.4.38) can only be the zero multiple of it, hence PD(L) vanishes. �

7.5. The big eigenvalue. — In this section, we examine the component F(Xn
a)w of

the monotone Fukaya category, where w is the big eigenvalue.

Proposition 7.13. — Let ÃC be the full subcategory of F(Xn
a)w whose objects are lifts of L. If

2 ≤ a ≤ n − 1, then the map

(7.5.1) CO : QH∗(Xn
a

)n
a → HH∗(ÃC)

n
a

restricts to an isomorphism on the big generalized eigenspace QH∗(Xn
a)w, and vanishes on the small

eigenspaces.

Proof. — By Corollary 7.10, the big generalized eigenspace has rank a − 1, with
basis

(7.5.2) (P − w)i
(
(P − w)n−a − aa

)
, i = 0, . . . , a − 2,
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and the other generalized eigenspaces have rank 1, spanned by eigenvectors of the form
(P − w)a−1f (P).

As in the proof of Proposition 7.8, we have

(7.5.3) ÃC
∼= q∗p∗A⊗R C,

where A is an A∞ algebra of type An
a. By Corollary 6.21, we have

(7.5.4) HH∗(ÃC)
n

a ∼= C[β̂]/β̂a−1,

and as in the proof of Proposition 7.8, we have

(7.5.5) CO(P − w)= β̂.

It follows immediately that CO vanishes on elements of the form (P − w)a−1f (P), and
hence on all of the generalized eigenspaces other than that associated to 0. Furthermore,
on the generalized eigenspace associated to 0, the image is generated by the elements

(7.5.6) β̂ i
(
β̂n−a − aa

)
, for i = 0, . . . , a − 2,

which span C[β̂]/β̂a−1. So the restriction to this generalized eigenspace is surjective;
because the eigenspace has rank a − 1, this means it is an isomorphism. �

Remark 7.3. — Note that Proposition 7.13 agrees with Proposition 2.9: CO is unital
on the big eigenspace, and vanishes on all the other eigenspaces.

Corollary 7.14. — If 2 ≤ a ≤ n − 1, then ÃC split-generates F(Xn
a)w, where w is the big

eigenvalue.

Proof. — Follows immediately from (a n
a -equivariant version of) Corollary 2.18,

together with Proposition 7.13. �

7.6. The small eigenvalues. — In this section, we examine the components F(Xn
a)w,

where w is a small eigenvalue. In fact, we will need to make use of weak bounding
cochains; so in fact, we work in Fwbc(Xn

a)w.
We aim to apply Proposition 4.3 to the A∞ algebra of type An

a appearing in Propo-
sition 7.2. The first remark to make is that A is not, strictly speaking, an endomorphism
algebra of a Lagrangian in a monotone relative Fukaya category, so Proposition 4.3 does
not hold exactly as stated. Instead A is first-order quasi-equivalent to the endomorphism
algebra of the immersed Lagrangian sphere L in F(φ) (see [67, Section 5.1] for the
definition). We recall that F(φ) should be thought of as an ‘orbifold’ relative Fukaya
category of Xn

1 = Xn
a/

n
a , which has orbifolding of degree a about the divisors (although

it is actually defined by counting pseudoholomorphic maps into Xn
a). The arguments of
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Section 5.3 must be modified to take into account this slight change in perspective, but
the necessary modifications are trivial.

Recalling that A is an exterior algebra on n generators θ1, . . . , θn (Definition 6.3),
we define V ⊂ A to be the subspace spanned by {θ1, . . . , θn}. We need to establish that
the various hypotheses of Proposition 4.3 are satisfied for V ⊂ A.

Lemma 7.15. — Let L= {L} be the set containing the immersed Lagrangian L ⊂ Xn
1, and P

be the set of generators θi of A. Then (L,P) is relatively monotone.

Proof. — Suppose that (u, ũ) are as in Definition 5.2, with ũ changing ‘sheets’ of L
at generators θim , m = 1, . . . , l, in positive direction, then at generators θjn, n = 1, . . . , k,
in negative direction (compare Figure 7). A straightforward modification of the grading
computation of [67, Lemma 2.93] shows that

(7.6.1) aj + k − l = nq

(where j =∑
�i(u · Di)), and

(7.6.2) t = (n − 2)q + (2 − a)j

(where t = μ(u, ũ)). Eliminating q, it follows that

(7.6.3)
∑

�i(u · Di)= n

2(n − a)
μ(u, ũ)+ n − 2

2(n − a)
(l − k).

We have τ = n/2(n − a), so if we choose τk so that

(7.6.4)
n − 2

2(n − a)
< τk <

n

2(n − a)
= τ,

then

(7.6.5)
∑

�i(u · Di) < τμ(u, ũ)+ τkl

for sufficiently large l. It follows that (L,P) is relatively monotone. �

Now although (L,P) is relatively monotone, it need not be monotone. To deal
with this, we apply Lemma 5.2: if ϕt denotes the time-t reverse Liouville flow on Xn

1 \ D,
and

(7.6.6) (Lt,Pt) := (
ϕt(L), ϕt(P)

)
,

then for sufficiently large t > 0, (L,Pt) is both relatively monotone and monotone.
Following Proposition 7.2, let Ãt denote the full subcategory of the Gn

a-graded
monotone relative Fukaya category Fm(Xn

a,D)w whose objects are lifts of the immersed
Lagrangian sphere Lt ⊂ Xn

1 under the branched cover φ.
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Lemma 7.16. — For all t > 0, there exists a non-curved A∞ algebra At of type An
a, such that

(7.6.7) Ãt
∼= p∗At.

Proof. — By Lemma 5.2, Lt is Hamiltonian isotopic to L. It follows that Ãt and Ã

become quasi-equivalent, when we set all rj = 0 and work in the affine Fukaya category
F(Xn

a \ D). It now follows by [67, Lemma 2.111] that Ãt and Ã are ‘first-order quasi-
equivalent’. The result now follows from Proposition 7.2, because whether an algebra is
of type An

a or not only depends on first-order data. �

Henceforth, we will drop the ‘t’ and write A for this A∞ algebra At : it has all the
same properties as before, except the generators P are now monotone.

Lemma 7.17. — Let V ⊂ A be the subspace spanned by the generators in P . Then the

conditions of Lemma 4.1 are satisfied:

• For any v ∈ V, μs(v, . . . , v) is a multiple of eL;

• The sum defining the pre-disc potential P′ converges;

• CC≤0(V,A)∼= C · eL (as C-vector space).

Proof. — Combining the grading computations of [67, Lemma 2.96] with Lem-
mas 6.12 and 6.13 shows that any A∞ product μs with s ≥ 3, when input are genera-
tors θi , outputs a multiple of the identity. We also have μ1 = 0 by Corollary 6.8, and
μ0 = 0 by definition. Finally, the product μ2(v, v) vanishes by antisymmetry, as μ2 is the
exterior algebra product. It follows that μs(v, . . . , v) is a multiple of eL, for any v ∈ V.

The sum defining the pre-disc potential converges, because (L,P) is relatively
monotone.

The fact that CC≤0(V,A) ∼= C · eL follows from [67, Lemma 2.94], in particular
Equations (2.7) and (2.8). In the notation used there, s + t ≤ 0 means

0 ≥ −s (length s is always ≥ 0)(7.6.8)

≥ t (as s + t ≤ 0)(7.6.9)

= (n − 2)(q − j)+ (n − a)j (by [67, Equation (2.7)])(7.6.10)

≥ (n − 2)(q − j) (as n − a > 0 and j ≥ 0)(7.6.11)

= n − 2
2

(|K| − (s + t)
)

(by [67, Equation (2.8)])(7.6.12)

≥ 0 (as |K| ≥ 0 and s + t ≤ 0)(7.6.13)

Hence we must have equality everywhere, and in particular, s = t = |K| = j = 0, so the
only generator is the identity eL. �
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Corollary 7.18. — Consider the immersed Lagrangian sphere L as an object of the C-linear

category F c(φ)⊗R C (where the ‘c’ indicates that we have enhanced with homotopy units and introduced

curvature), and let VC be the n-dimensional complex vector space with basis {θ1, . . . , θn}. Then there is

an embedding

(7.6.14) ι : VC ↪→ M̂weak(L),

so that the disc potential is given by

(7.6.15) P ◦ ι(v1, . . . , vn)= Wn
a(v1, . . . , vn).

Proof. — The existence of ι follows from Lemma 7.17, which verifies the hypotheses
of Corollary 5.4. The pre-disc potential is P′ = Zn

a, by the definition of an algebra of
type An

a (together with Lemma 6.13, which shows there can be no corrections to Zn
a of

quadratic or higher order in the rj ). Therefore, the disc potential is precisely

(7.6.16) P ◦ ι(v)= w +P
′(v)= w + Zn

a(v1, . . . , vn)= Wn
a(v1, . . . , vn). �

Now we recall the setup of Section 4.5. We apply it to the object L of A, the
category constructed in the proof of Proposition 7.2, which had the property that there
was an isomorphism

(7.6.17) Ã ∼= p∗A.

Choose a splitting θ , and let Lθ be the corresponding object of F c(Xn
a).

Corollary 7.19. — There is an embedding

(7.6.18) j ◦ ι : VC ↪→ M̂weak

(
Lθ
)
,

such that the disc potential is given by

(7.6.19) P ◦ j ◦ ι(v)= Wn
a(v).

Furthermore, the objects (Lθ , j ◦ ι(v)) and (Lθ , j ◦ ι(χ · v)) are quasi-isomorphic, for any χ ∈ ∗.

Proof. — The embedding j ◦ ι is the composition of the embedding ι given in Corol-
lary 7.18 with the embedding j of (4.5.30). The fact that χ acts via quasi-isomorphisms
follows from Proposition 4.6. �

Remark 7.4. — Corollary 7.19 is our version of the folklore result that ‘the mirror
is the Maurer–Cartan moduli space, with the superpotential given by the disc potential’.
We recall that the mirror is (Cn/∗,Wn

a) (see Definition 1.2). It is interesting to note
that the quotient by ∗ that appears in the definition of the mirror does not appear in
Corollary 7.19 as the quotient by gauge equivalence: gauge equivalence is an equivalence



ON THE FUKAYA CATEGORY OF A FANO HYPERSURFACE IN PROJECTIVE SPACE 293

relation generated by the flow of a vector field, not by a discrete group action. We also
note that the quotient by ∗ is not simply quotient by quasi-isomorphism: most of the
objects (Lθ , j ◦ ι(v)) are quasi-isomorphic to the zero object, but are not identified by the
action of ∗.

Now, because A is an A∞ algebra of type An
a, its underlying vector space can be

identified with an exterior algebra on the generators θ1, . . . , θn. Let Ak denote the sub-
space of A spanned by elements θi1 ∧ · · · ∧ θik , so

(7.6.20) A∼=
n⊕

k=0

Ak.

Lemma 7.20. — The subspace V ⊂ A, together with the decomposition (7.6.20), satisfies the

hypotheses of Proposition 4.2, namely:

• A0 = R · e;

• A1 = V;

• μ2
0 sends

(7.6.21) μ2
0 : Ak ⊗ Al → Ak+l;

• If s > 2 or j > 0, then μs
j sends

(7.6.22) μs
j : V⊗b ⊗ Ak ⊗ V⊗c ⊗ Al ⊗ V⊗d →

⊕
m<k+l

Am,

whenever b + c + d + 2 = s.

• V generates A as an associative algebra, with respect to μ2
0, and eL is a unit for this product;

Proof. — It is clear that A0 is spanned by the unit e, and that A1 = V is the subspace
spanned by the θi . μ2

0 coincides with the exterior product, by definition of an algebra of
type An

a. Hence it respects the decomposition, V generates A as an associative algebra
with respect to the product μ2

0, and eL is a unit. Finally, we apply [67, Lemma 2.93] to
prove the final hypothesis. Using the notation from there, if the coefficient of rcθK0 in

(7.6.23) μs
(
θj1, . . . , θja, θ

K1, θjb+1, . . . , θjb+c
, θK2, θjb+c+1+1, . . . , θjb+c+d

)
is non-zero, then

(7.6.24) |K0| − |K1| − |K2| = (s − 2)+ nq − aj

(dotting [67, Equation (2.2)] with y{1,...,n}), and

(7.6.25) 2 − s = (n − 2)q + (2 − a)j
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(by [67, Equation (2.3)], with s + t = 2). Eliminating q from these equations, and setting
|K1| = k, |K2| = l, |K0| = m gives

(7.6.26) (n − 2)(m − k − l)= 2(2 − s)+ 2(a − n)j.

In particular, if s > 2 or j > 0, then m < k + l, as required. �

Corollary 7.21. — Consider the immersed Lagrangian sphere L as an object of F c(φ)⊗R C,

as in Corollary 7.18. Suppose that v = (v1, . . . , vn) is one of the small critical points of P ◦ ι= Wn
a

(see Lemma 1.15), and let α = ι(v) be the corresponding weak bounding cochain. Then we have an

isomorphism of Z/2Z-graded algebras

(7.6.27) HF∗((L, α), (L, α))∼= C�n.

The right-hand side denotes the Clifford algebra of a non-degenerate quadratic form on a complex vector

space of dimension n (see Section 6.1).

Proof. — By Lemma 7.17, which verifies the hypotheses of Proposition 4.2, we can
apply Proposition 4.3. Corollary 7.18 shows that the disc potential is given by Wn

a. Note
that the surjection of Proposition 4.3 is in fact an isomorphism, as the domain and target
both have rank 2n. Also note that the Hessian at a small critical point is non-degenerate
by Lemma 1.15. �

Corollary 7.22. — Let v ∈ VC be one of the small critical points of Wn
a, and let (Lθ , j ◦ ι(v))

be the corresponding object of Fwbc(Xn
a)w, in the notation of Corollary 7.19. Then there is an isomor-

phism of Z/2Z-graded algebras

(7.6.28) HF∗((Lθ , j(α)
)
,
(
Lθ , j(α)

))∼= C�n.

Proof. — Follows from Corollary 7.21 and Proposition 4.7. We must verify the extra
hypothesis of Proposition 4.7: namely, that for any character χ ∈ (n

a)
∗ not equal to 1,

the differential dv,χ ·v admits a contracting homotopy. The differential acts on the exterior
algebra A by

(7.6.29) dv,χ ·v(a)= μ2
0(v, a)+μ2

0(a, χ · v)= (−v + χ · v)∧ a,

hence admits a contracting homotopy ιη, where η ∈ V∨ satisfies η(χ · v − v) = 1. Note
that such an η exists because χ · v = v for χ = 1, because the character group acts freely
on the small critical points by Lemma 1.15. �

Lemma 7.23. — The object (Lθ , j ◦ ι(v)) of Corollary 7.22 is CO0-unital.

Proof. — It is easy to see that X \ D admits a holomorphic volume form, so
Lemma 5.12 applies. The result then follows from Corollary 5.13. �
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Lemma 7.24. — The object (Lθ , j(α)) of Corollary 7.22 split-generates Fwbc,u(Xn
a)w.

Proof. — Follows from Corollary 5.10, because QH∗(X)w is one-dimensional by
Proposition 7.11. �

Corollary 7.25. — If w is a small eigenvalue of c1�, then there is an A∞ quasi-equivalence

(7.6.30) DπFwbc,u
(
Xn

a

)
w

∼=
{

Db(C) if n is even

Dπ(C�1) if n is odd

Proof. — Follows from Lemma 7.24, Corollary 7.22, and Corollary 6.5. �

8. Matrix factorization computations

We refer to Section 6.3 for the definition of the grading datum G, the G-graded
ring

(8.0.31) Ra := C[r1, . . . , rn],
and the G-graded polynomial ring

(8.0.32) Sa := Ra[u1, . . . , un],
together with the element

(8.0.33) Z̃n
a := −u1 . . . un +

n∑
j=1

rju
a
j ∈ Sa

of degree 2. We also consider the algebra homomorphism

(8.0.34) Ra → C

sending all rj to 1, so that

(8.0.35) Sa ⊗Ra
C ∼= C[u1, . . . , un],

and

(8.0.36) Z̃n
a ⊗Ra

1 = Zn
a ∈ SC

(where Zn
a is as in (1.4.7)).

We will sometimes drop the ‘n’ or ‘a’ from the notation to avoid clutter, when we
feel no confusion is possible.
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In accordance with [67, Definition 7.2], we consider the differential G-graded
category of matrix factorizations of Z̃n

a, MFG(Sa, Z̃n
a). We introduce a matrix factorization

O0 := (K, δK), where

(8.0.37) K := Sa ⊗�∗(U∨)∼= Sa[θ1, . . . , θn],
where the θi anti-commute. The differential is given by

(8.0.38) δK :=
∑

j

uj

∂

∂θj

+wjθj,

where

(8.0.39) wj := −u1 . . . un

nuj

+ rju
a−1
j ,

so that
∑

ujwj = Z̃n
a. It is easy to check that δ2

K = Z̃n
a · id, so (K, δK) is an object of

MFG(Sa, Z̃n
a). We define its endomorphism DG algebra,

(8.0.40) B := HomMFG(Sa,Z̃n
a)
(O0,O0).

Proposition 8.1. — If 3 ≤ a ≤ n−1, then B is quasi-isomorphic to an A∞ algebra of type An
a.

Proof. — We use the homological perturbation lemma to construct a quasi-
isomorphic minimal A∞ algebra structure on the cohomology of B; it follows from [67,
Proposition 7.1] that this A∞ algebra is of type An

a. �

Now we consider the morphisms of grading data

(8.0.41) p : Gn
a → Gn

1

of Equation (6.3.3), and the sign morphism

(8.0.42) σ : Gn
a → Gσ .

We obtain a C-linear, differential Z/2Z-graded category

(8.0.43) σ∗p∗MFG
(
Sa, Z̃n

a

)⊗Ra
C.

Proposition 8.2. — Let B̃C be the full subcategory of MF∗
(SC,Z) whose objects correspond

to equivariant twists of the skyscraper sheaf at the origin (under Orlov’s equivalence H∗(MF∗
) ∼=

DbSing
∗
). Then B̃C split-generates, and for 2 ≤ a ≤ n − 1 there is a quasi-isomorphism

(8.0.44) B̃C
∼= σ∗p∗B⊗R C

where B is an A∞ algebra of type An
a.
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Proof. — Z has an isolated singularity at the origin, by Lemma 1.15. It follows
that B̃C split-generates the triangulated category of singularities (see [63, Section 12] and
[19]), and hence the category of matrix factorizations.

By [67, Remark 7.6], there is a fully faithful embedding of Z/2Z-graded DG cat-
egories

(8.0.45) σ∗p∗MFG(S, Z̃) ↪→ MF∗
(S, Z̃),

where ∗ acts on S by multiplying the coordinate functions uj by ath roots of unity (and
trivially on R). There is then an obvious embedding

(8.0.46) MF∗
(S, Z̃)⊗R C ↪→ MF∗

(SC,Z),

by applying − ⊗R C.
Under this chain of embeddings and equivalences, the lifts of (K, δK) map to the

objects corresponding to equivariant twists of the skyscraper sheaf of the origin under
Orlov’s equivalence (see [19, Section 3]); the result now follows by Proposition 8.1, for
all a ≥ 3.

When a = 2, the proof is slightly different: we cannot apply the homological per-
turbation lemma as in Proposition 8.1. Nevertheless, the superpotential Zn

2 has a non-
degenerate critical point at the origin, so we have H∗(B⊗R C)∼= C�n by [19, Section 4.4],
which is isomorphic to H∗(A ⊗R C) for an A∞ algebra of type An

2 by Corollary 6.9. It
follows from intrinsic formality of the Clifford algebra (Corollary 6.4) that there is an A∞
quasi-isomorphism B⊗R C ∼= A⊗R C. The rest of the proof is as in the case a ≥ 3. �

Proof of Theorem 1.16. — It follows from Corollary 7.4, Proposition 8.2 and Theo-
rem 6.10 that the subcategory of F(Xn

a)w generated by lifts of L is quasi-isomorphic to
the subcategory of MF∗

(W − w) generated by equivariant twists of the skyscraper sheaf
at the origin (note that W − w = Z). We recall here Remark 1.5: namely, we take the DG
enhancement of DbSing

∗
given by MF∗

, by convention. It follows from Corollary 7.14
and Proposition 8.2 that these subcategories split-generate, so the proof is complete. �

Proof of Theorem 1.17. — Let v ∈ Cn be a small critical point of Wn
a with critical

value w. On the category of singularities side, we have the ∗-equivariant object Ocrit ,
which is the direct sum of the skyscraper sheaves Ov at the small critical points v in
W−1(w). Because ∗ acts freely and transitively on the critical points by Lemma 1.15, it is
clear that the endomorphism algebra of Ocrit is isomorphic to the endomorphism algebra
of a single Ov . This endomorphism algebra is isomorphic to C�n by [19, Section 4.4],
because the Hessian of Zn

a at v is non-degenerate by Lemma 1.15. Furthermore, because
each v is an isolated critical point of Wn

a, Ocrit split-generates MF∗
(W − w) (see [63,

Section 12] and [19]). It follows by Corollary 6.5 that there is an A∞ quasi-isomorphism

(8.0.47) DπMF∗
(W −w)∼=

{
Db(C) if n is even
Dπ(C�1) if n is odd
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Lemma 1.15 shows that w corresponds to a small eigenvalue of c1�, so the result now
follows by Corollary 7.25. �
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Appendix A: A∞ bimodules

A.1 A∞ categories. — We recall some basic facts about A∞ categories and modules.
Recall that a grading datum G consists of an abelian group Y, with homomorphisms

(A.1.1) Z
f→ Y

σ→ Z/2Z

whose composition σ ◦ f is the standard map Z → Z/2Z. All of our categories will be
G-graded, which means that they are Y-graded, and when we say an operation has de-
gree j ∈ Z, we really mean its degree is f (j) ∈ Y; and all signs in our formulae will be
determined via the map σ .

A G-graded A∞ category A has a set of objects L, with an action of Y on the
objects by ‘shifts’. For each pair of objects there is a hom-space, which is a G-graded free
R-module, which we will denote hom∗

A(L0,L1). We introduce the convenient notation

(A.1.2) A(Ls, . . . ,L0) := hom∗
A(Ls−1,Ls)[1] ⊗ · · · ⊗ hom∗

A(L0,L1)[1].
We define the Hochschild cochain complex of A,

(A.1.3) CC∗(A) :=
∏

L0,...,Ls

Hom
(
A(Ls, . . . ,L0),A(Ls,L0)[−1]).
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It has the Gerstenhaber product

φ ◦ψ(as, . . . , a1)(A.1.4)

:=
∑

i+j+k=s

(−1)σ
′(ψ)·�i

1φ i+k+1
(
ai+j+k, . . . ,ψ

j(ai+j, . . .), ai, . . . , a1

)
,

where we establish running notation that, for any sign σ , σ ′ := σ +1 denotes the opposite
sign, and

(A.1.5) �i
j :=

i∑
k=j

σ ′(ak).

It also has the Gerstenhaber bracket,

(A.1.6) [φ,ψ] := φ ◦ψ − (−1)σ
′(φ)·σ ′(ψ)ψ ◦ φ,

which is a G-graded Lie bracket.
A curved A∞ structure on A is an element μ∗ ∈ CC2(A) satisfying μ∗ ◦ μ∗ = 0.

If the length-zero component vanishes, μ0 = 0, then μ∗ is called an A∞ structure. In this
appendix, we will always assume that μ0 = 0, with the exception of Section A.7.

We will always assume our A∞ categories to be cohomologically unital (c-unital)
in the sense of [60, Section 2a], i.e., that the cohomology category H∗(A) has identity
morphisms. We will denote the morphism spaces in the cohomology category by

(A.1.7) Hom∗(K,L) := H∗(hom∗(K,L),μ1
)
.

We recall that the composition of morphisms is defined by

(A.1.8) [a2] · [a1] := (−1)σ(a1)
[
μ2(a2, a1)

]
,

and is associative.
It follows from the A∞ equation μ∗ ◦μ∗ = 0 that [μ∗,μ∗] = 0, and hence (by the

Jacobi relation) that the Hochschild differential [μ∗,−] squares to zero. We define the
Hochschild cohomology of A to be

(A.1.9) HH∗(A) := H∗(CC∗(A),
[
μ∗,−]).

A.2 A∞ bimodules. — We now recall basic notions about the DG category of A∞
A-A bimodules from [59] (our conventions are identical, except that the order of inputs
is reversed in all operations; this is in line with the convention of [60]). We denote this
DG category by A-mod-A.
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The objects of A-mod-A are A∞ bimodules M over the A∞ category A. An
A∞ bimodule M associates to each pair K,L of objects of A a G-graded vector space
M(K,L), together with maps

(A.2.1) μk|1|l :A(Kk, . . . ,K0)⊗M(L0,K0)⊗A(L0, . . . ,Ll)→M(Ll,Kk)

satisfying the A∞ associativity equation
∑

i≤k,j≤l

(−1)�
|j+1
|l μk−i|1|l−j

(
ak, . . . ,μ

i|1|j(ai, . . . , a1,m, a|1, . . . , a|j), . . . , a|l
)

(A.2.2)

+
∑
i+j≤l

(−1)�
|i+j+1
|l μk|1|l−j

(
ak, . . . ,m, . . . ,μj(bi+1, . . . , bi+j), . . . , bl

)
(A.2.3)

+
∑
i+j≤k

(−1)�
j

|lμk−j|1|l(ak, . . . ,μ
i(ai+j, . . . , aj+1), . . . ,m, . . . , a|l

)= 0(A.2.4)

where

�|j
|l :=

l∑
i=j

σ ′(a|i)(A.2.5)

�j

|l := σ(m)+
j∑

i=1

σ ′(a|i)+
l∑

i=1

σ ′(ai).(A.2.6)

We require our bimodules to be cohomologically unital.
The morphism space hom∗

A-mod-A(M,N ) is the space of A∞ bimodule pre-homo-
morphisms. An A∞ bimodule pre-homomorphism from M to N is a collection of maps

(A.2.7) Fk|1|l :A(Kk, . . . ,K0)⊗M(L0,K0)⊗A(L0, . . . ,Ll)→N (Ll,Kk).

There is a differential on the space of pre-homomorphisms (we refer to [59, Equa-
tion (2.8)] for the formula), and composition of morphisms is defined by

(F ◦ G)k|1|l(ak, . . . , a1,m, a|1, . . . , a|l)(A.2.8)

:=
∑

i≤k,j≤l

(−1)†F
(
ak, . . . , ai+1,G(ai, . . . , a1,m, a|1, . . . , a|j), a|j+1, . . . , a|l

)

where

(A.2.9) † := σ(G) ·�|j+1
|l .

These differential and composition maps make A-mod-A into a DG category. We denote
the cohomology category of this DG category by H∗(A-mod-A).
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An A∞ pre-homomorphism which is closed is called an A∞ bimodule homomorphism.
If Fk|1|l is an A∞ bimodule homorphism from M to N , then

(A.2.10) F0|1|0 : (M(K,L),μ0|1|0)→ (
N (K,L),μ0|1|0)

is a chain map; if it is a quasi-isomorphism, then we say that F is a quasi-isomorphism.
If R is a field, then for any quasi-isomorphism F, the corresponding cohomology-level
morphism [F] is an isomorphism in H∗(A-mod-A).

The simplest quasi-isomorphisms in A-mod-A are the identity maps. Id ∈
hom∗

A-mod-A(M,M) is defined as follows:

(A.2.11) Id0|1|0 :M(K,L)→M(K,L)

is the identity map, for all K,L, and all other Idk|1|l vanish. These are identity morphisms
in the DG category A-mod-A.

One obvious A∞ bimodule is the diagonal bimodule, A�:

A�(K,L) := hom∗
A(K,L),(A.2.12)

μk|1|l := (−1)�
|1
|l +1μk+1+l .(A.2.13)

For any bimodule M and y ∈ Y, we can define the shifted bimodule M[y], with

M[y](K,L) :=M(K,L)[y](A.2.14)

μ
k|1|l
M[y] := (−1)σ(y)·(�

|1
|l +1)μ

k|1|l
M .(A.2.15)

A.3 Hochschild invariants. — For any A-A bimodule M, we define the Hochschild

cochain complex

(A.3.1) CC∗(A,M) :=
∏

L0,...,Ls

Hom
(
A(Ls, . . . ,L0),M(L0,Ls)

)
,

with the differential given in [62, Equation (1.13)]. Its cohomology is the Hochschild coho-

mology of A with coefficients in M, denoted HH∗(A,M). This accords with our previous
definition of the Hochschild cohomology of A, in that there is an isomorphism

(A.3.2) HH∗(A)∼= HH∗(A,A�)

coming from an isomorphism of the underlying cochain complexes.
Following [28], for any A-A bimodule M, we also define the two-pointed Hochschild

cochain complex

(A.3.3) 2CC∗(A,M) := hom∗
A-mod-A(A�,M).
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There is a chain map

(A.3.4) CC∗(A,M)→ 2CC∗(A,M),

with the formula given in [28, Equation (2.200)], where it is also proven that this map is
a quasi-isomorphism if R is a field.

We define the Hochschild chain complex

(A.3.5) CC∗(A,M) :=
⊕

L0,...,Ls

M(Ls,L0)⊗A(Ls, . . . ,L0),

with the differential given in [1, Equation (5.15)]. Its cohomology is the Hochschild ho-
mology of A with coefficients in M, denoted HH∗(A,M). We define the Hochschild

homology of A to be

(A.3.6) HH∗(A) := HH∗(A,A�).

Now we recall that, given A-A bimodules M and N , we can define the chain
complex

M⊗A-A N :=
⊕

L0,...,Ll ,
K0,...,Kk

M(Kk,Ll)⊗A(Kk, . . . ,K0)(A.3.7)

⊗N (L0,K0)⊗A(L0, . . . ,Ll),

with differential given in [59, Equation (5.1)]. This is functorial in M and N , in the
following sense: for any A∞ bimodule homomorphism Fk|1|l from N to N ′, there is an
induced homomorphism of chain complexes

(A.3.8) F# :M⊗A-A N →M⊗A-A N ′,

given explicitly by

F#(m ⊗ ak ⊗ · · · ⊗ a1 ⊗ n ⊗ a|1 ⊗ · · · ⊗ a|l)(A.3.9)

:=
∑

i≤k,j≤l

(−1)∗m ⊗ ak ⊗ · · · ⊗ Fi|1|j(ai, . . . , a1,n, a|1, . . . , a|j)⊗· · ·⊗ a|l,

where

(A.3.10) ∗ = σ(F) ·�|j+1
|l .

It is not difficult to see that (F ◦ G)# = F# ◦ G#. Functoriality in M is similar.
Following [28], we define the two-pointed Hochschild chain complex

(A.3.11) 2CC∗(A,M) :=A� ⊗A-A M;
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there is a chain map

(A.3.12) 2CC∗(A,M)→ CC∗(A,M),

with the formula given in [28, Equation (2.196)], where it is also proven that this map is
a quasi-isomorphism if R is a field.

We will call CC∗(A,M) and CC∗(A,M) the ‘one-pointed Hochschild (co)chain
complexes’ when we want to distinguish them from the two-pointed versions.

A.4 Algebra and module structures. — Because HH∗(A) is the endomorphism algebra
of the object A� in H∗(A-mod-A), it is naturally equipped with the structure of a unital
associative G-graded algebra. The product on this algebra is called the Yoneda product, and
we denote it by ∪. Equation (A.2.8) gives an explicit formula for F ∪ G, written on the
cochain level in 2CC∗(A).

Here is a formula for the Yoneda product, on the cochain level in the one-pointed
complex CC∗(A):

(A.4.1) ϕ∪ψ(as, . . . , a1) :=
∑

(−1)‡μ∗(as, . . . , ϕ(al, . . .), ak, . . . ,ψ(aj, . . .), ai, . . . , a1

)
,

where the sum is over all s ≥ l ≥ k ≥ j ≥ i ≥ 0, and

(A.4.2) ‡ = σ ′(ϕ) ·�k
1 + σ ′(ψ) ·�j

1

(compare [28, Equation (2.183)]). This product, together with the Hochschild differential,
can be extended to an A∞ structure on CC∗(A) (see [30]); in particular, the product
(−1)σ(ψ)ϕ ∪ψ is associative on HH∗(A). The chain map of (A.3.4) respects the Yoneda
product, up to an explicit homotopy.

The formula (A.4.1) has the advantage that, for any object L, it is clear that the
map

(A.4.3) HH∗(A)→ Hom∗(L,L),

induced by projection to the 0th graded piece with respect to the length filtration, is a
homomorphism of algebras for any L. If A can be equipped with homotopy units, then
this homomorphism is also unital.

It follows immediately from the interpretation of Hochschild cohomology as mor-
phism spaces in H∗(A-mod-A) that HH∗(A,M) is an HH∗(A)-module for any bimod-
ule M, and that Hochschild cohomology defines a unital functor

(A.4.4) HH∗(A,−) : H∗(A-mod-A)→ HH∗(A)-mod.

If R is a field, then because quasi-isomorphisms are invertible in H∗(A-mod-A), this
functor takes quasi-isomorphisms to isomorphisms.
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From the fact that A� ⊗A-A M is functorial in the first variable, we see that
HH∗(A,M) is also an HH∗(A)-module. We denote the action of F ∈ HH∗(A) on
ϕ ∈ HH∗(A,M) by F ∩ ϕ, and call it the cap product. Equation (A.3.9) gives an explicit
formula for F ∩ ϕ on the cochain level in the two-pointed Hochschild complexes.

Here is a formula for the cap product, on the cochain level in the one-pointed
complex CC∗(A,M):

α ∩ (m ⊗ as ⊗ · · · ⊗ a1)(A.4.5)

:=
∑

(−1)�μ∗|1|∗(ai, . . . , a1,m, as . . . , α(al, . . .), ak, . . .
)

⊗ aj ⊗ · · · ⊗ ai+1

where the sum is over all s ≥ l ≥ k ≥ j ≥ i ≥ 0, and

(A.4.6) � = �i
1 · (|m| +�s

i+1

)+ σ ′(α) ·�k
i+1 +�j

i+1

(compare [28, Equation (2.187)]). This cap product, together with the Hochschild differ-
ential, can be extended to give CC∗(A,M) the structure of a right A∞ module over
CC∗(A), with the A∞ structure referenced above (see [30, Theorem 1.9], although
the sign convention for the Hochschild chain complex is different from ours). In par-
ticular, the operation (−1)σ(α)α ∩ − defines a structure of right HH∗(A)-module on
HH∗(A,M). The chain maps (A.3.4) and (A.3.12) between the one-pointed and two-
pointed Hochschild complexes take one formula for the cap product to the other, up to
an explicit homotopy.

The formula (A.4.5) has the advantage that it is clear that the obvious map

(A.4.7) Hom∗(L,L)→ HH∗(A),

induced by inclusion on the cochain level in the one-pointed complex, induces a ho-
momorphism of HH∗(A)-algebras for any L. Here, the HH∗(A)-module structure on
Hom∗(L,L) factors through the Hom∗(L,L)-module structure given by multiplication
of endomorphisms, via the projection map (A.4.3).

From the fact that tensor product of bimodules is functorial in the second variable,
we see that Hochschild homology defines a unital functor

(A.4.8) HH∗(A,−) : H∗(A-mod-A)→ HH∗(A)-mod,

which takes quasi-isomorphisms to isomorphisms, if R is a field.

A.5 ∞-inner products. — In this section, we will assume that the coefficient ring R
is a field.

For any bimodule M, we can define the linear dual bimodule M∨, where

(A.5.1) M∨(K,L) :=M(L,K)∨,
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with structure maps μ̌k|1|l defined by

μ̌l|1|k(a|1, . . . , a|l,α, ak, . . . , a1)(m)(A.5.2)

:= (−1)σ
′(m)α

(
μk|1|l(ak, . . . , a1,m, a|1, . . . , a|l)

)
(compare [64, Equation (2.7)]).

We observe that there is then an isomorphism of chain complexes

(A.5.3) 2CC∗(A,M∨)∼= 2CC∗(A,M)∨.

Because these are complexes of C-vector spaces, we have

(A.5.4) HH∗(A,M∨)∼= HH∗(A,M)∨.

One easily checks that this isomorphism respects the HH∗(A)-module structures.
We recall (from [69, Definition 5.3], see also [13]) that an ∞-inner-product on the

A∞ category A is an A∞ bimodule homomorphism

(A.5.5) φ :A� →A∨
�.

We say that φ is n-dimensional if it is of degree n. By definition, an n-dimensional ∞-inner
product φ is a closed element of 2CCn(A,A∨), and hence defines a class

(A.5.6) [φ] ∈ HHn
(
A,A∨)∼= HHn(A)∨.

We say two ∞-inner products are equivalent if they have the same class in HHn(A)∨; so
the choice of an ∞-inner product φ up to equivalence is equivalent to the choice of a
class [φ] ∈ HHn(A)∨.

For such a class [φ], we obtain a map

(A.5.7)
∫

: Homn(L,L)→ C

for any object L, as the composition of the map (A.4.7) with [φ].
Definition A.1. — We say that the class [φ] ∈ HHn(A)∨ is homologically non-

degenerate (compare [13, Theorem 4.1]) if the composition

Hom∗(K,L)⊗ Homn−∗(L,K)→ C(A.5.8)

a ⊗ b �→
∫

μ2(a, b)(A.5.9)

is a perfect pairing of degree n, for any objects K,L.

Lemma A.1. — The class [φ] is homologically non-degenerate if and only if the corresponding

∞-inner product φ is a quasi-isomorphism of A∞ bimodules.
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Proof. — φ is a quasi-isomorphism if and only if F([φ]) is an isomorphism for any
objects K,L, where F denotes the composition

(A.5.10) HH∗(A)∨ → Hom∗
A-mod-A

(
A,A∨)→ Hom∗(Hom∗(K,L),Hom∗(L,K)∨

)
.

F([φ]) is an isomorphism if and only if the composition

(A.5.11) Hom∗(K,L)⊗ Hom∗(L,K)
F∨→ HH∗(A)

[φ]→ C

is a perfect pairing, where we have identified

(A.5.12) Hom∗(K,L)⊗ Hom∗(L,K)∼= Hom∗(Hom∗(K,L),Hom∗(L,K)∨
)∨
.

F∨ is given as a composition of maps on the cochain level

(A.5.13) hom∗(K,L)⊗ hom∗(L,K)→ 2CC∗(A,A∨)∨ → 2CC∗(A)→ CC∗(A),

for each of which we have an explicit formula; their composition is the map

(A.5.14) hom∗(K,L)⊗ hom∗(L,K)
μ2→ hom∗(L,L)

(A.4.7)→ CC∗(A).

This completes the proof. �

Definition A.2. — An n-dimensional weak proper Calabi–Yau structure on an A∞
category A is a class [φ] ∈ HHn(A)∨ which is homologically non-degenerate.

There are various alternative notions of Calabi–Yau structures on A∞ categories:
see [29, Section 6.1] for a summary.

Remark A.1. — According to [42, Section 10.2], an n-dimensional proper Calabi–Yau

structure is an element [φ] ∈ HCn(A)∨ which is homologically non-degenerate, where HC
denotes the (positive) cyclic homology [42, Section 7]. There is a natural map

(A.5.15) HH∗(A)→ HC∗(A)

coming from an inclusion of chain complexes, whose dual takes n-dimensional proper
Calabi–Yau structures to n-dimensional weak proper Calabi–Yau structures. See [29,
Section 6.1] for a summary

Lemma A.2. — If [φ] is an n-dimensional weak proper Calabi–Yau structure on A, then the

map

HH∗(A)→ HH∗(A)∨[−n](A.5.16)

α �→ α ∩ [φ](A.5.17)

is an isomorphism. Here, ‘∩’ denotes the HH∗(A)-module structure dual to the cap product on

HH∗(A).
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Proof. — We recall the isomorphisms of HH∗(A)-modules:

(A.5.18) HH∗(A)∨ ∼= HH∗(A,A∨)∼= Hom∗
A-mod-A

(
A,A∨).

The module action of HH∗(A) on the right-most of these is given by composition of
morphisms in the category H∗(A-mod-A). Since [φ] is homologically non-degenerate,
φ is a quasi-isomorphism by Lemma A.1, i.e., it is an isomorphism in H∗(A-mod-A).
The result follows, since post-composition with an isomorphism defines an isomorphism
of morphism spaces in the category H∗(A-mod-A). �

A.6 Split-generation. — Now we recall that, for any A∞ category A, we can form
the A∞ category of twisted complexes, DbA, which is triangulated in the A∞ sense,
and its split-closure, DπA, which is triangulated and split-closed (see [60, Chapters 3
and 4], where they are denoted TwA and "(TwA) respectively). For any full subcat-
egory G ⊂ A, we can consider the smallest full subcategory of DπA which contains G,
is closed under quasi-isomorphism, and is triangulated and split-closed. We say that the
objects of this category are split-generated by G. If this category is all of DπA, we say that
G split-generates A.

We recall that an A∞ left A-module M associates to each object L of A a graded
vector space M∗(L), together with maps

(A.6.1) μk|1 :A(Lk, . . . ,L0)⊗M(L0)→M(Lk)

satisfying the A∞ relation, given in [60, Equation 1.19]. A∞ left A-modules are the ob-
jects of a DG category, which we denote by A-mod. Given an object K of A, we define a
left module Y l

K, with

Y l
K(L) :=A(K,L)(A.6.2)

μk|1 := μk+1.(A.6.3)

This extends to a cohomologically full and faithful A∞ embedding

(A.6.4) Y l :A→A-mod,

which is the A∞ version of the Yoneda embedding (see [60, Section 2g]).
Similarly, one can define the DG category of A∞ right A-modules, and we denote

it by mod-A. For each object K of A, there is a right-module Y r
K, with Y r

K(L) :=A(L,K)

and structure maps given by μ∗.
We can then form the A-A bimodule Y l

K ⊗Y r
K, where

Y l
K ⊗Y r

K(L0,L1) :=A(K,L0)⊗A(L1,K)(A.6.5)

μ0|1|0(p ⊗ q) := (−1)σ
′(q)μ1(p)⊗ q − p ⊗μ1(q)(A.6.6)
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μk|1|0(ak, . . . , a1, p ⊗ q) := (−1)σ
′(q)μk+1(ak, . . . , a1, p)⊗ q(A.6.7)

μ0|1|l(p ⊗ q, a|1, . . . , a|l) := (−1)�
|1
|l +1p ⊗μl+1(q, a|1, . . . , a|l)(A.6.8)

μk|1|l = 0 if both k and l are non-zero.(A.6.9)

There is a map H∗(μ):

(A.6.10) H∗(μ) : HH∗
(
A,Y l

K ⊗Y r
K

)→ Hom∗(K,K),

defined on the cochain level by contracting the chain of morphisms with the A∞ structure
maps:

(A.6.11) μ
(
(p ⊗ q)⊗ as ⊗ · · · ⊗ a1

) := (−1)σ
′(p)·(σ ′(q)+�s

1)μs+2(q, as, . . . , a1, p).

Now let G ⊂ A be a full subcategory. Denote by YG l
K the restriction of Y l

K to an
object of G-mod, and similarly define YG r

K.

Lemma A.3 ([1, Lemma 1.4]). — If the identity of Hom∗(K,K) lies in the image of the map

(A.6.12) H∗(μ) : HH∗
(
G,YG l

K ⊗YG r
K

)→ Hom∗(K,K),

then G split-generates K.

A.7 Curvature and units. — We will also be concerned with curved A∞ categories A.
The definition of the DG category of A∞ bimodules A-mod-A still makes perfect sense:
the formulae are as in Section A.2, modified to allow for μ0. The diagonal bimodule
is a well-defined object of A-mod-A. The one- and two-pointed Hochschild cochain
complexes CC∗(A,M) and 2CC∗(A,M) also still make sense, with differentials defined
by the same formulae as before. The Yoneda products on CC∗(A) and 2CC∗(A) are
defined on the cochain level by the same formulae as before, and again define associative
products on the level of cohomology. As before, there is a chain map

(A.7.1) CC∗(A)→ 2CC∗(A)

defined by [28, Equation (2.200)], which induces a homomorphism on the level of coho-
mology. In fact it is an algebra homomorphism, as one can construct an explicit homo-
topy between the two Yoneda products.

However, in contrast to the non-curved case, this homomorphism need not be a
quasi-isomorphism: the length filtration used in the proof of [28, Proposition 2.5] is no
longer a filtration if the A∞ category is curved. Thus we have two Hochschild cohomol-
ogy algebras, together with an algebra homomorphism

(A.7.2) HH∗(A)→ 2HH∗(A).
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Similarly, the one- and two-pointed Hochschild chain complexes CC∗(A,M) and
2CC∗(A,M) are well-defined, via the same formulae as before, and there is a chain map

(A.7.3) 2CC∗(A,M)→ CC∗(A,M)

defined by [28, Equation (2.196)]. Thus we have a homomorphism

(A.7.4) 2HH∗(A,M)→ HH∗(A,M),

but it need not be a quasi-isomorphism. In fact this is a homomorphism of HH∗(A)-
modules, as one can check by constructing an explicit homotopy between the two cap
products.

Now suppose that A has strict units eL ∈ hom∗(L,L), and that the curvature μ0
L is

a multiple of eL, for each object L. In this case, for each w ∈ R (where R is the base ring),
we can define an honest (non-curved) A∞ category Aw: its objects are those objects L of
A such that μ0

L =w · eL, its morphism spaces are inherited from A, and its A∞ structure
maps μ≥1 are inherited from A, with μ0 set equal to 0. It follows from strict unitality and
the condition on μ0 that these structure maps satisfy the A∞ relations.

We also consider strictly unital bimodules M, in the sense of [59, Equation (2.6)]
(with the appropriate adjustment to signs). In particular, if A is strictly unital, then the
diagonal bimodule is strictly unital in this sense. If M is a strictly unital A-A bimodule,
then for each w ∈ R we obtain an Aw-Aw bimodule Mw; it satisfies the A∞ relations by
the strict unitality condition and the condition on μ0.

We would like to compare the Hochschild invariants of the curved A∞ category A
with those of the non-curved categories Aw. To this end, for any strictly unital bimodule
M we introduce the normalized Hochschild cochain complex [46, 1.5.7],

(A.7.5) CC
∗
(A,M)⊂ CC∗(A,M),

the subcomplex of normalized Hochschild cochains, namely, those α such that

(A.7.6) α(. . . , eL, . . .)= 0.

We similarly introduce the normalized Hochschild chain complex [46, 1.1.14], the quotient of
the Hochschild chain complex by the degenerate subcomplex

(A.7.7) CC∗(A,M) := CC∗(A,M)/D∗,

where the subcomplex D∗ is the span of all Hochschild chains m ⊗ as ⊗ . . . eL ⊗ · · · ⊗ a1.
Our assumptions on A and M ensure that these are subcomplexes, so we can

define the normalized Hochschild cohomology and homology, which come with maps

(A.7.8) HH
∗
(A,M)→ HH∗(A,M)
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and

(A.7.9) HH∗(A,M)→ HH∗(A,M).

Furthermore, our assumptions on A ensure that the Yoneda product defines an associa-
tive algebra structure on HH

∗
(A), so that the map (A.7.8) is an algebra homomorphism

when M = A�, and that the cap product makes HH∗(A) into an HH
∗
(A)-module, so

that (A.7.9) is a homomorphism of HH
∗
(A)-modules.

Now, our assumption that μ0 is proportional to eL means that the restriction mor-
phism

(A.7.10) CC
∗
(A,M)→ CC

∗
(Aw,Mw)

and the inclusion morphism

(A.7.11) CC∗(Aw,Mw)→ CC∗(A,M)

are morphism of chain complexes.
Furthermore, the natural inclusion

(A.7.12) CC
∗
(Aw,Mw) ↪→ CC∗(Aw,Mw)

and projection

(A.7.13) CC∗(Aw,Mw)� CC∗(Aw,Mw)

are quasi-isomorphisms of cochain complexes, by the argument of [46, 1.6.5] (we re-
mark that the corresponding maps for the curved A∞ categories need not be quasi-
isomorphisms: the presence of curvature destroys the length filtration used in the ar-
gument). Thus we have

Lemma A.4. — There are algebra homomorphisms

(A.7.14) HH∗(A,M)← HH
∗
(A,M)→ HH

∗
(Aw,Mw)∼= HH∗(Aw,Mw)

and HH
∗
(A)-module homomorphisms

(A.7.15) HH∗(A,M)→ HH∗(AM)← HH∗(Aw,Mw)∼= HH∗(Aw,Mw).

Remark A.2. — Lemma A.4 has a straightforward analogue for the two-pointed
Hochschild complexes, compatible with the morphisms of (A.7.2) and (A.7.4). Further-
more, the homomorphisms

(A.7.16) HH∗(Aw,Mw)→ 2HH∗(Aw,Mw)

of (A.7.2), and

(A.7.17) 2HH∗(Aw,Mw)→ HH∗(Aw,Mw)

of (A.7.4), are quasi-isomorphisms by the arguments of [28, Section 2.11], because Aw is
not curved.
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Appendix B: The cubic surface

For the purposes of this section, let X = X4
3 be the cubic hypersurface in CP3.

B.1 The 27 lines and an open Gromov–Witten invariant. — Following a computation
from [32, ‘Control example 3’ after Corollary 10.9], we can compare the Gromov–Witten
invariant counting the number of lines on X to the open Gromov–Witten invariant w(L)
which counts the number of Maslov index 2 discs with boundary on one of our La-
grangians L.

By Proposition 7.8, the class P Poincaré dual to a hyperplane satisfies the relation

(B.1.1) (P −w)�3 = 33(P −w)�2

in QH∗(X). Using the axioms of the Gromov–Witten invariants, we compute the number
of rigid rational curves in X (such a curve necessarily has degree 1): it is equal to

〈
P2,P

〉= 〈
P3,1

〉
(B.1.2)

= 〈
3wP2 − 3w2P +w3 + 27P2 − 54wP + 27w2,1

〉
(B.1.3)

= 3(w + 9)〈P,P〉(B.1.4)

= 9(w + 9).(B.1.5)

Thus, the number of lines is 27, if and only if w(L)= −6.

B.2 The quantum cohomology of the cubic surface. — Recall that the cubic surface
can be expressed as CP2 blown up at six points. Therefore, QH∗(X) has a basis
{1, h, p, e1, . . . , e6}, where 1, h, p are the standard basis for H∗(CP2) and ej are the classes
of the exceptional divisors. We introduce convenient auxiliary classes

(B.2.1) M := e1 + · · · + e6,

and

(B.2.2) A := 3h − M + 6.

We remark that the first Chern class is c1 = A − 6.

Proposition B.1 (from [17]). — We have a complete description of QH∗(X):

p � p = 84A + 36(B.2.3)

h � p = 42A − 6h(B.2.4)

ei � p = 14A − 6ei(B.2.5)
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h � h = p + 25A − 12h − 30(B.2.6)

h � ei = 9A − 2h − 6ei − 12(B.2.7)

ei � ei = −p + 5A − 4ei − 10(B.2.8)

ei � ej = 3A − 2(ei + ej)− 4.(B.2.9)

This allows us to check Corollaries 1.14 and 7.10 explicitly: the eigenvalues of c1�

are −6 (the big eigenvalue) and 21 (the small eigenvalue), and the ranks of their general-
ized eigenspaces are 8 and 1, respectively. The −6-generalized eigenspace is spanned by
A − 27, A � (A − 27), and 3ei − A − 6 for i = 1, . . . ,6.

B.3 The small eigenvalue. — Although we have proven homological mirror symme-
try for the small components of the Fukaya category (Theorem 1.17), the only objects
of the small components that we actually constructed were weak bounding cochains on
the Lagrangian spheres which make up the big component. It would be interesting to
construct a monotone Lagrangian submanifold that lives in the small component of the
Fukaya category, without any weak bounding cochains being required. Here we speculate
on a possible construction of such a Lagrangian, in the Fano index one case a = n − 1,
where there is only one small component of the Fukaya category.

The degree-a hypersurface in CPn−1 can be degenerated to the union of coor-
dinate hyperplanes {z1 . . . za = 0}, giving a tropical manifold in the sense of Gross and
Siebert. The resulting tropical manifold in the case of the cubic surface is illustrated in
[33, Figure 24]. There is a monotone Lagrangian torus L in the cubic surface, which is
the torus fibre over the centroid of the triangle which is the only compact cell of the tropi-
cal manifold. This construction generalizes immediately to a construction of a monotone
Lagrangian torus Ln ⊂ Xn

a for all a = n − 1, which is the torus fibre over the centroid of
the simplex which is the only compact cell of the corresponding tropical manifold.

Conjecture B.2. — Let a = n − 1 and Ln ⊂ Xn
a be the monotone Lagrangian torus just con-

structed. Then w(Ln) = aa − a! (i.e., Ln lies in the unique small component of the monotone Fukaya

category), and HF∗(Ln,Ln)∼= C�n−2.

Remark B.1. — In particular, note that Conjecture B.2 implies that Ln split-
generates the small component of the Fukaya category by Corollary 2.19, and would
give an alternative proof of Theorem 1.17 with ‘Fwbc,u(X)w’ replaced by ‘F(X)w’.

We can give a non-rigorous explanation of why this conjecture ought to be true
in the case of the cubic surface. Firstly, there are exactly 21 tropical discs of Maslov in-
dex 2 with boundary on this Lagrangian torus fibre, so one may hope that the honest
holomorphic disc count is also 21 (the tropical disc count is similar to the tropical curve
count explained in [33, Section 1]). Secondly, one can check that HF∗(L,L) = 0 when L
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is equipped with the trivial C∗-local system: that is because the obvious Z/3Z symmetry
implies that the disc potential has a critical point at the origin, so the Floer cohomol-
ogy does not vanish. If the origin were furthermore a non-degenerate critical point, then
HF∗(L,L) would be a Clifford algebra as in Conjecture B.2.

B.4 Non-semi-simplicity of HF∗(L,L) and w. — This section explains a computa-
tion made by Seidel (private communication). We consider the endomorphism algebra
HF∗(L,L) of a single lift of our Lagrangian sphere L to X. We know that

(B.4.1) CF∗(L,L)∼= C〈e, θ〉
as a vector space. The differential vanishes, so HF∗(L,L) is a unital C-algebra of rank 2.
It must be of the form C[θ ]/p(θ), where p(θ) is a quadratic polynomial. There are two
possibilities up to isomorphism: either the algebra is semisimple (p has distinct roots) or
not (p has a double root). It turns out not to be semi-simple, and the proof relies crucially
on the value of w(L)= −6.

Proposition B.3. — (Seidel) The endomorphism algebra HF∗(L,L) is not semi-simple.

Proof. — We recall the algebra homomorphism

(B.4.2) CO0 : QH∗(X)→ HF∗(L,L),

and that we have

(B.4.3) CO0
(c1)=w · e

(Lemma 2.7).
We derive the following relation in QH∗(X) from Proposition B.1:

(B.4.4) c�2
1 = 3p + 9c1 + 108.

Applying CO0, it follows that

(B.4.5) CO0
(p)= w2 − 9w − 108

3
.

We also have relations from Proposition B.1:

(B.4.6) (h − 6)�2 = p + 25c1 + 156

and

(B.4.7) (ei + 2)�2 = −p + 5c1 + 20.
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Applying CO0, we obtain

(B.4.8)
(
CO0

(h)− 6
)2 = 1

3
(w + 6)(w + 60)

and

(B.4.9)
(
CO0

(ei)+ 2
)2 = −1

3
(w + 6)(w − 30).

In particular, because w = −6, the right-hand sides vanish.
Now if either CO0

(h) or CO0
(ei) had a non-trivial θ term, these equations would

immediately imply that HF∗(L,L) is non-semisimple. The θ term of CO0
(α), for α ∈

H2(X), corresponds to the image of α under the restriction map

(B.4.10) H∗(X)→ H∗(L),

because in this case the disc count defining CO0 reduces to a count of constant holo-
morphic discs (see, for example, [58, Section 5a] for the argument in the exact case, and
compare Lemma 2.14). In particular, because the classes h and ei span H2(X), it suffices
to show that the homology class of L is non-trivial.

We argue by contradiction: if L were homologically trivial, then all the other lifts
of the Lagrangian sphere to X would be homologically trivial, by symmetry. However we
proved, in Lemma 7.7, that the homology classes of the lifts of the Lagrangian sphere
span the primitive homology, and we know the primitive homology to be non-trivial;
therefore, the homology class of L is non-trivial. This completes the proof. �
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